
Math 4100 Notes, Fall 2023

Pete L. Clark





Contents

A Little Review 5
The real numbers 5
The extended real numbers 7
Inequalities 9

Chapter 1. Topology of Euclidean Space 11
1. Euclidean N -Space 11
2. Sequences in RN 14
3. Sequential Limits Superior and Inferior 22
4. Topology of RN 25
5. Uniform Continuity 33
6. Accumulation Points and Continuous Extensions 35
7. Functional Limits 41

Chapter 2. The Riemann Integral 43
1. Abstract Integrals and the Fundamental Theorem of Calculus 43
2. Darboux’s Riemann Integral 49
3. Riemann’s Riemann Integral 61
4. The Class of Riemann Integrable Functions 67
5. Some Further Exercises and Problems 72

Chapter 3. Sequences and Series of Functions 75
1. Pointwise Convergence 75
2. Uniform Convergence 78
3. Power Series 83
4. The Weierstrass Approximation Theorem 89
5. A Continuous, Nowhere Differentiable Function 95
6. Some Further Exercises and Problems 98

Chapter 4. Real Induction and Compactness 99
1. Real Induction 99
2. A Mean Value Inequality For All Functions 100
3. Compactness 106

Chapter 5. Metric Spaces 113
1. A look ahead 113

Bibliography 121

3





A Little Review

The real numbers

The name of the course is Real Analysis, so let us begin with a check-in on the
real numbers R, perhaps the most important single mathematical object. Intu-
itively we view R as being the points on a number line, with the origin marked as
0 and with an orientation so that we may distinguish positive from negative. We
may represent every real number via an infinite decimal expansion, and while this
is certainly an excellent way to think about and work with real numbers, it works
poorly as a definition.

The modern approach is to lean on a certain collection of axioms for R:

I. The field axioms: R is endowed with two binary operations + and ·, satisfy-
ing many familiar properties like commutativity, associativity and so forth.

II. The order axioms: R is endowed with a total order relation ≤.

III. The ordered field axioms, which give compatibility between the field opera-
tions and the order structure:
(OF1) For all x ∈ R, exactly one of the following holds: x = 0, x > 0, −x > 0.
(OF2) For all x, y, z ∈ R, if x ≤ y then x+ z ≤ y + z.
(OF3) For all x, y ∈ R, if x ≥ 0 and y ≥ 0, then x · y ≥ 0.

A structure that satisfies all of the properties so far is called an ordered field.
There are in fact an enormous number of ordered fields: the rational numbers, Q,
is one. A subfield of R is a subset F ⊆ R that contains 0 and 1 and is closed under
the field operations: if x, y ∈ F then x+ y, x− y, x · y ∈ F and x

y ∈ F if y ̸= 0. If

we take any subfield of R and restrict the relation ≤ to F , then we get an ordered
field. This builds a lot (infinitely many, to say the least!) of subfields of R. And
there are also more exotic ordered fields that do not arise in this way, although you
will probably never meet any in an undergraduate course (including this one).

The real numbers is characterized among ordered fields by satisfying:

IV. The completeness axiom, which can be stated in several equivalent forms.

But first let me nail down what “characterized” means: first of all, the real numbers
satisfy these completeness axioms. Second, an ordered field F that satisfies one of
these completeness axioms is “essentially” the real numbers, which means that one
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6 A LITTLE REVIEW

can find a bijective function f : F → R that preserves all of the structures: +, ·
and ≤. (More formally, f is an isomorphism of ordered fields.)

Now back to the completeness axioms. The most useful formulation is:

Dedekind’s Completeness: If X is a subset of R that is nonempty and bounded
above, then X has a least upper bound, or supremum, in R.

Another version isO’Connor’s Completeness / Monotone Sequence Lemma:
Every bounded monotone sequence {xn}∞n=1 in R converges to a real number.

What do I mean by “versions” of completeness? I mean that it can be shown that if
an ordered field satisfies Dedekind’s Completeness than it also satisfies O’Connor’s
Completeness (this was an important result in Math 3100) and also conversely an
ordered field that satisfies O’Connor’s Completeness also satisfies Dedekind’s Com-
pleteness (this was probably not covered in class in Math 3100 but see [SS]).

In any ordered field satisfying the completeness axioms, the following properties
also hold:

Archimedean Property: For every real number x, there is a positive integer
n with n > x.

Cauchy’s Completeness: Every Cauchy sequence in R converges.

The second of these implications is a major result from a previous course: [SS,
Thm. 2.6.11]. We will freely use it – in particular to give a generalization to
Cauchy sequences in Euclidean space – in our course. The first of these implica-
tions may be less familiar. We leave it as Exercise 0.1.

The rational numbers Q are an example of an ordered field that do not satisfy
Cauchy’s completeness. It turns out that an ordered field satisfies the Archimedean
property if and only if it is (isomorphic to) a subfield of R, so non-Archimedean
ordered fields are precisely the ones we called “exotic” above. Moreover:

Proposition 0.1. An ordered field that satisfies the Achimedean Property and
Cauchy’s completeness is Dedekind complete – and thus isomorphic to R.

Proof. See [SS, Proposition 2.6.7 and Theorem 2.6.13b)]. □

Just a remark / reminder: one does need to show that there is a Dedekind complete
ordered field that is unique up to isomorphism; that is, we still need to “construct
the real numbers R.” At least, someone does. The first such construction was given
by Dedekind in the late 1800’s. The truth of it is that no such construction is par-
ticularly simple, so that one needs a certain amount of mathematical sophistication
to understand it...at which point it seems to be a better use of any instructor’s time
to cover something else. So it is extremely rare to encounter the construction R in
a course. This course will be no exception. But if by chance you do want to see a
construction of R, it is written up in [HC, Chapter 16].

Exercises.
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Exercise 0.1. Let (F,+,≤) be an ordered field that is Dedekind complete.
Show that F is Archimedean.
(Suggestion: proceeding by contrapositive, if F is not Archimedean then there is
x ∈ F such that n ≤ x for every positive integer n, so the set Z+ of positive
integers has an upper bound in F . Show: Z+ has no least upper bound in F .)

Exercise 0.2. Let F ⊊ R be a proper subfield of R. We make F into an
ordered field by restricting the usual ≤ on R to F . Note that we must have Q ⊆ F .

a) Show: F is an Archimedean ordered field.
(In fact, every subfield of an Archimedean ordered field is an Archimedean
ordered field: that is one way to go.)

b) Show: F is not Dedekind complete.
(Suggestion: Use the fact that every real number is the limit of a sequence
of rational numbers.)

Problems.

Problem 0.1. Let (F,+,≤) be an ordered field. Show that the following are
equivalent:

(i) The field F is Archimedean.
(ii) Every sequence {xn}∞n=1 in F that is increasing and bounded is a Cauchy

sequence in F .

Problem 0.2. Show: there is an ordered field that is Cauchy complete but not
Dedekind complete: equivalently by Proposition 0.1, there is a non-Archimedean
ordered field in which every Cauchy sequence is convergent.

The extended real numbers

We define the extended real numbers [−∞,+∞] to be the set of real numbers
together with two additional symbols +∞ and −∞. We extend the ordering on R
to the extended real numbers by putting −∞ smaller than every other element and
+∞ larger than every other element.

Why do we do this? Here is the point: R with its usual ordering ≤ is Dedekind
complete: every subsetX of R that is nonempty and bounded above has a least up-
per bound. In this definition both of the words “nonempty” and “bounded above”
are necessary: if X were unbounded above then...well, it does not have an upper
bound in the real numbers: that is, for all M ∈ R there is x ∈ X with x > M , so
it certainly does not have a least upper bound. The case of X = ∅ is similar but
somehow a bit more confusing. Here the problem is that every real number M if
an upper bound for the empty set: since there are no elements in ∅, indeed every
real number is at least as large as every element of ∅. So the least upper bound of
∅ would be the least real number...but there is no such thing, since for all M ∈ R
we have M − 1 < M .

Each of these difficulties is remedied in the ordered set of extended real numbers
[−∞,+∞].

Proposition 0.2. Let X be a subset of the extended real numbers [−∞,+∞].
Then X has a least upper bound in [−∞,+∞].
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Proof.
Case 1: Suppose X = ∅. Then every element of [−∞,+∞] is an upper bound for
X, so the least upper bound of X is the least element of [−∞,+∞], which is −∞.
Case 2: Suppose X = {−∞}. Then again every element of [−∞,∞] is an upper
bound for X, so the least upper bound is −∞.
Case 3: Suppose +∞ ∈ X. Then +∞ is the only upper bound of X, so it is the
least upper bound.
Case 4: Suppose +∞ is not an element of X, but X ∩R is unbounded above. Then
no real number is an upper bound for X, so +∞ is the only upper bound for X,
hence the least upper bound.
Case 5: SupposeX ⊋ {−∞} andX is bounded above. ThenX∩R has a least upper
bound, which is a real number M . Since the only possible element of X \ (X ∩ R)
is −∞, which is certainly less than M , also M is an upper bound for X, so is the
least upper bound. □

In a very similar way it can be shown that every subset of [−∞,+∞] has a great-
est lower bound, or infimum: this is left as an exercise. Thus if we work in the
extended real numbers, suprema and infima always exist, which is very convenient.
The terminology for this is that the set [−∞,∞] is complete for its ordering ≤,
whereas R was merely Dedekind complete.

However, note well that it is certainly not the case that [−∞,∞] form a field
in a way that is compatible with the ordering we have defined. Indeed, no ordered
field has a largest or smallest element: for any element x in an ordered field, x+ 1
is larger and x− 1 is smaller. It is natural to define some operations on extended
real numbers, but some of the others cannot be usefully made for reasons relating
to indeterminate forms. Namely, we will make the following definitions:

∀x ∈ R, x+ (+∞) = +∞, x+ (−∞) = −∞.

(+∞) · (+∞) = +∞, (+∞) · (−∞) = −∞, (−∞) · (−∞) = +∞.

∀x ∈ (0,∞), x · (+∞) = +∞, x · (−∞) = −∞.

∀x ∈ (−∞, 0), x · (+∞) = −∞, x · (−∞) = +∞.

These definitions apply to give extensions of familiar “limit laws” to the extended
real numbers. For instance, if we have real sequences {xn} and {yn} such that xn

diverges to +∞ and yn converges to the real number M , then we have

xn + yn → M +∞ = ∞.

The proof of this is an (ϵ,N)-argument that should be familiar from Math 3100;
the point is that our convention gives the correct answer.

This should serve to explain why some of the possible field-theoretic operations with
extended real numbers are not defined. For instance, we do not define (+∞)+(−∞)
because if {xn} is a real sequence diverging to ∞ and {yn} is a real sequence di-
verging to −∞ then nothing can be said about the limiting behavior of xn +yn: it
may converge, it may diverge to +∞, it may diverge to −∞, or it may do none of
those things. For similar reasons we do not define 0 ·+∞, +∞

+∞ and so forth.
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Exercises.

Exercise 0.3. Let X ⊆ [−∞,+∞]. Show: X has a greatest lower bound m.
Show that m ∈ R if and only if all of the following hold: (i) X is nonempty; (ii)
X ̸= {+∞}; and (iii) X is bounded below by a real number.

Exercise 0.4. Let X ⊆ Y ⊆ R.
a) Show: supX ≤ supY .
b) Show: infX ≥ inf Y .

Problems.

Problem 0.3. Let X ⊆ [−∞,∞]. We define

−X := {−x | x ∈ X} ⊆ [−∞,∞].

a) Show: infX = − sup(−X).
b) Show: supX = − inf(−X).

Problem 0.3 is an instance of a reflection principle: every statement involving
suprema in R or [−∞,+∞] will have a “reflected version” involving infima.

Inequalities

Whereas the ordered field R of real numbers is the most important mathemat-
ical object in this or any real analysis course, in real analysis we do not simply
contemplate R “in stasis.” Rather, real analysis is the study of various limiting
processes and other concepts that can be defined in terms of limiting processes:
sequential limits, functional limits, continuity, derivatives, integrals...This has been
true (at least) since the work of Newton and Leibniz in the 17th century. Making
R the foundational object of real analysis is a comparatively later development,
achieved by work of Cauchy, Weierstrass and Dedekind throughout the 19th cen-
tury. The reason that this works is that these mathematicians discovered that
all these fundamental limiting processes – which had been present in mathematics
for hundreds of years but with shrouded in mysterious language that even several
contemporaries of Newton and Leibniz correctly pointed out was not really satisfi-
actory – could be rigorously defined in terms of inequalities.

Inequalities are really the main currency of real analysis, but they require some
technique to work with. You learn to work with inequalities in both Math 3200 and
Math 3100, and you will certainly get a chance to increase your skill in this course.
Let us now recall the “first two tricks in the book” when it comes to working with
inequalities:

First Trick: For A,B ∈ R, we have A ≤ B ⇐⇒ B −A ≥ 0.

This is clearly not a profundity: to get from the left hand side to the right hand
side, flip the inequality around and add −A to both sides, and to get from the right
hand side to the left hand side, reverse that: i.e., flip the inequality around and
add A to both sides. Nevertheless it is often much easier to show that B −A ≥ 0.
Why? Well, most often A and B are not really numbers like 3 and 7 but more
abstract expressions: imagine for instance that they are functions of x: A = A(x)
and B = B(x). Then the interpretation of the inequality A(x) ≤ B(x) is that the
graph of the function B(x) lies on or above the graph of the function A(x). To
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show this, we may need to understand both functions and how they relate to each
other. On the other hand, the equivalent inequality B(x) − A(x) ≥ 0 means that
the graph of the one function B(x)−A(x) lies on or above the y-axis. Somehow we
have reduced a statement about two functions to a statement about one function.

Anyway, the First Trick is closely related to the

Second Trick: For A ∈ R, we have A ≥ 0 ⇐⇒ A = B2 for some B ∈ R.

This is really saying that every non-negative real number has a real square root,
which is a consequence of the Intermediate Value Theorem that you met in calculus
and saw the proof of in Math 3100. However the Intermediate Value Theorem is
probably not the point here, since in most applications of the Second Trick it is
rather the implication ⇐= that we will use (and for what it’s worth, this part
holds in any ordered field).

To see what I mean, let’s show that for all x, y ∈ R we have 2xy ≤ x2 + y2.
By the First Trick, it is equivalent to show:

∀x ∈ R ∀y ∈ R, x2 − 2xy + y2 ≥ 0.

Then the Second Trick is inviting us to write x2−2xy+y2 as the square of something
else...not using the Intermediate Value Theorem but directly. Well, okay: indeed

x2 − 2xy + y2 = (x− y)2 ≥ 0,

and we’re done. To get some appreciation for these two tricks, try to prove this
inequality in some other way.

You might still think I’m messing around here, but I really am not. These two
tricks will be used to prove the first nonobvious result in this course. Watch for it!



CHAPTER 1

Topology of Euclidean Space

1. Euclidean N-Space

Let N ∈ Z+. By RN we mean the set of ordered N -tuples of real numbers

x = (x1, . . . , xN ).

This is a familiar object from linear algebra, as a vector space over R. This means
that elements of RN can be added to each other, and it also makes sense to “scale”
an element x by a real number α:

α(x1, . . . , xN ) := (αx1, . . . , αxn).

However, we are interested in RN not just as a real vector space, but endowed with
the Euclidean norm, which is a function from RN to [0,∞), the non-negative real
numbers. Specifically:

∀ x = (x1, . . . , xN ) ∈ RN , ||x|| :=
√
x2
1 + . . .+ x2

N .

We recall a very basic fact: for elements x1, . . . , xN in any ordered field F , we have

x2
1 + . . .+ x2

N ≥ 0,

and
x2
1 + . . .+ x2

N = 0 ⇐⇒ x1 = . . . = xN = 0.

That is: a sum of squares is never negative, and is 0 if and only if every term is 0.
From this we deduce:

∀ x ∈ RN , x = 0 ⇐⇒ ||x|| = 0.

Here is another easy property of the Euclidean norm:

Proposition 1.1. For all x ∈ RN and all α ∈ R, we have

||αx|| = |α|||x||.

The proof of Proposition 1.1 is left as an exercise.

By Euclidean N-space I mean RN equipped with its Euclidean norm. By the way,
the Euclidean norm itself can be defined in terms of an inner product operation

· : RN × RN → R,
(x1, . . . , xN ) · (y1, . . . , yN ) := x1y1 + . . .+ xNyN .

Then:
∀ x ∈ RN , ||x|| =

√
x · x.

Inner products are extremely important in certain branches of analysis, but I think
they will only make a brief appearance in this course.
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12 1. TOPOLOGY OF EUCLIDEAN SPACE

We use the Euclidean norm to measure distance between points in RN , namely:
for x,y ∈ RN , we define the Euclidean distance

d(x,y) := ||x− y||.

In mathematics, if we have a set X and a function d : X ×X → R, then to call d
a “distance function” we usually require the following three properties:

(D1) (Positive Definiteness) For all x, y ∈ X we have d(x, y) ≥ 0, with equality
if and only if x = y.
(D2) (Symmetry) For all x, y ∈ X we have d(x, y) = d(y, x).
(D3) (Triangle Inequality) For all x, y, z ∈ X we have d(x, z) ≤ d(x, y) + d(y, z).

Shall we try to show that our Euclidean distance satisfies these three properties?
It starts out easily:

(D1): For x,y ∈ RN , we have d(x,y) = ||x−y|| ≥ 0 because the norm of anything
is at least 0, and moreover ||x−y|| = 0 if and only if x−y = 0 if and only if x = y.

No problem!

(D2) For x,y ∈ RN , we have d(x,y) = ||x− y|| = || − (y− x)||. Using Proposition
1.1 we have

|| − (y − x)|| = | − 1|||y − x|| = ||y − x|| = d(y,x).

Again, no problem.

(D3) We want to show:

(1) ∀ x,y, z ∈ RN , ||x− z|| ≤ ||x− y||+ ||y − z||.

Hmm. Well, I notice that x− z = (x− y) + (y − z), so if we put

A := x− y, B := y − z,

then we have A,B ∈ RN and we want to show

||A+B|| ≤ ||A||+ ||B||.

In other words, we see that in order to show (D3) it suffices to show the slightly
simpler statement:

(2) ∀ x,y ∈ RN , ||x+ y|| ≤ ||x||+ ||y||.

To show (2) we really need to do something, although there is more than one
“something” that will work. The following approach is a good one in that brings
nothing “extraneous” to bear. The main step is to establish the following closely
related result.

Theorem 1.2 (Cauchy-Schwarz in RN ). For all x,y ∈ RN , we have

|x · y| ≤ ||x||||y||.
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Proof. Write x = (x1, . . . , xN ), y = (y1, . . . , yN ). For non-negative real num-
bers X,Y we have X ≤ Y if and only if X2 ≤ Y 2, so it is equivalent to show

|x · y|2 ≤ ||x||2||y||2.

Without any vector notation, what we want to show is:

(x1y1 + . . .+ xNyN )2 ≤ (x2
1 + . . .+ x2

N )(y21 + . . .+ y2N ).

Put

L := (x1y1 + . . .+ xNyN )2

and

R := (x2
1 + . . .+ x2

N )(y21 + . . .+ y2N ),

so we want to show that L ≤ R; it will certainly suffice to show R− L ≥ 0. Now:

R =

N∑
i=1

x2
i y

2
i +

∑
1≤i̸=j≤N

x2
i y

2
j =

∑
i

x2
i y

2
i +

∑
i<j

x2
i y

2
j +

∑
i<j

x2
jy

2
i ,

while

L =

N∑
i=1

x2
i y

2
i +

∑
1≤i̸=j≤N

xiyixjyj =
∑
i

x2
i y

2
i + 2

∑
i<j

xiyixjyj ,

so

R− L =
∑
i<j

x2
i y

2
j − 2

∑
i<j

xiyjxjyi +
∑
i<j

x2
jy

2
i =

∑
i<j

(xiyj − xjyi)
2 ≥ 0. □

Using Theorem 1.2, it easy to prove (2), especially if we allow ourselves to use
simple properties of inner products from Exercise 1.2. Indeed, let x,y ∈ RN . We
want to show that ||x + y|| ≤ ||x|| + ||y||. Again it suffices to show this after
squaring both sides, so equivalently we want to show:

||x+ y||2 ≤ (||x||+ ||y||)2.

Now we have

||x+ y||2 = (x+ y) · (x+ y) = (x · x) + (x · y) + (y · x) + (y · y)

= ||x||2 + 2(x · y) + ||y||2 ≤ ||x||2 + 2|x · y|+ ||y||2
CS
≤ ||x||2 + 2||x||||y||+ ||y||2

= (||x||+ ||y||)2.

It is important to know when equality holds in Cauchy-Schwarz or (this is very
closely related) in the Triangle Inequality.

Corollary 1.3. Let x,y ∈ RN . The following are equivalent:

(i) The vectors x and y are linearly dependent: that is, either x = 0 or there
is α ∈ R such that y = αx.

(ii) We have |x · y| = ||x|| · ||y||.

Your are asked to prove Corollary 1.3 in Problem 1.1.
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Exercises.

General Comment: Many exercises and problems will refer to RN . Here it
should be understood that N is an arbitrary positive integer. That is, unless you
are asked for an example, your solution should apply no matter what the value of
N is.

Exercise 1.1. Show: for all x ∈ RN and all α ∈ R, we have

||αx|| = |α|||x||.
Exercise 1.2. Let x,y, z ∈ RN and α ∈ R.
a) Show: x · y = y · x.
b) Show: (αx) · y = α(x · y).
c) Show: (x+ y) · z = (x · z) + (y · z).

Exercise 1.3. We showed that (2) implies (1). Show that conversely, (1)
implies (2). Explicitly, suppose that:

∀ x,y, z ∈ RN , ||x− z|| ≤ ||x− y||+ ||y − z||.
Show:

∀ x,y ∈ RN , ||x+ y|| ≤ ||x||+ ||y||.
Exercise 1.4 (Reverse Triangle Inequality). Show: for all x,y ∈ RN , we have∣∣||x|| − ||y||

∣∣ ≤ ||x− y||.
Problems.

Problem 1.1. Let x,y ∈ RN . Show that the following are equivalent:

(i) The vectors x and y are linearly dependent: that is, either x = 0 or there
is α ∈ R such that y = αx.

(ii) We have |x · y| = ||x|| · ||y||.
Problem 1.2. Let x,y ∈ RN .

a) Suppose that ||x+y|| = ||x||+||y||. Show: x and y are linearly dependent.
b) Find necessary and sufficient conditions for ||x+ y|| = ||x||+ ||y|.

2. Sequences in RN

2.1. Sequences in a Set. LetX be any set. We have the notion of a sequence
in X: informally, this is an infinite ordered list of elements of X:

x1, x2, . . . , xn, . . . with xn ∈ X ∀n ∈ Z+.

This is formalized as a function x• : Z+ → X; then we have x•(n) = xn. For
instance we could consider sequences in the set of real-or-made-up English words
(such a thing consists of a finite string of letters from our alphabet, whether it is a
valid English word or not), and then

(3) b, bo, boo, booo, boooo . . .

defines a sequence.

In this level of generality we can consider subsequences: to form a subsequence,
we choose an infinite, strictly increasing sequence of positive integers

n1 < n2 < . . . < nk < . . .
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and then form the new sequence

xn1 , xn2 , . . . , xnk
, . . . .

Again we can be a bit more formal: a strictly increasing sequence of positive integers
corresponds to a strictly increasing function n• : Z+ → Z+, and then to pass
from the sequence x• : Z+ → X to the corresponding subsequence we form the
composition of functions

x• ◦ n• : k 7→ nk 7→ xnk
.

So for instance if we take nk = k2 for all k then in our above weird example we get
the subsequence

(4) b, booo, boooooooo, booooooooooooooo, . . . .

But we’re not really cooking with gas here. Rather we’d like a notion of convergence
of sequences, and for this one needs some kind of extra structure on our set: for our
weird sequence (3) above, if you asked me whether it converges I can only look at
you quizzically: we just haven’t set up enough for that question to be meaningful.

2.2. Sequences in RN . Let’s motivate the definition for convergence of se-
quences in RN . First, for N = 1 we have seen this definition already: it is the
single most important definition of Math 3100. If we have a sequence {xn} of real
numbers, we say the sequence converges to a real number L if

∀ ϵ > 0, ∃K ∈ Z+ such that ∀n > K, |xn − L| < ϵ.

A sequence converges if it converges to some L ∈ R; otherwise it diverges. One
of the first things one shows is that if a sequence converges then its limit is unique.

Now let me rephrase this definition slightly. First, when N = 1 the Euclidean
norm is precisely the absolute value, and thus |xn − L| is nothing else than the
distance d(xn, L) between xn and L...as is certainly familiar from Math 3100. Now
I make the following observation:

• The sequence {xn} converges to L ⇐⇒ the sequence {d(xn, L)} converges
to 0.

Indeed, if we write out the latter convergence statement, it is: for all ϵ > 0, there
is N ∈ Z+ such that for all n > N we have

∣∣|xn − L| − 0
∣∣ < ϵ. But∣∣|xn − L| − 0

∣∣ = |xn − L|,

so this is the same as saying that xn → L.

Aha. So if {xn} is a sequence in RN and L ∈ RN , we can (and do!) say that
xn converges to L – and write xn → L – if d(xn, L) → 0. This is still an (ϵ,K)
definition: spelling it out, we get that xn → L means: for all ϵ > 0, there is K ∈ Z+

such that for all n > K we have ||xn − L|| < ϵ.1

1So you see that I could have just said that we’re replacing the absolute value | · | by the
Euclidean norm || · ||. But I have my reasons for phrasing it in terms of the distance function, as

will become clear at the end of the course.
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Example 1.1. Consider the sequence xn = ( 1
n2 ,

n+3
n+4 ) in R2. We will show:

xn → (0, 1).

From Math 3100 we know how to show that 1
n2 → 0 and n+3

n+4 → 1. Let’s put those

together to show that xn → (0, 1). Let ϵ > 0, and put

K :=

⌈√
2

ϵ

⌉
.

Step 1: If n > K we have∣∣∣∣ 1n2
− 0

∣∣∣∣ = ∣∣∣∣ 1n2

∣∣∣∣ = 1

n2
≤ 1

n
<

1

K
≤ 1

⌈
√
2
ϵ ⌉

<
1
√
2
ϵ

≤ ϵ√
2
.

Step 2: If n > K, we also have∣∣∣∣n+ 3

n+ 4
− 1

∣∣∣∣ = 1

n+ 4
<

1

n
≤ ϵ√

2
.

Step 3:Thus, if n > K then

||xn − (0, 1)|| =
√
(
1

n2
− 0)2 + (

n+ 3

n+ 4
− 1)2 <

√(
ϵ√
2

)2

+

(
ϵ√
2

)2

= ϵ.

So xn → (0, 1).
There is a general moral to extract here. We will get back to this shortly.

Theorem 1.4 (Familiar Facts About Convergence). Let {xn} and {yn} be
sequences in RN . Suppose that xn → L ∈ RN and yn → M ∈ RN .

a) Let α ∈ R. Then αxn → αL.
b) We have xn + yn → L+M.
c) Every subsequence {xnk

} of xn also converges to L.
d) If P ∈ RN is such that xn → P, then L = P.

You are asked to prove each of these facts as exercises. Of course, this is mostly to
get you to look back at the corresponding proofs for real sequences.

A subset S ⊆ RN is bounded if there is M ≥ 0 such that for all x ∈ S we
have ||x|| ≤ M . In other words, a subset is bounded if the distances of its ele-
ments from the origin are bounded above by a fixed real number. (Soon enough
we will rephrase this by saying that S is contained in some closed ball centered at 0.)

We say that a sequence {xn} in RN is bounded if the set of terms {xn | n ∈ Z+}
is a bounded subset of RN . Here is one more familiar fact:

Theorem 1.5. Convergent sequences in RN are bounded.

Proof. Suppose xn → L. Then there is K ∈ Z+ such that for all n > K we
have ||xn − L|| ≤ 1. By the Reverse Triangle Inequality (Exercise 1.4), we get:

∀n > K,

∣∣∣∣||xn|| − ||L||
∣∣∣∣ ≤ ||xn − L|| ≤ 1,

so
∀n > K, ||xn|| ≤ ||L||+ 1.

Now put
M := max(||x1||, . . . , ||xK ||, ||L||+ 1).
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Then for all n ∈ Z+ we have ||xn|| ≤ M , so {xn} is bounded. □

There are some things that we did with real sequences that do not make sense for
sequences in RN for N > 1, namely:

• In R we can multiply sequences and show the analogue of Theorem 1.4 for prod-
ucts. In RN we cannot in general multiply two vectors so as to get another vector.
However, there are a few loopholes here:
(i) We can multiply vectors in R2. Indeed we can identify R2 with the complex
numbers C and use the given multiplication.
(ii) We can multiply vectors in R3, using the cross product. This is a kind of weird
multiplication operation (neither commutative nor associative), but nevertheless it
exists and is often useful (though probably not for us in our course).
(iii) For all N ∈ Z+ we can multiply two elements of RN to get an element of R,
using the scalar product.

It happens to be true that in all three cases, these products preserve convergence
of sequences. The first two of these are explored in the exercises; we will prove the
third a little later on.

• Whereas R comes equipped with an ordering, for N > 1 we do not have any
(natural, useful) total ordering on RN . Thus the important notion of monotone
sequence in RN has no analogue in RN , although we could speak of monotonicity
of the sequence of norms.

• In R we have the notion of diverging to +∞ and also the notion of diverging
to −∞: a real sequence {xn} diverges to +∞ if for all M ∈ R there is N ∈ Z+

such that for all n > N we have xn > M . Similarly, a real sequence {xn} diverges
to −∞ if for all m ∈ R there is N ∈ Z+ such that for all n > N we have xn < m.
For N > 1 we have something similar but less precise. Namely, a sequence x in RN

diverges to infinity if the real sequence ||xN || diverges to ∞.

2.3. The Secret to Convergence in RN . Look back at Example 1.1 of a
convergent sequence in R2:

xn =

(
1

n2
,
n+ 3

n+ 4

)
.

Put xn = 1
n2 and yn = n+3

n+4 . Then the sequence of x-components converges to 0
and the sequence of y-components converges to 1; having established this it took
us only one more line to show that (xn, yn) → (0, 1).

In fact this is a general phenomenon of convergence in RN ! Namely, let {xn}
be a sequence in RN . For each 1 ≤ i ≤ N , let xn,i be the ith component of xn.
Then the vector sequence {xn} can be traded in for N different real sequences:
{xn,1}, . . . , {xn,N}. It turns out that the convergence of the vector sequence is
equivalent to the convergence of all of the scalar sequences:

Theorem 1.6. Let {xn}∞n=1 be a sequence in RN , and let L = (L1, . . . , LN ) ∈
RN . Then the following are equivalent:

(i) The vector sequence xn converges to L.
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(ii) For each 1 ≤ i ≤ N , the real sequence {xn,i} of ith components converges
to Li.

Proof. The key to this is the following relatively simple observation: let x =
(x1, . . . , xN ) ∈ RN . There is at least one 1 ≤ I ≤ N such that

∀1 ≤ i ≤ N, |xi| ≤ |xI |.
Fix such an I. Then for each 1 ≤ i ≤ N we have

|xi| =
√

x2
i ≤

√
x2
1 + . . .+ x2

N = ||x|| ≤
√
x2
I + . . .+ x2

I =
√
Nx2

I =
√
N |xI |.

This shows: if ||x|| is small, then so is the absolute value of each coordinate of x –
in fact, each is no larger than ||x|| – and conversely, if all of the absolute values of

the coordinates are small, then ||x|| is also small: at most
√
N times as large as the

largest coordinate absolute value. These inequalities imply that for any sequence
{xn} in RN we have xn → 0 if and only if xn,i → 0 for all 1 ≤ i ≤ N . The general
case follows from this special case applied to the sequence {xn − L}. □

We extend the notion of Cauchy sequence to RN in a straightforward way: a
sequence {xn} in RN is Cauchy if for all ϵ > 0, there is K ∈ Z+ such that for all
m,n ≥ K we have ||xm − xn|| < ϵ. The same simple inequalities used in the proof
of Theorem 1.6 also work to show:

Theorem 1.7. A sequence {xn} in RN is Cauchy if and only if for all 1 ≤ i ≤
N , the real sequence {xn,i} is Cauchy.

We leave the details of this as an exercise. It follows that:

Corollary 1.8. A sequence in RN is convergent if and only if it is Cauchy.

Proof. We know the result for N = 1 from Math 3100. So by what we have
just seen, the vector sequence is convergent if and only if each of its component
scalar sequences is convergent if and only if each of its component scalar sequences
is Cauchy if and only if the vector sequence is Cauchy. □

This has the same advantage of knowing the equivalence of Cauchy sequences and
convergent sequences in R: it allows us to decouple the question of convergence of
a sequence from the question of knowing the limit of the sequence; often the former
questions is much easier than the latter.

2.4. Bolzano-Weierstrass in RN . The celebrated Bolzano-Weierstrass The-
orem says that every bounded real sequence has a convergent subsequence. This
extends verbatim to sequences in RN , as we will now show. Let us first give an
equivalent formulation of boundedness of subsets of Euclidean N -space. Suppose
we are given real numbers a1 ≤ b1, a2 ≤ b2, . . . , aN ≤ bN . To this data we associate
the set

B(a1, b1, . . . , aN , bN ) := {x = (x1, . . . , xN ) := ∀1 ≤ i ≤ N, ai ≤ xi ≤ bi}.
A set B(a1, b1, . . . , aN , bN ) is called a closed box. A closed box in R is simply
a closed bounded interval. A closed box in R2 is a rectangle (together with its
interior) whose edges are parallel to the coordinate axes. And so forth. Now:

Lemma 1.9. A subset X ⊆ RN is bounded if and only if X is contained in some
closed box. In particular, all closed boxes are bounded subsets of RN .
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We leave the proof of Lemma 1.9 as an exercise.

Theorem 1.10 (Bolzano-Weierstrass in RN ). Every bounded sequence in RN

has a convergent subsequence.

Proof. Let {xn} be a bounded sequence in RN . By Lemma1.9 there are real
numbers a1 ≤ b1, . . . , aN ≤ bN such that every term xn of the sequence lies in the
box B(a1, b1, . . . , aN , bN ).
Step 1: The sequence {xn,1} of first coordinates lies in the interval [a1, b1], so by
Bolzano-Weierstrass in R it has a subsequence that converges to L1 ∈ R.

Interregnum: We now have a purely notational pitfall to avoid: we are going
to be passing to subsequences quite a lot of times, so if we actually write this out
using double index notation then in Step 2 we are going to get triple indices, in
Step 3 quadruple indices, and so forth: it will be a terrible mess. So we will just
remember that we passed to a subsequence so as to make the sequence of first co-
ordinates converge.
Step 2: The sequence (which is actually a subsequence of our original sequence)
xn,2 of second coordinates lies in the interval [a2, b2], so by Bolzano-Weierstrass in
R it has a subsequence that converge to L2 ∈ R. What happens with the sequence
of first coordinates when we do this? Fortunately, if a sequence converges to a limit
then every subsequence converges to the same limit, so passing to this second sub-
sequence does not screw up what we did in Step 1: after two steps we have passed
to a subsubsequence – which is still a subsequence! – of the original sequence so as
to make each of the first two component real sequences converge.
Steps 3 to N : We move on to the bounded sequence of third components, apply
Bolzano-Weierstrass again, and so forth. After N steps we have passed to a sub-
sequence N times altogether to get a sequence in which each of the component
sequences converge, hence by Theorem 1.6 the subsub.....subsequence converges.
Passing from a sequence to a subsequence any finite number of times still yields a
subsequence of the original sequence, so...we’re done. □

A point L ∈ RN is a partial limit of a sequence {xn} in RN if there is some
subsequence xnk

→ L. Thus Theorem 1.10 can be rephrased as: every bounded
sequence in RN has at least one partial limit.

When N = 1 we can go a little farther, saying that +∞ is a partial limit of the real
sequence {xn} if some subsequence diverges to +∞ and that −∞ is a partial limit
of {xn} if some subsequence diverges to −∞. By Exercise 1.6, a sequence has +∞
as a partial limit if and only if it is unbounded above and a sequence has −∞ as
a partial limit if and only if it is unbounded below. Using Bolzano-Weierstrass, it
follows that every real sequence has at least one partial limit in the extended real
numbers [−∞,∞].

Exercises.

Exercise 1.5. Let {xn} be a real sequence.

a) Show that the following are equivalent:
(i) We have xn → +∞.
(ii) Every subsequence {xnk

} diverges to +∞.
(iii) Every subsequence {xnk

} is unbounded above.
b) State and prove the analogue of part a) for sequences diverging to −∞.
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Exercise 1.6. Let {xn} be a real sequence.

a) Show that the following are equivalent:
(i) There is a subsequence {xnk

} such that xnk
→ +∞.

(ii) The sequence {xn} is unbounded above.
b) Show that the following are equivalent:

(i) There is a subsequence {xnk
} such that xnk

→ −∞.
(ii) The sequence {xn} is unbounded below.

Exercise 1.7. Let {xn} be a sequence in RN such that xn → L, and let α ∈ R.
Show: αxn → αL.

Exercise 1.8. Let {xn}, {yn} be sequences in RN . Suppose that xn → L and
yn → M . Show: xn + yn → L+M .

Exercise 1.9. Let {xn} be a sequence in RN . Show: if xn → L, then every
subsequence {xnk

} also converges to L.

Exercise 1.10. Let {xn} be a sequence in RN , and let L,P ∈ RN . Suppose
that xn → L and xn → P. Show: L = P.

Exercise 1.11. Show: every finite subset of RN is bounded.

Exercise 1.12. Let {xn} be a sequence in RN .

a) Show: if {xn} is bounded, so is every subsequence.
b) Show: {xn} is unbounded if and only if some subsequence of {xn} diverges

to ∞.

Exercise 1.13. A sequence {xn} in RN is Cauchy if and only if for all 1 ≤
i ≤ N , the real sequence {xn,i} is Cauchy.

Exercise 1.14. Suppose we are given real numbers a1 ≤ b1, a2 ≤ b2, . . . , aN ≤
bN . To this data we associate the set

B(a1, b1, . . . , aN , bN ) := {x = (x1, . . . , xN ) := ∀1 ≤ i ≤ N, ai ≤ xi ≤ bi}.
A set of the form B(a1, b1, . . . , aN , BN ) is called a closed box. Show: a subset
X ⊆ RN is bounded if and only if X is contained in some closed box.

Exercise 1.15. Let 1 ≤ i ≤ N . We define the coordinate projection map

πi : RN → R, (x1, . . . , xN ) 7→ xi.

Show: a subset X ⊆ RN is bounded if and only if for all 1 ≤ i ≤ N , the subset
πi(X) is a bounded subset of R.

Exercise 1.16. For a sequence {xn} in RN , show the following are equivalent:

(i) The sequence diverges to ∞ (recall this means that ||xn|| → +∞).
(ii) Every subsequence of xn is unbounded.
(iii) The sequence {xn} has no partial limit.

Comment: Let N ≥ 2. We could define the “extended Euclidean space”

R̃N := RN ∪ {∞}
and say that ∞ is a partial limit of a sequence {xn} in RN if and only if some
subsequence diverges to ∞. With this convention, combining Exercises 1.12 and

1.16 we would have that every sequence in RN has at least one partial limit in R̃N .
We will not adopt this definition simply because we will not use it in this course.
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Exercise 1.17. By Bolzano-Weierstrass, every bounded sequence in RN has
at least one partial limit. Show that a bounded sequence converges if and only if it
has exactly one partial limit.

Exercise 1.18. Find a sequence in RN having every x ∈ RN as a partial limit.

Exercise 1.19 (Geometric Pigeonhole Principle). Let A ⊂ RN be bounded,
and let {xn}∞n=1 be a sequence in A. Show: for all δ > 0, there are distinct positive
integers m and n such that ||xm − xn|| < δ.
(Suggestion: put X inside a closed box B1 and then “bisect” B1 into 2N subboxes
each with half the side lengths of B1. Since we have infinitely many terms of the
sequence and only finitely many subboxes, infinitely many terms of the sequence
must lie in at least one of the “stage 2 subboxes.” Repeat this bisection until the
subboxes are so small that any 2 points lying in the same subbox have distance less
than δ.)

The following exercise uses a notation that is not officially defined until Section
1.4: for x ∈ RN and r > 0, we put

B•(x, r) := {y ∈ RN | ||x− y|| ≤ r}.

Exercise 1.20. A subset A ⊆ RN is totally bounded if for all δ > 0 there
are finitely many points x1, . . . ,xn ∈ RN such that

A ⊆
n⋃

i=1

B•(xi, δ).

a) Show: every bounded subset of RN is totally bounded.
b) Deduce the Geometric Pigeonhole (Exercise 1.19) from part a).

Problems.

Problem 1.3. The set C = {x + iy | x, y ∈ R} has a nice multiplication
operation:

(x+ iy)(z + iw) = (xz − yw) + (xw + zy)i.

If we identify the vector (x, y) with the complex number x+ iy, this gives a multi-
plication operation on R2:

(x, y) · (z, w) := (xz − yw, xw + zy).

Show: if {xn} and {yn} are two sequences in R2 such that xn → L and yn → M ,
then xn · yn → L ·M .

Problem 1.4. Let x,y in R3, and let x× y ∈ R3 be the cross product. Show:
if xN → L and yN → M then xn × yn → L×M .

Problem 1.5. Let {xn} be a real sequence.

a) Show: {xn} has at least one partial limit in [−∞,∞].
b) Show: {xn} converges if and only if it has a unique partial limit L, which

is morever finite.

The following problem uses notation that is not officially defined until Section
1.4: for x ∈ RN and r > 0, we put

B◦(x, r) := {y ∈ RN | ||x− y|| < r}.
B•(x, r) := {y ∈ RN | ||x− y|| ≤ r}.
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Problem 1.6. For a nonempty subset A ⊆ RN , let

diam(A) := sup{||x− y|| | x,y ∈ A}.

a) Suppose ∅ ⊊ B ⊆ A. Show: diam(B) ≤ diam(A).
b) Show that for all R ≥ 0 and all x ∈ RN , we have

diam(B◦(x,R)) = diam(B•(x,R)) = 2R.

c) Show: A is bounded ⇐⇒ diam(A) < ∞.

3. Sequential Limits Superior and Inferior

That a real sequence {xn} need not converge is a basic fact of life...but that dosen’t
stop it from being annoying sometimes. Already in calculus one sees the beginning
of a workaround with the notion of sequences that diverge to ∞ or to −∞: such
sequences are certainly not convergent, but they exhibit a definite limiting behavior
that can still often be used. But as we well know, a sequence {xn} may diverge
“due to oscillation”: in our language of partial limits, this means that the sequence
has more than one partial limit in [−∞,∞].

For a real sequence {xn}, we define the limit superior lim xn to be the supremum
in [−∞,∞] of the set of partial limits of {xn}, i.e., the supremum of the set of
subsequential limits. This supremum exists in [−∞,∞] by Proposition 0.2. But in
fact more is true:

Theorem 1.11. Let {xn} be a real sequence. There is a subsequence {xnk
}

such that xnk
→ lim xn.

Proof. Case 1: Suppose lim xn = ∞. Thus for all M ∈ R there is a subse-
quence {xnk

} that either converges to L ≥ M or diverges to +∞. It follows that
for all M ∈ R there are infinitely many terms of {xn} that are at least M . Thus
the sequence is unbounded above, so +∞ is a subsequential limit by Exercise 1.6.
Case 2: Suppose lim xn = −∞. This means that every subsequence of xn diverges
to −∞, so by Exercise 1.5 we have xn → −∞.
Case 3: Suppose lim xn = M ∈ R. Then for every ϵ > 0 there is a subsequence
converging to some L with M − ϵ ≤ L ≤ M . In particular, for all k ∈ Z+ there are
infinitely many terms of the sequence that are at least M − 1

k , so we may choose

n1 to be such that xn1
≥ M − 1, n2 > n1 such that xn2

≥ M − 1
2 , and so forth.

Then xnk
→ M . □

Thus lim xn is not just the supremum of the subsequential limits, it is actually the
maximum of the subsequential limits.

In a similar way we define the limit inferior lim xn to be the infimum in [−∞,∞]
of the set of partial limits of {xn}, i.e., the infimum of the set of subsequential
limits. In Exercise 1.21 you are asked to show that the liminf is also attained as a
subsequential limit.

The following result says in particular that “divergence due to oscillation” means
precisely that the liminf is smaller than the limsup.

Proposition 1.12. Let {xn} be a real sequence.
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a) The sequence converges if lim xn and lim xn are equal and finite, in which
case the common value is the limit.

b) The sequence diverges to +∞ if and only if lim xn = lim xn = +∞.
c) The sequence diverges to −∞ if and only if lim xn = lim xn = −∞.

Proof. A sequence {xn} has a unique partial limit precisely when

lim xn = lim xn.

So part a) follows from Exercise 1.5 and parts b) and c) follow from Exercise 1.5. □

We will give two more characterizations of the limits superior and inferior. First:

Proposition 1.13.
Let {xn}∞n=1 be a real sequence. For N ∈ Z+, put XN := {xn | n ≥ N}.

a) We have

lim xn = lim
N→∞

supXN

b) We have
lim xn = lim

N→∞
infXN .

Proof. We will prove part a) and leave part b) as an exercise.
a) Notice that X1 is the set of all terms of the sequence, X2 is the set of all terms of
the sequences starting with the second term, and so forth, so {XN}∞N=1 is a nested
sequence of sets. Exercise 0.4 gives

supX1 ≥ supX2 ≥ . . . ≥ supXN ≥ . . . ,

i.e., the sequence {supXN} is decreasing. Therefore it converges if it is bounded
below and otherwise diverges to −∞.
Case 1: Suppose that the sequence {xn} is unbounded above, meaning that lim xn =
+∞. Whether a sequence is unbounded above is not affected by removing finitely
many terms, so this implies that for all N ∈ Z+ the set XN is unbounded above,
so supXN = +∞ for all N , so lim XN = +∞ = lim xn in this case.
Case 2: Suppose that {xn} is bounded above and and that {supXN} is bounded
below by m ∈ R so that

m = lim
N→∞

supXN .

Then for all N ∈ Z+ we have m ≤ supXN , so for all ϵ > 0, then the number m−ϵ is
not an upper bound for XN : there is some n ≥ N such that m−ϵ < xn. Because of
this we can choose a subsequence xnk

such that xnk
≥ m−ϵ for all k, so any partial

limit of that subsequence must be at least m− ϵ. Since ϵ was arbitrary, this means
that lim xn ≥ m. If m = +∞ then we must have lim xn = +∞ and we’re done, so
suppose that m is finite. Seeking a contradiction, suppose that lim xn > m. Then
there is a subsequence {xnk

} converging to some real number M > m (recall that
we have assumed that {xn} is bounded above). Choose m′ such that

m < m′ < M.

Then for all sufficiently large k we have xnk
> m′, which implies that for all N ,

supXN ≥ m′, so
lim

N→∞
supXN ≥ m′ > m,

a contradiction.
Case 3: Suppose that {xn} is bounded above and that {supXN} diverges to −∞.
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This means that for any m ∈ R, for only finitely many n ∈ Z+ can we have xn ≥ m,
which means that xn → −∞, in which case

lim xn = −∞ = lim
N→∞

supXN . □

Whereas limsups and liminfs are designed to deal with the case of oscillation in
sequences, Proposition 1.12 reduces the computation of limsups and liminfs to the
monotone case: the sequence {supXN} is always decreasing while the sequence
{infXN} is always increasing. Thus inside the extended real numbers, the limsup
is computed as a “minimax” – we maximize each XN and then take the minimum
of the corresponding sequence – while the liminf is computed as a “maximin” –
we minimize each XN and then take the maximum of the corresponding sequence.
Dealing with an oscillatory quantity by first maximizing then minimizing will be a
recurring theme in our course.

Next we want to give a “creeping” interpretation of limsups in the bounded case:

Proposition 1.14. Let {xn} be a bounded real sequence. Then lim {xn} is the
unique real number M with the following property: for all ϵ > 0, there are infinitely
many n ∈ Z+ such that xn > M − ϵ and there are only finitely many n ∈ Z+ such
that xn > M + ϵ.

Proof. Let M be a real number such that for all ϵ > 0, there are infinitely
many n ∈ Z+ such that xn > M − ϵ and there are only finitely many n ∈ Z+ such
that xn > M+ϵ. The former condition implies that the sequence {xn} has a partial
limit that is at least M − ϵ and the latter condition implies that the sequence has
no partial limit that is at least M + ϵ. The first condition means that M can be no
larger than lim xn and the second condition means that M can be no smaller than
lim xn, so if such an M exists we must have M = lim xn. Very similar reasoning
shows that lim xn has both of these properties. □

Thus for a bounded real sequence {xn}, as one ascends the real line the limit
superior is the threshold at which one goes from having infinitely many terms of
the sequene above us to only finitely many terms of the sequence above us. However
the ϵ in the statement is necessary: for instance, if a real sequence converges to
0 then we know that for any ϵ > 0 all but finitely many of its terms lie in the
intervel [−ϵ, ϵ]. We don’t know however how many terms are greater than zero or
even greater than equal to zero: in fact, for any subset T of Z+ there is a sequence
xn → 0 such that xn is negative if and only if n ∈ T .

Exercises.

Exercise 1.21. Let {xn} be a real sequence. Show: there is a subsequence
{xnk

} such that xnk
→ lim xn.

Exercise 1.22. State and prove an analgoue of Proposition 1.14 for the lim
of a bounded sequence.

Problems.

Problem 1.7. Let {xn} be a real sequence. Show:

lim xn = −lim (−xn) and lim xn = −lim (−xn).

Problem 1.8. Let {xn} and {yn} be bounded real sequences.
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a) Show: lim (xn + yn) ≤ lim xn + lim yn.
b) Show: lim xn + lim yn ≤ lim (xn + yn).

(Hint: xn = (xn + yn) + (−yn).)

Problem 1.9. Prove part b) of Proposition 1.13.

4. Topology of RN

4.1. Open and Closed Sets. Let x ∈ RN and r > 0. We define the open
ball centered at x with radius r to be

B◦(x, r) := {y ∈ RN | ||x− y|| < r}

and the closed ball centered at x with radius r to be

B•(x, r) := {y ∈ RN | ||x− y|| ≤ r}.

Thus B◦(x, r) consists of all points of RN whose distance from x – called the cen-
ter of the ball – is less than r, and the same goes for B•(x, r) except that now the
distance is less than or equal to r.

The latter concept has actually arisen already: to see this, notice that our defi-
nition of a subset of RN being bounded is precisely that it is contained in B•(0,M)
for someM . Notice also that open and closed balls are always bounded sets: indeed,
for any x ∈ RN and r > 0, the Triangle Inequality gives:

B◦(x, r) ⊆ B•(x, r) ⊆ B•(0, ||x||+ r).

In R1 balls are not very interesting: you are asked to show as an exercise that a sub-
set of R is an open ball if and only if it is a bounded open interval and that a subset
of R is a closed ball if and only if it is a bounded closed interval. (This is actually one
reason why we want to work in RN at the beginning of the course: the topological
concepts we want to deal with are not trivial when we restrict to the one variable
case, but they are “geometrically degenerate” in a way that may hamper intuition.)

We say that a subset U ⊆ RN is open if for every x ∈ U , there is ϵ > 0 such
that B◦(x, ϵ) ⊆ U . In other words, a set is open if whenever it contains a point x
it also contains all points of RN that are sufficiently close to x.

The terminology suggests than an open ball should itself be an open set, but
we had better prove that.

Proposition 1.15. Every open ball is an open subset of RN .

Proof. Consider the open ball B◦(x, r) and a point y in it. We need to find
a (smaller!) ball centered at y that is entirely contained in the first ball. The
question really is: how do we choose ϵ > 0 such that

B◦(y, ϵ) ⊆ B◦(x, r)?

Let’s try to work it out: if z ∈ B◦(y, ϵ), then

d(y, z)) = ||z− y|| < ϵ,

so by the Triangle Inequality we have

d(x, z) < ϵ+ d(x,y).
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So the point z will lie in B◦(x, r) provided that ϵ+ d(x,y) ≤ r. Thus we can take

ϵ = r − d(x,y),

which is indeed positive: since y ∈ B◦(x, r), we have d(x,y) < r. □

Non-examples are as helpful as understanding new concepts as examples, so:

Proposition 1.16. No closed ball is an open subset of RN .

Proof. Consider B := B•(x, r). Let p := x + (r, 0, . . . , 0) be the rightmost
point on the ball. Then any open ball B◦(p, ϵ) contains the point p+( ϵ2 , 0, . . . , 0) =
x+ (r+ ϵ

2 , 0, . . . , 0). This point has distance r+ ϵ
2 from x so does not lie in B. □

Let A be a subset of RN . We say that L ∈ RN is a limit point of A if there is a
sequence {xn} in A such that xn → L.

Every point L ∈ A is a a limit point of A, because we can take the constant
sequence L,L,L, . . .. (If this feels like cheating...good! You are probably grasping
for the related concept of accumulation point, which is coming up soon.)

Example 1.2. We claim that every point of the closed ball B•(x, r) is a limit
point of the corresponding open ball B◦(x, r). Indeed, we need only look at points
p ∈ B•(x, r) \B◦(x, r), i.e., points p whose distance from x is exactly r. Then take

xn = x+ (1− 1

n
)(p− x).

Then

d(xn, x) = (1− 1

n
)||p− x|| = (1− 1

n
)r < r,

so xn ∈ B◦(x, r). And limn→∞ xn = x+ (p− x) = p.

This example motivates the second key definition of this section: a subset A of RN

is closed if every limit point of A is an element of A. Another way of saying this
is that A is closed under taking limits of convergent sequences.

A basic fact in Math 3100 is that limits of sequences preserve non-strict inequalities:
that is, if we every term of a convergent sequence is at least a, then the limit is also
at least a, and if every term of a convergent sequence is at most b, then the limit is
also at most b. This means precisely that the closed interval [a, b] is a closed subset
of R. Recalling that these are precisely the closed balls in R, we get that every
closed ball in R1 is a closed subset of R1.

We would like to extend this to RN : let’s try. Consider a closed ball B•(x, r)
in RN . Seeking a contradiction, suppose that there is some L ∈ RN \B•(x, r) and
a sequence {xn} in B•(x, r) such that xN → L. Let

d := d(x, L)

be the distance from the limit point to the center of the ball. Our assumption is
that d > r. Take ϵ := d− r. I claim that

B◦(L, ϵ) ∩B•(x, r) = ∅.

Indeed, if y ∈ B◦(L, ϵ) ∩B•(x, r) then

d = d(x, L) ≤ d(x, y) + d(y, L) < r + ϵ = d.
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That’s a contradiction. But if we had a sequence in B•(x, r) converging to L then
sufficiently large terms of the sequence will give elements of B•(x, r) that are less
than ϵ away from L, so there is no such sequence. Therefore closed balls are closed.

If we look back this proof, we really showed that for every point L of the com-
plement RN \ B•(x, r), there is an open ball centered at L and contained in the
complement. In other words, we showed that B•(x, r) is closed essentially by show-
ing that its complement was open. This is true in general, very important, and not
so difficult to prove.

Theorem 1.17. A subset A ⊆ RN is closed if and only if its complement RN \A
is open.

You are asked to prove Theorem 1.17 as an exercise.

4.2. Continuous Functions. Recall that a function f : R → R is continuous
at a point c ∈ R if: for all ϵ > 0, there is δ > 0 such that for all x ∈ R, if |x− c| < δ
then |f(x) − f(c)| < ϵ. A function f : R → R is continuous if it is continuous at
every c ∈ R.

If we have a function f defined not on all of R but only on some subset A, then
we used the same definition as above but with one reasonable change: f : A → R
is continuous at c ∈ A if for all ϵ > 0 there is δ > 0 such that for all x ∈ A, if
|x− c| < δ then |f(x)− f(c)| < ϵ.

If we observe that |f(x) − f(c)| < ϵ means that d(f(x), f(c)) < ϵ and |x − c| < δ
means d(x, c) < δ, it should be pretty clear how to generalize this definition to
maps between Euclidean spaces. Again, let’s do it in two steps. First suppose that
M,N are positive integers and we have

f : RN → RM .

We say that f is continuous at c ∈ RN if for all ϵ > 0, there is δ > 0 such that for
all x ∈ RN , if d(x, c) = ||x − c|| < δ then d(f(x), f(c)) = ||f(x) − f(c)|| < ϵ. We
say f is continuous if it is continuous at every c ∈ RN .

And again it is no problem to make a more general definition: if A is a subset
of RN and f : A → RM is a function, then f is continuous at c ∈ RN if for all ϵ > 0
there is δ > 0 such that for all x ∈ A, if d(x, c) = ||x−c|| < δ then ||f(x)−f(c)|| < ϵ.

Let us rephrase this definition in terms of open balls. A function f : A → RN

is continuous at c ∈ A if for all ϵ > 0, there is some δ > 0 such that f maps
A ∩B◦(c, δ) into B◦(f(c), ϵ).

The following is an extension of an important result from Math 3100: continuous
functions are characterized by their preservation of limits of convergent sequences.

Theorem 1.18. Let X ⊆ RN , and let f : X → RM be a function. Let c ∈ X.
The following are equivalent:

(i) f is continuous at c.
(ii) For every sequence {xn} in X such that xn → c, we have f(xn) → f(c).
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Proof. (Compare this to [SS, Theorem 2.7.5]: it’s virtually identical.)
(i) =⇒ (ii): Fix ϵ > 0. Because f is continuous at c, there is δ > 0 such that for
all x ∈ X with ||x − c|| < δ, we have ||f(x) − f(c)|| < ϵ. Because xn → c, there
is K ∈ Z+ such that for all n > K we have ||xn − c|| < δ. Thus for all n > K we
have ||f(xn)− f(c)|| < ϵ.
(ii) =⇒ (i): We will prove the contrapositive: suppose f is not continuous at c.
Then there is ϵ > 0 such that for all δ > 0 there is x ∈ X with ||x − c|| < δ and
||f(x)− f(c)| ≥ ϵ. For n ∈ Z+, taking δ = 1

n gives xn ∈ X such that ||xn − c|| < 1
n

and ||f(xn)− f(c)|| ≥ ϵ. Thus xn → c, but f(xn) does not converge to f(c). □

4.3. New Continuous Functions From Old. Let us now discuss some ways
of building new continuous functions out of old continuous functions. We can start
with the real ground floor:

Proposition 1.19. Let X ⊂ RN , and let f : X → RM be a constant function:
for all x,y ∈ X we have f(x) = f(y). Then f is continuous.

Proof. Indeed for any ϵ > 0 we may take any positive value of δ we like, since
in fact for any x,y ∈ X we have ||f(x)− f(y)|| = ||0|| = 0 < ϵ. □

After constant functions, perhaps the simplest functions f : RN → R are the
coordinate functions or coordinate projections: for 1 ≤ i ≤ N , put

πi : RN → R by (x1, . . . , xN ) 7→ xi.

This is pretty fancy/careful notation. In practice we will often speak of “the func-
tion xi”. It is quite easy to see that these functions are continuous: indeed, let
x ∈ RN , and fix ϵ > 0. Then for y ∈ RN , we have

|xi − yi| ≤
√
(x1 − y1)2 + . . .+ (xN − yN )2 = ||x− y||,

so if ||x− y|| < ϵ then also |xi − yi| < ϵ, so we may take δ = ϵ.

Here is one use of the coordinate projections: let X ⊆ RN and let f : X → RM be
a function. Then for all x ∈ X, we have

f(x) = (π1(f(x)), . . . , πM (f(x)).

The notation may momentarily obscure this unprofound identity: we are just re-
assembling the components of the vector-valued function f . Now we have:

Proposition 1.20. For a function f : X ⊆ RN → RM and x ∈ X, the
following are equivalent:

(i) The function f is continuous at x.
(ii) Each of the functions f1, . . . , fM is continuous at x.

The proof uses the same idea as Theorem 1.6 – a vector has small norm if and only
if each of its components has small absolute value – and is left as an exercise.

Proposition 1.21. Let f1, . . . , fM : X ⊆ RN → R, and let x ∈ X. If each of

f1, . . . , fM are continuous at x, then so are
∑M

i=1 fi and
∏M

i=1 fi.

Proof. Let’s use Theorem 1.18: let {xn} be a sequence in X that converges to
x. Since each f1, . . . , fM is continuous at x we have fi(xn) → fi(x) as sequences in
R. By the extension Theorem 1.4b) from 2 sequences to M sequences (a completely
routine induction argument does this) we know that f1(xn) + . . . + fM (xn) →
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f1(x) + . . . + fM (x), and applying Theorem 1.18 once more we get that
∑M

i=1 fi
is continuous at x. The argument for

∏M
i=1 fi except we use the fact that for real

sequences we have xn → L and yn → M implies xnyn → LM [SS, Theorem 2.5.4b)]
(and again, its evident extension from 2 sequences to M sequences). □

A function f : RN → R is a polynomial if it is built up out of constant functions
and coordinate functions by (finitely!) repeated addition and multiplication. Thus
for instance xyz+17y5 − πx2y2z2 is a polynomial function. It follows from Propo-
sitions 1.19, 1.20 and 1.21 that polynomial functions are continuous. In particular:

Corollary 1.22. The inner product map RN × RN → R, (x,y) 7→ x · y is
continuous.

Proof. We may identify RN ×RN with R2N and then the inner product map
is (x1, . . . , x2N ) 7→ x1xN+1+x2xN+2+ . . .+xNx2N . This is a polynomial function,
so it is continuous. □

Proposition 1.23. Let M,N,P ∈ Z+. Let X ⊆ RN and Y ⊆ RM . Let
f : X → RM and g : Y → RP be functions. Suppose that f(X) ⊆ Y , so that the
composition g ◦ f is defined.

a) Let x ∈ X. If f is continuous at x and g is continuous at f(x), then g ◦ f
is continuous at x.

b) If f and g are both continuous, so is g ◦ f .

Proof. a) Let ϵ > 0. Since g is continuous at f(x) there is D > 0 such that
if w ∈ Y is such that ||w − f(x)|| < D, then ||g(w) − g(f(x))|| < ϵ. Since f
is continuous at x, there is δ > 0 such that if z ∈ X is such that ||z − x| < δ,
then ||f(z) − f(x)|| < D. So altogether, if z ∈ X is such that ||z − x|| < δ, then
||f(z)− f(x)|| < D, so ||g(f(z))− g(f(x))|| < ϵ, so g ◦ f is continuous at x.
b) This follows immediately. □

If we assume as known that the function
√
x : [0,∞) → R is continuous, then we

can also prove that the norm function

|| · || : RN → R

is continuous: indeed, it is the composition of the polynomial function x2
1 + . . . x2

N

with the square root function. Similarly, the Euclidean distance function

d : RN × RN → R, (x1, . . . , xN , y1, . . . , yN ) 7→
√
(x1 − y1)2 + . . .+ (xN − yN )2

is the composition of the polynomial function (x−y) · (x−y) with the square root
function, hence is continuous.

As one more application of these ideas, we will prove:

Proposition 1.24. The addition function + : RN × RN → RN is continuous.

Proof. Again, we may identify RN × RN with R2N , and then we are trying
to show that the function

(x1, . . . , xN , xN+1, . . . , x2N ) 7→ (x1 + xN+1, . . . , xN + x2N )

is continuous. By Proposition 1.20 it’s enough to show that each component is
continuous. But the ith component is xi + xN+i, which is a polynomial. □
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4.4. Sequential Compactness in RN . A subset X ⊆ RN is sequentially
compact if every sequence in X has a subsequence that converges to some L ∈ X.

Proposition 1.25. Let X ⊂ RN be a sequentially compact subset, and let
f : X → RM be a continuous function. Then the image f(X) is sequentially
compact.

Proof. Let {yn} be a sequence in f(X). By definition of the image, every
element of f(X) is of the form f(x) for some x ∈ X, so for each n ∈ Z+ we may
choose xn ∈ X such that f(xn) = yn. Because X is sequentially compact, there is
some subsequence {xnk

} that converges to an element x of X. By Theorem 1.18
we have

ynk
= f(xnk

) → f(x).

Since f(x) ∈ f(X), this shows that f(X) is sequentially compact. □

The following is actually quite a big theorem.

Theorem 1.26. A subset of RN is sequentially compact if and only if it is
closed and bounded.

Proof. Step 1: We show that sequentially compact sets are both closed and
bounded. We do this contrapositively.

First suppose that X is not closed. Then there is a sequence {xn} in X that
converges to an element L ∈ RN \X. Because every subsequence of a convergent
sequence converges to the same limit, whatever subsequence we take will still be
convergent but the limit will lie outside of X, so X is not sequentially compact.

Now suppose that X is not bounded. We will produce a sequence in X no
subsequence of which is convergent. Indeed, since X is not bounded, for all n ∈ Z+

there is xn ∈ X with ||xn|| ≥ n. Such a sequence is unbounded, hence divergent.
Moreover, passing to a subsequence {xnk

} is no help: ||xnk
|| ≥ nk ≥ k, so every

subsequence is unbounded. (In other words, this sequence diverges to ∞, hence so
does every subsequence.) So X is not sequentially compact.
Step 2: Suppose X is closed and bounded. Let {xn} be a sequence in X. Since X
is bounded, by Bolzano-Weierstrass, there is a subsequence that converges to some
L ∈ RN . Since X is closed, we have L ∈ X. So X is sequentially compact. □

At this point you’re probably thinking: “Hey, I’m not impressed with sequential
compactness because it turns out to be a fancy way to say closed and bounded.”
Let me try to debunk this. First, even if you want to think of it that way, we have
learned something very important about closed and bounded subsets of Euclidean
spaces. Namely, putting together the last two results, we (immediately!) get:

Corollary 1.27. Let X ⊆ RN be closed and bounded, and let f : X → RM be
continuous. Then the image f(X) is a closed and bounded subset of RM .

On the other hand, this does not work for either closedness or boundedness alone.

Example 1.3.

a) Consider f : R → R by f(x) = 1
x2+1 . Then f is continuous and f(R) =

(0, 1), so f takes the closed set R to the not-closed set (0, 1).
b) Consider f : (0, 1) → R by f(x) = 1

x . Then f is cotinuous and f((0, 1)) =
(1,∞), so f takes the bounded set (0, 1) to the unbounded set (1,∞).
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The actual answer is a bit more complicated though. All of the concepts that we
have introduced in the course so far can in fact be studied in much more generality:
namely in any metric space (we will learn a bit about metric spaces at the end of
the course). If we have a subset X of any metric space, then it will turn out that if
it is sequentially compact then it must also be closed and bounded, but in a general
metric space a closed, bounded subset does not need to be sequentially compact.
To get a glimpse of this, imagine we were working in Q instead of R, with all the
rest of the definitions being the same. Then

[0, 2]Q := {x ∈ Q | 0 ≤ x ≤ 2}

is a closed, bounded subset of Q, but it is not sequentially compact: there is a
sequence in [0, 2]Q that converges to the irrational real number

√
2, hence so does

every subsequence, hence no subsequence converges to an element of [0, 2]Q.
Just as in Math 3100 we used Bolzano-Weierstrass in R to show that Cauchy

sequences in R must converge, pretty much the same argument will show that in a
sequantially compact metric space, every Cauchy sequence must converge. So se-
quential compactness has something to do with completeness, but it is even stronger,
since Cauchy sequences in RN converge but RN is not sequentially compact.

Coming back to earth: from Corollary 1.27 we deduce:

Corollary 1.28 (Multivariable Extreme Value Theorem). Let X be a subset
of RN that is nonempty, closed and bounded, and let f : X → R be a continuous
function. Then f assumes its maximum and minimum values.

Proof. By the previous corollary, f(X) is a subset of R that is nonempty,
closed and bounded. By Exercise 1.10 it follows that sup f(X) and inf f(X) both
lie in f(X), so f(X) has a largest and smallest element. □

Exercises.

Exercise 1.23.

a) Show: a subset of R is an open ball if and only if it is a bounded open
interval (a, b).

b) Show: a subset of R is a closed ball if and only if it is a bounded closed
interval [a, b].

Exercise 1.24. Let I be a nonempty set, and let {Ui}i∈I be an indexed family
of open subsets of RN .

a) Show:
⋃

i∈I Ui is also an open subset of RN .

b) Show: if I is finite, then
⋂

i∈I Ui is also an open subset of RN .
c) Give an example in which I is infinite and

⋂
i∈I Ui is not an open subset

of RN .

Exercise 1.25. Show: A subset A ⊆ RN is closed if and only if its complement
RN \A is open.

Exercise 1.26. Let I be a nonempty set, and let {Ai}i∈I be an indexed family
of closed subsets of RN .

a) Show:
⋂

i∈I Ai is also a closed subset of RN .

b) Show: if I is finite, then
⋃

i∈I Ai is also a closed subset of RN .
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c) Give an example in which I is infinite and
⋃

i∈I Ai is not an open subset

of RN .

(Comment: if you remember DeMorgan’s Laws, you can immediately deduce this
from Exercises 1.24 and 1.25. But if not, you can still solve this exercise directly,
and even if you, you might want to try it that way as well.)

Exercise 1.27. Let X ⊆ RN , and let f : X → RM . For x ∈ X, we may write
f(x) as (f1(x), . . . , fM (x))); this defines functions f1, . . . , fM : X → R.

a) For 1 ≤ i ≤ M , let πi : RM → R be the coordinate projections of Exercise
1.15. Show: for all 1 ≤ i ≤ M , we have fi(x) = πi ◦ f .

b) Let x ∈ X. Show: f is continuous at x if and only if fi is continuous at
x for all 1 ≤ i ≤ M .

Exercise 1.28. Show that the scalar multiplication operation α·x 7→ αx defines
a continuous function R× RN → RN .

Exercise 1.29. Consider the following functions f, g : R → R:

f(x) =

{
0 if x is rational

1 if x is irrational
,

g(x) =

{
x if x is rational

0 if x irrational
.

a) Show: for all c ∈ R, f is not continuous at c.
b) Show: g is continuous at 0 and at no other point of R.

Exercise 1.30. For a subset A ⊆ RN , we define the interior A◦ to be the set
of x ∈ A for which we have B◦(x, δ) ⊆ A for some δ > 0.

a) Show that A◦ is the largest open subset of A: that is, show (i) A◦ is an
open subset of A and (ii) if U is an open subset of A then U ⊆ A◦.

b) Show: A is open ⇐⇒ A = A◦.

Problems.

Problem 1.10. Let A ⊆ R be a nonempty subset.

a) Suppose that A is bounded above. Show that the supremum sup(A) is a
limit point of A.

b) Suppose that A is bounded below. Show that the infimum inf(A) is a limit
point of A.

c) Deduce: if A is closed and bounded, then A has a maximum element (i.e.,
an element larger than any other element of A and a minimum element
(i.e., an element smaller than any other element of A).

Problem 1.11. For a sequence {xn} in RN , let L(xn) be the set of all partial
limits of the sequence.

a) Show: L(xn) is a closed subset of RN .
b) Suppose that the sequence {xn} is injective (i.e., for all m ̸= n we have

xm ̸= xn). Let X := x•(Z+) = {xn | n ∈ Z+} be the set of terms of the
sequence. Show that L(xn) is the set of accumulation points of X.

Problem 1.12. Show: for every closed subset X ⊆ RN there is a sequence
{xn} in RN such that the set L(xn) of partial limits is X.
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Problem 1.13. Define Thomae’s function T : R → R as follows:
• We put T (0) = 1.
• If x is a nonzero rational number, we may write x = m

n for m ∈ Z and n ∈ Z+

with no common factor. Then we put T (mn ) = 1
n .

• If x is an irrational number, we put T (x) = 0.
Show: for all x ∈ R, the function T is continuous at x if and only if x is irrational.

5. Uniform Continuity

Let A ⊆ RN . A function f : A → RM is uniformly continuous if for all
ϵ > 0 there is δ > 0 such that for all x, y ∈ A, if d(x, y) = ||x − y|| < δ, then
d(f(x), f(y)) = ||f(x)− f(y)|| < ϵ.

The point of this definition is that ordinary continuity applies to one point at
a domain at a time, so for each fixed ϵ > 0, the δ that works for one point may not
work for another point. Uniform continuity means precisely that we may choose
the same δ to work for all points at once. Thus uniformly continuous functions are
continuous. The converse is not always true.

Example 1.4. Consider the continuous function f : R → R by f(x) = x2. We
claim that f is not uniformly continuous. Indeed, for a positive integer n, take
x ∈ R and y = x+ δ. Then

|f(x)− f(y)| = |(x+ δ)2 − x2| = |2xδ + δ2|.
No matter how small δ is, this quantity will still be large if |x| is sufficiently large,
so in fact for no ϵ > 0 is there a δ > 0 such that |x−y| < δ implies |f(x)−f(y)| < ϵ.

Example 1.5. Consider the continuous function f : (0, 1) → R by f(x) = 1
x .

We claim that f is not uniformly continuous. Take x ∈ (0, 1) and y = x+ δ. Then

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

x+ δ

∣∣∣∣ = ∣∣∣∣ δ

x(x+ δ)

∣∣∣∣.
For each fixed δ, as x → 0 the above expression tends to ∞, so for no ϵ > 0 is there
a δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ.

In the first example the domain is closed but not bounded. In the second example
the domain is bounded but not closed.

Here is a sequential characterization of uniform continuity:

Proposition 1.29. Let X ⊆ RN be a subset, and let f : X → RM be a
function. The following are equivalent:

(i) f is uniformly continuous.
(ii) For all pairs of sequences {xn} and {yn} in X such that d(xn,yn) → 0,

we have d(f(xn), f(yn)) → 0.

Proof. First suppose that (i) fails: then there is some ϵ > 0 such that for all
δ > 0 there are xδ,yδ ∈ X such that ||xδ − yδ|| < δ and ||f(xδ) − f(yδ)|| ≥ ϵ. In
particular, for each n ∈ Z+ this holds for δ = 1

n . Let’s write xn and yn in place of

x 1
n
and y 1

n
: then for all n ∈ Z+ we have d(xn,yn) <

1
n and d(f(xn), f(yn)) ≥ ϵ.

In particular d(f(xn), f(yn)) fails to converge to 0, so condition (ii) fails.
Now suppose that condition (ii) fails: then we have sequences {xn} and {yn}
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in X such that xn−yn converges to 0 but f(xn)−f(yn) fails to converge to 0. The
latter means that there is some ϵ > 0 and infinitely many positive integers n such
that ||f(xn)−f(yn)|| ≥ ϵ. This infinite set of positive integers defines subsequences
xnk

and ynk
. Because passing to a subsequence preserves convergence we have

lim
k→∞

xnk
− ynk

→ 0,

and now ||f(xnk
) − f(ynk

)|| ≥ ϵ for all positive integers k. Beause xnk
− ynk

converges to 0, for all δ > 0 there is k ∈ Z+ such that ||xnk
− ynk

|| < δ, and we
still have ||f(xnk

)− f(ynk
)|| ≥ ϵ. So condition (i) fails. □

Lemma 1.30. Let {xn} and {yn} be sequences in RN with d(xn,yn) → 0. If
xn → L ∈ RN , then also yn → L.

You are asked to prove Lemma 1.30 in Exercise 1.33.

Theorem 1.31 (Uniform Continuity Theorem). Let X ⊆ RN be sequentially
compact. Then every continuous function f : X → RM is uniformly continuous.

Proof. Seeking a contradiction, we suppose that f is not uniformly contin-
uous. Then by Proposition 1.29 there are sequences {xn} and {yn} in X with
d(xn,yn) → 0 and d(f(xn), f(yn)) not converging to 0. As we saw in the proof of
Proposition 1.29, this means that there is ϵ > 0 and subsequences {xnk

} and {ynk
}

such that d(xnk
,ynk

) ≥ ϵ for all k ∈ Z+. Thus if X is not uniformly continuous
then there are sequences {xn} and {yn} in X such that d(xn,yn) → 0 and ϵ > 0
such that d(f(xn), f(yn)) ≥ ϵ for all n ∈ Z+.

We will use the sequential compactness of X to get a contradiction. Indeed,
since X is sequential compact, there is a subsequence {xnk

} that converges to some
element of X, say L. Since xn − yn → 0, also xnk

− ynk
→ 0, so by Lemma 1.30

the sequence {ynk
} also converges to L. Because f is continuous, we have

f(xnk
) → f(L) and f(ynk

) → f(L),

from which it follows that f(xnk
)− f(ynk

) → 0 and thus for all sufficiently large k
we have d(xnk

,ynk
) < ϵ. Contradiction! □

So here is a question that is so much more than fair: why uniform continuity?
What we have established up to this point is that uniform continuity is a variant of
continuity that is in general subtly stronger, still has a sequential characterization,
and that the two concepts coincide on closed, bounded subsets of Euclidean space.
But...what’s the point?

One thing that makes the study of theoretical mathematics challenging is that
key definitions emerge after years (centuries, here) of work on specific problems.
When the mathematics is presented however it is much more efficient to present the
definitions first and the application later on. Indeed, later on in this course we will
absolutely want to know that every continuous function f : [a, b] → R is uniformly
continuous: this will be the key to showing that every such function is Riemann
integrable. However, I would like to show an application of uniform continuity now,
so in the next section we consider the extension problem for continuous functions.
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Exercises.

Exercise 1.31. Use Proposition 1.29 to show that the function of Example 1.4
is not uniformly continuous.

Exercise 1.32. Use Proposition 1.29 to show that the function of Example 1.5
is not uniformly continuous.

Exercise 1.33. Let {xn} and {yn} be sequences in RN with d(xn,yn) → 0. If
xn → L ∈ RN , show that also yn → L.

Exercise 1.34. State and prove an analogue of Exercise 1.27 for uniform con-
tinuity.

Exercise 1.35. Let M,N,P ∈ Z+. Let X ⊆ RN and let Y ⊆ RM . Let
f : X → RM and let g : Y → RP be functions. Suppose that f(X) ⊆ Y , so that the
composition g ◦ f is defined. Show: if f and g are both uniformly continuous, so is
g ◦ f .

Exercise 1.36. Let f : R → R be a polynomial function, say

f(x) = anx
n + . . .+ a1x+ a0

with n ∈ Z≥0 and an ̸= 0.

a) Suppose that f is a linear function: i.e., that n ≤ 1. Show: f is uniformly
continuous.

b) Suppose that n ≥ 2. Show: f is not uniformly continuous.
c) Can you generalize this to polynomials f : RN → R?

Problems.

Problem 1.14. A function f : R → R is called periodic if there is a ∈ R\{0}
such that for all x ∈ R we have f(x+a) = f(x). Show: a function that is continuous
and periodic is uniformly continuous.

Problem 1.15. We say that a function f : RN → RM vanishes at infinity if
for all ϵ > 0 there is R > 0 such that for all x ∈ RN , if ||x|| > R then ||f(x)|| < ϵ.
Show: if f is continuous and vanishes at infinity, then f is uniformly continuous.

Problem 1.16. Let X ⊆ RN and let f : X → RM be uniformly continuous.
Show: if X is bounded, then f(X) is bounded.

6. Accumulation Points and Continuous Extensions

Suppose X is a subset of RN and f : RN → RM is a continuous function. It is
natural to ask: can f be extended to a continuous function on all of RN?

Example 1.6. Let f : [a, b] → R be continuous. Then f extends continuously
to all of R: indeed, we can put f(x) = f(a) for all x < a and f(x) = f(b) for all
x > b. This works!

Example 1.7. The function f(x) = 1
x is a continuous function on (0, 1] that

does not extend continuously to all of R. In the language of calculus, we would
say that limx→0+ f(x) = ∞, which prevents such an extension. This is correct, but
here is an explanation using the language and concepts we have been developing: f
is continuous at a point x if for all ϵ > 0 f maps some ball B◦(x, δ) into the ball
B◦(f(x), ϵ). In particular f must be bounded in some small ball around x. Since
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f((0, δ)) = ( 1δ ,∞), no matter how we define f at 0, the function will be unbounded
in any δ-ball around 0, so it does not have any continuous extension to [0, 1].

One moral one can extract from this is:

Proposition 1.32. Let f : X ⊆ RN → RM . If f has a continuous extension
to RN , then for all bounded subsets Y ⊆ X, the image f(Y ) is bounded.

Proof. It is enough to see that for f : RN → RM , if Y ⊆ RN is bounded then
so is f(Y ). If Y is bounded, then it is contained in a closed ball B, which is closed
and bounded, so f(B) is closed and bounded, so f(Y ) ⊆ f(B) is bounded. □

This criterion is however not sufficient.

Example 1.8. The function f : R \ {0} → R defined by f(x) = sin(1/x) is not
only bounded on every bounded subset; it is just bounded. Nevertheless, it does not
extend continuously to R, as is left as an exercise.

Let us worry about extending a continuous function one point at a time. There are
two cases of this; one is trivial, and the other is not.

Example 1.9. Let f : (0, 1) → R be a continuous function. Suppose we want
to extend f to a continuous function on (0, 1) ∪ {2}. There is precisely no problem
here: for any L ∈ R we can put f(2) := L, and the function f : (0, 1) ∪ {2} will
be continuous. Why? Because for any ϵ > 0, take δ = 1: we need to check that if
|x − 2| < 1 then |f(x) − L| < ϵ. But the only x ∈ (0, 1) ∪ {2} with |x − 2| < 1 is
x = 2 itself, and |f(2)− L| = 0.

This example motivates the following definition: let A be a subset of RN . An
isolated point of A is a point L ∈ A such that for some δ > 0 we have B◦(L, δ)∩
A = {L}. In other words, a point of A is isolated if for some δ > 0 the only point
of A that is within δ of L is L itself.

Proposition 1.33. Let A ⊆ RN , and let L ∈ A be an isolated point. Then
every function f : A → RM is continuous at L.

Proof. This is the same argument as in Example 1.9: if δ > 0 is such that
B◦(L, δ) ∩ A = {L}, then for any ϵ > 0, we have that for all x ∈ A, d(x, L) <
δ =⇒ d(f(x), f(L) < ϵ....because the only x that satisfies the first inequality is
x = L! □

In terms of the extension problem, this means: if L is an isolated point of A, then
every continuous function f on A \ {L} extends continuously to A, and we can do
so by defining f(L) to be whatever we want!

Okay, that was indeed a trivial case. Let’s move on to the other case, which involves
a variant of the notion of limit point that was alluded to before. By an injective
sequence in a set X, we mean a sequence {xn} in X for which the defining function
x• : Z+ → X is injective. In plainer language, an injective sequence is a sequence
in which every term is a different element of X. Now for a subset A ⊆ RN , an
accumulation point is a point L ∈ RN for which there is an injective sequence
{xn} in A converging to L.

Compare with the definition of a limit point: the only difference is that we have
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added the word “injective.” Thus every accumulation point of A is a limit point
of A. The converse is not true in general: for instance if A is finite there are no
injective sequences in A, so A has no accumulation points, but as always, every
element of A is a limit point of A. In general:

Proposition 1.34. Let A ⊆ RN , and let L ∈ RN be a limit point of A. Then
exactly one of the following holds:

(i) L is an accumulation point of A.
(ii) L is an isolated point of A.

Proof. Step 1: If L is an isolated point of A, then a sequence {xn} in A
converges to L if and only if we have xn = L for all sufficiently large n. We leave
this as an exercise (Exercise 1.39). From this it follows that if L is an isolated
point of A then L is not the limit of any injective sequence in A, so L is not an
accumulation point of A. Thus we have shown that conditions (i) and (ii) are
mutually exclusive.
Step 2: Suppose that L is a limit point of A that is not an isolated point of A.
This means that either L /∈ A or L ∈ A but for all δ > 0 there is xδ ∈ A with
0 < ||xδ −L|| < δ. In each of these two cases we will produce an injective sequence
in A that converges to L.
Case 1: L /∈ A. Because L is a limit point of A there is a sequence {xn} in A
that converges to A. The problem is that is may not be injective: i.e., terms may
repeat. However, any element of p ∈ A can show up only finitely many times in the
sequence: indeed, since p ∈ A and L /∈ A, we have p ̸= L, so d = d(p, L) > 0, and
because the sequence converges to L, we have d(xn, L) < d for all sufficiently large
n. Therefore we can form a subsequence simply by omitting every term that is a
repetition: i.e., for which the same element of A has alerady occurred earlier in the
sequence. This builds an injective subsequence, which must still converge to L.
Case 2: L ∈ A. Because we have elements of A arbitrarily close to L but different
from L, we can build a sequence the nth term of which has distance less than 1

n from
L and is also closer than any previous term. In other words, let x1 be an element
of A \ {L} with d(x1, L) < 1. Let x2 be an element of A \ {L} with d(x2, L) <
min( 12 , d(x1, L)). Let x3 be an element of A\{L} with d(x3, L) < min( 13 , d(x2, L)).
And so forth. This gives an injective sequence in A converging to L. □

Note that an isolated point of A is necessarily a point of A, but an accumulation
point of A may or may not be a point of A. For instance, every point of an open
or closed ball is an accumulation point.

Since a set X ⊆ RN is closed if it contains all its limit points, but every limit
point of X is either an element of X or an accumulation point (again, both are pos-
sible!), it follows that a set is closed if and only if it contains its accumulation points.

So now let’s consider the nontrivial case of the “one point extension problem”:
let A ⊆ RN , let L ∈ RN \A be an accumulation point of A, and let f : A → RM be
a continuous function. The question is whether we can extend f to a continuous
function on A ∪ {L}. First we observe that there is at most one way to do this:
indeed, suppose that g : A ∪ {L} → RM is a continuous extension of f . Because L
is an accumulation point of A, there is a sequence {xn} in A such that xn → L.
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By Theorem 1.18 we have

g(L) = g( lim
n→∞

xn) = lim
n→∞

f(xn).

This tells us how to define g(L), so its value must indeed be unique.

Theorem 1.35. Let A ⊆ RN , let L ∈ RN \ A be an accumulation point of A,
and let f : A → RM be a continuous function. Suppose there is some r > 0 such
that

f |B•(L,r)∩A : B•(L, r) ∩A → RM

is uniformly continuous. Then f admits a continuous extension to A ∪ {L}.

Proof. Step 1: Above we assumed that the continuous extension g existed
and gave a formula for it: namely, choose a sequence {xn} in A such that xn → L;
then g(L) = limn→∞ f(xn). So we want to define

f(L) := lim
n→∞

f(xn).

In fact, so as to make use of the assumed uniform continuity, we want the sequence
xn to lie in B•(L, r). Because the original sequence converges to L, we can attain
this just by removing finitely many terms, so let’s do so. Now we need to show
first that this limit actually exists and second that it does not depend upon the
sequence {xn} we chose.
Step 1a): Because we know that Cauchy sequences in RM converge, it is enough
to show that {f(xn)} is Cauchy. For this, we know that the sequence {xn} is
convergent in RN , so it is Cauchy. Happily, it is easy to show that uniformly
continuous maps send Cauchy sequences to Cauchy sequences: let ϵ > 0. Because
of the uniform continuity of f , there is δ > 0 such that for all y, z ∈ B•(L, r) ∩ A,
we have d(y, z) < δ =⇒ d(f(y), f(z)) ≤ ϵ. Since {xn} lies in B•(L, r) and is
Cauchy, there is K ∈ Z+ such that if m,n ≥ K then d(xm,xn) ≤ δ, and thus

∀m,n ≥ K, d(f(xm), f(xn)) < ϵ.

This shows that the sequence f(xn) converges.
Step 1b): Let {yn} be another sequence in B•(L, r) ∩ A such that yn → L. Then
d(xn,yn) → 0, so by Proposition 1.29, we have d(f(xn), f(yn)) → 0. Since both
sequences are convergent, it follows from Lemma 1.30 their limits are equal.
Step 2: It remains to show that our extended function is continuous at L. But in
fact this follows from our Sequential Characterization of Uniform Continuity, since
we have just shown that if if xn → L then f(xn) → f(L). Strictly speaking, we
showed this only for sequences each of whose terms lie in B•(L, r) ∩ A, but again
any sequence that converges to L becomes such a sequence after removing finitely
many terms; so any such sequence converges after removing finitely many of its
terms...so any such sequence converges. □

Let me quickly discuss some further developments of these ideas.

For a subset A of RN , we can define its closure A to be A together with all
of its limit points (equivalently, with all of its accumulation points). As the name
implies, A is then a closed set (this is not completely obvious: it comes down to
showing a limit point of limit points of A is still a limit point of A). In fact A
is the smallest closed set containing A. It follows from our discussion that every
continuous function had at most one continuous extension to A. Such a continuous
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extension need not exist, but it will if f is uniformly continuous on A. But in fact
this condition is a little too strong, and the precise result is the following.

Theorem 1.36. Let A ⊆ RN , and let f : A → RM be continuous. The following
are equivalent:

(i) f admits a continuous extension to A.
(ii) The restriction of f to each bounded subset of A is uniformly continuous.

We are not so terribly far away from a proof of this important result; it will be
developed in some exercises.

A subset X ⊂ RN is called dense if its closure is all of RN . This means: for
every y ∈ RN and every ϵ > 0, there is x ∈ X with d(x,y) < ϵ. For instance Q is
dense in R. Theorem 1.36 therefore shows that if you have a continuous function
on a dense subset of RN then it extends continuously to all of RN if and only if
it is uniformly continuous on each bounded subset. As an example, consider an
exponential function ax. If you think about it, we can make good sense of ax us-

ing the methods of precalculus when x is any rational number, but what does a
√
2

mean? In order to make sense of it we need to use some limiting process. One
way to define ax as a function on all of R is to show that ax : Q → R is uniformly
continuous on bounded subsets. (It is not uniformly continuous on all of Q.)

What if A is not dense, so A ⊊ RN is closed? It turns out that if X ⊆ RN is
a closed subset and f : X → RM is continuous, then there is always a continuous
extension of f to all of RN : in fact there are always lots and lots of such exten-
sions. This is a special case of an important result called the Tietze Extension
Theorem, which you might learn about in Math 4200: see [GT, Theorem 2.89].

Before we depart this topic, let us observe that we have essentially rediscovered
the notion of limit. Namely, let X ⊆ RN , let c be an accumulation point of X,
and let f : X \ {c} → RM be a function. Then we define

lim
x→c

f(x) = L

to mean: if we extend f to X by setting f(c) := L, then f is continuous at c.
Again, the value L is then the common value limn→∞ f(xn) for all sequences {xn}
in A\{L} that converge to c, so it is uniquely determined, if it exists. It is immediate
to see that the limit is L iff: forall ϵ > 0 there is δ > 0 such that for all x ∈ A\{c},
we have d(x, c) < δ =⇒ d(f(x), L) < ϵ.

Exercises.

Exercise 1.37. Let A ⊆ RN and let c be an isolated point of A. Show: every
function f : A → RM is continuous at c.

Exercise 1.38. Show that the function f : R\{0} → R given by f(x) = sin( 1x )
has no continuous extension to 0.

Exercise 1.39. Let A ⊆ RN , and let L ∈ A be an isolated point. Let {xn}
be a sequence in A. Show that xn → L if and only if there is K ∈ Z+ such that
xn = L for all n > K.

Exercise 1.40.
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a) Use the Bolzano-Weierstrass Theorem to show that if A ⊆ RN is infinite
and bounded, then A has an accumulation point in RN .

b) Suppose that every infinite bounded subset of RN has an accumulation
point in RN . Deduce the Bolzano-Weierstrass Theorem in RN .

Exercise 1.41. Let X ⊆ RN . Show that the following are equivalent:

(i) X has an accumulation point in RN .
(ii) There is some bounded subset B ⊆ RN such that X ∩B is infinite.

Exercise 1.42. Let A ⊆ RN be bounded. Let f : A → RM be continuous.

a) Show that the following are equivalent:
(i) f is uniformly continuous.
(ii) f admits a continuous extension to A.

b) Show that under the equivalent condiitons of part a), the continuous ex-
tension of f to g : A → RM is unique and uniformly continuous.

Exercise 1.43. Let A ⊆ RN , and let f : A → RM .

a) Show that f is continuous if and only if its restriction to each bounded
subset of f is continuous.

b) Show: f admits a continuous extension to A if and only if its restriction
to each bounded subset of A is uniformly continuous.

The remaining exercises make use of the following definitions: let X ⊆ RN . We
say that X is discrete if every point of X is an isolated point. We say that X is
uniformly discrete if there is δ > 0 such that for all x1, x2 ∈ X, if ||x1 − x2|| < δ
then x1 = x2.

Exercise 1.44.

a) Show: if X is uniformly discrete, then X is discrete.
b) Show { 1

n | n ∈ Z+} is a subset of R that is discrete, not uniformly discrete
and not closed.

c) Show: if X is uniformly discrete, then X is closed.
d) Find a closed subset X ⊆ R that is discrete but not uniformly discrete.

Problems.

Problem 1.17. Let A ⊆ RN . Let A be the union of A and the accumulation
points of A.

a) Show: A is closed.
b) Show: A is the intersection of all closed subsets of RN containing A.
c) Show: A is bounded if and only if A is sequentially compact.

Problem 1.18. Let A ⊆ RN . The boundary ∂A of A is the set of all x ∈ RN

such that for all δ > 0 the open ball B◦(x, δ) contains a point of A and also contains
a point of RN \A.

a) Compute (with proof) the boundaries of open and closed balls.

b) Show: ∂A = A ∩ RN \A. Deduce: ∂A is closed.
c) Show: (∂A) ∩A = A \A◦.
d) Show: A = A ∪ ∂A.

Problem 1.19. Let A ⊆ RN , and let f : A → RM be a function. Show that
the following are equivalent:
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(i) The function f is continuous.
(ii) For all open subsets V of RM , the inverse image

f−1(V ) := {x ∈ A | f(x) ∈ V }

is of the form U ∩A for some open subset U of RN .
(iii) For all closed subsets V of RM , the inverse image f−1(V ) is of the form

C ∩A for some closed subset C of RN .

Problem 1.20. Let X → RN be a subset.

a) Show that the following are equivalent:
(i) X is discrete.
(ii) Every function f : X → RM is continuous.
(iii) Every function f : X → R is continuous.

b) Show that the following are equivalent:
(i) X is uniformly discrete.
(ii) Every function f : X → RM is uniformly continuous.
(iii) Every function f : X → R is uniformly continuous.

Problem 1.21. Let X ⊆ RN . Show that the following are equivalent:

(i) Every continuous function f : X → RM is uniformly continuous.
(ii) Every continuous function f : X → R is uniformly continuous.
(iii) X is either sequentially compact or uniformly discrete.

7. Functional Limits

Let X ⊆ RN be a nonempty subset, and let c ∈ X be a nonisolated point. For
a function f : X \ {c} → RM , recall that we say that limx→c f(x) = L if definining
f(c) := L makes f continuous at c. Spelling out, this means: for all ϵ > 0, there is
δ > 0 such that for all x ∈ X, if 0 < ||x− c|| < δ then ||f(x)− L|| < ϵ. If the limit
exists, then its value is unique.

The following is a variation on the fact that compositions of continuous functions
are continuous.2

Proposition 1.37. Let X ⊆ RN and Y ⊆ RM , and let f : X \ {c} → RM and
g : Y → RP . Suppose that f(X) ⊆ Y . Let c ∈ X be a nonisolated point. Then: if
limx→c f(x) = L and limy→L g(y) = M . Then

lim
x→c

g(f(x)) = M = g( lim
x→c

f(x)).

Proof. Define f at c by f(c) := L; then f is continuous at c. There is a
sequence {xn} in X converging to c, hence f(xn) converges to f(c) = L, so L is a
limit point of Y . If L /∈ Y , we put g(L) := M ; if L ∈ Y , then we redefine g(L) := M .
Either way this makes g continuous at M . By Proposition 1.23, the composition
g ◦ f is then continuous at c, so limx→c g(f(x)) = g(f(c)) = g(L) = M . □

2The annoying complicatedness of the statement is again a sign that continuity is the funda-
mental concept on which limits should be based, not the other way around.
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Exercises.

Exercise 1.45 (Squeeze Theorem). Let X ⊆ RN , and let c ∈ X◦. Let f :
X \ {c} → R be a function. Let δ > 0 be such that B◦(c, δ) ⊆ X, and suppose there
are functions

m,M : B◦(c, δ) \ {c} → R
such that

∀x ∈ B◦(c, δ) \ {c}, m(x) ≤ f(x) ≤ M(x)

and
lim
x→c

m(x) = L = lim
x→c

M(x).

Show: limx→c f(x) = L.

In the above statement of the Squeeze Theorem, it is in fact not critical that c be
an interior point of X: we could have worked with any accumulation point c of
X and in place of B◦(c, δ) used B◦(c, δ) ∩ X. We just wanted a relatively clean
statement.

Exercise 1.46. Let X ⊆ R, and let a be an accumulation point of X. We say
that the right-handed limit limx→a+ f(x) = L exists if a is still an accumulation
point of X ∩ [a,∞) and upon restricting the domain from X to X ∩ [a,∞), the
limit exists and is equal to L. We say that the left-handed limit limx→a− f(x) =
L exists if a is still an accumulation point of X ∩ (−∞, a] and upon restricting
the domain from X to X ∩ (−∞, a]), the limit exists and is equal to L. Show:
limx→a f(x) exists if and only if limx→a+ f(x) and limx→a− f(x) both exists and
are equal, in which case the common value is limx→a f(x).

Problems.

Problem 1.22 (Monotone Functions Have Simple Disontinuities). Let I ⊆ R
be an interval, and let c ∈ I. We say that f has a simple discontinuity at c
if each of the one-sided limits limx→c+ f(x) and limx→c− f(x) exist but f is not
continuous at c: this means that either limx→c+ ̸= f(c) or limx→c− f(c) (or both).

Let f : I → R be a monotone function: that is, f is increasing or decreasing.

a) Suppose c is not an endpoint of I. Show that limx→c+ f(x) and limx→c− f(x)
both exist. Indeed, if f is increasing, show:

lim
x→c+

f(x) = inf{f(x) | x > c} and lim
x→c−

f(x) = sup{f(x) | x < c},

while if f is decreasing, show:

lim
x→c+

f(x) = sup{f(x) | x > c} and lim
x→c−

f(x) = inf{f(x) | x < c}.

b) Suppose that I has a left endpoint a. Show: limx→a+ f(x) exists.
c) Suppose that I has a right endpoint b. Show: limx→a− f(x) exists.



CHAPTER 2

The Riemann Integral

1. Abstract Integrals and the Fundamental Theorem of Calculus

We now begin our study of “the integral calculus.” The basic idea here is as follows:

for a function f : [a, b] → R we wish to associate a real number
∫ b

a
f , the definite

integral. When f is non-negative, our intutition is that
∫ b

a
f should represent the

area under the curve y = f(x) — more precisely the area of the region bounded
above by y = f(x), below by y = 0, on the left by x = a and on the right by x = b.

For general functions f , the integral
∫ b

a
f is supposed to represent the signed area

— more on this later.
The above sentiment is roughly analogous to the intuition that a continuous

function is one whose graph is a “nice, unbroken” curve. Namely, it is a geometric
idea that must be analytically formalized, and whose analytic formalization re-
quires further ideas. The above gives a precise description of a subset of the plane
associated to f : [a, b] → [0,∞), namely the set

Sf := {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)}.

It is easy to see that Sf is bounded if and only if f is bounded (Exercise 2.1). So
if we knew how to assign an area to every bounded subset of R2, then this would
work as a definition. The issue is that this “assigning areas” problem is itself a very
challenging one: the part of mathematics that deals with this in a satisfactory way
is called measure theory, which is part of graduate real analysis.

So our main task here is to define a new limiting process telling us how to as-

sign the real number
∫ b

a
f to the function f : [a, b] → R. Just as for all previous

limiting processes (limits of sequences and series, functional limits at a point, con-
tinuity, differentiability) the limit need not exist for all functions, and indeed there

are some functions f : [a, b] → R for which
∫ b

a
f is not defined. (This is true both

for the particular limiting processes that we will study but also, for certain choices
of f , for any reasonable limiting process.) Just as we call a function differentiable
if the limiting process defining the limit exists, we will call a function integrable
if it lies in the class of functions for which the limiting process works to assign a

number
∫ b

a
f . (This is not yet a definition since we haven’t said what the process is!)

Before we plunge into the details of a particular limiting process, it will be helpful
to consider some properties that we want our integral to study. If the integral is
supposed to be a signed area, it should surely satisfy the following properties:

(I1) If f = C is constant, then
∫ b

a
C = C(b− a).

43
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Indeed, when C > 0 the set Sf is just a rectangle with base length b − a and
with height C: that’s an area that we know. When C < 0, the set Sf is a rectangle
with the same description, but now it is bounded above by the x-axis and below by
y = C, so our convention is that this counts as “negative area.” When C = 0, the
set Sf is just the line segment [a, b], which indeed should have area 0.

Comment: Until further notice, we will “explain” our properties only for non-
negative functions f . This case is simpler and easier to explain. Once we sufficiently
develop the theory we will be able to understand how to recover the general case
from this (essentially we add a sufficiently large constant to make f non-negative).

(I2) If f1, f2 : [a, b] → R satisfy f1 ≤ f2 — that is, for all x ∈ [a, b] we have

f1(x) ≤ f2(x) — then
∫ b

a
f1 ≤

∫ b

a
f2.

Under our running “explanatory assumption” that f1 and f2 are non-negative,
if f1 ≤ f2 then Sf1 is a subset of Sf2 , and certainly the area of a subset should be
less than or equal to the area of the entire set.

(I3) If f : [a, b] → R and a ≤ c ≤ b, then
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

To explain this, again under the additional assumption that f ≥ 0, we will add
to our notation by writing Sf,[a,b] for what we above wrote as Sf , taking the inter-
val [a, b] as known. Then we have

Sf,[a,b] = Sf,[a,c] ∪ Sf,[c,b]

and Sf,[a,c] ∩ Sf,[c,b] is just the vertical line segment from (c, 0) to (c, f(c)), which
should have area 0. The way we think areas should work is that the area of the
union should be the sum of the areas minus the area of the intersection, so this
explains (I3).

Again, let me emphasize: I am not proving (I1), (I2) and (I3). I couldn’t pos-

sibly do that until I tell you what
∫ b

a
f means. I am just writing down some desired

consequences of any reasonable definition of
∫ b

a
f . Or, if you like, we are writing

down axioms that our integration process should satisfy.

In fact, I do like – I find the axiomatic approach to be a clean way to come at
this problem. To make it work completely, I want to add one more ingredient:
what is the “domain.” Namely, suppose we are given a subset R[a, b] of the set of
all functions f : [a, b] → R that we call the integrable functions.

(There is a little fine print here: first of all, we actually mean to define R[a, b]
for each pair of real numbers (a, b) with a ≤ b. Second of all, if a ≤ c ≤ b and
f ∈ R[a, b], we want f |[a,c] : [a, c] → R to lie in R[a, c] and f |[c,b] : [c, b] → R to lie
in R[c, b]. This is necessary to make sense of Axiom (I3), for instance.)

Having done this, an integral is, for each a ≤ b, a function∫
: R[a, b] → R, f 7→

∫ b

a

f
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that should satisfy the above axioms. This means that we want constant func-
tions to be integrable and that we require (I2) and (I3) to hold for functions
f1, f2, f ∈ R[a, b].

However, we need one more thing in order to be sure we are doing something
nontrivial. That is...we need to say something about R[a, b], the set of integrable
functions. The only functions that our axioms ensure lie in R[a, b] are the constant
functions. So we could take R[a, b] to consist of constant functions and then we
are only talking about signed areas of rectangles. One step away would be to take
R[a, b] to be all polynomial functions. In this case, verfiying the axioms corresponds
roughly to the amount of understanding posssessed by a B-level calculus student:
we just need to know to reverse the power rule for differentiation.

So let us sneak in one more axiom to ensure that there is some content here:

(I0) For all real numbers a < b we have that:
(I0(a)) Every continuous function f : [a, b] → R lies in R[a, b]; and
(I0(b)) Every function f ∈ R[a, b] is bounded.

Concerning this last axiom: we start with part b) and do not give a justifica-
tion but rather admit that it is there to simplify the situation. However we observe
that parts a) and b) are compatible because of the Extreme Value Theorem: every
continuous function is bounded. Therefore because of axiom (IO) we can — at
the least – integrate every continuous function f : [a, b] → R. Such an integral is
guaranteed to have real content: because of the close connection to the area prob-
lem, such an integral gives a rigorous mathematical meaning to “the area under a
non-negative continuous curve y = f(x).”

Now something remarkable happens: if we assume that we have an integral
∫

:
R[a, b] → R satisfying axioms (I0) through (I3), then without knowing anything
about how this function is actually defined, we can use it to prove the Fundamental
Theorem of Calculus!

Theorem 2.1 (Fundamental Theorem of Calculus). Let
∫
: R[a, b] → R satisfy

(IO), (I1), (I2) and (I3). Let f ∈ R[a, b]. For x ∈ [a, b], we define

F(x) :=

∫ x

a

f.

Then:

a) The function F : [a, b] → R is continuous.
b) If f is continuous at c, then F is differentiable at c, and F ′(c) = f(c).
c) If f is continuous and F : [a, b] → R is any antiderivative of f – i.e.,

F ′ = f – then ∫ b

a

f = F (b)− F (a).

Proof. a) By (I0(b)), there is M > 0 such that |f(x)| ≤ M for all x ∈ [a, b].
Let ϵ > 0, and take δ := ϵ

M . For any a ≤ c ≤ d ≤ b, because −M ≤ f ≤ M ,



46 2. THE RIEMANN INTEGRAL

applying (I2) and (I1) we get

−M(d− c) =

∫ d

c

(−M) ≤
∫ d

c

f ≤
∫ d

c

M = M(d− c),

so using (I3) we get

(5)

∣∣∣∣F(d)−F(c)

∣∣∣∣ = ∣∣∣∣ ∫ d

a

f −
∫ c

a

f

∣∣∣∣ = ∣∣∣∣ ∫ d

c

f

∣∣∣∣ ≤ M(d− c),

which shows that F is uniformly continuous with δ = ϵ
M .

b) Since f is continuous at c, for all ϵ > 0, there is δ such that |x− c| < δ implies

f(c)− ϵ < f(x) < f(c) + ϵ.

Thus:

f(c)− ϵ =

∫ x

c
(f(c)− ϵ)

x− c
≤
∫ x

c
f

x− c
≤
∫ x

c
(f(c) + ϵ)

x− c
= f(c) + ϵ,

which we may rewrite as∣∣∣∣F(x)−F(c)

x− c
− f(c)

∣∣∣∣ = ∣∣∣∣
∫ x

c
f

x− c
− f(c)

∣∣∣∣ ≤ ϵ,

which shows that

F ′(c) = lim
x→c

F(x)−F(c)

x− c
= f(c).

c) Suppose f is continuous. By part b), we know that F(x) =
∫ x

a
f is an anti-

derivative of f . By Exercise 4.4 we know that antiderivatives are unique up to the
addition of a constant, which means that if F is any antiderivative of f there is
C ∈ R such that

∀x ∈ [a, b], F (x) = F(x) + C,

and thus,

F (b)− F (a) = (F(b) + C)− (F(a) + C)

= F(b)−F(a) =

∫ b

a

f −
∫ a

a

f =

∫ b

a

f ;

above we used Exercise 2.2 to get
∫ a

a
f = 0. □

We now have several important remarks to make.

First, as discussed above, any integral
∫

: R[a, b] → R restricts to an integral∫
: C[a, b] → R on the set of all continuous functions f : [a, b] → R. But

part c) of the Fundamental Theorem of Calculus tells us that in this case there
is no need for axiomatics: the integral of any continuous function is necessarily
given as F (b) − F (a) for any antiderivative F of f . In other words, the function∫
: C[a, b] → R is unique.

Second: I must observe that the proof of Theorem 2.1 was...quite easy. Admit-
tedly the statement was a bit technical, but the proof of each part took only a few
lines. Our proofs that our fancy-looking function F is always continuous and is
differentiable when f is continuous each came out right away: earlier in our course
we worked harder to prove the continuity/differentiability of very specific functions.

Why is the proof of the Fundamental Theorem of Calculus so easy? This is a
question I thought a lot about the first time I taught undergraduate real analysis, in
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2004 at McGill University. The proof of FTC is usually given in freshman calculus
courses, but the theory of the Riemann integral is much more intricate (um, wait
for it; you’ll see). How is it possible that the theory is hard but its main theorem
is easy?

The answer is that as we’ve stated it, the Fundamental Theorem of Calculus
is not the crux that we might think it is. Do you see why? The answer is that our
statement of the Fundamental Theorem assumes that we have an integral satisfy-
ing the axioms (I0) through (I3) and defined on the class of continuous functions
(so (I0) is satisfied). After we prove the theorem, it turns out that on the class of
continuous functions, this integral is unique. But how do we know that the integral
exists? Answer: we don’t, yet. That’s where the real work lies.

Third: Theorem 2.1 has the following very important consequence:

Corollary 2.2. Each continuous function f : [a, b] → R has an antiderivative.

Indeed, the Fundamental Theorem supplies us with the particular antiderivative
F(x) =

∫ x

a
f . (I emphasize that at the moment we know this conditionally on the

assumption that the integral exists.) Once again we know, as a consequence of the
Mean Value Theorem, that antiderivatives are unique up to an additive constant.
As we saw in the proof, we have F(a) =

∫ a

a
f = 0, so that tells us which antideriv-

ative we’re getting: the unique one that is 0 at the left endpoint.

It may be interesting to ask how much of the content of the Fundamental Theorem
of Calculus is carried by Corollary 2.2: that is, suppose that we know, somehow,
that every continuous function has an antiderivative. Can we then use this to show
the existence of an integral on C[a, b]? The answer is yes: if F is antiderivative

of f , then you can show directly that
∫ b

a
f := F (b) − F (a) defines an integral∫

: C[a, b] → R. This is an amusing exercise: Exercise 2.1. On the other hand, al-
though there are several ways to go about constructing this integral

∫
: C[a, b] → R

that we have been talking about, I believe that I do not know any way to prove
Corollary 2.2 that does not involve constructing the integral in some way and then
differentiating

∫ x

a
f to get f(x).

Let me now give a small preview of what’s coming next: we will define a certain
process that can be applied to any function f : [a, b] → R. This process returns
two different extended real numbers – i.e., either real numbers, ∞ of −∞. These

are called the upper Darboux integral
∫ b

a
f and the lower Darboux integral∫ b

a
f . It will turn out that in all cases we have∫ b

a

f ≤
∫ b

a

f.

We say that the function f is Darboux integrable if the two are equal and the
common value is a real number (and not ±∞).

We will study the Darboux integration process and show that it satisfies all our
axioms: that is, if we define RD[a, b] to be the set of Darboux integrable functions,
then these functions satisfy (I1), (I2), (I3), and most importantly, (I0): every Dar-
boux integrable function is bounded (indeed boundedness is equivalent to the upper
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and lower integrals both being finite) and every continuous function f : [a, b] → R.
It is this last statement that carries most of the content of the Fundamental Theo-
rem of Calculus. We will also show some further useful properties of the Darboux
integral: for instance, we will see that RD[a, b] is a vector space over the real num-
bers and the integral

∫
: RD[a, b] → R is a linear map.

At this point, we will know that RD[a, b] contains all the continuous functions,
and it will not be hard to see that it contains many other functions as well – e.g.
all bounded functions that are either monotone or have finitely many discontinu-
ities. So it is natural to ask: can we determine exactly which functions are Darboux
integrable?

Leaving that question hang in the air for now, here is a very different question:
why have we not said “Riemann” yet? After all, in calculus one speaks of the Rie-
mann integral and after all that is the title of this chapter. Well, what we called
the “Darboux integral” above is what many would call the Rieman integral. How-
ever we have a distinction to make: Riemann himself defined a different process
from Darboux’s: in other words, Riemann’s actual technical definition of the limit
is different from Darboux’s. Rather we should say that Darboux’s definition is
different from Riemann’s, since Riemann’s came first: Darboux’s is actually easier
to understand and easier to work with in many respects. The main advantage of
Riemann’s definition is that it is indeed a (rather complicated!) limit of Riemann
sums, which means that certain sequential limits can be evaluated by interpreting
them as Riemann sums of a Riemann integrable function.

What is the relationship between the integrals of Darboux and Riemann? Al-
though their descriptions are different, we have already shown that as functions

C[a, b] → R they must be equal, i.e., the real number
∫ b

a
assigned to each continu-

ous f : [a, b] → R must be the same, because both satisfy the axioms and there is
a unique integral on the continuous functions satisfying the axioms. In fact their
relationship is closer still: if we let RR[a, b] denote the set of Riemann integrable
functions, then in fact

RD[a, b] = RR[a, b]

— that is, a function is Riemann integrable if and only if it is Darboux integrable
– and moreover when a function f : [a, b] → R is integrable according to either def-

inition the assigned values
∫ b

a
f agree. So at the end of the day, although Riemann

and Darboux are different processes, they yield exactly the same integral. In other
words, they are ultimately two different descriptions of the same thing.

Exercises.

Exercise 2.1. Let f : [a, b] → [0,∞) be a function. Show that the subset

Sf := {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

is bounded if and only if f is bounded.

Exercise 2.2. Show that the axioms (I1), (I2) and (I3) imply that for any
integrable f : [a, b] → R and any c ∈ [a, b], we have

∫ c

c
f = 0.
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Problems.

Problem 2.1. Suppose that you happen to know that every continuous function
has an antiderivative. Show that, defining, for every continuous function f : [a, b] →
R,
∫ b

a
f to be F (b) − F (a) where F is any antiderivative of f , defines an integral∫

: C[a, b] → R: in other words, check that the axioms (I1) through (I3) are satisfied.

2. Darboux’s Riemann Integral

In this section we present Darboux’s approach to the Riemann integral. Throughout
this section a < b are real numbers.

2.1. Upper and lower sums, upper and lower integrals. Partitions: A
partition of [a, b] is a finite subset P of [a, b] containing a and b. Thus we may
write P as {x0, x1, . . . , xn−1, xn} with a = x0 < x1 < . . . < xn−1 < xn = b.
Notice that the positive integer n is one less than the number of elements of
P; we think of a partition P as subdividing the interval [a, b] into subintervals
[a, x1], [x1, x2], . . . , [xn−1, b], and thus n is the number of subintervals into which we
subdivided [a, b]. The telescoping sum

n−1∑
i=0

(xi+1 − xi) = (x1 − a) + (x2 − x1) + . . .+ (b− xn−1) = b− a

shows that the length of the interval [a, b] is the sum of the lengths of the subinter-
vals into which we divided it using P.

Because [a, b] is infinite, there are certainly infinitely many partitions of it. We
introduce a relation among them: we say that a partition P2 of [a, b] refines a par-
tition P1 of [a, b] if P1 ⊆ P2: thus, P2 contains all the points of P1 and (if P2 ̸= P1)
some others. We can think of P2 as being obtained from P1 by repeatedly choos-
ing one of the subintervals [xi, xi+1] given by P1 and subdividing it by adding an
addition point z ∈ (xi, xi+1). This refinement relation is a partial ordering on the
set of partitions of [a, b]: this just means that every partition refines itself; if each
of two partitions refines the other than they are equal; and if P3 refines P2 and P2

refines P1 then P3 refinee P1.

Now let f : [a, b] → R be a bounded function. To every partition P = {a = x0 <
x1 < . . . < xn−1 < xn = b} of [a, b], we will define an upper sum L(f,P) ∈ R and
a lower sum U(f,P) ∈ R. To this we first define:

• For all 0 ≤ i ≤ n− 1, let Mi(f) be the supremum of f([xi, xi+1]), and
• For all 0 ≤ i ≤ n− 1, let mi(f) be the infimum of f [(xi, xi+1]).

Now we put

U(f,P) :=

n−1∑
i=0

Mi(f) (xi+1 − xi)

and

L(f,P) :=

n−1∑
i=0

mi(f) (xi+1 − xi) .

Some remarks are in order.
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Remark. a) Since for any nonempty subset X of R we have infX ≤
supX, for any f : [a, b] → R and all 0 ≤ i ≤ n−1 we have mi(f) ≤ Mi(f),
from which it follows that

L(f,P) ≤ U(f,P).

b) For all 0 ≤ i ≤ n − 1, we have Mi(f) ∈ R because f is bounded above.
Suppose on the other hand that f were not bounded above. Then by Exer-
cise 2.3b), there is at least one i such that f is not bounded above on the
subinterval [xi, xi+1], so the supremum of f([xi, xi+1]) is ∞. It is a stan-
dard convention the arithmetic of extended real numbers that ∞+∞ = ∞
and for a ∈ (0,∞] we have a · ∞ = ∞. Using these conventions we find
that if f is unbounded above we can make sense of the upper sum U(f,P):
it will always be ∞.

c) Similarly, for all 0 ≤ i ≤ n− 1, we have mi(f) ∈ R because f is bounded
below. If were unbounded below then by the same reasoning as part a) we
find that we can make sense of the lower sum L(f,P) but it will always be
−∞. Thus for any function f we have U(f,P) ∈ R∪{∞} and L(f,P) ∈
R ∪ {−∞}.

d) Suppose that f : [a, b] → R is continuous. Then f is bounded, and for all
1 ≤ i ≤ n, by the Extreme Value Theorem we get that mi(f) is the min-
imum of f on [xi, xi+1] and Mi(f) is the maximum of f on [xi, xi+1].
Though we will not define Riemann sums until the next section – the extra
complication of choosing a “sample point” in each subinterval is part of
what Darboux’s approach manages to avoid – nevertheless we remark now
that when f is continuous the upper sum and lower sum are both Riemann
sums for f .

Example 2.1. Consider f : [0, 1] → R by f(x) = x2.

a) Suppose we take the smallest possible partition: P1 = {0, 1}. The mini-
mum of f on [0, 1] is 0 and the maximum of f is 1, so

L(x2,P1) = 0 < 1 = U(x2,P1).

We can interpret this geometrically: consider the Sx2 = {(x, y) ∈ R2 | 0 ≤
x ≤ 1, 0 ≤ y ≤ x2}, whose area we are trying to define via some limiting
process. This set contains the line segment S0 = [0, 1]×{0}, that has area
0, and it is contained in the unit square S1 = [0, 1]× [0, 1], that has area
1. So although we haven’t defined the integral yet, the idea is that we have

learned from P1 is that we want
∫ 1

0
x2 to be some real number such that

L(x2,P1) = 0 <

∫ 1

0

x2 ≤ 1 = U(x2,P1).

b) Even a vague memory of definite integrals from calculus should suggest
that we try something else: for n ∈ Z+ let

Pn := {0 <
1

n
<

2

n
< . . .

n− 1

n
< 1}

be the partition that subdivides [0, 1] into n equally spaced subintervals.
Because f(x) = x2 is increasing, the supremum it takes on any subinterval
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[c, d] of [0, 1] is just f(d) and the infimum it takes on any subinterval [c, d]
of [0, 1] is just f(c). So:

U(x2,Pn) =

n−1∑
i=0

Mi(x
2)

(
i+ 1

n
− i

n

)
=

n−1∑
i=0

(
i+ 1

n
)2 · 1

n

=
1

n3

n−1∑
i=0

(i+ 1)2 =
1

n3

n∑
i=1

i2.

Oh, thank goodness that in a previous course (Math 3200) we practiced
induction with sums like these: we happen to remember that

∀n ∈ Z+,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

so we get

U(x2,Pn) =
n(n+ 1)(2n+ 1)

6n3
.

The computation for the lower sums is very similar: for all i we have

mi(x
2) =

(
i
n

)2
, which leads to

L(x2,Pn) =
1

n3

n−1∑
i=0

i2 =
1

n3

n−1∑
i=1

i2 =
(n− 1)n(2n− 1)

6n3
.

Now we observe that

lim
n→∞

U(x2,Pn) =
1

3
= lim

x→∞
L(x2,Pn).

So we found a sequence of partitions along which the lower sums converged
to 1

3 and along which the upper sums also converged to 1
3 . This makes us

strongly suspect that we want
∫ 1

0
x2 = 1

3 . In calculus we would probably be
happy to take either one of these limits as sufficient to give the answer,
but now we are trying to find our way to a principled definition of an
integrable function. We can reason as follows: for any partition P, we
can interpret U(f,P) as the area enclosed by a piecewise constant function
that is always greater than or equal to f and we can interpret L(f,P) as
the area enclosed by a piecewise constant function that is always less than
or equal to f , so we should have

(6) ∀ partitions P of [a, b], L(f,P) ≤
∫ b

a

f ≤ U(f,P).

So in our case we want
∫ b

a
f to satisfy

∀n ∈ Z+,
(n− 1)n(2n− 1)

6n3
≤
∫ 1

0

x2 ≤ n(n+ 1)(2n+ 1)

6n3
.

Limits of sequences preserve lax inequalities (≤ and ≥, not < and >), so

1

3
= lim

n→∞
L(f,P) ≤

∫ 1

0

x2 ≤ lim
n→∞

U(f,P) =
1

3
.

This tells us that
∫ 1

0
x2 = 1

3 !

In other words, our one idea about
∫ b

a
f is that it should lie in between
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L(f,P) and U(f,P) for any partition P of [a, b]. In this particular exam-
ple, just by looking at the sequence of partitions {Pn}∞n=1 we see that the
only real number that could possibly satisfy this is 1

3 .

This leads us to our first definition of Darboux integrability: a function f : [a, b] →
R is Darboux integrable if there is exactly one real number S such that for all
partitions P of [a, b] we have

L(f,P) ≤ S ≤ U(f,P);

for a Darboux integrable function f we put
∫ b

a
f to be this unique real number S.

Proposition 2.3. Let f : [a, b] → R be a function. If f is Darboux integrable,
then it is bounded.

Proof. We will show the contrapositive: suppose f is unbounded; we claim
that f is not Darboux integrable.
Case 1: If f is unbounded both above and below then for all partitions P of [a, b]
we have U(f,P) = ∞ and L(f,P) = −∞. So every real number lies in between
every lower sum and upper sum: thus the uniqueness of I fails.
Case 2: Suppose f is unbounded above but bounded below. Then for all partitions
P of [a, b] we have that U(f,P) = ∞ but L(f,P) ∈ R. Every real number is at
most ∞, so in order to be Darboux integrable there would have to be a unique real
number I greater than or equal to L(f,P) for all partitions P. In other words, the
set {L(f,P) | P is a partition of [a,b]} would need to have a unique upper bound.
That’s not how upper bounds in R work: if I ∈ R is an upper bound for any subset
X of R then so is I + 1, so X cannot have a unique, finite upper bound.
Case 3: If f is bounded above but unbounded below, the reasoning of Case 2
applies: there is no unique real number less than or equal U(f,P) for all P. □

However, this definition of Darboux integrability is not so easy to work with: one
can see this by observing that in Example 2.1 we did not show that x2 is Darboux
integrable on [0, 1]: all we showed was that if it is, then the integral is 1

3 .
The awkwardness in our definition of Darboux integrability is characteristic

of many definitions in theoretical mathematics: the definition involves a universal
quantifier over an infinite set and for each element of that set asserts something
nontrivial. Here that set is the set of all partitions of [a, b]. In our above example,
showing Darboux integrability apparently asks us to compute U(f,P) and L(f,P)
for every partition of [0, 1] and check that L(f,P) ≤ 1

3 ≤ U(f,P). Are we really

supposed to perform infinitely many computations to check that x2 is integrable?!?

No, not really. This definition is too hard to check directly, so we need a re-
sult that tells us that it is sufficient to do something easier. The result that we
are going for here is as follows: a bounded function f : [a, b] → R is Darboux
integrable if and only if: for all ϵ > 0, there is a partition P of [a, b] such that
U(f,P) − L(f,P) < ϵ. Once we establish this, we don’t need to look at all parti-
tions; we just need to exhibit a sequence of partitions along which the gap between
the upper and lower sums tends to 0. That is much easier: in Example 2.1, the se-
quence {Pn} works. Because limn→∞ U(f,Pn) =

1
3 = limn→∞ L(f,Pn), it follows

that limn→∞ U(f,Pn) − L(f,Pn) = 0, so for any ϵ > 0, just taking Pn for large
enough n does what we want.
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In order to show this, we need a few preliminaries. They involve refinements of
partitions, which you may notice that we defined but have not yet used for any-
thing whatsoever. Well, now is the time.

Lemma 2.4. Let f : [a, b] → R be a function.

a) Let P1 and P2 be partitions of [a, b], with P2 refining P1 (that is, P2 ⊇ P1).
Then we have

L(f,P1) ≤ L(f,P2) ≤ U(f,P2) ≤ U(f,P1).

b) Let P and Q be any partitions of [a, b]. Then we have

L(f,P) ≤ U(f,Q).

Proof. We get from P1 to P2 by adding finitely many more points. So it suf-
fices to treat the case in which P2 is obtained from P1 by adding a single additional
point c ∈ (xi, xi+1) for some 0 ≤ i ≤ n− 1 and then show that L(f,P2) ≤ L(f,P1)
and U(f,P2) ≤ U(f,P1). (Notice that we already know the middle inequality
L(f,P2) ≤ U(f,P2); it is just there to make everything look nice.) This is actually
quite easy: most of the terms in the sums U(f,P1) and U(f,P2) are the same; the
only change is that we replace the ith term sup(f [xi, xi+1]) · (xi+1−xi) of U(f,P1)
with the two terms sup(f [xi, c]) ·(c−xi)+sup(f [c, xi+1]) ·(xi+1−xc). If A ⊆ B ⊂ R
then supA ≤ supB, so we have

sup(f [xi, c]) · (c− xi) + sup(f [c, xi+1]) · (xi+1 − xc)

≤ sup(f [xi, xi+1])·(c−xi)+sup(f [xi, xi+1])·(xi+1−c) ≤ sup(f [xi, xi+1])·(xi+1−xi).

Thus U(f,P2) ≤ U(f,P1). The same reasoning works for the lower sums: the
infimum of f on [xi, xi+1] is less than or equal to its infimum on [xi, c] and its
infimum on [c, xi+1].
b) Let R := P ∪ Q; this is a partition of [a, b] that is a common refinement of P
and Q. Applying part a) twice, we get

L(f,P) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q). □

Now one final definition that we hinted at in the last section: for any function
f : [a, b] → R, we define the upper Darboux integral∫ b

a

f := inf U(f,P) ∈ [−∞,∞]

and the lower Darboux integral∫ b

a

f := L(f,P) ∈ [−∞,∞];

in each case we are ranging over all partitions P of [a, b]. Notice that
∫ b

a
f is a

“minimax”: for each partition we maximized f (actually we took suprema, but
people don’t say “infysup”), collected these values over all partitions and then took

the minimum (actually the infimum). Simlarly,
∫ b

a
f is a “maximin.” When it makes

sense to do, it’s often a surprisingly good idea to take minimaxes and maximins and
to compare them: see e.g. https://en.wikipedia.org/wiki/Minimax_theorem,
which is the foundational result in Game Theory. Anyway, there is a clear geometric

idea: the upper integral
∫ b

a
f is the best upper bound one can get on the area of
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the region Sf using upper rectangles, while the lower integral
∫ b

a
f is the best lower

bound one can get on the same area using lower rectangles. So if we want there to
be a unique real number lying between all the areas of lower rectangles and all the
areas of upper rectangles, then presumably we want the upper and lower integrals
to be equal, finite numbers. We are about to show this, but first one “sanity check”:

Lemma 2.5. Let f : [a, b] → R be a function.

a) We have ∫ b

a

f ≤
∫ b

a

f.

b) If f is bounded, then
∫ b

a
f,
∫ b

a
f ∈ R.

Proof. a) The lower integral
∫ b

a
f is the supremum of the set

X := {L(f,P) | P is a partition of [a, b]},

while the upper integral
∫ b

a
f is the infimum of the set

Y := {U(f,P) | P is a partition of [a, b]}.

But Lemma 2.4b) says that for all x ∈ X and all y ∈ Y we have x ≤ y. Thus every
x ∈ X is a lower bound for Y , so x ≤ inf Y , and since this holds for all x ∈ X we
have supX ≤ inf Y .
b) Suppose that f is bounded: there is M > 0 such that |f | ≤ M . Then for any
partition P of [a, b] we have

−M(b− a) ≤ L(f,P) ≤ U(f,P) ≤ M(b− a),

and it follows that
∫ b

a
f,
∫ b

a
f ∈ [−M(b− a),M(b− a)]. □

Theorem 2.6 (Darboux’s Integrability Criterion). For a function f : [a, b] →
R, the following are equivalent:

(i) There is a unique real number I such that for all partitions P of [a, b] we
have L(f,P) ≤ I ≤ U(f,P).

(ii) We have
∫ b

a
f =

∫ b

a
f ∈ R.

(iii) For all ϵ > 0, there is a partition P such that U(f,P) and L(f,P) are
real numbers and U(f,P)− L(f,P) < ϵ.

Henceforth we call a function satisfying these conditions Darboux integrable.

Proof. Step 1: Suppose first that f is unbounded. By Proposition 2.3, condi-
tion (i) fails. Moreover either f is unbounded above — in which case U(f,P) = ∞
for all P hence

∫ b

a
f = ∞, so (ii) and (iii) fail — or f is unbounded below – in which

case L(f,P) = −∞ for all P hence
∫ b

a
f = −∞, so again (ii) and (iii) fail.

So it suffices to consider the case in which f is bounded. In this case, by Ex-

ercise 2.4 we know that
∫ b

a
f and

∫ b

a
f are both finite.

Step 2: We show that (i) ⇐⇒ (ii). For a real number S, we have S ≤
∫ b

a
f if and

only if I is less than or equal to every upper sum of f , and we have S ≥
∫ b

a
f if

and only if S is greater than or equal to every lower sum of f , so a real number S
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lies in the interval [
∫ b

a
f,
∫ b

a
f ] if and only if it lies in between every lower sum of f

and every upper sum of f . So the upper and lower integrals are equal if and only
if there is a unique S in between every lower sum of f and every upper sum of f .
Step 3: We show that (ii) ⇐⇒ (iii): If (ii) holds, let ϵ > 0. Then there is a
partition P of [a, b] such that

L(f,P) >

∫ b

a

f − ϵ

2

and another partition Q of [a, b] such that

U(f,Q) <

∫ b

a

f +
ϵ

2
,

so

U(f,Q)− L(f,P) <

∫ b

a

f −
∫ b

a

f + ϵ = ϵ.

Now let R := P ∪Q. Since R refines both P and Q, we have

U(f,R) ≤ U(f,P) and L(f,R) ≥ L(f,P),

so

U(f,R)− L(f,R) ≤ U(f,Q)− L(f,P) < ϵ.

If (iii) holds, then let ϵ > 0, and choose a partition P such that U(f,P)−L(f,P) <

ϵ. Then, since
∫ b

a
f ≤ U(f,P) and

∫ b

a
f ≥ L(f,P), we have∫ b

a

f −
∫ b

a

f ≤ U(f,P)− L(f,P) < ϵ.

Since this holds for all ϵ > 0, we have
∫ b

a
f =

∫ b

a
f . □

2.2. Verification of the Axioms. Our next order of business is to check
that the Darboux integral that we have defined satisfies Axioms (I0), (I1), (I2) and
(I3) from §3.1. “Checking axioms” doesn’t sound so exciting, but we get quite a
payoff: the Fundamental Theorem of Calculus, which includes the fact that every
continuous function f : [a, b] → R is a derivative.

The verification of (I1) is left as Exercise 2.5 and the verification of (I2) is left
as Exercise 2.6. Checking the third axiom is less straightforward:

Proposition 2.7. Let f : [a, b] → R be a Darboux integrable function.

a) For any a ≤ c ≤ d ≤ b, the function f |[c,d] : [c, d] → R is Darboux
integrable.

b) For any a ≤ c ≤ b, we have
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Proof. a) Let ϵ > 0. Since f is Darboux integrable, there is a partition P of
[a, b] such that U(f,P)− L(f,P) < ϵ. Let P ′ := P ∪ {c, d}, and write

P ′ = {a = x0 < x1 < . . . < xn−1 < xn = b}.

Since P ′ refines P, we have U(f,P ′) ≤ U(f,P) and L(f,P ′) ≥ L(f,P), so

U(f,P ′)− L(f,P ′) < ϵ.
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Now p := P ′ ∩ [c, d] is a partition of [c, d]: it contains c and d and is a suset of a
finite set, hence finite. To be specific, suppose that c = xI and d = xJ . Then

U(f, p)− L(f, p) =

J−1∑
i=I

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi),

whereas

U(f, P ′)− L(f,P ′) =

n−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi).

The only difference between the former sum and the latter is that in the former
sum we are summing from I to J − 1 and in the latter we are summing from 0 to
n − 1, so the latter sum is the former sum together with some additional terms.
But every term in either sum is non-negative, because the supremum of f on any
subinterval is at least as large as its infimum on that subinterval. Thus:

U(f, p)− L(f, p) ≤ U(f,P ′)− L(f,P ′) < ϵ.

By Theorem 2.6, f[c,d is Darboux integrable.
b) Let P be a partition of [a, b], and let P ′ := P ∪ {c}. We also put

PL := P ∩ [a, c] and PR := P ∩ [c, b],

so PL is a partition of [a, c] and PR is a partition of [c, b]. Similarly to part a),
upon writing out the partial sums we find immediately that

U(f,P ′) = U(f |[a,c],PL)+U(f |[c,b],PR) and L(f,P ′) = L(f |[a,c],PL)+L(f |[c,b],PR).

Moreover, since P ′ is a refinement of P we have

L(f,P) ≤ L(f,P ′) and U(f,P ′) ≤ U(f,P).

By part a), f |[a,c] : [a, c] → R and f |[c,b] : [c, b] → R are Darboux integrable, so

L(f,P) ≤ L(f,P ′) = L(f |[a,c],PL) + L(f |[c,b],PR)

≤
∫ c

a

f +

∫ b

c

f

≤ U(f |[a,c],PL) + U(f |[c,b],PR) = U(f,P ′) ≤ U(f,P).

Thus
∫ c

a
f +

∫ b

c
f lies between every lower sum and every upper sum. Since f is

Darboux integrable, the unique such real number is
∫ b

a
f , and we conclude:∫ b

a

f =

∫ c

a

+

∫ b

c

f. □

We have already shown that every Darboux integrable function is bounded: Propo-
sition 2.3. The last, and most important, thing we have to show is this:

Theorem 2.8. Let f : [a, b] → R be continuous. Then f is Darboux integrable.

Proof. The key is that by Theorem 1.31 we know that f is uniformly contin-
uous. So let ϵ > 0; we may choose δ > 0 such that for all x, y ∈ [a, b], if |x− y| < δ
then |f(x) − f(y)| < ϵ

b−a . Now choose N ∈ Z+ such that b−a
N < δ and let PN be

the partition that divides [a, b] into N subintervals of equal length. Then

(7) U(f,PN )− L(f,PN ) =

(
b− a

N

)N−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1])) .
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Because xi+1 − xi = b−a
N < δ, on the subinterval [xi, xi+1]] any two values of f

differ from each other by less than ϵ
b−a , so

∀0 ≤ i ≤ N − 1, sup(f [xi, xi+1])− inf(f [xi, xi+1]) ≤
ϵ

b− a
.

If we apply this inequality to each term of (7), we now get b−a
N times a sum of N

terms, each one of which is at most ϵ
b−a , so we get

U(f,PN )− L(f,PN ) ≤ b− a

N
·N · ϵ

b− a
≤ ϵ.

So f is Darboux integrable by Theorem 2.6. □

Finally the circle has been completed: we shown that the Darboux integral satisfies
all of our axioms (I0) through (I3), so we do have a gadget

∫
: RD[a, b] → R to

plug into the hypothesis of the Fundamental Theorem of Calculus. Thus the Fun-
damental Theorem of Calculus becomes an unconditional result, and in particular
we have shown that every continuous function has an antiderivative.

We were fortunate enough to know the Uniform Continuity Theorem (Theorem
1.31), so we used it to get a very agreeable proof of Theorem 2.8. In contrast to
the situation of showing that a continuous function has an antiderivative – which I
do not know how to show without somehow constructing a definite integral – there
are alternate approaches to Theorem 2.8 that avoid the use of uniform continuity.
See for instance [HC, Thm. 8.9] or [No52].

2.3. Linearity of the Darboux Integral. Before proceeding further, it will
be helpful to introduce some further notation regarding the quantity U(f,P) −
L(f,P), which appears in condition (iii) in Darboux’s Integrability Criterion (The-
orem 2.6) and therefore shows up often in our arguments. If P = {a = x0 < x1 <
. . . < xn−1 < xn = b} then

U(f,P)− L(f,P) =

n−1∑
i=0

(sup(f [xi, xi+1])− inf(f [xi, xi+1]) (xi+1 − xi).

For a function f : I → R defined on an interval I, let us define the oscillation of
f on I to be

ω(f, I) := sup(f(I))− inf(f(I)) ∈ [−∞,∞].

This is an extended real number which lies in R if and only if f is bounded on I,
which will almost always be the case for us. Then we have

U(f,P)− L(f,P) =

n−1∑
i=0

ω(f, [xi, xi+1])(xi+1 − xi).

And let us also put

∆(f,P) := U(f,P)− L(f,P).

Thus f is Darboux integrable if and only if for all ϵ > 0 there is a partition P of
[a, b] with ∆(f,P) < ϵ, and moreover if P ′ is a partition refining P then

∆(f,P ′) ≤ ∆(f,P).
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Theorem 2.9. Let RD[a, b] be the set of Darboux integrable functions f :
[a, b] → R. Then the Darboux integral∫

: RD[a, b] → R

is a linear functional – that is:

a) The set RD[a, b] is a subspace of the vector space of all functions f :
[a, b] → R.

b) The function
∫
: RD[a, b] → R is a linear map: for all f, g ∈ RD[a, b] and

all α, β ∈ R, we have∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

Proof. Equivalently, and perhaps more plainly, we must prove that if f, g :
[a, b] → R are Darboux integrable, then:

(i) For all α ∈ R, αf is also Darboux integrable, and moreover
∫ b

a
(αf) = α

∫ b

a
f ;

(ii) f + g is also Darboux integrable, and moreover
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Assertion (i) is mostly a matter of pulling constants through upper and lower sums,
so we leave this as Exercise 2.8.

Now let us show assertion (ii). Let ϵ > 0; because f and g are Darboux
integrable, there is a partition P1 of [a, b] such that ∆(f,P1) <

ϵ
2 and a partition

P2 of [a, b] such that ∆(f,P2) <
ϵ
2 . Let P3 be a common refinement of P1 and P2

(e.g. take P3 = P1 ∪ P2); then ∆(f,P3) and ∆(g,P3) are each less than ϵ
2 .

We observe that for an interval I and for functions f, g : I → R, we have

sup((f+g)(I)) ≤ sup(f(I))+sup(g(I)) and inf((f+g)(I)) ≥ inf(f(I))+inf(g(I)).

You are asked to show this in Exercise 2.9. Using these inequalities we get

L(f,P3) + L(g,P3) ≤ L(f + g,P3) ≤ U(f + g,P3) ≤ U(f,P3) + U(g,P3).

This shows that

∆(f + g,P3) ≤ ∆(f,P3) + ∆(g,P3) <
ϵ

2
+

ϵ

2
= ϵ,

and thus f + g is Darboux integrable. Moreover, whenever we have a Darboux
integrable function h : [a, b] → R and a partition P of [a, b] such that ∆(h,P) ≤ ϵ,

we know
∫ b

a
h lies in the interval [L(h,P), U(h,P)] of length ∆(h, P ) ≤ ϵ, so we

know that
∫ b

a
h has distance at most ϵ from each of U(h,P) and L(h,P). So:∫ b

a

(f + g) ≤ U(f + g,P3) ≤ U(f,P3) + U(g,P3) ≤
∫ b

a

f +

∫ b

a

g + ϵ

and similarly∫ b

a

f +

∫ b

a

g − ϵ < L(f,P3) + L(g,P3) ≤ L(f + g,P3) ≤
∫ b

a

(f + g).

This shows that

∣∣∣∣ ∫ b

a
(f + g)− (

∫ b

a
f +

∫ b

a
g)

∣∣∣∣ ≤ ϵ. Since this holds for all ϵ > 0, we

have
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g. □
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As one simple application of Theorem 2.9, we can reduce the study of
∫ b

a
f to the

case in which f is non-negative and thus officially not worry about signed areas.
Indeed, if f : [a, b] → R is Darboux integrable, then it is bounded, so there is a

C ≥ 0 such that f +C ≥ 0 on [a, b]. So
∫ b

a
(f +C) really does represent the area of

the region Sf+C , and we can recover
∫ b

a
f from this as∫ b

a

f =

∫ b

a

(f + C)−
∫ b

a

C =

∫ b

a

(f + C)− C(b− a).

Exercises.

Exercise 2.3. Let X be a subset of RN , and let Y1, . . . , Yn be finitely many
subsets of X such that X =

⋃n
i=1 Yi. Let f : X → RM .

a) Show: f is bounded if and only if, for each 1 ≤ i ≤ n, f |Yi : Yi → RM is
bounded.

b) Suppose M = 1. Show: f is bounded above if and only if, for each 1 ≤ i ≤
n, f |Yi

: Yi → R is bounded above. Then show the same with “bounded
above” replaced everywhere by “bounded below.”

Exercise 2.4. Let f : [a, b] → R.
a) Suppose that f is bounded above by M ∈ R: we have f(x) ≤ M for all

x ∈ [a, b]. Show: for every partition P of [a, b], we have∫ b

a

f ≤ U(f,P) ≤ M(b− a).

b) Suppose that f is bounded below by m ∈ R: we have f(x) ≥ m for all
x ∈ [a, b]. Show: for every partition P of [a, b], we have

m(b− a) ≤ L(f,P) ≤
∫ b

a

f.

Exercise 2.5. Let f : [a, b] → R be defined by f(x) = C for all x ∈ [a, b].

a) Show: for every partition P of [a, b] we have U(f,P) = L(f,P) = C(b−a).

b) Deduce: f is Darboux integrable and
∫ b

a
C = C(b − a). Thus Axiom (I1)

holds for the Darboux integral.

Exercise 2.6. Let f, g : [a, b] → R be two Darboux integrable functions with
f ≤ g: that is, for all x ∈ [a, b], we have f(x) ≤ g(x).

a) Show: for every partition P of [a, b] we have U(f,P) ≤ U(g,P) and
L(f,P) ≤ L(g,P).

b) Deduce:
∫ b

a
f ≤

∫ b

a
g. Thus Axiom (I2) holds for the Darboux integral.

Exercise 2.7. Let f : [a, b] → R and let c ∈ (a, b). Suppose that each of f |[a,c] :
[a, c] → R and f |[c,b] : [c, b] → R are Darboux integrable. Show: f : [a, b] → R is

Darboux integrable and
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

(This is similar to Proposition 2.7 and — hint — can be proved in much the same
way. Once we establish this, the proof of Proposition 2.7b) applies verbatim to give∫ b

a
f =

∫ c

a
f +

∫ b

c
f . You can just say so: no need to repeat the argument.)
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Exercise 2.8. Suppose f : [a, b] → R is Darboux integrable. Show: for all
α ∈ R, the function αf : [a, b] → R is also Darboux integrable, and moreover∫ b

a

(αf) = α

∫ b

a

f.

Exercise 2.9. Let X ⊂ RN and let f, g : X → R.
a) Show:

sup((f + g)(X) ≤ sup(f(X)) + sup(g(X)).

b) Show:
inf((f + g)(X) ≥ inf(f(X)) + inf(g(X)).

(Comment: in part a), each of the terms is either a real number or ∞. In part
b), each of the terms is either a real number or −∞. Standard conventions on the
arithmetic of extended real numbers apply, e.g. ∞ + ∞ = ∞ and for all x ∈ R,
x+∞ = ∞.)

Exercise 2.10 (Mean Value Theorem for Integrals). Let f : [a, b] → R be
continuous. Show: there is c ∈ [a, b] such that∫ b

a

f = f(c) · (b− a).

(Hint: let m = min f([a, b]) and M = max f([a, b]). Show that
∫ b
a
f

b−a ∈ [m,M ]. Thus∫ b
a
f

b−a is intermediate between two values of f ....)

Exercise 2.11. Let f : [0, 1] → R by f(x) =

{
1 x ∈ Q
0 x ∈ R \Q

.

a) Show:
∫ 1

0
f = 0 and

∫ 1

0
f = 1.

b) Deduce: f is bounded function that is not Darboux integrable.

Problems.

Problem 2.2. Let T : [0, 1] → R be Thomae’s function of Problem 1.13,
restricted to the unit interval. Recall from that exercise that f is continuous at
every rational number and discontinuous at every irrational number.1 Show: T is

Darboux integrable and
∫ 1

0
T = 0.

Problem 2.3. Let f : [a, b] → R be bounded. Suppose that for all c ∈ (a, b], the
restricted function f |[c,b] : [c, b] → R is Darboux integrable. Show that f is Darboux

integrable and limc→a+

∫ b

c
f =

∫ b

a
.

(Suggestion: use the fact that if |f | ≤ M , then on any subinterval [c, d], every upper
sum of f is at most M(d− c) and every lower sum of f is at least −M(d− c), and
note that these quantities approach 0 with the length of [c, d].)

Problem 2.4. Suppose f : [a, b] → R is bounded and has finitely many discon-
tinuities. Show that f is Darboux integrable.
(You may, or may not, wish to use Problem 2.3.)

1Strictly speaking, one should look again at the endpoints 0 and 1 of the interval: there are

some functions f : R → R that are discontinuous at 0 and 1 such that after restricting to [0, 1]
become continuous at one or both endpoints. But in fact Thomae’s function does not have even

one-sided limits at any rational point.
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Problem 2.5. Let a, b be positive real numbers, and define f : R → R by

f(x) =

{
xa sin( 1

xb ) x ̸= 0

0 x = 0
.

a) Show: for all values of a and b, fa,b is continuous.
b) Show: fa,b is differentiable if and only if a > 1.

(Here and hereafter, the only issues are at x = 0; fa,b is certainly infinitely
differentiable on R \ {0}.)

c) Show: f ′
a,b is continuous if and only if a > b+ 1.

d) Show: if a ∈ (1, b + 1), then f ′
a,b is unbounded on any open interval con-

taining 0. Deduce: if c < 0 < d, f ′
a,b is not Darboux integrable on [c, d].

e) Show: if 1 < a = b + 1, then f ′
a,b exists, is discontinuous precisely at

0, and is bounded on any closed, bounded interval. Using Exercise 2.3,
deduce that if c < 0 < d, then f ′

a,b|[c,d] : [c, d] → R is Darboux integrable.

Problem 2.6 (Integrability of Monotone Functions).

a) Let f : [a, b] → R be an increasing function, and let Pn be the partition
that divides [a, b] into n equally spaced subintervals. Show:

∆(f,P) = U(f,P)− L(f,P) = (f(b)− f(a)) ·
(
b− a

n

)
.

Use this to show that f is Darboux integrable.
b) Show that if f : [a, b] → R is decreasing, then it is Darboux integrable.

c) Show: if f is monotone, then limn→∞
b−a
n

∑n−1
i=0 f(a+ i( b−a

n )) =
∫ b

a
f .

Problem 2.7 (Monotone Functions Can Be Pretty Discontinuous). Let {xn}∞n=1

be an injective sequence of real numbers: i.e., for all m ̸= n we have xm ̸= xn. For
x ∈ R, let Sx := {n ∈ Z+ | xn ≤ x}. We define a function f : R → R as follows:
for x ∈ R,

f(x) :=
∑
n∈Sx

2−n.

In other words, f(x) is the sum of an infinite series whose nth term is 2−n if xn ≤ x
and is 0 if xn > x.

a) Show that for all x ∈ R, the infinite series defining f(x) converges and we
have 0 ≤ f(x) ≤ 1.
(Suggestion: compare to the geometric series

∑∞
n=1 2

−n = 1.)
b) Show: f is increasing.
c) Show: for n ∈ Z+, limx→x+

n
f(x) − limx→x−

n
f(x) = 2−n. Thus f is

discontinuous at xn.
d) Show: if x ∈ R \ {xn | n ∈ Z+}, then f is continuous at x.
e) Deduce: there is an increasing f : [0, 1] → R that is continuous at every

irrational point of [0, 1] and discontinuous at every rational point of [0, 1].

3. Riemann’s Riemann Integral

In this section we touch upon Riemann’s construction of the Riemann integral,
which was earlier than Darboux’s. Riemann’s construction is a bit more techni-
cally elaborate than Darboux’s – hence our decision to start with, and mostly focus
on, Darboux’s – but it has its merits, and it is to our advantage to at least be



62 2. THE RIEMANN INTEGRAL

familiar with both.

In order to motivate Riemann’s construction, imagine you have a function f :
[a, b] → R that you know is Darboux integrable: to fix ideas, let us suppose that it

is continuous. Can we actually compute
∫ b

a
f?

Perhaps your first idea is to find an antiderivative F of f and use the Funda-

mental Theorem of Calculus:
∫ b

a
f = F (b) − F (a). If you think this is how most

integrals are actually computed, then you have been misled. Despite the time spent
in freshman calculus on integration (i.e., antidifferentiation!) techniques, for any
function more complicated than a rational function or a polynomial expression in
trigonometric functions, it is quite rare to be able to write down an antiderivative
“as an elementary function” of the sort you studied in precalculus. If your function
is given by a power series expansion such that [a, b] lies inside the open interval of
convergence of the series, then you are in business: as you learned in Math 3100,
power series can be integrated term by term, and moreover it is easy to estimate
the value of a power series at a non-boundary point of convergence: you can cut
off after finitely many terms and use geometric series to get an upper bound for
the error. But such functions are a lot more than continuous: they are infinitely
differentiable (and in fact, most infinitely differentiable functions are still not given
by convergent power series expansions).

Returning to the Darboux integral, we point out that things work out very nicely
if f : [a, b] → R is monotone, as is explored in Exercise 2.6. To fix ideas, let us sup-
pose that f is increasing. First of all, in this case, on any subinterval [xi, xi+1]
the supremum is just f(xi+1), the value at the right endpoint, while the infi-
mum is just f(xi), the value at the left endpoint. So we can actually compute
U(f,P) and L(f,P) for any partition P. Moreover, if you just take the partition
Pn that subdivides [a, b] into n equally spaced subintevals, then in the expression
for ∆(f,Pn) = U(f,Pn)−L(f,Pn) almost everything cancels out, and you are left
with (f(b)− f(a)) · ( b−a

n ). Evidently this approaches 0 as n approaches ∞, which
already shows that f is Darboux integrable. But moreover, it follows easily from
this that

lim
n→∞

U(f,Pn) = lim
n→∞

L(f,Pn) =

∫ n

a

f,

so choosing for instance the lower sum, we get concretely that∫ n

a

f = lim
n→∞

(
b− a

n

) n−1∑
i=0

f(a+ i(
b− a

n
)).

Even if this limit is too hard to evaluate exactly (which it usually is), we can still
compute, for any n, a lower bound L(f,Pn) for the integral and an upper bound
U(f,Pn) for the integral, and as n approaches ∞, since each sequence approaches∫ b

a
f , the gap between them ∆(f,Pn) approaches 0. Therefore we can compute

∫ b

a
f

degree to accuracy ϵ by choosing a large n and computing U(f,Pn), L(f,Pn) and
∆(f,Pn): if ∆(f, Pn) ≤ ϵ; great. If not, try again with a larger value of n.

This works so well that we might try to bootstrap it to other functions, e..g. by
breaking up f : [a, b] → R into finitely many subintervals such that it is monotone
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on each one. Unfortunately not every function is piecewise monotone, and for those
which are we may have to do quite a lot of work in order to successfully break it
up in this way. Or we might try to write f = g − h where each of g and h is

monotone, taking advantage of the fact that
∫ b

a
f =

∫ b

a
g −

∫ b

a
h. In theory, a large

class of functions can be written as the difference of two increasing functions – in
particular every function with a continuous derivative can be expressed this way –
but in practice finding the g and h is usually not easy.

Why are we avoiding trying to compute the Darboux integral of a non-monotone
function f : [a, b] → R? Because if f is not monotone, then for any partition
P = {a = x0 < x1 < . . . < xn−1 < xn = b}, then order to compute U(f,PN ) or
L(f,Pn) we have to solve n optimization problems: we have to maximize (resp.
minimize) f on each subinterval [xi, xi+1]. That doesn’t sound fun. But we have
a more basic issue: which partitions P should we be using? Darboux integrability
means that for each ϵ > 0 there is some partition Pϵ of [a, b] for which ∆(f,Pϵ) < ϵ.
It doesn’t tell us how to find Pϵ. Geometric intuition (recall we have been assuming
that f is continuous) suggests we should as in the monotone case be able to use
the uniform partitions Pn for sufficiently large n, or in other words that we should
again have

lim
n→∞

∆(f,Pn) = 0, hence lim
n→∞

U(f,Pn) = lim
n→∞

L(f,Pn) =

∫ b

a

f.

We still have the darned upper and lower sums, but....actually, it is clear that the
left endpoint sum b−a

n

∑n−1
i=0 f(a + i( b−a

n )) lies in between L(f,Pn) and U(f,Pn),
so by the Squeeze Theorem for sequences it would indeed then follow that

lim
n→∞

b− a

n

n−1∑
i=0

f(a+ i(
b− a

n
)) =

∫ b

a

f.

Riemann’s work shows that all of these things are true and more. There are two key
ideas that distinguish Riemann’s integral from Darboux’s. First, instead of upper
and lower sums we work with sums obtained by taking the height of the rectangle
to be any point in the subinterval [xi, xi+1]. The second idea is that his notion
of convergence is a priori more demanding than Darboux’s in a way that works
against you if you are trying to show that a given function is integrable but works
for you if you know that it is.

We begin with a function f : [a, b] → R and a partition P = {a = x0 < x1 <
. . . < xn−1 < xn = b} of [a, b], but now we introduce one more piece of data, a
tagging of P. A tagging is a function τ : {0, 1, . . . , n} → [a, b] such that for all i,
the point τ(i) lies in the ith subinterval [xi, xi+1] determined by the partition P.
Instead of using functional notation we may just put x∗

i = τ(i), and then a tagging

is a finite sequence {x∗
0 ≤ x∗

1 ≤ . . . ≤ x∗
n−1 ≤ x

}
n. Notice that this sequence need

not be quite injective: we could have x∗
i = x∗

i+1; this holds if and only if both are
equal to xi+1, which is both the right endpoint of [xi, xi+1] and the left endpoint
of [xi+1, xi+2]. The pair (P, τ) is called a tagged partition.
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To any tagged partition (P, τ) and, of course, a function f : [a, b] → R we as-
sociate a Riemann sum

R(f,P, τ) :=

n−1∑
i=0

f(x∗
i )(xi+1 − xi).

It is easy to compare with the upper and lower sums: of course we have

sup(f([xi, xi+1]) ≥ f(x∗
i ) and inf(f [xi, xi+1]) ≤ f(x∗

i ),

so
L(f,P) ≤ R(f,P, τ) ≤ U(f,P).

If f assumes its maximum and minimum value on each subinterval [xi, xi+1] – so
for instance if f is continuous – then L(f,P) and U(f,P) are themselves Riemann
sums. In general this is not quite true because the suprema and infima need not
be attained, but almost: we will have

U(f,P) = sup
τ

R(f,P, τ) and L(f,P) = inf
τ
R(f,P, τ).

Thus for each partition P, the upper sum is the least upper bound of all possible
Riemann sums for P and the lower sum is the greatest lower bound of all possible
Riemann sums for P. This is quite clear if f is bounded; it is still true if f is
unbounded, but it requires a bit more work:

Proposition 2.10. Let f : [a, b] → R be a function and P a partition of [a, b].

a) If f is unbounded above, then as we range over all possible taggings τ of
[a, b], we have

sup
τ

R(f,P, τ) = ∞.

b) If f is unbounded below, then as we range over all possible taggings τ of
[a, b], we have

inf
τ
R(f,P, τ) = −∞.

We leave the proof of Proposition 2.10 as Exercise 2.12.

So far this is all pretty similar to Darboux’s treatment. The second main idea

is that the sense in which the Riemann sums are required to converge to
∫ b

a
f

is quite stringent. To give it, we need just one more definition: for a partition
P = {a = x0 < x1 < . . . < xn−1 < xn = b} of [a, b], its mesh is

|P| := max
0≤i≤n−1

xi+1 − xi;

that is, the mesh of P is the largest length of a subinterval [xi, xi+1]. For instance, in
the uniform partition Pn all subintervals have length b−a

n , so its mesh is |Pn| = b−a
n .

A function f : [a, b] → R is Riemann integrable if there is S ∈ R such that:
for all ϵ > 0, there is δ > 0 such that for every partition P of [a, b] with mesh
|P| ≤ δ and every tagging τ of P, we have

|R(f,P, τ)− S| ≤ ϵ.

We then put
∫ b

a
f := S.

Let us check that Riemann integrability implies Darboux integrability: let ϵ > 0.
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Then there is δ > 0 such that for any partition P of mesh less than δ we have
|R(f,P, τ) − S| ≤ ϵ

2 , which of course means that R(f,P, τ) ∈ [S − ϵ
2 , S + ϵ

2 ]. Be-
cause the upper sum U(f,P) is the supremum of the R(f,P, τ)’s as we range over
τ and R(f,P, τ) ≤ S + ϵ

2 for all τ , we get U(f,P) ≤ S + ϵ
2 ; similarly, we get

L(f,P) ≥ S− ϵ
2 , so ∆(f,P) ≤ ϵ, and thus f is Darboux integrable and moreover S

is the Darboux integral
∫ b

a
f . (In particular, there is at most one S ∈ R satisfying

the conditions in the definition of Riemann integrability.)

It is much less obvious whether every Darboux integrable function is Riemann
integrable. But happily it is true:

Theorem 2.11.

a) For a function f : [a, b] → R, the following are equivalent:
(i) The function f is Darboux integrable.
(ii) The function f is Riemann integrable.
(iii) For every sequence {(Pn, τn)}∞n=1 of tagged partitions of [a, b] with

|Pn| → 0, the sequence {R(f,Pn, τn)}∞n=1 of Riemann sums is con-
vergent.

b) If the equivalent conditions of part a) hold, then for any sequence {(Pn, τn)}
of tagged partitions of [a, b] with |Pn| → 0, we have

lim
n→∞

R(f,Pn, τn) =

∫ b

a

f.

We are not going to prove Theorem 2.11 in our course, but you can find the proof
in [HC, §8.4]. So that you don’t feel short-changed, let me mention that most
undergraduate analysis texts do not prove this theorem; many of them just develop
Darboux’s integral and forget to make the connection with Riemann sums.

Let us sum up the state of affairs: because of Theorem 2.11, the Darboux inte-
gral and the Riemann integral, although they were defined differently, turn out to
be completely equivalent: a function is integrable in sense if and only if it is in the

other sense, and if so they return the same real number
∫ b

a
f . So we no longer need

to distinguish between them: henceforth we will only speak of Riemann integrable
functions and the Riemann integral. This is what is most commonly done, even by
people who have much less right to conflate the two than we do.

We end this section with one more result that helps to make the Riemann inte-
gral more computable.

Theorem 2.12. Let f : [a, b] → R be differentiable with bounded derivative: let
M > 0 be such that |f ′| ≤ M . For n ∈ Z+, let

Ln(f) =

n−1∑
i=0

f(a+ i(
b− a

n
))(

b− a

n
)

be the left endpoint Riemann sum of f . Then∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ ≤ ( (b− a)2M

2

)
1

n
.
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Proof. Step 1: We establish the result for n = 1. For x ∈ [a, b], we apply the
Mean Value Theorem to f on the interval [a, x]: there is c ∈ (a, x) with

f(x)− f(a) = f ′(c)(x− a).

Since |f ′(c)| ≤ M , we get

−M(x− a) + f(a) ≤ f(x) ≤ M(x− a) + f(a)

and thus ∫ b

a

(−M(x− a) + f(a)) ≤
∫ b

a

f ≤
∫ b

a

(M(x− a) + f(a)).

Of course we can evaluate the first and last integrals with the Fundamental Theorem
of Calculus, and we get

−M

2
(b− a)2 + (b− a)f(a) ≤

∫ b

a

f ≤ M

2
(b− a)2 + (b− a)f(a),

which is equivalent to ∣∣∣∣ ∫ b

a

f − L1(f)

∣∣∣∣ ≤ M

2
(b− a)2.

Step 2: Let n ∈ Z+. For 0 ≤ i ≤ n− 1, put x∗
i = a+ i b−a

n . Then:∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ = ∣∣∣∣ n−1∑
i=0

(∫ x∗
i+1

x∗
i

f − f(x∗
i )

(
b− a

n

)) ∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣ ∫ x∗
i+1

x∗
i

f − f(x∗
i )

(
b− a

n

) ∣∣∣∣.
Step 1 applies to each term in the last sum to give∣∣∣∣ ∫ b

a

f − Ln(f)

∣∣∣∣ ≤ n−1∑
n=0

M

2

(
b− a

n

)2

=

(
(b− a)2M

2

)
1

n
. □

Whereas Theorem 2.11 guarantees us that for any Riemann integral f : [a, b] → R,
we can compute

∫ b

a
f as the limit limn→∞ Ln(f) of the left endpoint Riemann sums,

Theorem 2.12 gives us, for functions with a bounded derivative, a precise error es-

timate: it tells us how large n needs to be in order to for Ln(f) to compute
∫ b

a
f to

any prescribed accuracy, where the bound depends on the size of the derivative. To
get a bound on f ′ essentially amounts to solving one optimization problem, which
is great progress over the arbitrarily many optimization problems we had to solve
to compute a single upper or lower sum. More basically, this result is telling us
that the faster f is changing from point to point in the local sense, the more sample

points we will need in order to get a handle on
∫ b

a
f : this makes a lot of sense. On

the other hand, of course if we don’t know anything about f other than that it is,
say, differentiable, then we don’t know how many sample points we will need to use

to usefully approximate
∫ b

a
f because for any sample points we choose, for all we

know f could be oscillating wildly in between them.

Moreover Theorem 2.12 is the first of an infinite sequence of theorems: the rough
form of the kth theorem in the sequence is that if we assume that the kth deriv-
ative f (k) of f exists and is bounded, then using the values of f at the points of
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the partition Pn of [a, b] into n equally spaced subintervals, one can write down
a certain finite sum Sk,n(f) that is a certain weighted average of several different
Riemann sums, and has the property that∣∣∣∣Sk,n(f)−

∫ b

a

f

∣∣∣∣ ≤ C
1

nk
.

Here C is a certain explicit expression depending only on (b − a), the number n
of sample points and an upper bound M for |f (k)|. Thus, the more smoothness

we assume on f , the more rapidly we can compute
∫ b

a
f . The k = 2 case is the

Trapezoidal Rule [HC, Thm. 9.5], while the k = 3 case is Simpson’s rule [HC,
Thm. 9.8]. The branch of mathematics in which you will learn how this works for
all k ∈ Z+ and many other similar results is numerical analysis.

Exercises.

Exercise 2.12. Prove Proposition 2.10.

Problems.

Problem 2.8. We will show that limn→∞
∑n

k=1
n

k2+n2 = π
4 .

a) Let Pn be the partition of [0, 1] into n equally spaced subintervals. Let
f : [0, 1] → R by f(x) = 1

x2+1 . Show:
∑n

k=1
n

k2+n2 = R(f,Pn, τn), where

τn is the right endpoint tagging: for all 0 ≤ i ≤ n− 1, x∗
i = i

n .
b) Use Theorem 2.11 and the Fundamental Theorem of Calculus to evaluate

limn→∞ R(f,Pn, τn).

4. The Class of Riemann Integrable Functions

4.1. More Riemann Integrable Functions. We had a big fish to catch:
the existence of an antiderivative for any continuous function. So we built a big
net — the Darboux integral — and with that big net we caught our fish. (Then we
discussed the construction of a second net — the Riemann integral — that looked
rather different from our first net, but we found that in the end the second net
catches exactly the same fish as the first. So we stopped distinguishing between the
two nets.) It is now time to ask: what other fish have we caught? That is, what
can we say about the class R[a, b] of Riemann integrable f : [a, b] → R? Again, we
know that this class contains all continuous functions, and we also know that every
function in the class is bounded.

Problems 2.3 and 2.4 give some instances of functions that are discontinuous but
Riemann integrable. Let us concentrate on the latter: according to 2.4, if f :
[a, b] → R is bounded and has only finitely many discontinuities, then f is Riemann
integrable. Let us sketch a proof: let M > 0 be such that |f | ≤ M , fix δ > 0, and
choose a partition P of [a, b] that contains, for each point c of disconinuity of f —
to fix ideas, let us assume that the discontinuities occur at interior points of [a, b]
– there are consecutive elements xi, xi+1 ∈ P with xi+1 − xi < δ. If we remove the
open intervals (xi, xi+1) from [a, b], we get a finite union of closed subintervals —
suppose that there are N of them — such that f is continuous on each one, hence
Riemann integrable. This means that for any ϵ > 0 we can refine P to a partition
Pϵ such that on the Nth subinterval, the difference between the upper sum and the
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lower sum is at most ϵ
2N , so therefore the sum of the differences of the lower sums

is at most ϵ
2 . Finally, on each subinterval [xi, xi+1] we have

∆(f |[xi,xi+1],Pϵ) < 2Mδ.

This is because since |f | ≤ M , its oscillation – i.e., its supremum minus its infimum
– is at most 2M , so we multiply this by the length of the subinterval. Thus overall
for this partition Pϵ we find that

∆(F,Pϵ) <
ϵ

2
+ 2NMδ.

Since M and N are fixed, we can choose δ sufficiently small so that 2NMδ < ϵ
2 ,

and we win: f is integrable by Darboux’s Criterion.

So now we are interested in bounded function f : [a, b] → R with infinitely many
discontinuities. At first glance, such a function looks unlikely to be Riemann in-
tegrable, at least to me: by Exercise 1.41, the set of discontinuities of f must
have an accumulation point in [a, b], and that seems like it could screw things up
– arguments like the one we made for finitely many discontinuities are not go-
ing to succeed. (Anyway, in our argument above the number N of discontinuities
appeared in our bound; if there are infinitely many discontinuities, we certainly
cannot do this.) However, again some previous exercises show that we’ve caught
profoundly more fish than we thought: Problem 2.6 shows that every monotone
function f : [a, b] → R is Riemann integrable. That is not so surprising, but Prob-
lem 2.7 is: there is a strictly increasing function f : [a, b] → R that is discontinuous
at every rational point of [a, b]! Thus a bounded function can be Riemann inte-
grable even when its set of discontinuities is dense in [a, b].

The following result further exhibits the largeness of the class of Riemann inte-
grable functions.

Theorem 2.13. Let f : [a, b] → [c, d] be Riemann integrable, and let g : [c, d] →
R be continuous. Then the composite function g ◦ f : [a, b] → R is Riemann
integrable.

We are going to omit the proof of this result because of time constraints and because
it is a bit technical: see [HC, Thm. 8.17]. It becomes easier in an important special
case. For a subset X of RN , a function f : X → RM is Lipschitz if there is a
constant C ∈ (0,∞) such that

∀x1, x2 ∈ X, ||f(x1)− f(x2)|| ≤ C||x1 − x2||.
A C that works here is called a Lipschitz constant for f . You should think of
Lipschitz as a kind of “super-continuity”: such functions are uniformly continuous
with δ = ϵ

C . The following result — the second part of which appeared on the 2022
midterm! — showed that this property, although strong, arises in nature.

Proposition 2.14. Let I be an interval, and let f : I → R be differentiable.

a) If f ′ is bounded, then f is Lipschitz.
b) If I = [a, b] and f ′ is continuous, then f is Lipschitz.

Proof. a) Let M > 0 such that |f ′| ≤ M . Let x1 < x2 be elements of I. By
the Mean Value Theorem there is c ∈ (x1, x2) such that

|f(x1)− f(x2)| = |f ′(c)||x1 − x2| ≤ M |x1 − x2|.
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Thus M is a Lipschitz contant for f .
b) If f ′ : [a, b] → R is continuous, then by the Extreme Value Theorem, f ′ is
bounded, so part a) applies to show that f is Lipschitz. □

It turns out to be much easier to show Theorem 2.13 if we assume that g is not
only continuous but Lipschitz: this is Exercise 2.14. Here is a nice consequence:

Theorem 2.15. If f, g : [a, b] → R are both Riemann integrable, then so is f ·g.

Proof. If h : [a, b] → R is any Riemann integrable function, then it follows
from Theorem 2.13 that h2 is also Riemann integrable. In fact, since h is bounded
– say |h| ≤ M – by Proposition 2.14 we have that x2 : [−M,M ] → R is Lipschitz,
so this lies in the part of Theorem 2.13 that we (the student who solves the right
exercises and I) have proved. Now here is a dirty trick;

fg =
(f + g)2 − f2 − g2

2
,

which shows that fg is Riemann integrable, since we know that linear combina-
tions of Riemann integrable functions are Riemann integrable and that squares of
Riemann integrable functions are Riemann integrable. □

4.2. The Riemann-Lebesgue Criterion. In fact there is a precise char-
acterization of which bounded functions f : [a, b] → R are Riemann integrable.
This is usually called Lebesgue’s Criterion, after the leading mathematician
Henri Lebesgue who constructed a superior version of the integral to Riemann’s.
(Lebesgue is also the founder of the subject of measure theory referred to above.
Most of Math 8100 concerns measure theory and the Lebesgue integral.) However
my former colleague Roy Smith showed me exactly where this criterion occurs in a
work of Riemann, so I will call it the Riemann-Lebesgue criterion.

We actually need a tiny piece of measure theory even to state this criterion, namely
we need the notion of a subset X of R having measure zero. For this, let
{[an, bn]}∞n=1 be a sequence of closed bounded intervals. We say that this sequence
covers X if

X ⊆
∞⋃

n=1

[an, bn],

or in words, if every element of X lies in at least one of the subintervals [an, bn].
To this sequence of intervals we attach a total length

L({[an, bn]} :=

∞∑
n=1

(bn − an) ∈ [0,∞].

In other words, we really do just add up the lengths of the subintervals. This is
an infinite series with non-negative terms, so it either converges or diverges to ∞.
The idea is that, if the total length is finite, it should give an upper bound on the
“length” of X. This intriguing idea is the beginning of measure theory, but we only
need this one thing: we say that X has measure zero if for all ϵ > 0, there is a
covering {[an, bn]} of X of total length at most ϵ.

This concept is addressed in the exercises. It is pretty clear that every finite subset
of R has measure zero: if we are allowed to use degenerate closed intervals [a, a]
this is truly obvious, but actually in the definition of measure zero it doesn’t matter
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whether we are allowed this or not, so it might be more educational to always use in-
tervals of positive length. More generally, we say that a subset X ⊆ R is countable
if there is a surjective sequence in X, i.e., a surjective function x• : Z+ → X. This
includes finite subsets, certainly. Moreover, each of Z+, N, Z and Q are countable
(these are developed in the exercises). Then any countable subset X has measure
zero – again, this is clear if we can use intervals [a, a] but is not much harder to
show even if we can’t. There are also uncountable subsets of measure zero: one
very famous one, the Cantor set, is developed in the exercises.

And here is the result:

Theorem 2.16 (Riemann-Lebesgue Criterion). For a function f : [a, b] → R,
the following are equivalent:

(i) f is Riemann integrable.
(ii) f is bounded, and its set of discontinuities has measure zero.

We will not give a proof of Theorem 2.16. Most proofs use somewhat more ad-
vanced material, but this is not necessary: see [HC, §8.5] for a proof that you have
all the prerequisites to read.

Nevertheless we can stop to appreciate Theorem 2.16: it tells us exactly what
fish we’ve caught with our integral! Moreover, if you know this result than many
of our other results on Riemann integrability follow immediately. It is easy to see
from the definition of measure zero that a finite union of sets, each of measure zero,
also has measure zero. (It is not much harder to see that moreover if {Xn}∞n=1 is an
infinite sequence of sets of measure zero then

⋃∞
n=1 Xn also has measure zero...but

we don’t need this here.)

So: let f, g : [a, b] → R be Riemann integrable, so each is bounded and is dis-
continuous only a set of measure zero. Then:

• For α ∈ R, αf is bounded and has the same discontinuities as f , so is Rie-
mann integrable.
• f + g is bounded (if |f | ≤ M1 and |g| ≤ M2 then |f + g| ≤ M1 +M2). If the set
of discontinuties of f is Xf and the set of discontinuities of g is Xg, then the set of
discontinuities of f + g is contained in Xf ∪Xg, so has measure zero. So f + g is
Riemann integrable.
• Almost the identical argument works to show that f · g is Riemann integrable
(only modification: if |f | ≤ M1 and |g| ≤ M2, then |fg| ≤ M1M2).
• If f is monotone, then it is bounded – f([a, b]) lies in the interval in between f(a)
and f(b) – and it can be shown that the set of discontinuities of f is countable. So
f is Riemann integrable.
• Suppose f : [a, b] → [c, d] and g : [c, d] → R is continuous. Then g is bounded,
hence so is g ◦ f . Moreover, since g is continuous, the set of discontinuities of g ◦ f
is contained in the set of discontinuities of f , and a subset of a set of measure zero
has measure zero. So g ◦ f is Riemann integrable.

Exercises.
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Exercise 2.13. Let f : I → [c, d] be a bounded function, and let g : [c, d] → R
be a Lipschitz function with Lipschitz constant C. Show:

ω(g ◦ f, I) ≤ Cω(f, I).

Exercise 2.14. Let f : [a, b] → [c, d] be Riemann integrable, and let g : [a, b] →
R be Lipschitz with Lipschitz constant C. Show that g ◦ f : [a, b] → R is Riemann
integrable as follows: let ϵ > 0, and choose a partition Pϵ for which ∆(f,Pϵ) <

ϵ
C .

Use Exercise 2.13 to show that ∆(g ◦ f,Pϵ) < ϵ.

A nonempty set X is countable if there is a surjective function f : Z+ → X. By
definition, the empty set is also countable.

Exercise 2.15. Let X be a set.

a) Show: if X is finite, then X is countable.
b) Show: if X is infinite and countable, then there is a bijection f : Z+ → X.
c) Show: if X is countable and f : X → Y is a surjection, then also Y is

countable.

Thus every countable set is in bijection with exactly one of the following: (i) the
empty set; (ii) the set {1, . . . , n} for some n ∈ Z+; or (iii) Z+.

Exercise 2.16. a) Show: every subset of a countable set is countable.
b) Let ι : Y → X be an injective function. Show: if X is countable, then so

is Y .

Exercise 2.17. Show: if n ∈ Z+ and X1, . . . , Xn are countable sets, then their
union

⋃∞
n=1 is countable.

Exercise 2.18.

a) Let X ⊆ R be a countable subset. Show: X has measure zero.
b) Deduce from the Riemann-Lebesgue Criterion that R is uncountable.

(Hint: if R were countable, then every bounded function would be Riemann
integrable.)

Problems.

Problem 2.9. Let f : [a, b] → R be Riemann integrable.

a) Show that |f | : [a, b] → R is Riemann integrable.
(Suggestions: the absolute value function is Lipschitz, so you can apply
Exercise 2.14. Or you can show that for any subinterval I of [a, b] we have
ω(|f |, I) ≤ ω(f, I).)

b) Show the Integral Triangle Inequality:∣∣∣∣ ∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Problem 2.10. a) Let X and Y be sets. Show: if X is countable and
there is a surjection f : X → Y , then Y is countable.

b) Show: Z+ × Z+ is countable.
c) Show: the set Q of rational numbers is countable.

(Suggestion: since Q = Q>0 ∪{0}∪Q<0 and multiplication by −1 gives a
bijection from Q>0 to Q<0, by Exercise 2.15 it is enough to show that Q>0

is countable. Do this by finding a surjective function f : Z+ × Z+ → Q.)
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Exercise 2.18 gives a proof of the uncountability of R that is striking, but is also
overkill: the Riemann-Lebesgue Criterion is a difficult result whose proof we have
omitted. The next exercise outlines a classic proof (due to G. Cantor) of the
uncountability of R.

Problem 2.11. In this exercise we refer to decimal expansions of real numbers.
Some real numbers have a unique decimal expansion, but others have (exactly) two
different decimal expansions: a real number admitting a decimal expansion ending
with all 0’s also has a decimal expansion ending with all 9’s. For the sake of
definiteness, when we refer to “the decimal expansion” of x ∈ R we will exclude an
expansion ending with all 9’s.

Let f : Z+ → R be any function, and put xn := f(n). Build a real number
x = 0.d1d2 · · · dn · · · ∈ [0, 1] as follows: for all n ∈ Z+, the nth decimal digit dn of x
is different from the nth decimal digit of xn and also different from 0 and 9. (This
still leaves us at least 7 choices.) Show: for no n ∈ Z+ do we have x = xn, and
deduce that f is not surjective.

Problem 2.12. Let I be an interval, and let f : I → R be a monotone function.
Let X be the set of c ∈ I such that f is discontinuous at c. Show: X is countable.
(Suggestion: we may assume f is increasing. An increasing function f can only
be discontinuous at c if limx→c− f(x) < limx→c+ f(x). If so, there is a rational
number lying strictly in between the left hand limit and the right hand limit. Use
this to build an injective function ι : X → Q and then apply Exercise 2.16b).)

Compare Problem 2.7 with Problem 2.12. Things are getting subtle: monotone
functions can have infinitely many discontinuities on a bounded interval, but still
their set of discontinuities is “small” in a strong sense.

5. Some Further Exercises and Problems

A subset X ⊆ RN is called a Gδ set if it is a countable intersection of open sets:
that is, there is a sequence {Un}∞n=1 of open subsets of RN such thatX =

⋂∞
n=1 Un.

2

A subset X ⊆ RN is called a Fσ set if it is a countable union of closed sets: that
is, there is a sequence {Cn}∞n=1 of closed subsets of RN such that X =

⋃∞
n=1 Cn.

3

Exercises.

Exercise 2.19. Let X ⊆ RN .

a) Show that X is a Gδ set if and only if its complement RN \X is a Gδ set
and that X is an Fσ set if and only if its complement RN \X is a Gδ-set.

b) Show: if X is open, then X is a Gδ set.
c) Show: if X is closed, then X is an Fσ set.
d) Show: Q is an Fσ set in R. Is it a Gδ set?4

Exercise 2.20. We would like to define an Fσ subset of [a, b]. There are two
plausible ways to do this:

2This strange terminology is over a a hundred years old. Wikipedia tells us that it comes

from the German words gebiet (open set) and durchschnitt (intersection).
3Wikipedia tells us that this term comes fom the French words fermé (closed) and somme

(sum, union).
4This is asked as a question because unless you know a certain theorem that is not mentioned

in these notes, it is very hard to answer.
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(i) As an Fσ subset X of R that moreover is a subset of [a, b].
(ii) As a subset of the form X ∩ [a, b], for X ⊆ R an Fσ set.

Show that these define the same class of subsets of [a, b], which we will henceforth
call Fσ subsets of [a, b].
(Remark/hint: you only need to use that [a, b] is a closed subset of R.)

Problems.

Problem 2.13. Let X ⊆ RN .

a) Show: if X is closed, then X is a Gδ set.
(Suggestion: for ϵ > 0, let

Uϵ(X) := {a ∈ RN | d(a, x) < ϵ for some x ∈ X}.
Show: Uϵ(X) is open and

⋂∞
n=1 U 1

n
(X) = X.)

b) Deduce: if X is open, then X is an Fσ set.

Problem 2.14. Let f : RN → R.
a) Define the oscillation of f at x as

ωx(f) := inf
δ

sup
y∈B◦(x,δ)

|f(y)− f(x)| ∈ [0,∞].

Show: f is continuous at x if and only if ωx(f) = 0.
b) For ϵ > 0, show: {x ∈ RN | ωx(f) < ϵ} is open.
c) Define the locus of continuity of f as

L(f) := {x ∈ RN | f is continuous at x}.
Show: L(f) is a Gδ set.

d) Deduce: the set of points at which f is discontinuous is an Fσ set.

Problem 2.15. Prove the following theorem of Young (1903) and Lebesgue
(1905): let X ⊆ RN be any Gδ-set. Then there is a function f : RN → R with
locus of continuity L(f) = X. Deduce: the set of discontinuities of a function
f : RN → R can be any Fσ set in RN .

Problem 2.16.

a) Show that for a subset X ⊆ [a, b], the following are equivalent:
(i) X is an Fσ subset of [a, b] (cf. Exercise 2.20).
(ii) There is a function f : [a, b] → R such that

{x ∈ [a, b] | f is discontinuous at x} = X.

(iii) There is a bounded function f : [a, b] → R such that

{x ∈ [a, b] | f is discontinuous at x} = X.

b) Deduce: there is a Riemann integrable function f : [a, b] → R that is
discontinuous at uncountably many points of [a, b].





CHAPTER 3

Sequences and Series of Functions

1. Pointwise Convergence

1.1. Cautionary tales.

Let X be a set. (The case of most interest to us will be that in which X is a
subset of RN or better still, of R..) A sequence of real functions is a sequence
{fn}∞n=0 with each fn : X → R a real-valued function on X.

For us the following example is all-important: let

f(x) =

∞∑
n=0

anx
n

be a power series with radius of convergence R > 0. So f may be viewed as a
function f : (−R,R) → R. Put fn =

∑n
k=0 akx

k, so each fn is a polynomial of
degree at most n; therefore fn makes sense as a function from R to R, but let us
restrict its domain to (−R,R). Then we get a sequence of functions

{fn : (−R,R) → R}∞n=0.

Our goal is to show that the function f has many desirable properties: it is contin-
uous and indeed infinitely differentiable, and its derivatives and antiderivatives can
be computed term-by-term. Since the functions fn have all these properties (and
more – each fn is a polynomial), it seems like a reasonable strategy to define some
sense in which the sequence {fn} converges to the function f , in such a way that
this converges process preserves the favorable properties of the fn’s.

The previous description perhaps sounds overly complicated and mysterious, since
in fact there is an evident sense in which the sequence of functions fn converges to
f . Indeed, to say that x lies in the open interval (−R,R) of convergence is to say
that the sequence fn(x) =

∑n
k=0 akx

k converges to f(x).

This leads to the following definition: if {fn}∞n=1 is a sequence of real functions
defined on a set X and f : X → R is another function, we say fn converges to f
pointwise if we have fn(x) → f(X) for all x ∈ I. In this situation we also say f
is the pointwise limit of the sequence {fn}. In particular the sequence of partial
sums of a power series converges pointwise to the power series on the interval I of
convergence.

We have the closely related notion of an infinite series of functions
∑∞

n=0 fn and
of pointwise convergence of this series to some limit function f . Indeed, as in
the case of just one series, we just define Sn = f0 + . . . + fn and say that

∑
n fn

75
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converges pointwise to f if the sequence of partial sums Sn converges pointwise to f .

The great mathematicians of the 17th, 18th and early 19th centuries encountered
many sequences and series of functions (again, especially power series and Taylor
series) and often did not hesitate to assert that the pointwise limit of a sequence of
functions having a certain nice property itself had that nice property.1 The problem
is that statements like this unfortunately need not be true!

Example 3.1. Define fn = xn : [0, 1] → R. Clearly fn(0) = 0n = 0, so
fn(0) → 0. For any 0 < x ≤ 1, the sequence fn(x) = xn is a geometric sequence
with geometric ratio x, so that fn(x) → 0 for 0 < x < 1 and fn(1) → 1. It
follows that the sequence of functions {fn} has a pointwise limit f : [0, 1] → R,
the function which is 0 for 0 ≤ x < 1 and 1 at x = 1. Unfortunately the limit
function is discontinuous at x = 1, despite the fact that each of the functions fn
are continuous. Thus: The pointwise limit of a sequence of continuous
functions need not be continuous.

Example 3.1 was chosen for its simplicity, not to exhibit maximum pathology. It is
possible to construct a sequence {fn}∞n=1 of polynomial functions converging point-
wise to a function f : [0, 1] → R that has infinitely many discontinuities!2

One can also find assertions in the math papers of old that if fn converges to

f pointwise on an interval [a, b], then
∫ b

a
fndx →

∫ b

a
fdx. To a modern eye, there

are in fact two things to establish here: first that if each fn is Riemann integrable,
then the pointwise limit f must be Riemann integrable. And second, that if f is
Riemann integrable, its integral is the limit of the sequence of integrals of the fn’s.
In fact both of these are false!

Example 3.2. Define a sequence {fn}∞n=0 with common domain [0, 1] as fol-
lows. Let f0 be the constant function 1. Let f1 be the function which is constantly
1 except f(0) = f(1) = 0. Let f2 be the function which is equal to f1 except
f(1/2) = 0. Let f3 be the function which is equal to f2 except f(1/3) = f(2/3) = 0.
And so forth. To get from fn to fn+1 we change the value of fn at the rational
numbers a

n in [0, 1] from 1 to 0. Each fn is equal to 1 except at a finite set of points,
hence bounded with only finitely many discontinuities, hence Riemann integrable.

The functions fn converges pointwise to a function f which is 1 on every irra-
tional point of [0, 1] and 0 on every rational point of [0, 1]. Since every open interval
(a, b) contains both rational and irrational numbers, the function f is not Riemann
integrable: for any partition of [0, 1] its upper sum is 1 and its lower sum is 0. Thus
a pointwise limit of Riemann integrable functions need not be Riemann integrable.

Example 3.3. We define a sequence of functions fn : [0, 1] → R as follows:
fn(0) = 0, and fn(x) = 0 for x ≥ 1

n . On the interval [0, 1
n ] the function forms a

1This is an exaggeration. The precise definition of convergence of real sequences did not come
until the work of Weierstrass in the latter half of the 19th century. Thus mathematicians spoke of

functions fn “approaching” or “getting infinitely close to” a fixed function f . Exactly what they
meant by this – and indeed, whether even they knew exactly what they meant (presumably some
did better than others) is a matter of serious debate among historians of mathematics.

2On the other hand, it turns out that it is not possible for a pointwise limit of continuous
functions to be discontinuous at every point. This is a theorem of R. Baire that belongs in a more
advanced course [GT, Thm. 4.10].
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“spike”: f( 1
2n ) = 2n and the graph of f from (0, 0) to ( 1

2n , 2n) is a straight line, as

is the graph of f from ( 1
2n , 2n) to ( 1n , 0). In particular fn is piecewise linear hence

continuous, hence Riemann integable, and its integral is the area of a triangle with

base 1
n and height 2n:

∫ 1

0
fndx = 1. On the other hand this sequence converges

pointwise to the zero function f . So

lim
n→∞

∫ 1

0

fn = 1 ̸= 0 =

∫ 1

0

lim
n→∞

fn.

Example 3.4. Let g : R → R be a bounded differentiable function such that
limn→∞ g(n) does not exist. (For instance, we may take g(x) = sin(πx2 ).) For

n ∈ Z+, define fn(x) =
g(nx)

n . Let M be such that |g(x)| ≤ M for all x ∈ R. Then

for all x ∈ R, |fn(x)| ≤ M
n , so fn converges pointwise to the function f(x) ≡ 0 and

thus f ′(x) ≡ 0. In particular f ′(1) = 0. On the other hand, for any fixed nonzero

x, f ′
n(x) =

ng′(nx)
n = g′(nx), so

lim
n→∞

f ′
n(1) = lim

n→∞
g′(n) does not exist.

Thus
lim
n→∞

f ′
n(1) ̸= ( lim

n→∞
fn)

′(1).

A common theme in all these examples is the interchange of limit operations:
that is, we have some other limiting process corresponding to the condition of
continuity, integrability, differentiability, integration or differentiation, and we are
wondering whether it changes things to perform the limiting process on each fn
individually and then take the limit versus taking the limit first and then perform
the limiting process on f . As we can see: in general it does matter! This is not
to say that the interchange of limit operations is something to be systematically
avoided. On the contrary, it is an essential part of the subject, and in “natural
circumstances” the interchange of limit operations is probably valid. But we need
to develop theorems to this effect: i.e., under some specific additional hypotheses,
interchange of limit operations is justified.

Exercises.

Exercise 3.1. Let X be a set, and let {fn : X → R}∞n=0 and {gn : X → R}∞n=0

be two sequences of real-valued functions defined on X. Suppose that {fn} converges
pointwise on X to f and {gn} converges pointwise on X to g. Let α, β ∈ R. Show:
{αfn + βgn}∞n=0 converges pointwise on X to αf + βg.

Exercise 3.2. Let X ⊆ R, and let {fn : X → R}∞n=0 be a sequence of functions
convering pointwise on X to f . Let {nk}∞k=0 be a strictly increasing sequence in N.
Show: the sequence {fnk

: X → R}∞k=0 converges pointwise on X to f .

Exercise 3.3. We say that f : RN → R is even if f(−x) = f(x) for all x ∈ R
and is odd if f(−x) = −f(x) for all x ∈ R.

a) Let {fn : RN → R}∞n=0 be a sequence of even functions converging point-
wise on RN to f : R → R. Show: f is even.

b) Let {fn : RN → R}∞n=0 be a sequence of odd functions converging pointwise
on RN to f : R → R. Show: f is odd.

Exercise 3.4. Let X ⊆ R, and let {fn : X → R}∞n=0 be a sequence of functions
converging pointwise on X to f : R → R.
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a) Suppose that each fn is increasing: that is, for all x1, x2 ∈ X, x1 ≤
x2 =⇒ fn(x1) ≤ fn(x2). Show: f is increasing.

b) Now suppose only that {n ∈ Z≥0 | fn : X → R is increasing} is infinite.
Show: f is increasing.

c) For n ∈ N, put fn(x) := 1
n+1 arctanx. Show: {fn : R → R}∞n=0 is a

sequence of strictly increasing functions that converges pointwise on R to
a function that is (increasing but) not strictly increasing.

Problems.

Problem 3.1. [Ab, Example 6.222.(iii)] Consider the sequence of functions
{hn : (−1, 1) → R}∞n=1 given by

hn(x) = x1+ 1
2n−1 .

a) Show: each hn is differentiable.
b) Show: hn converges pointwise on (−1, 1) to h(x) := |x|.
c) On the same axes, sketch a graph of h1(x), h2(x), h3(x) and h(x).

2. Uniform Convergence

All we have to do now is take these lies and make them true somehow. – G.
Michael3

Most of the above pathologies vanish if we use a stronger notion of convergence.

2.1. Introducing Uniform Convergence. Let {fn : X → R}∞n=0 be a se-
quence of real-valued functions defined on a set X. We say fn converges uni-

formly on X to f and write fn
u→ f if for all ϵ > 0, there exists N ∈ N such that

for all n ≥ N and all x ∈ I, we have |fn(x)− f(x)| < ϵ.

How does this definition differ from that of pointwise convergence? Let’s com-
pare: fn → f pointwise if for all x ∈ X and all ϵ > 0, there exists n ∈ N such that
for all n ≥ N , we have |fn(x)− f(x)| < ϵ. The only difference is in the order of the
quantifiers: in pointwise convergence we are first given ϵ and x and then must find
an N ∈ Z+: that is, the N is allowed to depend both on ϵ and the point x ∈ X.
In the definition of uniform convergence, we are given ϵ > 0 and must find an
N ∈ Z+ which works simultaneously (or “uniformly”) for all x ∈ I. Thus uniform
convergence is a stronger condition than pointwise convergence, and in particular
if fn converges to f uniformly, then certainly fn converges to f pointwise.

Proposition 3.1 (Cauchy Criterion For Uniform Convergence). Let X be a set
and let {fn : X → R}∞n=0 be a sequence of functions. The following are equivalent:

(i) We have fn
u→ f .

(ii) For all ϵ > 0, there is N ∈ N such that for all m,n ≥ N and all x ∈ X,
we have |fm(x)− fn(x)| < ϵ.

3George Michael, 1963–2016
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Proof. (i) =⇒ (ii): Let ϵ > 0, and choose N ∈ Z+ such that for all n ≥ N
and all x ∈ X we have |fn(x)− f(x)| < ϵ

2 . For all m,n ≥ N and all x ∈ X we have

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |fn(x)− f(x)| < ϵ

2
+

ϵ

2
= ϵ.

(ii) =⇒ (i): Let ϵ > 0, and choose N ∈ Z+ such that for all m,n ≥ N and all
x ∈ X we have

|fm(x)− fn(x)| <
ϵ

2
.

Let x ∈ X. Since fn(x) → f(x), there is Mx ≥ N such that

fMx
(x)− f(x)| < ϵ

2
.

Then: for all n ≥ N we have

|fn(x)− f(x)| ≤ |fn(x)− fMx(x)|+ |fMx(x)− f(x)| < ϵ

2
+

ϵ

2
= ϵ,

so fn
u→ f . □

2.2. Uniform Convergence and Inherited Properties.

The following result is the most basic one fitting under the general heading “uniform
convergence justifies the exchange of limiting operations.”

Theorem 3.2. Let A be a subset of RN , and let c be an accumulation point of
A. Let {fn : A → R}∞n=0 be a sequence of functions. We suppose:

(i) For all n ∈ N, we have limx→c fn(x) = Ln ∈ R, and
(ii) We have fn

u→ f .

Then the sequence {Ln} is convergent, limx→c f(x) exists and we have equality:

lim
n→∞

Ln = lim
n→∞

lim
x→c

fn(x) = lim
x→c

f(x) = lim
x→c

lim
n→∞

fn(x).

Proof. Step 1: We show that the sequence {Ln} is convergent. Since we don’t
yet have a real number to show that it converges to, it is natural to try to use the
Cauchy criterion, hence to try to bound |Lm − Ln|. Now comes the trick: for all
x ∈ A we have

|Lm − Ln| ≤ |Lm − fm(x)|+ |fm(x)− fn(x)|+ |fn(x)− Ln|.
By the Cauchy criterion for uniform convergence, for any ϵ > 0 there exists N ∈ N
such that for all m,n ≥ N and all x ∈ A we have |fm(x)− fn(x)| < ϵ

3 . Moreover,
the fact that fm(x) → Lm and fn(x) → Ln give us bounds on the first and last
terms: there exists δ > 0 such that if 0 < |x − c| < δ then |Ln − fn(x)| < ϵ

3
and |Lm − fm(x)| < ϵ

3 . Combining these three estimates, we find that by taking
x ∈ B◦(c, δ) \ {c}, we have

|Lm − Ln| ≤
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

So the sequence {Ln} is Cauchy and hence convergent, say to the real number L.
Step 2: We show that limx→c f(x) = L (so in particular the limit exists!). Actually
the argument for this is very similar to that of Step 1:

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L|.
Since Ln → L and fn(x) → f(x), the first and last term will each be less than ϵ

3
for sufficiently large n. Since fn(x) → Ln, the middle term will be less than ϵ

3 for
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x sufficiently close to c. Overall we find that by taking x sufficiently close to (but
not equal to) c, we get |f(x)− L| < ϵ and thus limx→c f(x) = L. □

Corollary 3.3. Let A ⊆ RN and let {fn : A → R}∞n=0 be a sequence of

continuous functions such that fn
u→ f on A. Then f : A → R is continuous.

Since Corollary 3.3 is easier than Theorem 3.2, we include a separate proof.

Proof. Let x ∈ A. We need to show that limx→c f(x) = f(c), thus we need
to show that for any ϵ > 0 there exists δ > 0 such that for all x ∈ B◦(c, δ) we
have |f(x) − f(c)| < ϵ. The idea – again! – is to trade this one quantity for three
quantities that we have an immediate handle on by writing

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|.
By uniform convergence, there exists n ∈ N such that |f(x) − fn(x)| < ϵ

3 for
all x ∈ A: in particular |fn(c) − f(c)| = |f(c) − fn(c)| < ϵ

3 . Further, since fn
is continuous, there exists δ > 0 such that for all x with |x − c| < δ we have
|fn(x)− fn(c)| < ϵ

3 . Consolidating these estimates, we get

|f(x)− f(c)| < ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ. □

Theorem 3.4. Let {fn} be a sequence of Riemann integrable functions with

common domain [a, b]. Suppose that fn
u→ f . Then f is Riemann integrable and

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn =

∫ b

a

f.

Proof. Step 1: We prove the integrability of f . Fix ϵ > 0; since f
u→ f , there

is N ∈ Z+ such that for all n ≥ N and all x ∈ [a, b], |fn(x) − f(x)| < ϵ; it follows
that for any subinterval [c, d] ⊂ [a, b],

| sup(fn, [c, d])− sup(f, [c, d])| ≤ ϵ, | inf(fn, [c, d])− inf(f, [c, d])| ≤ ϵ.

So for any partition P = {a = x0 < x1 < . . . < xn−1 < xn = b} of [a, b] and n ≥ N ,

|U(fn,P)− U(f,P)| ≤
n−1∑
i=0

| sup(fn, [xn, xn+1])− sup(f, [xn, xn+1]|(xi+1 − xi)|

≤
n−1∑
i=0

ϵ(xi+1 − xi) = (b− a)ϵ,

and similarly,

|L(fn,P)− L(f,P)| ≤ (b− a)ϵ.

Since fN is integrable, by Darboux’s Criterion there is a partition P of [a, b] such
that U(fN ,P)− L(fN ,P) < ϵ. Thus

|U(f,P)−L(f,P)| ≤ |U(f,P)−U(fn,P)|+|U(fn,P)−L(fn,P)|+|L(fn,P)−L(f,P)|

≤ (b− a)ϵ+ ϵ+ (b− a)ϵ = (2(b− a) + 1)ϵ.

Since ϵ > 0 was arbitrary, Darboux’s Criterion shows f is integrable on [a, b].
Step 2: If f, g : [a, b] → R are integrable and |f(x)− g(x)| ≤ ϵ for all x ∈ [a, b], then

|
∫ b

a

f −
∫ b

a

g| = |
∫ b

a

f − g| ≤
∫ b

a

|f − g| ≤ (b− a)ϵ.
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From this simple observation and Step 1 the fact that fn
u→ f implies

∫ b

a
fn →

∫ b

a
f

is almost immediate. The details are left to you. □

Corollary 3.5. Let {fn} be a sequence of continuous functions defined on the

interval [a, b] such that
∑∞

n=0 fn
u→ f . For each n, let Fn : [a, b] → R be the unique

function with F ′
n = fn and Fn(a) = 0, and similarly let F : [a, b] → R be the unique

function with F ′ = f and F (a) = 0. Then
∑∞

n=0 Fn
u→ F .

You are asked to prove Corollary 3.5 in Exercise 3.8.

Our next order of business is to discuss differentiation of sequences of functions.
For this we should reconsider Example 4: let g : R → R be a bounded differentiable

function such that limn→∞ g(n) does not exist, and let fn(x) =
g(nx)

n . Let M be

such that |g(x)| ≤ M for all R. Then for all x ∈ R, |fn(x)| ≤ M
n , so fn

u→ 0. But
as we saw above, limn→∞ f ′

n(1) does not exist.
Thus we have shown the following somewhat distressing fact: uniform conver-

gence of fn to f does not imply that f ′
n converges.

Well, don’t panic. What we want is true in practice; we just need suitable hypothe-
ses. We will give a relatively simple result sufficient for our coming applications.

Theorem 3.6. Let {fn}∞n=1 be a sequence of functions on [a, b]. We suppose:

(i) Each fn is continuously differentiable on [a, b];
(ii) The functions fn converge pointwise on [a, b] to some function f ; and
(iii) The sequence {f ′

n}∞n=1 converges uniformly on [a, b] to some function g.

Then f is differentiable and f ′ = g, or in other words

( lim
n→∞

fn)
′ = lim

n→∞
f ′
n.

Proof. Let x ∈ [a, b]. Since f ′
n

u→ g on [a, b], certainly f ′
n

u→ g on [a, x]. Since
each f ′

n is continuous, by Corollary 3.3 g is continuous. Now applying Theorem 3.4
and the Fundamental Theorem of Calculus we have∫ x

a

g =

∫ x

a

lim
n→∞

f ′
n = lim

n→∞

∫ x

a

f ′
n = lim

n→∞
fn(x)− fn(a) = f(x)− f(a).

Differentiating and applying the Fundamental Theorem of Calculus, we get

g = (f(x)− f(a))′ = f ′. □

Corollary 3.7. Let
∑∞

n=0 fn(x) be a series of functions converging pointwise

to f(x). Suppose that each f ′
n is continuously differentiable and

∑∞
n=0 f

′
n(x)

u→ g.
Then f is differentiable and f ′ = g:

(8) (

∞∑
n=0

fn)
′ =

∞∑
n=0

f ′
n.

You are asked to prove Corollary 3.7 in Exercise 3.9.

When for a series
∑

n fn it holds that (
∑

n fn)
′ =

∑
n f

′
n, we say that the se-

ries can be differentiated termwise or term-by-term. Thus Corollary 3.7 gives a
condition under which a series of functions can be differentiated termwise.
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Although Theorem 3.6 (or more precisely, Corollary 3.7) will be sufficient for our
needs, we cannot help but record the following stronger version.

Theorem 3.8. Let {fn} be differentiable functions on the interval [a, b] such
that {fn(x0)} is convergent for some x0 ∈ [a, b]. If there is g : [a, b] → R such that

f ′
n

u→ g on [a, b], then there is f : [a, b] → R such that fn
u→ f on [a, b] and f ′ = g.

Proof. [R, pp.152-153]
Step 1: Fix ϵ > 0, and choose N ∈ Z+ such that m,n ≥ N implies |fm(x0) −
fn(x0)| ϵ2 and |f ′

m(t) − f ′
n(t)| < ϵ

2(b−a) for all t ∈ [a, b]. The latter inequality is

telling us that the derivative of g := fm − fn is small on the entire interval [a, b].
Applying the Mean Value Theorem to g, we get a c ∈ (a, b) such that for all
x, t ∈ [a, b] and all m,n ≥ N ,

(9) |g(x)− g(t)| = |x− t||g′(c)| ≤ |x− t|
(

ϵ

2(b− a)

)
≤ ϵ

2
.

It follows that for all x ∈ [a, b],

|fm(x)− fn(x)| = |g(x)| ≤ |g(x)− g(x0)|+ |g(x0)| <
ϵ

2
+

ϵ

2
= ϵ.

By the Cauchy criterion, fn is uniformly convergent on [a, b] to some function f .
Step 2: Now fix x ∈ [a, b] and define

φn(t) =
fn(t)− fn(x)

t− x

and

φ(t) =
f(t)− f(x)

t− x
,

so that for all n ∈ Z+, limx→t φn(t) = f ′
n(x). Now by (9) we have

|φm(t)− φn(t)| ≤
ϵ

2(b− a)

for all m,n ≥ N , so once again by the Cauchy criterion φn converges uniformly for

all t ̸= x. Since fn
u→ f , we get φn

u→ φ for all t ̸= x. Finally we apply Theorem
3.2 on the interchange of limit operations:

f ′(x) = lim
t→x

φ(t) = lim
t→x

lim
n→∞

φn(t) = lim
n→∞

lim
t→x

φn(t) = lim
n→∞

f ′
n(x). □

2.3. The Weierstrass M-test.

We have just seen that uniform convergence of a sequence of functions (and possibly,
of its derivatives) has many pleasant consequences. The next order of business is to
give a useful general criterion for a sequence of functions to be uniformly convergent.

Let X be a nonempty set. For a function f : X → R, we define

||f || = sup
x∈X

|f(x)|.

In more words, ||f || is the least M ∈ [0,∞] such that |f(x)| ≤ M for all x ∈ X.

Theorem 3.9 (Weierstrass M-Test). Let X be a nonempty set, and let {fn :
X → R}∞n=0 be a sequence of real-valued functions defined on X. Let {Mn}∞n=0 be
a non-negative sequence such that:

(i) We have ||fn|| ≤ Mn for all n ∈ N, and
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(ii) We have
∑∞

n=0 Mn < ∞.

Then the series
∑∞

n=0 fn converges uniformly on X.

Proof. Let SN (x) :=
∑N

n=0 fn(x). Since
∑

n Mn < ∞, for each ϵ > 0 there
is N0 ∈ Z+ such that for all N ≥ N0, we have

∑
n>N Mn < ϵ. Then for x ∈ X,

N ≥ N0 and k ∈ N, we have

|SN+k(x)− SN (x)| =

∣∣∣∣∣
N+k∑

n=N+1

fn(x)

∣∣∣∣∣ ≤ ∑
n>N

|fn(x)| ≤
∑
n>N

Mn < ϵ.

Therefore the series is uniformly convergent by the Cauchy criterion. □

Exercises.

Exercise 3.5. Consider again fn(x) = xn on the interval [0, 1]. We saw in
Example 3.1 that fn converges pointwise to the discontinuous function f which is
0 on [0, 1) and 1 at x = 1.

a) Show directly from the definition that the convergence of fn to f is not
uniform.

b) Try to pinpoint exactly where the proof of Theorem 3.2 breaks down when
applied to this non-uniformly convergent sequence.

Exercise 3.6. Let X be a set, and let Y be a subset of X such that X \ Y
is finite. Let {fn : X → R}∞n=0 be a sequence of functions defined on X. Let
f : X → R be a function. Show that the following are equivalent:

(i) The sequence {fn} converges uniformly on Y to f , and for all x ∈ X \ Y
we have fn(x) → f(x).

(ii) The sequence {fn} converges uniformly on X to f .

Exercise 3.7. It follows from Theorem 3.4 that the sequences in Examples 2
and 3 above are not uniformly convergent. Verify this directly.

Exercise 3.8. Prove Corollary 3.5.

Exercise 3.9. Prove Corollary 3.7.

Problems.

Problem 3.2. Let X be a set. Show that the following are equivalent:

(i) There is a sequence {fn : X → R}∞n=0 that converges pointwise on X but
not uniformly on X.

(ii) The set X is infinite.

3. Power Series

3.1. Convergence of power series. Recall that to a real sequence {an}∞n=0

we can associate the power series
∞∑

n=0

anx
n.

We would like to view a power series as a function of x, and in fact one of our
main applications of uniform convergence will be to show that it is a very pleasant
function of x. But in order to have a function we first have to know what its do-
main is. This brings us to the following definition: the domain of the power series
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n=0 anx

n is the set of x ∈ R for which the series converges.
So the natural question is: what is the domain of a power series?

There are two ways to construe this question. The first is: given a particular
power series — e.g.

∑∞
n=0

xn

n! — how do we determine the domain? This question
is addressed in calculus: if a certain ratio test limit exists, then that can be used
to determine the domain, at least up to determining whether two endpoints are in
the domain, for which one can (try to) use other convergence tests. But there is
another way to construe this question: what can we say about the domain of con-
vergence of a power series in general : e.g. which subsets of R arise as the domain
of convergence of power series? This latter question is not addressed in calculus. It
used to be addressed in Math 3100, but with the recent change in the syllabus I’m
not sure whether it still is. Anyway, we will give a more vigorous answer than it is
standard to give in Math 3100.

I claim that to any power series
∑∞

n=0 anx
n we can associate an extended real num-

ber R ∈ [0,∞] called the radius of convergence that has the following properties:

• If R = 0, then the domain is D = {0}.
• If R = ∞, then the domain is D = R.
• If R ∈ (0,∞) then the domain D satisfies (−R,R) ⊆ D ⊆ [−R,R].

In the last case we are very nearly saying what the domain is: the only ambi-
guity is that −R might or might not be in the domain and also R might or might
not be in the domain. In Problem 3.10 you will be asked to give, for every R > 0,
four different power series with domains (−R,R), [−R,R), (−R,R] and [−R,R].

In particular if this is true then the domain of covnergence of any power series
is an interval on the real line.

We will actually give a formula for R in the general case, but before we do that let’s
revisit the Ratio and Root Tests from a somewhat more sophisticated perspective
than we had in fresman calculus.

Theorem 3.10 (Ratio Test). Let
∑

n an be a real series with an ̸= 0 for all n.4

a) Suppose there is N ∈ Z+ and r < 1 such that |an+1

an
| ≤ r for all n ≥ N .

Then the series is absolutely convergent.
b) Suppose there is N ∈ Z+ and R ≥ 1 such that |an+1

an
| ≥ R for all n ≥ N .

Then |an| → ∞, so the series diverges.
c) Consider the quantity

ρ := lim

∣∣∣∣an+1

an

∣∣∣∣ ∈ [0,∞].

If ρ < 1, then the hypothesis of part a) holds, so the series is absolutely
convergent.

4We write
∑

n an because we are only concerned with the convergence or divergence of the

series, so it doesn’t matter whether it starts at 0 or 1...or anywhere else.
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d) Consider the quantity

ρ := lim

∣∣∣∣an+1

an

∣∣∣∣ ∈ [0,∞].

If ρ > 1, then the hypothesis of part b) holds, so the series is divergent.

Proof. Since we are only concerned about convergence, we may remove finitely
terms of a series and thereby pass from a condition holding for all sufficiently large
terms to a condition that holds for all terms. We will do so in parts a) and b).
a) We have |a0| ≤ r|a1|, |a2| ≤ r|a1| ≤ r2|a0|, a3 ≤ r|a2| ≤ r3|a0|, and so forth. An
immedaite inductive argument establishes:

∀n ∈ N, |an| ≤ rn|a0|,
so

∞∑
n=0

|an| ≤
∞∑

n=0

rn|a0| =
|a0|
1− r

and our series is absolutely convergent by comparsion to a geometric series.
b) Our assumption implies that |an+1

an
| ≥ 1 for all n, which means that |an+1| ≥ |an|

for all n, which means

|a0| ≤ |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ .

Therefore every term has absolute value at least |a0| ̸= 0, so an does not converge
to 0. This implies that the series diverges (e.g. [SS, Proposition 3.1.9] or [HC,
Theorem 11.4].
c) If ρ < 1, choose r with ρ < r < 1. By our “creeping” interpretation of the limsup
— Proposition 1.14 — there is N ∈ Z+ such that |an+1

an
| ≤ r for all n ≥ N , so the

hypothesis of part a) holds.
d) We use the analogous “creeping” interpretation of the liminf (see Exercise 1.14):
if ρ > 1, choose R with 1 < R < ρ. Then there is N ∈ Z+ such that |an+1

an
| ≥ R for

all n ≥ N , so the hypothesis of part b) holds. □

In freshman calculus, one usually assumes that the Ratio Test limit

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, which is equivalent to the equality ρ = ρ. So the calculus version of the Ra-
tio Test follows from Theorem 3.10: if ρ exists and is less than 1, then ρ = ρ < 1,
so we have absolute convergence by part a), while if ρ exists and is greater than
1, then ρ = ρ > 1, so we have divergence by part b). If ρ = 1, then parts c) and
d) clearly don’t apply, and in fact part a) does not either, since the hypothesis
implies ρ ≤ r < 1. However part b) may still apply: e.g. it applies to a series with
an = C ̸= 0 for all n.

Another way for Theorem 3.10 to fail is if ρ > 1 and ρ < 1. In Exercise 3.20
you are asked to show that this holds for the series

∞∑
n=0

2−n+(−1)n .

In this example the presence of (−1)n is enough to trip up the Ratio Test because
it messes with the relatve sizes of the terms. Nevertheless, whether the nth term is
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2−n−1 or 2−n+1 it is still exponentially small, so we certainly expect the series to
converge and indeed this can be shown by observing that

2−n+(−1)n = 2−n2(−1)n ≤ 2 · 2−n

and comparing to a convergent geometric series. But there is a close relative of the
Ratio Test that is not tripped up by this example.

Theorem 3.11 (Root Test). Let
∑

n an be a real series.

a) Suppose there is N ∈ Z+ and r < 1 such that |an|
1
n ≤ r for all n ≥ N .

Then the series is absolutely convergent.
b) Suppose we have |an|

1
n ≥ 1 for infinitely many n. Then an ↛ 0, so the

series diverges.
c) Consider the quantity

θ := lim |an|
1
n .

Then:
(i) If θ < 1, then the hypothesis of part a) holds, so the series is abso-

lutely convergent.
(ii) If θ > 1, then the hypothesis of part b) holds, so the series is divergent.

We leave the proof of Theorem 3.11 as Problem 3.11, but we will make a few com-
ments. The proof of part a) has the same strategy as that of the corresponding
part of the Ratio Test: we compare to a geometric series, while the proof of part b)
is even easier than that of the corrsponding part of the Ratio Test. The proof of c)
part (i) is also similar to the proof of part c) of the Ratio Test. But in c) part (ii)
it is initially surprising that the limsup appears again, whereas in the Ratio Test
the liminf appears in the corresponding part b). To sound this out a bit: knowing

that |an|
1
n ≥ 1 on any infinite set of n is indeed enough to know that the series

diverges, whereas knowing that |an+1

an
| ≥ R > 1 on an infinite set of n is not telling

us enough to conclude anything about convergence: it is good to think about why.

In Problem 3.12 you are asked to show that for any series
∑

n an with nonzero
terms, the upper and lower ratio and root test limits are related as follows:

(10) ρ ≤ θ ≤ θ ≤ ρ.

From (10) it follows that if the Ratio Test limit ρ exists, then also the Root Test
limit θ exists and they are equal. However we have already seen an example where θ
exists but ρ does not. If you have ever heard someone say “The Root Test is stronger
than the Ratio Test,” then that is what they meant (and they were right!).

Theorem 3.12 (Cauchy-Hadamard Formula). Let {an}∞n=0 be any real se-
quence. Put

θ := lim |an|
1
n ∈ [0,∞]

and

R :=
1

θ
∈ [0,∞].

Then the power series
∑∞

n=0 anx
n has radius of convergence R. More precisely, the

power series converges absolutely for |x| < R and diverges for |x| > R.
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Proof. Our version of the Root Test must be pretty good, because we can
deduce this important result almost immediately.

First let x ∈ R be such that |x| < R. (Thus R > 0; we allow R = +∞.) Since

lim |an|
1
n = θ, we have

lim |xnan|
1
n = lim |x||an|

1
n = |x| · lim |an|

1
n = |x|θ =

|x|
R

< 1.

So the series
∑

n anx
n is absolutely convergent by part c)(i) of the Root Test.

Now let x ∈ R be such that |x| > R. (Thus R ̸= +∞; we allow R = 0.) This time

lim |xnan|
1
n =

|x|
R

> 1,

so the series diverges by part c)(ii) of the Root Test. □

As discussed at the beginning of this section, it follows immediately from Theorem
3.12 that the domain of convergence of any real power series is an interval: more
precisely takes one of the forms {0}, R, (−R,R), [−R,R), (−R,R] or [−R,R] where
R is as in Theorem 3.12.

Let me end with a few words about the history of this beautiful result. Jacques
Hadamard was a French mathematician who lived from 1865 to 1963. Among his
many achievements was giving one of the first two proofs of the celebrated Prime
Number Theorem, which is that if π(x) : [1,∞) → R is defined as the number of
prime numbers p ≤ x, then

lim
x→∞

π(x)
x

log x

= 1.

He did this in 1896, at the same time as another mathematician, Charles de la Vallée
Poussin. Both mathematicians were following a strategy layed out by Bernhard
Riemann (1826-1866), but this strategy was not easy to implement.

Hadamard published a proof of Theorem 3.12 in 1888 [Ha88] while he was
still a student, and he included the proof in his 1892 PhD thesis. As we saw,
this result is a quick consequence of the Root Test. The Root Test is due to
one of the true masters, Augustin-Louis Cauchy (1789-1857); in some circles it is
called “Cauchy’s Root Test” whereas the Ratio Test is attributed to Jean le Rond
d’Alembert (1717-1783). How could The Master know the Root Test and not its
application to the radius of convergence of a power series?!? The answer is that he
couldn’t not know it : this formula appears in an 1821 textbook of Cauchy [Ca21].
Cauchy is a household name unto this very day and course, but most of us don’t
read his original works because they are written in French in the style of 19th
century mathematics. But Hadamard and his teachers were...19th century French
mathematicians. Cauchy would have been their patron saint. How in the world
was Cauchy’s contribution forgotten in Hadamard’s time? The answer is that many
good mathematicians are bad academics: almost no research mathematicians spend
any significant time reading primary source material. So this kind of independent
rediscovery – even decades or centuries later – is in fact rather common.

3.2. Power series as functions.

Theorem 3.13 (Wonderful Properties of Power Series). Let
∑∞

n=0 anx
n be a

power series with radius of convergence R > 0. Consider f(x) =
∑∞

n=0 anx
n as a

function f : (−R,R) → R. Then:
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a) The function f is continuous.
b) The function f is differentiable. Morever, its derivative may be computed

termwise:

f ′(x) =

∞∑
n=1

nanx
n−1.

c) Since the power series f ′ has the same radius of convergence R > 0 as f ,
the function f is in fact infinitely differentiable.

d) For all n ∈ N, we have f (n)(0) = (n!)an.

Proof.
a) Let 0 < A < R, so f defines a function from [−A,A] to R. We claim that

the series
∑

n anx
n converges to f uniformly on [−A,A]. Indeed, as a function on

[−A,A], we have ||anxn|| = |an|An, and thus∑
n

||anxn|| =
∑
n

|an|An < ∞,

because power series converge absolutely on the interior of their interval of con-
vergence. By the Weierstrass M -test, f is the uniform limit of the sequence
Sn(x) =

∑n
k=0 akx

k. But each Sn is a polynomial function, hence continuous
and infinitely differentiable. So by Theorem 3.2, the function f is continuous on
[−A,A]. Since any x ∈ (−R,R) lies in [−A,A] for some 0 < A < R, also the
function f is continuous on (−R,R).
b) According to Corollary 3.7, in order to show that f =

∑
n anx

n =
∑

n fn is dif-
ferentiable and the derivative may be computed termwise, it is enough to check that
(i) each fn is continuously differentiable and (ii)

∑
n f

′
n is uniformly convergent.

But (i) is trivial, since fn = anx
n — of course monomial functions are continuously

differentiable. As for (ii), we compute that∑
n

f ′
n =

∑
n

(anx
n) =

∑
n

nan−1x
n−1.

Since limn→∞ |n| 1
n = 1, by Cauchy-Hadamard the power series

∑
n nan−1x

n−1 also
has radius of convergence R, hence by the result of part a) it is uniformly convergent
on [−A,A]. Therefore Corollary 3.7 applies to show f ′(x) =

∑∞
n=0 nanx

n−1.
c) We have just seen that for a power series f convergent on (−R,R), its derivative
f ′ is also given by a power series convergent on (−R,R). So we may continue in
this way: by induction, derivatives of all orders exist.
d) The formula f (n)(0) = (n!)an is simply what one obtains by repeated termwise
differentiation. We leave this as an exercise to the reader. □

The fact that for any power series f(x) =
∑

n anx
n with positive radius of conver-

gence we have an = f(n)(0)
n! yields the following important result.

Corollary 3.14. (Uniqueness Theorem) Let f(x) =
∑

n anx
n and g(x) =∑

n bnx
n be two power series with radii of convergence Ra and Rb with 0 < Ra ≤ Rb,

so that both f and g are infinitely differentiable functions on (−Ra, Ra). Suppose
that for some δ with 0 < δ ≤ Ra we have f(x) = g(x) for all x ∈ (−δ, δ). Then
an = bn for all n.

The upshot of Corollary 3.14 is that the only way that two power series can be
equal as functions – even in some very small interval around zero – is if all of their
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coefficients are equal. This is not obvious, since in general
∑∞

n=0 an =
∑∞

n=0 bn
does not imply an = bn for all n. Another way of saying this is that the only power
series a function can be equal to on a small interval around zero is its Taylor series.

Exercises.

Exercise 3.10. Prove Theorem 3.13d).

Exercise 3.11. Show that if f(x) =
∑∞

n=0 anx
n has radius of convergence

R > 0, then F (x) =
∑∞

n=0
an

n+1x
n+1 is an anti-derivative of f .

Exercise 3.12. Suppose f(x) =
∑

n anx
n and g(x) =

∑
n bnx

n are two power
series each converging on some open interval (−A,A). Let {xn}∞n=1 be a sequence
of elements of (−A,A)\{0} such that limn→∞ xn = 0. Suppose that f(xn) = g(xn)
for all n ∈ Z+. Show that an = bn for all n.

Problems.

Problem 3.3. Let
∑

n anx
n be a power series with infinite radius of conver-

gence, hence defining a function f : R → R. Show that the following are equivalent:

(i) The series
∑

n anx
n is uniformly convergent on R.

(ii) We have an = 0 for all sufficiently large n.

Problem 3.4. Let f(x) =
∑∞

n=0 anx
n be a power series with an ≥ 0 for all n.

Suppose that the radius of convergence is 1, so that f defines a function on (−1, 1).
Show that the following are equivalent:

(i) The series
∑

n an converges.
(ii) The power series converges uniformly on [0, 1].
(iii) The function f is bounded on [0, 1).

4. The Weierstrass Approximation Theorem

4.1. Statement of Weierstrass Approximation.

Theorem 3.15 (Weierstrass Approximation Theorem). Let f : [a, b] → R be
a continuous function and ϵ any positive number. Then there exists a polynomial
function P such that for all x ∈ [a, b], |f(x) − P (x)| < ϵ. In other words, any
continuous function defined on a closed, bounded interval is the uniform limit of a
sequence of polynomials.

It is interesting to compare Theorem 3.15 with Taylor’s theorem, which gives con-
ditions for a function to be equal to its Taylor series. Note that any such func-
tion must be C∞ (i.e., it must have derivatives of all orders), whereas in the
Weierstrass Approximation Theorem we can get any continuous function. An im-
portant difference is that the Taylor polynomials TN (x) have the property that
TN+1(x) = TN (x)+ aN+1x

N , so that in passing from one Taylor polynomial to the
next, we are not changing any of the coefficients from 0 to N but only adding a
higher order term. In contrast, for the sequence of polynomials Pn(x) uniformly
converging to f in Theorem 1, Pn+1(x) is not required to have any simple algebraic
relationship to Pn(x).

Theorem 3.15 was first established by Weierstrass in 1885. To this day it is one
of the most central and celebrated results of mathematical analysis. Many mathe-
maticians have contributed novel proofs and generalizations. We will give a simply
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remarkable 1912 proof of S.J. Bernstein [Be12], which is strongly motivated by
probability theory but can be understood without it.

4.2. The proof. Knowing the Weierstrass Approximation Theorem on any
one closed bounded interval [a, b] with a < b easily implies it on all closed bounded
intervals. We leave this as Exercise 3.6. Bernstein’s proof concerns the case
[a, b] = [0, 1].

Recall that for integers n and k with 0 ≤ k ≤ n we have the binomial coefficient(
n

k

)
:=

n!

k!(n− k)!
∈ Z+.

These appear in the binomial theorem:

∀x, y ∈ R, ∀n ∈ N, (x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

For integers 0 ≤ k ≤ n we define the Bernstein polynomial

Bn,k(x) :=

(
n

k

)
xk(1− x)n−k.

Then Bn,k(x) is a polynomial of degree n such that Bn,k(x) ≥ 0 for all x ∈ [0, 1].

Example 3.5.

a) For n = 0 we have B0,0(x) = 1.
b) For n = 1 we have B1,0 = 1− x, B1,1 = x.
c) For n = 2 we have B2,0 = (1− x)2, B2,1 = 2x(1− x), B2,2 = x2.

Lemma 3.16. Let n ∈ N. Then:

a) We have
∑n

k=0 Bn,k(x) = 1.
b) We have

∑n
k=0 kBn,k(x) = nx.

c) We have
∑n

k=0 k(k − 1)Bn,k(x) = n(n− 1)x2.

Proof. a) Taking y = 1− x in the binomial theorem yields

1 = (x+ (1− x))n =

n∑
k=0

(
n

k

)
xk(1− x)n−k =

n∑
k=0

Bn,k(x).

b) For n = 0 both sides of the desired identity are 0, so we may assume that n ≥ 1.
Then we have

n∑
k=0

kBn,k(x) =

n∑
k=1

kBn,k(x) =

n∑
k=1

k
n!

k!(n− k)!
xk(1− x)n−k

= n

n∑
k=1

x
(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
xk−1(1−x)(n−1)−(k−1) = nx

n−1∑
k=0

Bn−1,k(x) = nx,

where in the last equality we used part a).
c) When n = 0 or n = 1, both sides of the desired identity are 0, so we may assume
that n ≥ 2. Then we have
n∑

k=0

k(k−1)Bn,k(x) =

n∑
k=0

n(n−1)x2 (n− 2)!

(k − 2)!((n− 2)− (k − 2))!
xk−2(1−x)(n−2)−(k−2)
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= n(n− 1)x2
n−2∑
k=0

Bn−2,k(x) = n(n− 1)x2. □

Lemma 3.17. Let n ∈ Z+. Then:

a) We have
∑n

k=0
k
nBn,k(x) = x.

b) We have
∑n

k=0

(
k
n − x

)2
Bn,k(x) =

x(1−x)
n .

Proof. Parts a) and b) follow from parts b) and c) of Lemma 3.16 respectively
by simple algebraic manipulations. We leave the details as Exercise 3.13. □

I will admit that my probability theory is rusty, but neverthless I will mention the
probabilistic interpretation of Lemma 3.17. For n ∈ N, 0 ≤ k ≤ n and x ∈ [0, 1] we
have that Bn,k(x) ≥ 0 and

∑n
k=0 Bn,k(x) = 1. Thus we may interpret Bn,k(x) as

giving a probability distribution on the finite space P := {0, 1, . . . , n}: the probabil-
ity of the basic event k is Bn,k(x) =

(
n
k

)
xk(1− x)n−k. This is a famous probability

distribution, called Bernoulli trials: if we have a coin for which each time it is
flipped, the probability of getting heads is x ∈ [0, 1], then the probability that we
have exactly k heads after n flips is Bn,k(x).

Now suppose n ≥ 1. We may view k 7→ k
n as a random variable on P, i.e., as a

function X : P → R. Lemma 3.17a) is then saying that the expected value E(X)
of X is x, while Lemma 3.17b) is saying the variance of X — that is, the expected

value of (X − E(X))2 — is x(1−x)
n , which converges to 0 uniformly for x ∈ [0, 1].

Note also that maxx∈[0,1] x(1− x) = 1
4 .

Now we are ready to state and prove:

Theorem 3.18 (Bernstein’s Theorem).
Let f : [0, 1] → R be continuous, and for n ∈ Z+ define

Bn(f)(x) :=

n∑
k=0

f

(
k

n

)
Bn,k(x).

Then the sequence Bn(f) converges uniformly to f on [0, 1].

Notice that Bn(f)(x) is a polynomial of degree at most n. Therefore Theorem
3.18 is a stronger version of the Weierstrass Approximation Theorem: not only
does ensure that every continuous function f : [0, 1] → R is a uniform limit of
polynomials, it gives one such sequence of polynomials explicitly, namely Bn(f).

Proof. By Lemma 3.16a) we have

|Bn(f)(x)− f(x)| =
∣∣ n∑
k=0

(
f

(
k

n

)
− f(x)

) ∣∣Bn,k(x).

Let ϵ > 0. By Theorem 1.31 the function f is uniformly continuous, so there is
δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ

2 . Let x ∈ [0, 1]. We have

|Bn(f)(x)−f(x)| ≤
∑

| kn−x|<δ

∣∣∣∣f (k

n

)
−f(x)

∣∣∣∣Bn,k(x)+
∑

| kn−x|≥δ

∣∣∣∣f (k

n

)
−f(x)

∣∣∣∣Bn,k(x)

≤ ϵ

2

∑
| kn−x|<δ

Bn,k(x) + 2||f ||
∑

| kn−x|≥δ

Bn,k(x).
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To deal with the second term, we use Lemma 3.17b) and write∑
| kn−x|≥δ

Bn,k(x) =
∑

| kn−x|≥δ

∣∣ k
n − x

∣∣2∣∣ k
n − x

∣∣2Bn,k(x) ≤
1

δ2

∑
| kn−x|≥δ

∣∣∣∣kn−x

∣∣∣∣2Bn,k(x) ≤
x(1− x)

nδ2
.

So altogether we have – using x(1− x) ≤ 1
4 – that

|Bn(f)− f(x)| ≤ ϵ

2
+ 2||f ||x(1− x)

nδ2
≤ ϵ

2
+

||f ||
2nδ2

.

This last quantity is independent of x and is, for sufficiently large n, at most ϵ,
completing the proof. □

4.3. Generalizations. There have been many generalizations of the Weier-
strass Approximation Theorem. First, the result holds verbatim with [a, b] replaced
by any closed and bounded subset A of R: this is Problem 3.7. The next step is
to consider a bounded subset A ⊂ RN . We still have the notion of a polynomial
function P : RN → R: see §1.4.3. Then:

Theorem 3.19 (Weierstrass Approximation Theorem in RN ).
Let A ⊂ RN be closed and bounded. Then every continuous function f : A → R is
a uniform limit of polynomials.

If A ⊂ R is closed and bounded, then in fact every continuous function f : A → R
has a continuous extension to all of RN : as mentioned in §1.6, this is a special case
of the Tietze Extension Theorem [GT, Theorem 2.89]. In particular f extends to

a closed box B =
∏N

i=1[ai, bi] containing A. If we can write the extended function
F : B → R as a uniform limit of polynomials, then just by restricting to A we get
f as a uniform limit of polynomials, so we have reduced Theorem 3.19 to the case
of a closed box. In this case it is not so hard to push Bernstein’s proof through:
again we can get explicit polynomials, which are linear combinations of products of
univariate Bernstein polynomials. This is done for instance in [HS33]. However, it
is not really worth going into the details because much stronger results are known,
as we will now explain.

In fact it is fruitful to take a more general perspective. For a subset A ⊆ RN ,
the set C(A) of continuous real-valued functions f : A → R has, as we know, a
natural algebraic structure: first of all for every α ∈ R, we have the constant func-
tion α ∈ C(A). Moreover, if f, g ∈ C(A) then f + g and f · g also lie in C(A). We
summarize these properties by saying that C(A) forms an R-algebra. Exactly the
same holds for the set P(A) of polynomial functions on A: it contains the con-
stant functions and its closed under addition and multiplication. A restatement of
Theorem 3.19 is that, when A is closed and bounded, every element of the larger
R-algebra C(A) is a unfiorm limit of functions lying in the smaller R-algebra P(A).
If S is a subset of C(A) such that every element is a uniform limit of a sequence
in S, we will say that S is dense in C(A), so once again we can restate Theorem
3.19 by saying that P(A) is a dense R-subalgebra of C(A). This raises a natural
question: let A be any R-subalgebra of C(A). Must A be dense in C(A)? If not,
can we find conditions to ensure the density?

The answer to the first question is no. For a simple example, let

A := {f : [0, 1] → R | f is continuous and f(0) = f(1)}
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be the set of all continuous real-valued functions on [0, 1] taking the same value at
0 and 1. It is immediate that this is an R-subalgebra of A. However, let {fn}∞n=1

be a sequence in A and suppose that fn
u→ f . Then

f(1)− f(0) = lim
n→∞

fn(1)− lim
n→∞

fn(0) = lim
n→∞

(fn(1)− fn(0)) = lim
n→∞

0 = 0,

so f(0) = f(1). (In fact we only used the pointwise convergence to deduce this.)
So any uniform limit of a sequence in A satisfies f(0) = f(1) and thus e.g. the
function f(x) = x is not such a uniform limit: A is not dense in C(A).

This example generalizes as follows:

Proposition 3.20. Let A ⊆ RN , and let A be a dense R-subalgebra of C(A).
Then A separates points of A: that is, for all x ̸= y ∈ A there is f ∈ A such
that f(x) ̸= f(y).

You are asked to prove Proposition 3.20 in Exercise 3.14.

Notice that for any subset A ⊆ RN , the subalgebra P(A) of polynomial func-
tions on A separates points of A: indeed if we have distinct points x ̸= y of A,
then for at least one i with 1 ≤ i ≤ N we have that the ith coordinates of x and y
differ. But the ith coordinate function (x1, . . . , xN ) 7→ xi is a polynomial function,
so P(A) separates points of A almost tautologically.5

Remarkably, when A is closed and bounded, the converse of Proposition 3.20 holds.
This is a special case of a celebrated result of M. Stone [St37], [St48]:

Theorem 3.21 (Stone-Weierstrass). Let X ⊂ RN be closed and bounded, and
let A be an R-subalgebra of C(A) that separates points. Then A is dense in C(A).

We will not prove Theorem 3.21 here, but see e.g. [R, Theorem 7.2].

Since the R-algebra P(A) of polynomial functions on A separates points, the Stone-
Weierstrass Theorem in RN immediately implies the Weierstrass Theorem in RN .
However, it is considerably more general. We give two examples.

Proposition 3.22. Let f : [a, b] → R be continuous and injective. Let

A(f) := {anfn + . . .+ a1f + a0 : [a, b] → R | a0, . . . , an}
be the set of polynomial functions in f . Then A(f) is dense in C([a, b]).

Proof. It is immediate that A(f) is an R-subalgebra of C(A). Moreover, to
say that f is injective is to say that f itself separates points of [a, b]: for all x ̸= y
in [a, b] we have f(x) ̸= f(y). So certainly A(f) separates points of [a, b]. By the
Stone-Weierstrass Theorem we have that A(f) is dense in C([a, b]). □

Notice that if in Proposition 3.22 we take f(x) = x, then we recover the Weierstrass
Approximation Theorem. Taking e.g. f(x) = ex, we get: every continuous function
is a uniform limit of polynomials in ex. For any positive odd d ∈ Z+, taking
f(x) = xd we see that every continous function is a limit of polynomials in xd, i.e.,

5In fact, if A is an algebra of functions on a subset A of RN and B is a subset of A, then

it makes sense to restrict each element of A to B to get A|B , an algebra of functions on B. It
is immediate that if A separates points of A, then A|B separates points of B. So in the above

discussion the key case is that of A = RN .
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polynomials in which each power of x is divisible by d. If d is even, then xd is not
injective, so this doesn’t work. The following result addresses the d = 2 case:

Theorem 3.23. Let R > 0. A continuous function f : [−R,R] → R is even
if f(−x) = f(x) for all x ∈ [−R,R]. Then every even continuous function is a
uniform limit of even polynomial functions.

Proof. First we observe that every continuous function f : [0, R] → R extends
uniquely to an even continuous function F : [−R,R] → R: for x ∈ [−R, 0) we may
— and must — take f(x) = f(−x). Let Pe be the set of all even polynomial func-
tions on [−R,R]. Then Pe consists of polynomials

∑n
k=0 akx

2k in which only even
degree powers of x appear: see Exercise 3.16. Thus in the notation of Proposition
3.22 we have Pe = A(x2).

Although the injectivity hypothesis of Proposition 3.22 does not apply to f(x) =
x2 on [−R,R], it does apply on [0, R], so that result implies that Pe|[0,R] is dense in
C([0, R]). Finally, if f : [−R,R] → R is continuous and even and {Pn} is a sequence
of even polynomials converging uniformly to f on [0, R], then the evenness implies

that also Pn
u→ f on [−R,R]. □

One may wonder why Proposition 3.22 was stated only in the one variable case.
The argument will hold verbatim with [a, b] replaced by any closed, bounded subset
in RN . However, when N ≥ 2 injective continuous functions on subsets of RN are
much harder to come by: it follows from Exericse 3.17 that for any nondegenerate

closed box B =
∏N

i=1[ai, bi] (nondegenerate means ai < bi for all i), there is no
continuous injection f : B → R.

Exercises.

Exercise 3.13. Prove Lemma 3.17.

Exercise 3.14. Let f : [a, b] → R be continuous, and let c ∈ [a, b]. Show:
f is the uniform limit of a sequence of polynomials {Pn : [a, b] → R} such that
Pn(c) = f(c) for all c ∈ [a, b].

Exercise 3.15. Prove Proposition 3.20.

Exercise 3.16. Let P : R → R be a polynomial function.

a) Suppose that P is an even function: for all x ∈ R, P (−x) = x. Show:
P (x) =

∑n
k=0 akx

2k.
b) Suppose that P is an odd function: for all x ∈ R, P (−x) = −x. Show:

P (x) =
∑n

k=0 akx
2k+1.

Exercise 3.17.

a) Let C := {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle in R2. Show that
there is no continuous, injective function f : C → R.
(Hint: we may assume that f is nonconstant, so by the Extreme Value
Theorem f assumes a minimum value m and a maximum value M > m.
Show: every L ∈ (m,M) is assumed at least twice on C.)

b) Let X be a subset of RN such that there is a continuous injection ι : C ↪→
X. Show: there is no injective continuous function f : X → R.

c) Let N ≥ 2, and let X be a subset of RN that contains an open ball. Show:
there is no continuous injection ι : X → R.
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Problems.

Problem 3.5. Let {Pn : R → R}∞n=1 be a sequence of polynomials converging
uniformly on R to a function f : R → R.

a) Show: there is N ∈ Z+ such that Pn − PN is constant for all n ≥ N .
(Hint: a polynomial is bounded on R if and only if it is constant.)

b) Deduce that there is C ∈ R such that f = PN + C.

In particular, a sequence of polynomials that is uniformly convergent on R has
eventually constant degree and the limit function is also a polynomial.

Problem 3.6. Let a < b and c < d be real numbers.

a) Show: there is a unique linear function ℓ : R → R such that ℓ(a) = c and
ℓ(b) = d. Show for that for this function we have ℓ([a, b]) = [c, d].

b) We define a function L : C[c, d] → C[c, d] by mapping a continuous func-
tion f : [c, d] → R to f ◦ ℓ : [a, b] → R. Show that L is a bijection. (Hint:
the inverse function is the same function with [a, b] and [c, d] reversed.)
Show also that f : [c, d] → R is a polynomial function if and only if L(f)
is a polynomial function.

c) Let {fn : [c, d] → R}∞n=1 be a sequence of functions and let f : [c, d] → R
be a function. Show: fn

u→ f on [c, d] ⇐⇒ L(fn)
u→ L(f) on [a, b].

d) Deduce: every element of C[a, b] is a uniform limit of polynomials if and
only if every element of C[c, d] is a uniform limit of polynomials.

Problem 3.7. Let A ⊆ R. Show that the following are equivalent:

(i) Every continuous function f : A → R is a uniform limit of polynomial
functions.

(ii) The set A is closed and bounded.

You may use without proof that every continuous function on a closed subset of R
extends continuously to all of R.

5. A Continuous, Nowhere Differentiable Function

We are going construct a function f : R → R with the following striking property:
for all x0 ∈ R, f is continuous at x0 but f is not differentiable at x0. In short, we
say that f is continuous but nowhere differentiable.

The first such construction (accompanied by a complete, correct proof) was given
in a seminal 1872 paper of Weierstrass. Weierstrass’s example was as follows: let
α ∈ (0, 1), and let b be a positive odd integer such that αb > 1 + 3π

2 . Then the
function f : R → R given by

(11) f(x) =

∞∑
n=0

αn cos(bnπx)

is continuous on R but not differentiable at any x ∈ R.

By far the easier part of this is to show that f is continuous: this is Exercise
3.18. The proof that f is nowhere differentiable is not so easy, as indicated by the
rather specific conditions given on the parameters α, b. (For less carefully chosen
α, b the function f can have a “small” set of points of differentiability.) Thus, as
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with most other contemporary treatments, we will switch to a different function
for which the nowhere differentiability calculation is more straightforward. More
specifically, we will switch from trigonometric functions to piecewise linear func-
tions, so first we interpose the following result nailing down some further (simple)
properties of these functions.

Lemma 3.24.

a) Let f : [a, b] → R be a piecewise linear function with slopes m1, . . . ,mn.
Show that f is Lipschitz, and the smallest possible Lipschitz constant is
C = maxi |mi|.

b) Let f : R → R be a function. Suppose that there is C > 0 such that
for every closed subinterval [a, b] of R, C is a Lipschitz constant for the
restriction of f to [a, b]. Show that C is a Lipschitz constant for f .

c) Let f : R → R be a piecewise linear function with “corners” at the in-
tegers – i.e., f is differentiable on (n, n + 1) for all n ∈ Z+ and is not
differentiable at any integer n. For n ∈ Z, let mn be the slope of f on the
interval (n, n + 1). Let C = supn∈Z mn. Then f is Lipschitz if and only
if C < ∞, in which case C is the smallest Lipschitz contant for f .

You are asked to prove Lemma 3.24 in Exercise 3.8.

Now we begin our construction with the “sawtooth function” S : R → R: the
unique piecewise linear function with corners at the integers and such that S(n) = 0
for every even integer n and S(n) = 1 for every odd integer n. The slopes of S are
all ±1, so by the preceding exercise S is Lipschitz (hence continuous):

∀x, y ∈ R, |S(x)− S(y)| ≤ |x− y|.
Also S is 2-periodic: for all x ∈ R, S(x+ 2) = S(x). For k ∈ N, define

fk : R → R, fk(x) =

(
3

4

)k

S(4kx).

We suggest that the reader sketch the graphs of the functions fk: roughly speaking
they are sawtooth functions which, as k increases, oscillate more and more rapidly

but with smaller amplitude: indeed ||fk(x)|| =
(
3
4

)k
. We define f : R → R by

f(x) =

∞∑
k=0

fk(x) =

∞∑
k=0

(
3

4

)k

S(4kx).

Since
∑∞

k=0 ||fk|| =
∑∞

k=0

(
3
4

)k
< ∞, the series defining f converges uniformly by

the Weierstrass M-Test. This also gives that f is continuous, since f is a uniform
limit of a sequence of continuous functions. We claim however that f is nowhere
differentiable. To see this, fix x0 ∈ R. We will define a sequence {δn} of nonzero
real numbers such that δn → 0 and the sequence

Dn =
f(x0 + δn)− f(x0)

δn
is divergent. This implies that f is not differentiable at x0.

Let’s do it. First suppose that the fractional part of x0 lies in [0, 1
2 ), so that

the interval (x0, x0 +
1
2 ) contains no integers. In this case we put

δn =
4n

2
,
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and the reason for our choice is that the interval (4nx0, 4
n(x0 + δn)) contains no

integers. Let k, n ∈ N. We claim the following inequalities:

(12) ∀k > n, |S(4kx0 + 4kδn)− S(4kx0)| = 0.

(13) ∀k = n, |S(4kx0 + 4kδn)− S(4kx0)| =
1

2
.

(14) ∀k < n, |S(4kx0 + 4kδn)− S(4kx0)| ≤ |4kδn|.
Indeed: (12) holds because if k > n then

4kx0 + 4kδn − 4kx0 = 4kδn =
4k−n

2

is a multiple of 2 and S is a 2-periodic function; (13) holds because if k = n then

4kx0 + 4kδn = 4kx0 +
1

2
,

so by our choice of δn, the function S is linear on [4kx0, 4
kx0 + 1

2 ] of slope ±1,

hence the difference between its values at the endpoints is ±1
2 . Finally, (14) holds

because 1 is a Lipschitz constant for S. Using these results and the Reverse Triangle
Inequality gives∣∣∣∣f(x0 + δn)− f(x0)

δn

∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

(
3

4

)k
S(4kx0 + 4kδn)− S(4kx0)

δn

∣∣∣∣∣
≥
(
3

4

)n

4n −
n−1∑
k=0

(
3

4

)k

·
∣∣∣∣S(4kx0 + 4kδn)− S(4kx0)

δn

∣∣∣∣
≥ 3n −

n−1∑
k=0

3k = 3n − 3n − 1

2
≥ 3n

2
.

Thus Dn → ∞, so f is not differentiable at x0.
We’re not quite done: recall that we assumed that the fractional part of x0 lay

in [0, 1
2 ), with the consequence that S was linear on the interval [(4nx0, 4

n(x0+δn)].

What to do if the fractional part of x0 lies in [ 12 , 1)? In this case we take δn = −4n

2
so that the interval (4n(x0 + δn), 4

nx0) contains no integers so S is linear on the
interval [4n(x0 + δn), 4

nx0], and the rest of the proof goes through as above.
So, albeit with a different function, we have proved Weierstrass’s Theorem.

Theorem 3.25. (Weierstrass, 1872) There is a function f : R → R that is
continuous at every point of R but differentiable at no point of R.

Notice that if we restrict f to some closed interval, say [0, 2], then by the Weierstrass
Approximation Theorem f is – like any continuous function on [0, 2] – a uniform
limit of polynomials. Thus even a uniform limit of polynomials on a closed, bounded
interval need not have any good differentiability properties whatsoever!

Exercises.

Exercise 3.18. Show that the function defined by (11) above is continuous.

Problems.

Problem 3.8. Prove Lemma 3.24.
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6. Some Further Exercises and Problems

Exercises.

Exercise 3.19. Let A ⊆ RN , and let {fn : A → R}∞n=0 be a sequence of

functions such that fn
u→ f on A.

a) Suppose that the set {n ∈ N | fn is continuous} is infinite. Show: the
function f is continuous.

b) Give an example of a sequence fn : R → R such that each fn is discon-
tinuous at every point of R that converges uniformly to the continuous
function f = 0.

Exercise 3.20. This exercise concerns ratio and root test upper and lower
limits for the series

∑∞
n=0 2

−n+(−1)n .

a) Show that ρ = 1
8 and ρ = 2. Deduce that the Ratio Test fails to determine

the convergence of the series.
b) Show that θ = θ = 1

2 . Deduce from the Root Test that the series is
absolutely convergent.

Exercise 3.21. Construct a convergent series
∑

n an with positive terms such

that the upper Ratio Test limit ρ = lim an+1

an
is infinite.

Problems.

Problem 3.9. Let A ⊆ RN , and let {fn : A → R}∞n=0 be a sequence of functions

such that fn
u→ f on A. Suppose that the set {n ∈ N | fn is uniformly continuous}

is infinite. Show: the function f is uniformly continuous.

Problem 3.10. Let R ∈ (0,∞).

a) Exhibit a power series
∑∞

n=0 anx
n with domain (−R,R).

b) Exhibit a power series
∑∞

n=0 anx
n with domain [−R,R).

c) Exhibit a power series
∑∞

n=0 anx
n with domain (−R,R].

d) Exhibit a power series
∑∞

n=0 anx
n with domain [−R,R].

Problem 3.11. Prove the Root Test (Theorem 3.11).

Problem 3.12. Let
∑

n an be any series with an ̸= 0 for all n. Prove (10)
relating the Ratio and Root Test lower and upper limits.



CHAPTER 4

Real Induction and Compactness

1. Real Induction

1.1. Statement and first application. A subset S ⊆ [a, b] is inductive if:

(RI1) a ∈ S.
(RI2) If a ≤ x < b, then x ∈ S =⇒ [x, y] ⊆ S for some y > x.
(RI3) If a < x ≤ b and [a, x) ⊆ S, then x ∈ S.

Theorem 4.1. (Real Induction) For S ⊆ [a, b], the following are equivalent:

(i) The set S is inductive.
(ii) We have S = [a, b].

Proof. (i) =⇒ (ii): let S ⊆ [a, b] be inductive. Seeking a contradiction,
suppose S′ = [a, b] \ S is nonempty, so inf S′ exists and is finite.
Case 1: inf S′ = a. Then by (RI1), a ∈ S, so by (RI2), there exists y > a such that
[a, y] ⊆ S, and thus y is a greater lower bound for S′ then a = inf S′: contradiction.
Case 2: a < inf S′ ∈ S. If inf S′ = b, then S = [a, b]. Otherwise, by (RI2) there
exists y > inf S′ such that [inf S′, y] ⊆ S, contradicting the definition of inf S′.
Case 3: a < inf S′ ∈ S′. Then [a, inf S′) ⊂ S, so by (RI3) inf S′ ∈ S: contradiction!
(ii) =⇒ (i) is immediate. □

Theorem 4.1 is due to D. Hathaway [Ha11] and, independently, to me [Cl19].
It is really an equivalent formulation of Dedekind completeness (see [Cl19, Thm.
14]), but just as Mathematical Induction provides a platform or structure that can
be extremely helpful in “getting a clue” as to what kind of argument to make,
Real Induction provides a similar structure that, with some practice, makes proofs
of some of the major results in undergraduate real analysis and topology become
rather routine. Here is a first example.

Theorem 4.2 (Intermediate Value Theorem). Let f : [a, b] → R be continuous.
If M lies in between f(a) and f(b), then there is c ∈ [a, b] such that f(c) = M .

Proof. We will show the following: if f : [a, b] → R \ {0} is continuous and
f(a) > 0, then also f(b) > 0. Assuming this, it follows that if f : [a, b] → R is
continuous and moreover f(a) > 0 and f(b) < 0, then there must be c ∈ (a, b) such
that f(c) = 0 (for if not, the preceding claim implies f(b) > 0). In turn, if we apply
this second claim to ±(f(x)−M) then we get the full result.

Let S := {x ∈ [a, b] | f(x) > 0}. Our strategy of proof is to show that S is
inductive; then by Real Induction we will have S = [a, b], and that b ∈ S means
f(b) > 0, the desired conclusion.
(RI1) By hypothesis we have f(a) > 0, meaning that a ∈ S.
(RI2) Let x ∈ [a, b) and suppose that x ∈ S: that is, f(x) > 0. Because f is

99
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continuous, there is some δ > 0 such that f remains positive on [x−δ, x+δ]∩ [a, b].
Choosing δ small enough so that x+ δ ≤ b we get that f is positive on [x, x+ δ].
(RI3) Let x ∈ (a, b] and suppose that f(y) is positive for all y ∈ [a, b] with y < x.
We want to show that f(x) > 0. Because f(x) ̸= 0 by hypothesis, the only other
possibility is that f(x) < 0. But as above, this means that there is δ < 0 such
a ≤ x− δ and f is negative on [x− δ, x), which contradicts our assumption. □

We will give a more significant application of Real Induction in the following section.

2. A Mean Value Inequality For All Functions

Once, over the course of a single week I attended five short talks on this
linchpin of calculus:

Theorem 4.3 (Mean Value Theorem, henceforth “MVT”). Let f : [a, b] → R
be a function. Suppose that f is continuous and that its restriction to (a, b) is
differentiable. Then there is c ∈ (a, b) such that

(15) f ′(c) =
f(b)− f(a)

b− a
.

As one of the speakers pointed out, MVT is not just the equation (15): rather, (15)
is its conclusion, which holds under the continuity and differentiability hypotheses.

Most freshman calculus students will struggle to find meaning in MVT unless
it is placed in good context. The speakers did this very well. All of them gave the
geometric interpretation involving a tangent line parallel to the secant line. Most
also gave the physical interpretation: suppose f(x) gives the position of a particle
at time x. Then f(b)− f(a) is the displacement of the particle between time a and

time b, while b − a is the elapsed time, so the quantity f(b)−f(a)
b−a is the particle’s

average velocity on the time interval [a, b]. In turn f ′(c) can be interpreted as the
instantaneous velocity at time c. Thus MVT asserts that the average velocity is
also equal to the instantaneous velocity for at least one point in time.

Several of the speakers gave the following application: MVT could be used
by the highway patrol in order to award speeding tickets even when the
speeding is not directly witnessed. Namely, if the authorities know that at
time a your position is f(a) – perhaps you pass a camera that views your license
plate – and also that at time b > a your position is f(b), they can apply MVT
to conclude that at some point in between your instantaneous velocity must have

been f(b)−f(a)
b−a . So if for the entire stretch of the highway between f(a) and f(b)

the speed limit was at most M < f(b)−f(a)
b−a , they can write you a ticket.

So far this is quite familiar. But during the last lecture a new thought poked
through: there is a snag that I didn’t see for years. Do you see it now?

Here it is: in order to apply MVT we need to know that f is continuous on
[a, b] and differentiable on (a, b). Is it clear that one must drive in a differentiably?

I think it is not! For instance, if you are driving at 30 mph and get rear ended,
that will instantly bump up your speed. It seems natural to model this position
function as having a corner point at the point of collision. But even one point of
nondifferentiability can falsify the conclusion of MVT: e.g. the function

f : [−1, 1] → R, x 7→ |x|
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is differentiable at every point other than x = 0 with derivative either 1 or −1: so
f ′(c), when it exists, gets nowhere near the average velocity, which is 0.

If called to testify on the nondifferentiability problem in traffic court, I would
say: while it’s highly plausible that a driver’s position must be a continuous function
of time, differentiability feels like a simplifying assumption made so as to mathe-
matically model a real world situation. There are also results suggesting that a
“generic” continuous function is not differentiable.1

What is your reaction to this objection? Mine is to question our apparent def-
inition of “exceeding the speed limit of M” as f ′(c) > M for at least one c in the
interval (a, b). Isn’t this more an interpretation of the derivative than a principled
requirement that it exist?

Here is a definition of exceeding a speed limit M that applies to any function
f : [a, b] → R whatsoever: for M > 0, a function f : [a, b] → R is an M-speeder

if for all δ > 0 there are c, d ∈ [a, b] with 0 < d − c < δ such that |f(d)−f(c)|
d−c > M .

Thus you are an M -speeder if there are arbitrarily short subintervals of [a, b] on
which your average speed exceeds M . This definition seems physically appealing
and even in accordance with the type of unsafe driving speed limits are designed
to prevent: covering too much ground in too short a time for you and others to
respond appropriately to changes in traffic conditions.

And here our main result:

Theorem 4.4. If f : [a, b] → R is a function, then f is an M -speeder for all

0 < M < |f(b)−f(a)|
b−a .

Thus the indirect procedure for awarding (so to speak) speeding tickets seems jus-
tified after all.

We give the proof of Theorem 4.4 in §2. In §3 we explore some complements,
including a version of Theorem 4.4 for functions taking values in any metric space.
In §4 we will discuss more conventional Mean Value Inequalities and see that they
are implied by our results.

2.1. The Proof. Our proof will use the analogue of the limit superior and
limit inferior of a real sequence for functions g : (−δ, δ) \ {0} → R. Namely we put

lim x→0g(x) := inf
0<ϵ≤δ

(
sup

0<|x|<ϵ

g(x)

)
∈ [−∞,∞],

lim x→0g(x) := sup
0<ϵ≤δ

(
inf

0<|x|<ϵ
g(x)

)
∈ [−∞,∞].

The usual limit limx→0 g(x) exists in [−∞,∞] and only if lim x→0g(x) = lim x→0g(x).
If g is defined only on (0, δ) (resp. only on (−δ, 0)) we can still define lim x→0g(x)
and lim x→0 just by restricting to 0 < x < ϵ (resp. to −ϵ < x < 0).

1A “generic” continuous function f : [a, b] → R is differentiable at no point in the sense that
the somewhere differentiable functions form a meager subset of the Baire space of all continuous

functions [Mu, §49].
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Here is a lim x→0 cheatsheet: we have lim x→0g(x) = ∞ if and only if g is un-
bounded above on every interval (−δ, δ) \ {0}. If lim x→0g(x) = L ∈ R, then L
is the least real number with the property that for all M > L there is ϵ > 0 such
that g(x) ≤ M for all 0 < |x| < ϵ. We have lim x→0g(x) = −∞ if and only if
limx→0 g(x) = −∞ in the usual sense. One can get the corresponding lim x→0

cheatsheet using the fact that

lim x→0g(x) = −lim x→0 − g(x).

For f : [a, b] → R and x ∈ [a, b], we put

Df (x) := lim h→0
f(x+ h)− f(x)

h
∈ [−∞,∞],

Df (x) := lim h→0
f(x+ h)− f(x)

h
∈ [−∞,∞].

Thus f is differentiable at x ∈ [a, b] – in the one-sided sense at the endpoints – if
and only if Df (x) and Df (x) are equal and finite. However both Df and Df are

defined for arbitrary f .2

What we will use about the upper derivative is that for M ∈ R:
• If Df (x) ≤ M , then for all ϵ > 0 there is δ > 0 such that f(y)−f(x)

y−x ≤ M + ϵ for

all y ∈ [x− δ, x+ δ] \ {x}; and
• If Df (x) > M , then for all δ > 0 there is y ∈ [x − δ, x + δ] \ {x} such that
f(y)−f(x)

y−x > M .

All of the content of Theorem 4.4 resides in the following result.

Theorem 4.5. Let f : [a, b] → R, and let m,M ∈ R.
a) If Df (x) ≤ M for all x ∈ [a, b], then f(b)−f(a)

b−a ≤ M .

b) If Df (x) ≥ m for all x ∈ [a, b], then f(b)−f(a)
b−a ≥ m.

Proof. a) For ϵ > 0, put

Sϵ := {x ∈ [a, b] | f(x)− f(a) ≤ (M + ϵ)(x− a)}.

It suffices to show:

(16) ∀ϵ > 0, Sϵ = [a, b].

For if so, then for all ϵ > 0, because b ∈ Sϵ we have

f(b)− f(a) ≤ (M + ϵ)(b− a),

and it follows that f(b)−f(a)
b−a ≤ M . We will show that Sϵ = [a, b] by Real Induction.

(RI1): It is immediate that a ∈ Sϵ.
(RI2): Let x ∈ [a, b) ∩ Sϵ. Since Df (x) ≤ A, there is δ > 0 such that for all

y ∈ [x, x+ δ] we have f(y)−f(x)
y−x ≤ M + ϵ, and thus we have

f(y)− f(a) = (f(y)− f(x)) + (f(x)− f(a))

≤ (M + ϵ)(y − x) + (M + ϵ)(x− a) = (y − a)(M + ϵ),

2These are two-sided versions of the Dini derivatives, though you need not know what that
means.
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so [x, x+ δ] ⊆ Sϵ.
(RI3): Let x ∈ (a, b] and suppose that [a, x) ⊆ Sϵ. Since Df (x) ≤ M , there is δ > 0

such that for all y ∈ [x− δ, x] we have f(x)−f(y)
x−y ≤ M + ϵ, and thus we have

f(x)− f(a) = (f(x)− f(y)) + (f(y)− f(a))

≤ (M + ϵ)(x− y) + (M + ϵ)(y − a) = (x− a)(M + ϵ),

so x ∈ Sϵ.
b) This is similar to part a); or, since D−f = −Df , we can reduce to part a). □

Proof of Theorem 4.4: if 0 < M < |f(b)−f(a)|
b−a , then either f(b)−f(a)

b−a > M or
f(b)−f(a)

b−a < −M .

• If f(b)−f(a)
b−a > M , then by Theorem 4.5a) we have Df (c) > M for some

c ∈ [a, b], so for all δ > 0 there is x ∈ [a, b] with 0 < |c − x| < δ such that
f(x)−f(c)

x−c > M .

• If f(b)−f(a)
b−a < −M , then by Theorem 4.5b) we have Df (c) < −M for some

c ∈ [a, b], so for all δ > 0 there is x ∈ [a, b] with 0 < |c − x| < δ such that
f(x)−f(c)

x−c < −M .

Remark. We actually proved something stronger than Theorem 4.4, namely:

for f : [a, b] → R, suppose there is a real number 0 < M < |f(b)−f(a)|
b−a . Then:

a) If f(b) > f(a), there is c ∈ [a, b] such that for all δ > 0 there is x ∈ [a, b]

such that 0 < |c− x| < δ and f(x)−f(c)
x−c > M .

b) If f(b) < f(a), there is c ∈ [a, b] such that for all δ > 0 there is x ∈ [a, b]

such that 0 < |c− x| < δ and f(x)−f(c)
x−c < −M .

2.2. Consequences. If f is continuous, we get a slightly stronger conclusion:

Theorem 4.6. Let f : [a, b] → R be continuous, and let 0 < M < |f(b)−f(a)|
b−a .

Then there is c ∈ (a, b) such that either:

(i) For all δ > 0, there is x ∈ [a, b] such that 0 < |c− x| < δ and f(x)−f(c)
x−c >

M ; or

(ii) For all δ > 0, there is x ∈ [a, b] such that 0 < |c− x| < δ and f(x)−f(c)
x−c <

−M .

Moreover (i) occurs if f(b) > f(a) and (ii) occurs if f(b) < f(a).

Proof. After Remark 2.1, all that is left is to show that we can take c ∈ (a, b).

For this: since f is continuous and M < |f(b)−f(a)|
b−a , there are a < a′ < b′ < b such

that M < |f(b′)−f(a′)|
b′−a′ . Applying Remark 2.1 to the restriction of f to [a′, b]′ gives

c ∈ [a′b′] ⊂ (a, b). □

And if we put back the differentiability assumption, we get:

Corollary 4.7 (Mean Value Inequality, or MVI). Let f : [a, b] → R be con-
tinuous on [a, b] and differentiable on (a, b). If m ≤ f ′(x) ≤ M for all x ∈ (a, b),
then

m(y − x) ≤ f(y)− f(x) ≤ M(y − x)

for all x, y ∈ [a, b] with x ≤ y.
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Proof. Suppose that the second inequality does not hold. Then there are
a ≤ x < y ≤ b with f(y) − f(x) > M(y − x). Then there is ϵ > 0 such that
f(y) − f(x) > (M + ϵ)(y − x). By Theorem 4.6 there is c ∈ (a, b) and a sequence

of points {xn} in [a, b] \ {c} converging to c such that f(xn)−f(c)
xn−c > M + ϵ for all

n ∈ Z+. By assumption f is differentiable at c, so

f ′(c) = lim
n→∞

f(xn)− f(c)

xn − c
≥ M + ϵ,

a contradiction. The first inequality is established in a very similar way. □

MVI is itself a corollary of the Mean Value Theorem (MVT). MVT is certainly not
very difficult to prove: we covered it in the Fall 2022 course. My understanding is
that you have seen MVT in the last course, but just to be sure Exercise 4.1 outlines
the standard proof.

During my first work on Real Induction in 2010, I saw how to use it to prove
MVI. Our Theorem 4.4 is essentially the recognition (which came in 2022) that this
argument is not really using the differentiability of f . I did not see in 2010 and still
do not see now how to prove the MVT using Real Induction.3

Despite the fact that MVT is stronger than MVI, several leading mathematical
expositors have argued that MVI is somehow “more natural” than MVT and that
calculus texts should use MVI instead: this goes back at least to 1967 works of
Bers [Be67] and Cohen [Co67] and has also been made by Dieudonné [D] and
Boas [Bo81], among others. I never reeally understood the passion that several
leading analysts brought to this; maybe by now the fuss has died down. The one
thing I will say in their favor is that it turns out that many important applications
of MVT one can use MVI instead. The exercises treat some classic examples.

Exercises.

Exercise 4.1. Let f : [a, b] → R be continuous and differentiable on (a, b).

a) Prove Rolle’s Theorem: if f(a) = f(b) = 0, then there is c ∈ (a, b) such
that f ′(c) = 0.
(Hint: first deal with the case in which f assumes its maximum and min-
imum values at the endpoints, then treat the case in which some interior
point c is either a maximum or minimum for f . You may use without proof
that if f has a local maximum or minimum at c ∈ (a, b), then f ′(c) = 0.)

b) Deduce MVT by subtracting a suitable linear function from f .

Exercise 4.2. Let f : [a, b] → R be a function with f(b) − f(a) > 0, and let

0 < M < f(b)−f(a)
b−a . By Remark 2.1, there is c ∈ [a, b] such that for all δ > 0 there

is x ∈ [a, b] such that 0 < |c − x| < δ and f(x)−f(c)
x−c < M . According to Theorem

4.6, if f is moreover continuous, we may choose this c to lie in the open interval
(a, b). Give an example of a discontinuous f : [a, b] → R such that the only such c
is a, and give another example such that the only such c is b.

3To be sure, this has no negative consequences whatseover: again, pretty much everyone
knows how to prove the Mean Value Theorem. (You are invited to add yourself to the list in

Exercise 4.1.) But it is interesting to know whether something can be done, and so I still wonder...
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For the following exercises we need to introduce some terminology which will be at
least roughly familiar but we need to make some precise distinctions: let X ⊆ R
and let f : X → R. We say f is:

• increasing if for all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2);
• strictly increasing if for all x1, x2 ∈ X, x1 < x2 =⇒ f(x1) < f(x2);
• decreasing if for all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≥ f(x2);
• strictly decreasing if for all x1, x2 ∈ X, x1 < x2 =⇒ f(x1) > f(x2).

Exercise 4.3. Let I be an interval, and let f : I → R be differentiable.

a) Show: if f ′(x) ≥ 0 for all x ∈ I, then f is increasing.
b) Show: if f ′(x) > 0 for all x ∈ I, then f is strictly increasing.
c) Show: if f ′(x) ≤ 0 for all x ∈ I, then f is decreasing.
d) Show: if f ′(x) < 0 for all x ∈ I, then f is strictly decreasing.

Exercise 4.4. Let f : I → R be a differentiable function.

a) [Zero Velocity Theorem]
Show: if f ′(x) = 0 for all x ∈ I, then f is constant.

b) [(Almost) Uniqueness of Antiderivatives] Suppose that f, g : I → R are
differentiable functions and that f ′ = g′. Show: there is C ∈ R such that
g = f + C: i.e., for all x ∈ I, we have g(x) = f(x) + C.

Exercise 4.5. Let k ∈ Z+. Suppose that the kth derivative f (k) of f exists
and is identically 0: f (k)(x) = 0 for all x ∈ I. Show: f is a polynomial function of
degree at most k. (Suggestion: use induction on k.)

Problems.

Problem 4.1. A function f : [a, b] → R is an infinite-speeder if it is an
M -speeder for all M > 0.

a) Let f : [a, b] → R be a function that is not continuous. Show: f is an
infinite-speeder.

b) Show: g : [−1, 1] → R by g(x) = x
1
3 . Show: g is an infinite-speeder that

is continuous and differentiable except at x = 0.
c) Define h : [−1, 1] → R by

h(x) =

{
x 7→ x2 sin( 1

x2 ) if x ̸= 0

0 if x = 0
.

Show: h is a differentiable infinite-speeder.
d) Show: no Lipschitz function f : [a, b] → R is an infinite-speeder. Deduce:

if f has a continuous derivative, then it is not an infinite-speeder.

Here is a version of Theorem 4.4 for speeding in Euclidean N -space:

Problem 4.2. Let f : [a, b] → RN be a function, and let 0 < M < ||f(b)−f(a)||
b−a .

a) Show: there is c ∈ [a, b] such that for all δ > 0 there is x ∈ [a, b] such that

0 < |c− x| < δ and ||f(x)−f(c)||
x−c > M .

b) Show: if f is moreover continuous, then the c of part a) may be taken to
lie in (a, b).

Problem 4.3. Let I be an interval, and let f : I → R be differentiable.
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a) Suppose that f ′(x) ≥ 0 for all x ∈ I, so by Exercise 4.3, f is increasing.
If we moreover had that f ′(x) > 0 for all x ∈ I, then by Exercise 4.3b) f
would be strictly increasing. However, f may be strictly increasing even
when f ′(x) = 0 for some x ∈ I. Show that the following are equivalent:
(i) f is not strictly increasing.
(ii) There are a < b in I such that f |[a,b] : [a, b] → R is constant.

b) Use the criterion of part a) to show that for all odd integers n ≥ 1, the
function f : R → R by f(x) = xn is strictly increasing.

c) State an analogous criterion for a function to be strictly decreasing. (You
need not prove it.)

3. Compactness

3.1. Definition and first properties. Let A be a subset of RN , and let
{Ui}i∈I be an indexed family of subsets of RN . We say that {Ui}i∈I covers A (or
is a cover of A) if A ⊆

⋃
i∈I Ui: in other words, every point of A lies in at least

one of the sets Ai. We say that a cover {Ui}i∈I of A admits a finite subcover if
there is a finite subset J ⊆ I such that {Ui}i∈J still covers A.

Example 4.1. Let A be a subset of RN . We claim that every cover of A admits
a finite subcover if and only if A is finite.

Indeed, suppose A = {a1, . . . , an} is finite. Then if {Ui}i∈I is a cover of A, for
1 ≤ j ≤ n the element aj must lie in Ui for at least one i ∈ I. Choose such an i
and call it ij. Then J := {i1, . . . , in} is a finite subset of I such that A ⊆

⋃
i∈J Ui.

Conversely, suppose that A is infinite. For a ∈ A, let Ua := {a}. Take I = A.
Clearly

⋃
a∈I Ua = A, so we have a covering of A. In this case if we remove even

a single element of I then we don’t have a cover anymore, so there is no proper
subset J of I such that

⋃
i∈J Ui ⊇ A. In particular there is no finite subcover.

Thus for a subset A of RN (or a subset of any set, for that matter), the condition
that every cover of A admits a finite subcover is precisely the condition that A be
finite. Now we will restrict to a certain class of covers using the topology of RN

and get a condition that can (helpfully, I feel, though it is up to you whether you
agree) be viewed as a “topological finiteness condition.” Here goes:

For a subset A of RN , an open cover of A is a cover {Ui}i∈I of A in which
each Ui is an open subset of RN . We say that a subset A ⊆ RN is compact if
every open cover admits a finite subcover.

In Chapter 1 we introduced the concept of a subset A of RN being sequentially
compact – every sequence in A admits a subsequence that converges to an element
of A – and found that A is sequentially compact if and only if it is closed and
bounded, a result that is equivalent to the Bolzano-Weierstrass Theorem in RN .
Compactness is a more abstract concept, involving indexed families of sets rather
than just sequences and subsequences. Nevertheless, could it be that a subset of
RN is compact if and only if it is closed and bounded? Half of this is easy to prove:

Proposition 4.8. Let A ⊆ RN be compact. Then A is closed and bounded.

Proof. First suppose that A is not closed, so there is a point x ∈ RN \A that
is an accumulation point of A. For n ∈ Z+, let

Un := RN \B•(x,
1

n
).
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Then
∞⋃

n=1

Un = RN \
∞⋂

n=1

B•(x,
1

n
) = RN \ {x} ⊇ A,

so {Un}∞n=1 is an open cover of A. We also have U1 ⊆ U2 ⊆ . . . ⊆ Un ⊆ so the union
over any finite number of sets Un1

, . . . , Unk
is Umax(n1,...,nk). However A contains

points arbitrarily close to x, so A is not contained in any set Un. Therefore the
cover {Un}∞n=1 has no finite subcover, so A is not compact.

Now suppose that A is unbounded. For each a ∈ A, let Ua := B◦(a, 1) be the
open ball of radius 1 centered at a. Clearly {Ua}a∈A is an open cover of A. However
each Ua is bounded, so the union of any finite number of Ua’s is also bounded. Since
A is unbounded we cannot have A ⊆

⋃
a∈J Ua for any finite subset J of A, so this

cover has no finite subcover and thus A is not compact. □

The celebrated Heine-Borel Theorem is Proposition 4.8 together with its converse.
We will give two proofs, one for N = 1 using real induction and one for all N ∈ Z+

using “lion-hunting.” But first let us establish some other facts about compact
subsets following what we already know about sequential compactness.

Proposition 4.9. Let A be a compact subset of RN .

a) If B is a closed subset of A, then B is also compact.
b) Let f : A → RM be a continuous function. Then f(A) is a compact subset

of RM .

Proof. a) Let {Ui}i∈I be an open cover of B. Since B is closed, UB := RN \B
is open. Consider the family Ũ := {Ui | i ∈ I} ∪ {UB} of open sets that consists of
all of the Ui’s together with UB . Since every element of B is contained in some Ui

and every other element of RN is contained in UB , we have
⋃

i∈I Ui ∪ UB = RN .

In particular Ũ is an open covering of the compact subset A, which means that it
has a finite subcover: that is, there is a finite subset J of I such that

A ⊆
⋃
i∈J

Ui ∪ UB .

(We don’t know whether UB lies in the finite subcover or not, but if it doesn’t then
adding it in we still get a finite subcover, so we may as well assume that it does.)
Since B is a subset of A we have

B ⊆
⋃
i∈J

Ui ∪ UB .

But UB is disjoint from B, so also

B ⊆
⋃
i∈J

Ui.

This means that our open cover of B has a finite subcover, so B is compact.
b) Let {Vi}i∈I be an open cover of f(A) in RM . For each i ∈ I, let Ui := f−1(Vi) =
{x ∈ RN | f(x) ∈ Vi}. We claim that because Vi is open and f is continuous, then
Ui is an open subset of RN . Indeed, let x ∈ Ui, so f(x) ∈ Vi. Since Vi is open in
RM there is ϵ > 0 such that B◦(f(x), ϵ) ⊆ Vi. By continuity there is δ > 0 such
that if x′ ∈ B◦(x, δ), then f(x′) ∈ B◦(f(x), ϵ) ⊂ V , so B◦(x, δ) ⊆ f−1(Vi) = Ui.
This shows that Ui is open. Next we claim that {Ui}i∈I is a cover of A. Indeed, if
a ∈ A, then there is some i ∈ I such that f(a) ∈ Vi, hence a ∈ Ui. Because A is



108 4. REAL INDUCTION AND COMPACTNESS

compact, there is a finite subset J ⊆ I such that A ⊆
⋃

i∈J Ui. Thus if a is in A,
then a ∈ Ui for some i ∈ J , which implies that f(a) ∈ Vi for some i ∈ J , so every
element of f(A) lies in Vi for some i ∈ J , so {Vi}i∈J is a finite subcover of f(A).
Thus f(A) is compact. □

3.2. Heine-Borel in R.

Theorem 4.10 (Heine-Borel in R). For B ⊆ R, the following are equivalent:

(i) The set B is compact.
(ii) The set B is closed and bounded.

Proof. (i) =⇒ (ii) is Proposition 4.8.
(ii) =⇒ (i): Let B be closed and bounded. Then for some a ≤ b we have B ⊆ [a, b].
By Proposition 4.9a), if [a, b] is compact then so is B. So it suffices to show that
the closed bounded interval [a, b] is compact, which we will do by Real Induction.
Let {Ui}i∈I be an open cover of [a, b]. We define S to be the set of x ∈ [a, b] such
that some finite number of the Ui’s cover [a, x]. It will suffice to show that S is
inductive, for then by Real Induction we have S = [a, b], and that b ∈ S means that
[a, b] has a finite subcover, which we want to show.
(RI1) Choose i ∈ I such that a ∈ Ui. Then Ui is a singleton subcover of [a, a] = {a},
hence certainly a finite subcover.
(RI2) Let x ∈ [a, b) and suppose that x ∈ S: thus there is a finite subset J of I
such that [a, x] ⊆

⋃
i∈J Ui. In particular x lies in the open set

⋃
i∈J Ui, so there is

some δ > 0 such that [x, x+ δ] also lies in
⋃

i∈J Ui, so overall [a, x+ δ] ⊆
⋃

i∈J Ui,
which shows that x + δ ∈ S. Notice that if S contains an element of [a, b] then it
also contains all smaller elements, so certainly [x, x+ δ] ⊆ S.
(RI3) Let x ∈ (a, b] and suppose that S contains every element of [a, b] that is
smaller than x. Choose i• ∈ I such that x ∈ Ui• . Because Ui• is open there is
δ > 0 such that [x− δ, x] ⊆ Ui• . Because x− δ < x we have x− δ ∈ S, so there is
a finite subset J of I such that [a, x− δ] ⊆

⋃
i∈J Ui. Thus overall we have

[a, x] ⊆
⋃
i∈J

Ui ∪ Ui• ,

so the covering of [a, x] admits a finite subcover and thus x ∈ S. □

3.3. Heine-Borel in RN . Recall from Exercise 1.6 that the diameter diam(A)
of a nonempty subset A ⊆ RN is the supremum of the distances between pairs of
points of A and that diam(A) is finite if and only if A is bounded. Also we have
diam(A) = 0 if and only if A consists of a single point.

Theorem 4.11 (Cantor Intersection Theorem). Let {Bn}∞n=1 be a sequence of
nonempty closed subsets of RN such that:

(i) We have B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . ..
(ii) We have diam(Bn) → 0.

Then there is x ∈ RN such that
⋂∞

n=1 Bn = {x}.

Proof. Step 1: For n ∈ Z+, choose any xn ∈ Bn. We claim that the sequence
{xn}∞n=1 is a Cauchy sequence. Indeed, let ϵ > 0, and choose N ∈ Z+ such that for
all n ≥ N we have diam(Bn) < ϵ. Then for all m,n ≥ N we have that xm lies in
Bm, which is a subset of BN and xn lies in Bn, which is a subset of BN . So xm and
xn each lie in BN , hence ||xm − xn|| < ϵ. Cauchy sequences in RN are convergent,
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so there is x ∈ RN such that xn → x. Let n ∈ Z+. Because Bn contains all but
finitely many terms of the sequence {xn} and is closed, it also contains its limit x.
So indeed x ∈

⋂∞
n=1 Bn.

Step 2: Seeking a contradiction we suppose there are distinct points x ̸= y in⋂∞
n=1, let d := ||x− y|| > 0. For any n ∈ Z+, since x and y both lie in Bn we have

diam(Bn) ≥ d. A sequence cannot converge to 0 if each of its terms is at least a
positive number: contradiction. □

Theorem 4.12 (Heine-Borel). For B ⊆ RN , the following are equivalent:

(i) The set B is compact.
(ii) The set B is closed and bounded.

Proof. (i) =⇒ (ii) is Proposition 4.8.
(ii) =⇒ (i): Since B is closed and bounded, there is a closed box A containing B.
If A is compact, then by Proposition 4.9 it follows that B is compact. So it suffices
to show that closed boxes in RN are compact.

Let B be a closed box in RN , and seeking a contradiction, suppose there
is an open cover {Ui}i∈I with no finite subcover. We may bisect B into 2N

closed subboxes all of the same size: if B =
∏N

i=1[ai, bi], then each of the boxes

is obtained by selecting for each 1 ≤ i ≤ N either the left interval [ai,
ai+bi

2 ]

or the right interval [ai+bi
2 , bi]. The diameter of the closed box B is the length√

(a1 − b1)2 + . . .+ (aN − bN )2 of its longest diagonal, from which it is easy to see
that each of the 2N subboxes has half the diameter of the original box. It must be
the case that for at least one of the subboxes B1 cannot be covered by any finite
number of the sets Ui: indeed there are finitely many subboxes overall and their
union is B, so if each subbox could be so covered, then taking the union of those
covers would give a finite subcover of B.

Now we repeat the above argument with B1 in place of B: there must be some

subbox B2 with diam(B2) =
diam(B1)

2 that is not covered by any finitely many of the
Ui’s. And so forth: repeating this argument gives us an infinite nested sequence of
closed subboxes

B ⊋ B1 ⊋ B2 ⊋ . . .

such that for all n we have diam(Bn+1) = diam(Bn)
2 , from which it follows that

diam(Bn) → 0. The Cantor Intersection Theorem therefore applies: there is a
unique point x ∈

⋂∞
n=1 Bn. Since x ∈ B, there is i ∈ I be such that x ∈ Ui.

Because Ui is open, there is some δ > 0 such that Ui contains the closed ball
B•(x, δ) (by definition this is true for an open ball, but any open ball contains a
closed ball of any smaller radius). For any set X containing x and of diameter at
most δ, we have X ⊆ B•(x, δ). This applies to the box Bn for all sufficiently large
n, but to get a contradiction we only need one, so let n ∈ Z+ be such that

Bn ⊆ B•(x, δ) ⊆ Ui.

By our construction Bn is not supposed to be covered by any finite number of
Ui’s....but it is clearly covered by Ui alone: contradiction! □

The Heine-Borel Theorem actually implies the Bolzano-Weierstrass Theorem, as
we will now show. By Exercise 1.40 it suffices to show that if A is a subset of RN

that is infinite and bounded, then it has an accumulation point in RN , so seeking a
contradiction suppose that A has no accumulation point in RN . Then A is closed,
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e.g. by Exercise 1.17, so by Heine-Borel the subset A is compact. Let a ∈ A. Since
a is not an accumulation point of A, Proposition 1.34 implies that a is an isolated
point of a: there is δa > 0 such that A∩B◦(a, δa) = {a}. Then {B◦(a, δa)}a∈A is an
open cover of A that has no proper subcover: indeed for any a ∈ A, by construction
the ball B◦(a, δa) is the only element of the cover that contains a, so we cannot
remove it. Since A is infinite so is our covering, and thus we have found an open
cover of A without a finite subcover, contradicting the compactness of A.

It is not as easy to deduce Heine-Borel from Bolzano-Weierstrass, though in some
sense that’s what we did to prove Heine-Borel, since our proof of Cantor Intersection
used the Cauchy completeness of RN which we deduced from Bolzano-Weierstrass.
However Exercise 4.4 gives a version of the Cantor Intersection Theorem for nested
sequences of closed boxes specifically which can be proved directly from the least
upper bound axiom.

In many applications of Bolzano-Weierstrass, we could equally well use Heine-Borel.
In particular, the results of this section equally well imply that the continuous image
of a closed and bounded subset of Euclidean space is a closed and bounded subset
of Euclidean space, which is what is needed to prove e.g. Corollary 1.28. As one
goes on in mathematics, the primary of compactness over sequential compactness
becomes increasingly pronounced. We give one example in the next section.

3.4. Dini’s Theorem. LetX be a set, and let {fn : X → R}∞n=0 be a sequence
of functions on X. We say that we have an increasing sequence if

∀x ∈ X, ∀n ∈ N, fn(x) ≤ fn+1(x)

and similarly we say that we have a decreasing sequence if

∀x ∈ X, ∀n ∈ N, fn(x) ≥ fn+1(x).

A good way to think about this is that having an increasing sequence of functions
means that for each x ∈ X we have an increasing sequence {fn(x)} of real numbers,
while having a decreasing sequence of functions means that for each x ∈ X we have
a decreasing sequence {fn(x)} of real numbers.

We hasten to add a possible point of confusion: when X is a subset of R we
have the notion of an increasing function f : X → R: this is a function such that
x1 ≤ x2 =⇒ f(x1) ≤ f(x2). We could of course have a sequence of such functions,
which would give us a sequence of increasing functions. Thus

sequence of increasing functions ̸= increasing sequence of functions,

so one must listen carefully. It may help to note that the notion of an increasing
sequence of functions makes sense when the domain is any set X, whereas to define
an increasing function f : X → R we would need an order relation on X.

Now we present a result of Dini that gives a new criterion for uniform convergence.

Theorem 4.13 (Dini’s Theorem). Let A ⊆ RN be compact, and let {fn : A →
R}∞n=0 be a sequence of real-valued functions on A. Suppose all of the following:

(i) Each fn is continuous.
(ii) The sequence {fn} is increasing or decreasing.
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(iii) {fn} converges pointwise on A to a continuous function A.

Then fn
u→ f on A.

Proof. Step 1: Replacing {fn} by {−fn} if necessary, we may assume that
the sequence is decreasing. Since f is continuous, the sequence {fn} is continuous,
decreasing and converges pointwise to f on A if and only if the sequence {fn−f} is
continuous, decreasing and converges pointwise to 0 on A, so we may assume that
f = 0. The hypotheses then imply that fn(x) ≥ 0 for all n ∈ N and all x ∈ A.
Step 2: Let ϵ > 0 and let x ∈ A. Since fn(x) → 0, there is Nx ∈ N such that
fNx

(x) ∈ [0, ϵ
2 ). Since fNx

is continuous at x, there is δx > 0 such that

∀y ∈ B◦(x, δx) ∩A, |fNx
(y)− fNx

(x)| < ϵ

2
,

from which it follows that

∀y ∈ B◦(x, δx) ∩A, fNx(y) = |fNx(y)| ≤ |fNx(y)− fNx(x)|+ |fNx(x)| < ϵ.

Since the sequence is decreasing, we get that |fn(y)| < ϵ for all n ≥ Nx and all
y ∈ B◦(x, δx) ∩A.
Step 3: The open balls {B◦(x, δx)}x∈A form an open cover of A. Since A is
compact, there is a finite subcover: thus there are x1, . . . , xn ∈ A such that
A ⊆

⋃n
i=1 B

◦(x, δx). Put

N := max(Nx1 , . . . , Nxn).

Then for all x ∈ A and all n ≥ N , there is some 1 ≤ i ≤ n such that x ∈ B◦(xi, δxi
)

so |fn(x)| < ϵ. This shows that the convergence is uniform on A. □

The proof of Dini’s Theorem is a good illustration of the power of compactness: it
allowed us to pass from a condition that held “locally at every point of A” to a
global condition on A almost immediately. So far as I know, it is not possible to
use Bolzano-Weierstrass in place of Heine-Borel in the proof of Dini’s Theorem.

In the setup of Dini’s Theorem, suppose that we assume conditions (i) and (ii)
only. Then condition (iii) is actually equivalent to the convergence to f being uni-
form. Indeed, one direction is Dini’s Theorem, while the other direction is Corollary
3.3. We state this again in the special case of a sequence of partial sums:

Corollary 4.14. Let A ⊆ RN be compact, and let {fn : A → [0,∞)}∞n=0 be
a sequence of non-negative continuous real functions defined on A. Suppose that
the series

∑∞
n=0 fn converges pointwise on A to a function S : A → R. Then the

convergence is uniform if and only if the sum S is a continuous function.

Proof. For N ∈ N, put SN :=
∑N

n=0 fn. Since each fn is non-negative, the
sequence {SN} of partial sums is increasing, and thus hypotheses (i) and (ii) of
Dini’s Theorem apply to {SN}. So: if S is continuous, then Dini’s Theorem applies
and the convergence is uniform. Conversely, if the convergence is uniform then S
is continuous by Corollary 3.3. □

Exercises.

Exercise 4.6. For n ∈ N, let fn : [0, 1] → [0,∞) by fn(x) = xn(1 − x). Use
Corollary 4.14 to show:

∑∞
n=0 fn converges pointwise but not uniformly on [0, 1].
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Problems.

Problem 4.4. To prove Heine-Borel we applied the Cantor Intersection in
the case where each Bn was a closed box in RN . In this case one can give a
more elementary proof and indeed see directly that the hypothesis that the diameters
converge to 0 is not needed.

a) Let {Bn}∞n=1 be a nested sequence of nonempty closed bounded intervals
in R, so Bn = [an, bn] for some real numbers an ≤ bn. Put

A := sup
n

an and B := inf
n

bn.

Using only the Dedekind completeness of R, show:

A ≤ B and

∞⋂
n=1

Bn = [A,B].

b) Let {Bn}∞n=1 be a nested sequence of closed boxes in RN . Show:
⋂∞

n=1 Bn

is itself a closed box. (Note that a point counts as a closed box.)



CHAPTER 5

Metric Spaces

1. A look ahead

In the last two chapters we sketched out some of the terrain of more advanced
analysis, in which function theory and set theory interact in more subtle ways. In
truth, graduate level real analysis is a very challenging course that relatively few
students will take. So I want to end by previewing a different course: undergradu-
ate general topology. This course gives a generalization and abstraction of most of
the material from Chapter 1, to the context of metric spaces.

Let X be a set. A metric function is a function d : X × X → R such that
all of the following hold:

(D1) (Positive Definiteness) For all x, y ∈ X, we have d(x, y) ≥ 0, with equal-
ity if and only if x = y.
(D2) (Symmetry) For all x, y ∈ X, we have d(x, y) = d(y, x).
(D3) (Triangle Inequality) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a pair (X, d), where X is a set and d : X × X → R is a
metric function. In our course, the shining example was to take X = RN and d
to be the Euclidean distance function: d(x,y) := ||x − y||. Many other examples
come from this, since if (X, d) is a metric space and Y is any subset of X, then if
dY : Y ×Y → R is just the metric function restricted to Y ×Y , then dY is a metric
function on Y , so (Y, dY ) is again a metric space.

In Chapters 1 and 4 we studied:

• Convergence of sequences in RN .
• Continuity of functions f : X → RM where X is a subset of RN .
• Bounded sets, diameters of sets, open and closed sets in RN .
• Sequential compactness of subsets of RN .
• Compactness of subsets of RN .

These concepts translate essentially verbatim to the context of a general metric
space (X, d), and there is a useful general theory that parallels much of what we
did in Euclidean spaces. However, in several ways, RN and various subsets of it
(especially, closed and bounded subsets) behave more nicely than an arbitrary met-
ric space. When this occurs, it is important to think deeply about why: usually
one can isolate a certain specific feature of RN and use it to define classes of metric
spaces in which these good things continue to happen.

113
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Let us now give just a flavor of this.

We said that a sequence {xn} in RN converges to a point p in RN if the real
sequence d(xn, p) converges to 0. This definition makes sense in any metric space,
and the geometric intuitition is the same: all sufficiently large terms of the sequence
should lie arbitrarily close to the limit. (It does not make sense to talk about di-
vergence to ∞ without some extra structure.) In any metric space, a sequence can
have at most one limit, and if a sequence converges to p than all of its subsequences
converge to p. And again, it is interesting to explore to what extent we can get a
divergent sequence to converge by passing to subsequences.

We can define open and closed balls in any metric space (X, d) in exactly the
same way, for x ∈ X and ϵ > 0, we put

B◦(x, ϵ) := {y ∈ X | d(x, y) < ϵ} and B•(x, ϵ) := {y ∈ X | d(x, y) ≤ ϵ}.
They may not look like balls anymore – we will see an interesting example of this
later – but if you think about it, the finer geometry of balls was never really used.1

Again we can define a subset U of a metric space (X, d) to be open if for every
x ∈ U there is ϵ > 0 such that B◦(x, ϵ) ⊆ U . Moreover we can define limit points
of a subset Y in the same way: these are the limits of convergent sequences whose
terms lie in Y . (We can also define accumulation points.) Then we can say that
a subset Y is closed if it contains all of its limit points. Again it turns out that
Y ⊆ X is closed if and only if its complement X \Y is open...and the proof is really
the same. We can also define boundedness: a subset Y ⊆ X is bounded if it lies
in some closed ball B•(x,R). Equivalently, for a nonempty subset Y of a metric
space X we can define its diameter

diam(Y ) := sup{ d(y1, y2) | y1, y2 ∈ Y } ∈ [0,∞]

and put diam∅ = 0; then a subset Y is bounded if and only if it has finite diameter.

If (X, dX) and (Y, dY ) are two metric spaces and f : X → Y is a function between
them, then all of the following definitions go through using the metric functions
instead of Euclidean norms: continuous, uniformly continuous, Lipschitz. Just to
spell out the first one: we say that f : X → Y is continuous at c ∈ X if for all ϵ > 0,
there is δ > 0 such that for all x ∈ X, if d(x, c) < δ then d(f(x), f(c)) < ϵ. Once
again continuous functions are characterized by preservation of limits of convergent
sequences, we have a sequential characterization of uniform continuity, and so forth.

For a subset Y of a metric space (X, d), we say that Y is sequentially com-
pact if every sequence {xn} in Y admits a subsequence converging to an element
of Y . This is the same definition as before. A subset Y of a metric space (X, d)
is compact if for every family {Ui}i∈I of open subsets of X that covers Y in the
sense that Y ⊆

⋃
i∈I Ui, there is a finite subset J ⊆ I such that

⋃
i∈J Ui also covers

Y . In brief: “every open cover of Y has a finite subcover.”
The proofs that we gave in RN readily adapt to show: sequentially compact

subsetse must be closed and bounded, and the same holds for compact subsets. But

1Perhaps the closest we came to this was showing that balls are convex. Convexity does not
make sense in an arbitrary metric space. One needs the structure of a real vector space for this.
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now a surprise occurs: for a subset Y of a general metric space X, being closed and
bounded is not sufficient for either sequential compactness or compactness.

Example 5.1. For a set X, the discrete metric dd on X is

d(x, y) :=

{
0 x = y

1 x ̸= y
.

For any c ∈ X and any 0 < ϵ < 1, we have B◦(c, ϵ) = {x}. Then (X, dd) is
bounded: if X ̸= ∅, then diam(X) = 1. Also X is closed as a subset of itself.

But: if a sequence {xn} in a metric space converges to a point c, then for all
ϵ > 0, we must have xn ∈ B◦(c, ϵ) for all sufficiently large n. So a sequence in the
discrete metric space (X, dX) converges to c if and only if all sufficiently large terms
are equal to c, i.e., is eventually constant. If X is moreover infinite, then there is
an injective sequence x• : Z+ → X. Every subsequence of {xn} remains injective
and therefore divergent. Therefore X itself is closed, bounded but not sequentially
compact. Neither is X compact, because the singleton cover {{x}}x∈X is an open
cover and does not have any proper subcover, hence – since X is infinite – does not
have any finite subcover.

If one looks back at the proof of the Bolzano-Weierstrass Theorem in RN , we get
referred back to Bolzano-Weierstrass in R which was proved in a previous course
using the completeness properties of R. In a metric space X we do not have a no-
tion of ordering of the points, so upper bounds and Dedekind completeness doesn’t
make sense. However, Cauchy sequences do: a sequence {xn} in a metric space
(X, d) is Cauchy if for all ϵ > 0 there is N ∈ Z+ such that for all m,n ≥ N we
have d(xm, xn) < ϵ. Again it is easy to see that convergent sequences are Cauchy
but the converse does not generally hold: we say that a metric space is complete
if every Cauchy sequence in that space is convergent.

For instance, there are Cauchy sequences in Q (which becomes a metric space
by restricting the metric function on R) that converge only to elements of R – e.g.

a sequence of rational approximations to
√
2 – so Q is not a complete metric space.

Actually, a little thought shows that this phenomenon is much more general: if
(X, d) is any metric space whatsoever and Y is a subset of X that is not closed,
then by definition there is a sequence {yn} in Y converging to an element x ∈ X \Y ;
any subsequence still converges to x and therefore not to any element of Y . So in-
complete metric spaces abound.

In any metric space, if a subsequence of a Cauchy sequence converges, then the
Cauchy sequence itself is convergent. It follows that a sequentially compact metric
space must be complete. But the converse does not hold: the discrete metric of
Example 5.1 is not sequentially compact, but it is bounded and complete: in such
a space, a sequence is Cauchy if and only if it is eventually constant if and only if
it is convergent, so Cauchy sequences converge.

It is not hard to see that Cantor’s Intersection Theorem holds verbatim in any
complete metric space (literally the only change in the proof is to replace ||x− y||
with d(x, y)). It then becomes interesting to try to think about what we would
need to know in a metric space in order to pull off our bisection proof that closed,
bounded subsets are compact. Very careful reflection leads to the following def-
inition: a subset Y of a metric space X is totally bounded if for every ϵ > 0,



116 5. METRIC SPACES

it admits a finite cover by subsets of diameter at most ϵ. Equivalently, for every
ϵ > 0, Y admits a finite cover by closed ϵ-balls.

Since sets of finite diameter are bounded and finite unions of bounded sets are
bounded, certainly totally bounded implies bounded. The terminology is of course
suggesting that total boundedness could be stronger than boundedness. This is an
absolutely key example of a difference between RN and a general metric space: in
RN every bounded set is totally bounded (this was a homework problem). However,
an infinite set with the discrete metric is bounded but not totally bounded: the
only sets of diameter at most 1

2 are single points, an an infinite set is not a finite
union of singleton subsets!

It turns out that the facts about RN necessary to make Heine-Borel work in a
metric space are precisely the convergence of Cauchy sequences (completeness) and
that every bounded set can be covered by finitely many sets of arbitrarily small
diameter (total boundedness). If this chapter had homework, it would be a good
homework question to carry over our proof of Heine-Borel to show that any metric
space that is complete and totally bounded is compact. This is part of the following
result, which is probably the most important theorem of metric topology:

Theorem 5.1. For a metric space (X, d), the following are equivalent:

(i) X is compact: every open cover of X has a finite subcover.
(ii) X is sequentially compact: every sequence in X has a convergent subse-

quence.
(iii) X is “accumulation point compact”: every infinite subset of X has an

accumulation point in X.
(iv) X is complete and totally bounded.

Proof. See e.g. [GT, Thm. 2.78]. (Warning: in those notes, where we say
“limit point” they say “adherent point” and where we say “accumulation point”
they say “limit point.”) □

Before I go on, I want to mention that topology can be generalized even further
than metric spaces. In any metric space (X, d) we defined a family τ of open subsets
that satisfy the following properties:
(T1) ∅ and X are elements of τ (i.e., are open subsets).
(T2) If {Ui}i∈I is a family of sets, each lying in τ , then

⋃
i∈I Ui lies in τ .

(T3) If U1, . . . , Un are finitely many sets, each lying in τ , then
⋂n

i=1 Ui lies in τ .

One can then define a topological space to be a set X together with a family τ
of subsets of X satisfying properties (T1), (T2) and (T3). We call the elements of
τ open subsets, even though we don’t have any notion of distance between points
or balls anymore. Many of the topological concepts we discussed go through mean-
ingfully even in this extreme generality. For instance, a sequence {xn}∞n=1 in a
topological space (X, τ) converges to a point x ∈ X if every open set U containing
x also contains all but finitely many terms of the sequence. In a similar way we
can define accumulation points of subsets: x is an accumulation point of a subset
A ⊆ X if every open set containing x contains an element of A \ {x}. A function
f : (X, τX) → (Y, τY ) between two topological spaces is continuous if and only if
for every open subset V of Y , its preimage f−1(V ) is an open subset of X.

In any topological space we can define compactness, sequential compactness and
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accumulation point compactness (every infinite subset of X has an accumulation
point in X). But now a surprise occurs: although compactness and sequential com-
pactness each imply accumulation point compactness, there are topological spaces
that are compact but not sequentially compact and also topological spaces that are
sequentially compact but not compact. Thus the equivalence between compactness
and sequential compactness can be pushed quite far but eventually reaches a break-
ing point. When they differ, compactness has usually turned out to be the more
useful concept.

If we have two metric spaces (X, dX) and (Y, dY ), a map f : X → Y is an isometric
embedding if it preserves distances between points:

∀x1, x2 ∈ X, dY (f(x1), f(x2)) = dX(x1, x2).

Such maps are in particular Lipschitz with Lipschitz constant 1, so they are uni-
formly continuous, and so forth. But really this is much stronger: Lipschitz maps
are maps that only stretch distances between points by a bounded factor, while
isometric embeddings preserve distances. You should think of an isometric embed-
ding f : X → Y as giving you a “perfect copy” f(X) of X as a subset of Y .

Now here is another big theorem:

Theorem 5.2. Let (X, dX) be a metric space. Then there is a metric space

(X̃, dX̃) and an isometric embedding

ι : X → X̃

such that:

(i) X̃ is a complete metric space, and

(ii) The image ι(X) is dense in X̃: that is, for every x ∈ X̃ there is a sequence
{xn} in X such that ι(xn) → x.

The metric space X̃ is called the completion of the metric space X, and it
can be thought of as “filling in the missing holes” that prevent Cauchy sequences
in X from converging. Moreover, the completion X̃ is essentially unique, although
I don’t have the time to explain exactly what that means here. This is such a pro-
found idea: you have a space in which not every Cauchy sequence converges, which
robs you of and essential tool to show convergence of sequences. So you faithfully
embed your space inside a larger space (in a parsimonious way: every point you
have added is the limit of a sequence in your original space) and in that larger space
all Cauchy sequences converge.

One thing that the formalism of metric spaces buys you is the idea to consider
two different metric functions on the same space. This turns out to be very natural
and useful, because indeed there is often more than one sense in which things can
get “close together” and you want to compare the two. Let me end by mentioning
an example of this: let

X = C[a, b] = {continuous f : [a, b] → R}
be the set of continuous real-valued functions defined on [a, b]. We want to make
this into a metric space, i.e., we want to measure the distance between two func-
tions. How might we do this?
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One way to do this was given in Math 3100: for f, g ∈ C[a, b], put
d∞(f, g) := max

x∈[a,b]
|f(x)− g(x)|.

(It is easy to see that this is a metric: the triangle inequality follows from the usual
triangle equality in R.) Convergence of sequences in the d∞-metric is precisely
uniform convergence.

However, there is another metric that is arguably even more natural: for f, g ∈
C[a, b], put

d1(f, g) :=

∫ b

a

|f − g|.

I claim that d1 is a metric function. This time the Triangle Inequality is not the
hardest part: for f, g, h ∈ C[a, b] we have

d1(f, h) =

∫ b

a

|f − h| ≤
∫ b

a

(|f − g|+ |g − h|)

=

∫ b

a

|f − g|+
∫ b

a

|g − h| = d1(f, g) + d1(g, h).

Because |f − g| = |g − f |, clearly d1(f, g) = d1(g, f). Also clearly d1(f, g) ≥ 0, be-
cause the integral of a non-negative function is non-negative. Also clearly d1(f, f) =
0. However, it takes some work to show that if if d1(f, g) = 0 then f = g: this
comes down to showing: if f : [a, b] → R is continuous and non-negative, then∫ b

a
f = 0 implies f = 0. (This is a good exercise! I recommend you try it.)

We have moreover that

d1(f, g) =

∫ b

a

|f − g| ≤
∫ b

a

d∞(f, g) = (b− a)d∞(f, g),

so that the d1-metric is, up to the constant (b−a), the smaller of the two, and intu-
itively it measures the distance in a more refined way: whereas d∞(f, g) measures
the maximum distance between f(x) and g(x), 1

b−ad1(f, g) measures the average

distance between f(x) and g(x). In more advanced analysis both of these metrics
are important, and they fit into an infinite family of metrics dp for p ∈ [1,∞].

It turns out that C[a, b] with the d∞-metric is complete: this is a variant of the
Math 3100 fact that a uniform limit of continuous functions remains continuous.
On the other hand, C[a, b] with the d1-metric is not complete.

In essence the above is true because a sequence of continuous functions on [a, b]
can converge in the d1-metric to a discontinuous function on [a, b]. However, nailing
this down requires a little care since as of yet we have only defined d1(f, g) for con-
tinuous f and g. But we observe that for any Riemann integrable f, g : [a, b] → R
the function |f − g| is also Riemann integrable and thus we can define

d1(f, g) :=

∫ b

a

|f − g|.

Above, in order to establish that d1(f, g) = d1(g, f) and that d1(f, h) ≤ d1(f, g) +
d1(f, h) we didn’t use the continuity of f and g but only their Riemann integrabil-
ity. However, the fact that d1(f, g) = 0 implies f = g did use the continuity of f in
an essential way: indeed, if we start with any Riemann integrable function f and
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modify its values at each of a finite nonempty set of points, then we get a different

function g that is still Riemann integrable and such that
∫ b

a
|f − g| = 0 (this is

obtained just by taking arbitrarily small subintervals around the points at which f
and g differ). A function d : X ×X → [0,∞) satisfying properties (D2) and (D3)
of a metric function together with

(D1′) (Positive Semidefiniteness) For all x ∈ X we have d(x, x) = 0

is called a pseudometric function, so d1 is a pseudometric on R[a, b].

Suppose though that we can find a sequence {fn : [a, b] → R}∞n=1 for which
there is a discontinuous but Riemann integrable function f : [a, b] → R such that
d1(fn, f) → 0 and we have d(f, g) > 0 for all continuous functions g. Then the
restriction of d1 to

X∗ := C[a, b] ∪ {f}
is a metric function, and in this slightly larger metric space X∗ we have that the
sequence {fn} converges to f . Thus we have realized the metric space (C[a, b], d1) as
a nonclosed subset of the metric space X∗, which as above means that (C[a, b], d1)
is not complete: the sequence {fn} is convergent in X∗ to an element of X∗\C[a, b],
so it is Cauchy but not convergent in C[a, b].

It is not so bad to find such a sequence: the following example gives one.

Example 5.2. For n ∈ Z+, let fn : [0, 2] → R be the continuous function

fn(x) =

{
xn if x ∈ [0, 1)

1 if x ∈ [1, 2]
.

This sequence converges pointwise to the function:

f : [0, 2] → R, f(x) =

{
0 if x ∈ [0, 1)

1 if x ∈ [1, 2]
,

which is discontinuous at 1. Since f is bounded with a single discontinuity, it is
Riemann integrable, and

d1(fn, f) =

∫ 2

0

|fn − f | =
∫ 1

0

xn +

∫ 2

1

0 =
1

n+ 1
→ 0.

It remains to show that for every continuous function g : [0, 2] → R we have

d1(f, g) =

∫ 2

0

|f − g| ̸= 0.

Since g is continuous everwhere and f is discontinuous precisely at 1, the function
|f − g| is discontinuous precisely at 1. Moreover, since g is continuous and f is
not, certainly f ̸= g, so there is at least one x ∈ [0, 2] for which f(x) ̸= g(x). We

claim that if for some x ̸= 1 we have f(x) ̸= g(x), then
∫ 2

0
|f − g| > 0. Indeed, if

x < 1 then we may choose 0 ≤ c < x < d < 1, and then since f |[c,d] and g[c,d] are
distinct continuous functions, we have

0 <

∫ d

c

|f − g| ≤
∫ 2

0

|f − g|;
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and similarly, if x > 1 then we may choose 1 < c < x < d ≤ 2 and draw the same
conclusion. Finally, suppose that f and g are equal on [0, 2]\{1}. This implies that

lim
x→1

f(x) = lim
x→1

g(x) = g(1).

But in fact limx→1 f(x) does not exist, as f has a jump discontinuity at 1, so this
is a contradiction. It follows that d1(f, g) > 0, as needed.

But all is not lost! By Theorem 5.2 one can consider the completion of C[a, b] with
respect to the d1-metric. This is called the Lebesgue space L1[a, b]...and now we
are back to real analysis. Indeed, these Lebesgue spaces are discussed in Math 8100
perhaps more than any other topic.

To say just a little more: it turns out to be almost true that the elements of
L1[a, b] can still be interpreted as functions f : [a, b] → R. What is true is that
every element of L1[a, b] is represented by a function f and that two functions
f, g : [a, b] → R determine the same element of L1[a, b] if and only if f(x) = g(x)
for all x except on a set of measure zero.2 In graduate level real analysis it is
traditional to downplay the fact that elements of the Lebesgue space are in fact
equivalence classes of functions rather than functions themselves (and also appro-
priate: it all works out fine). For clarity of exposition I will henceforth ignore this
distinction so as to try to convey what’s happening with fewer technicalities. So we
are viewing L1[a, b] (slightly blurrily!) as a class of functions f : [a, b] → R. It turns
out that this class of functions contains all the Riemann integrable functions and
more besides: for instance, it contains the function f : [0, 1] → R that is 0 on irra-
tional points and 1 on rational points, so is everywhere discontinuous. Moreover,
the integral itself extends to a linear map∫

: L1[a, b] → R

that extends the Riemann integral and still satisfies the axioms of an abstract inte-
gral.3 Thus we get the class of Lebesgue integrable functions, which is strictly
larger than the class of Riemann integral functions and has better convergence
properties: in order to exchange the limit and the Riemann integral we needed
uniform convergence, but using the Lebesgue integral one can show that the limit
and the integral can be exchanged even under pointwise convergence...under some
additional hypotheses that are much more mild than unfiorm convergence. The
most important such result is Lebesgue’s Dominated Convergence Theorem,
and its usefulness justifies a lot of this abstraction. I hope you meet it someday.

2If two continuous functions differ at a single point, then one is greater than the other on some

small interval around the point, which is not a set of measure zero. So for continuous functions
being equal except on a set of measure zero means they are equal. As we just saw, this is not true

for all Riemann integrable functions.
3I do hate to lie: if we define L1[a, b] to be the set of all functions that represent some element

of L1[a, b] – i.e., if we don’t identify functions that agree except on a set of measure 0 – then we

get an honest integral
∫

: L1[a, b] → R on functions themselves. The space L1[a, b] is then the

quotient of the vector space L1[a, b] by the kernel of
∫
.
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