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CHAPTER 1

Introduction

Let us give some motivation for the main conceit of this text: that modern alge-
braic number theory ought to begin with the general study of Dedekind domains
and their finite extensions and then specialize to the Dedekind domains that are of
arithmetic interest.

Ancient number theory is the study of the integers Z: primes, divisibility, and
so forth. The Fundamental Theorem of Arithmetic is the assertion that every pos-
itive integer uniquely factors into a product of primes. Let us first reformulate
this in terms of unique factorization domains (UFDs) and principal ideal domains
(PIDs).

In this course, a “ring” means a ring that has a multiplicative identity, denoted
by 1, and is commutative. For a ring R, we denote the set of nonzero elements by
R•. More generally, if X is any set with a “zero element” and Y is a subset of X,
by Y • we mean Y \ {0}. For a ring R, we denote the group of units – i.e., elements
x ∈ R for which there is y ∈ R with xy = 1 – by R×.

A domain is a nonzero ring without nonzero divisors of 0: that is, for x, y ∈ R we
have xy = 0 if and only if at least one of x and y is 0. Here “nonzero” means that
we exclude the ring with a single element 0 = 1.

Exercise 1.1. For a nonzero ring R, show that the following are equivalent:

(i) R is a domain.
(ii) The set R• of nonzero elements of R is a submonoid of the multiplicative

monoid (R, ·).
(iii) For all x ∈ R•, the map x• : R→ R given by y 7→ xy is injective.

Every domain has a fraction field K: it is characterized as being a field K con-
taining R with the property that every nonzero element of K of the form x

y for

x, y ∈ R•. Later we will have occasion to review the construction of the fraction
field of a domain as a warmup to the more general concept of localization.

An ideal in a ring R is a subset I of R that is a subgroup of the additive group
(R,+) and such that for all x ∈ R and y ∈ I we have xy ∈ I. An ideal I of R
is prime if I ⊊ R and for all x, y ∈ R, if xy ∈ I then at least one of x, y lies in
I. Equivalently, I is prime if and only if the quotient ring R/I is a domain. An
ideal m of R is called maximal if it is maximal among proper ideals of R: that is
m ⊊ R and there is no ideal I of R with m ⊊ I ⊊ R. Equivalently, I is maximal
if and only if the quotient ring R/m is a field. A standard Zorn’s Lemma argu-
ment shows that any proper ideal in a ring is contained in at least one maximal ideal.
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6 1. INTRODUCTION

For x ∈ R, we define
(x) := {ax | a ∈ R}.

Then (x) is an ideal of R, called principal.

More generally, if x1, . . . , xn is any finite sequence of elements in R, then

⟨x1, . . . , xn⟩ := {a1x1 + . . .+ anxn | a1, . . . , an ∈ R}
is an ideal of R, called the ideal generated by x1, . . . , xn. (It is indeed the unique
minimal ideal containing x1, . . . , xn in the sense that if I is any ideal containing
x1, . . . , xn, then I ⊇ ⟨x1, . . . , xn⟩.) More generally yet, for any subset S of R, the
set ⟨S⟩ of finite R-linear combinations of elements of S is an ideal of R, called the
ideal generated by S.

For ideals I, J of R, the product IJ is the ideal generated by all pairwise prod-
ucts xy with x ∈ I and y ∈ J . More precisely it is the set of all finite sums
x1y1 + . . .+ xnyn with x1, . . . , xn ∈ I and y1, . . . , yn ∈ J .

Exercise 1.2. Let R be a ring, and let x, y ∈ R be such that (x) = (y).

a) Suppose R is a domain. Show: there is a unit u ∈ R× such that y = ux.
b) Find an example of a ring R and x, y ∈ R such that there is no u ∈ R×

for which y = ux.
(Examples are not so easy to come by. You may wish to consult https:
// math. stackexchange. com/ questions/ 355994 .)

We say that the ring R is principal or a principal ideal ring if every ideal of
R is principal. A principal ideal domain (PID) is indeed a principal ideal ring
that is also a domain.

Exercise 1.3. a) Show: the ring Z is a PID.
(Suggestion: for a nonzero ideal I in Z we may choose x ∈ I such that |x|
is minimal among all nonzero elements of I. Show: I = (x).)

b) Let k be a field. Show: the polynomial ring k[t] is a PID.
(Suggestion: for a nonzero ideal I in k[t] we may choose f ∈ I such that
deg f is minimal among all nonzero elements of I. Show I = (f).)

An ascending chain of ideals in a ring R is an infinite sequence of ideals

I1 ⊊ I2 ⊊ . . . ⊊ In ⊊ . . . .

We say that R satisfies the ascending chain condition on principal ideals
(ACCP) if there is no ascending chain of principal ideals. We observe that any
principal ideal ring satisfies ACCP: indeed, if we had an ascending chain

(a1) ⊊ (a2) ⊊ . . . ⊊ (an) ⊊ . . .

then the union
I :=

⋃
n≥1

(an)

is an ideal of R (indeed the union of any ascending chain of ideals in a ring is an
ideal of the ring) that cannot be principal: if I = (a) then we must have a ∈ (aN )
for some N ∈ Z+ and then we have (an) = (a) for all n ≥ N .
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An element x in a domain R is irreducible if x is neither 0 nor a unit and when-
ever we have x = yz for y, z ∈ R then one of y, z is a unit (indeed exactly one; if
both were units, then x would be a unit). Notice that for positive elements of the
ring Z this coincides with the classical deifnition of “prime number.” However, this
terminology obscures a key distinction. Namely, we say that p ∈ R• is a prime
element if (p) is a prime ideal. To spell this out, it means that for all x, y ∈ R,
if p | xy, then p | x or p | y. In any domain, prime elements are irreducible: if
p = xy then p | x or p | y; if p | x then there is a ∈ R such that x = ap and
then p = xy = apy; cancelling p (as we may since R is a domain) gives 1 = ay,
so y ∈ R×. Symmetrically, if p | y then x ∈ R×. The more interesting question
is whether an irreducible element is necessarily prime: in the ring Z, the assertion
that an irreducible element (“prime number”) is a prime eleement – i.e., if a prime
number p divides xy then p divides x or p divides y – is called Euclid’s Lemma
and is the lion’s share of the proof of the Fundamental Theorem of Arithmetic.
Here is a generalization of this:

Proposition 1.1. In a PID, irreducible elements are prime.

Proof. Let p be an irreducible element of the PID R, and suppose that p | xy
and p ∤ x. Then

⟨p, x⟩ = {ap+ bx | a, b ∈ R}
is an ideal of the PID R, so there is u ∈ R such that ⟨p, x⟩ = (u). In particular u
divides both p and x. But in any domain, a divisor of an irreducible element p is
either a unit or a unit times p. If u were a unit times p, then u divides exactly what
p divides, so u does not divide x: contradiction. So u is a unit, meaning (u) = R.
Thus we have shown that there a, b ∈ R such that ap + bx = 1. Multiplying by y
we get

apy + bxy = y.

Since p divides both apy and bxy, p divides the left hand side, so p | y, as desired. □

A unique factorization domain is a domain R satisfying:
(UFD1) For every nonzero nonunit a ∈ R, there are irreducibles b1, . . . , br such that
a = b1 · · · br; and
(UFD2) If b1, . . . , br, c1, . . . , cs are irreducibles such that

b1 · · · br = c1 · · · cs
then r = s, and there is a bijection σ : {1, . . . , r} → {1, . . . , r} such that for all
1 ≤ i ≤ r we have

(bi) = (cσ(i)).

In other words, a UFD is a domain in which every nonzero nonunit factors as a
product of irreducibles and for which this factorization is as unique as makes sense
in this contextd, namely up to reordering the irreducible elements and multiplying
them by unit factors.

Here is another way of phrasing it that may be a bit more elegant: let us say
that an atom of a domain R is an ideal that is generated by an irreducible element.
Then R is a UFD if and only if every proper, nonzero principal ideal of R factors as
a product of atoms, uniquely up to the order. Anyway, here is a characterization
of UFDs that is often useful:
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Proposition 1.2. A domain R is a UFD if and only if R satisfies the ascending
chain condition on principal ideals and every irreducible element of R is pirme.

Exercise 1.4. Prove Proposition 1.2.

Theorem 1.3. A PID is a UFD.

Proof. Indeed we showed that PIDs satisfy (ACCP) and that irreducible el-
ements in PIDs are prime. □

There is a reason that one learns about PIDs in any first graduate course in algebra:
they are a thoroughly pleasant class of rings. In particular, there is a wonderful
structure theorem for finitely generated modules over a PID: every finitely gener-
ated module over a PID is a direct sum of cyclic modules and thus a direct sum of
modules in which each summand is isomorphic either to R or to R/(pa) for some
prime element p of R and some a ∈ Z+. However there are both number-theoretic
and algebraic reasons to move beyond PIDs. On the number theory side, many
natural Diophantine equations are best attacked by considering the arithmetic of
certain “higher rings of integers” that need not be UFDs. Here are two examples:

• Let N ∈ Z+ be squarefree such that N ≡ 1, 2 (mod 4). Suppose one wishes
to consider the prime numbers p repesented by the quadratic form

qN (x, y) := x2 +Ny2.

We say that qN represents an integer n if there are x, y ∈ Z such that qN (x, y) = n.

Exercise 1.5. Let p be a prime that does not divide −4N . Show: if qN :=

x2 +Ny2 represents p, then
(

−N
p

)
= 1, i.e., −N is a nonzero square modulo p.

Thus for instance, taking N = 1, we see that if an odd prime p is represented by
x2 + y2, then −1 is a square modulo p; equivalently, p ≡ 1 (mod 4) (this is the
“First Supplement to the Quadratic Reciprocity Law” that one should learn in an
undergraduate number theory course; let’s assume it for now). The celebrated Two
Squares Theorem of Fermat asserts that conversely every prime p ≡ 1 (mod 4) is
represented by x2+y2. This result is easy to prove if we know that the ring Z[

√
−1]

is a UFD:

Exercise 1.6. Suppose that the ring Z[
√
−1] is a UFD, and let p ≡ 1 (mod 4).

a) Using the First Supplement to QR, show that there are n, x ∈ Z such that
np = x2 + 1.

b) Using the factorization x2 +1 = (x+
√
−1)(x−

√
−1), show that p is not

a prime element of Z[
√
−1].

c) Since Z[
√
−1] is a UFD, it follows that there are nonunits α, β ∈ Z[

√
−1]

such that p = αβ. Show that an element γ = a + b
√
−1 of Z[

√
−1] is

a unit if and only if a2 + b2 = 1. Deduce that |α| = |β| = √
p and that

therefore p is represented by x2 + y2.

Exercise 1.7. Show: Z[
√
−1] and Z[

√
−2] are PIDs.

On the other hand:

Exercise 1.8. Let N be an integer such that −N is not a square.

a) Let p be a prime number such that −N is a square modulo p. Show: if
Z[
√
−N ] is a UFD, then there are x, y ∈ Z such that x2 +Ny2 = p.
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b) Suppose N ≥ 3. Observe that there are no x, y ∈ Z such that x2+Ny2 = 2,
and deduce that Z[

√
−N ] is not a UFD.

Thus in addressing Diophantine equations via “higher integer rings,” one must deal
with the fact these rings need not be (and in certain regimes very much tend not to
be) UFDs. Once one develops tools for dealing with more general rings, the story
can continue: indeed, for the equation x2+Ny2 = p with N ∈ Z+, this story is the
subject of an entire book [Co]. Here is one of the main results:

Theorem 1.4. For N ∈ Z+, let SN be the set of prime numbers p represented
by x2 +Ny2.

a) The relative density of SN within the set of prime numbers is positive:

lim
X→∞

#{p ∈ SN | p ≤ X}
#{primes p ≤ X}

= lim
X→∞

#{p ∈ SN | p ≤ X}
X/ logX

> 0.

b) There is a finite commutative group GN := PicZ[
√
−N ] attached to the

ring Z[
√
−N ] such that the relative density of part a) is precisely 1

2#GN
.

For another example, let k ∈ Z+ be such that −k is not a square, and consider the
Mordell Equation:

y2 + k = x3.

Then the left hand side factors over Z[
√
−k] as (y +

√
−k)(y −

√
−k). Let us first

suppose that k = 1, in which case we know that Z[
√
−1] is a PID hence a UFD. In

any UFD we say that two nonzero elements are coprime if no nonunit divides both
of them. One can show that if y2+1 = x3, then the elements y+

√
−1 and y−

√
−1

of Z[
√
−1] are coprime (cf. Exercise A.A). For n ∈ Z≥2 if we have coprime elements

a, b of a UFD R such that ab = zn is an nth power, then there are ua, ub ∈ R× and
A,B ∈ R such that a = uaA

n and b = ubB
n. In Z[

√
−1] every unit is a cube, so if

y2 + 1 = x3 then there are α, β ∈ Z[
√
−1] such that

y +
√
−1 = A3 and y −

√
−1 = B3.

This is a very strong condition, and it leads rather quickly to the fact that (x, y) =
(1, 0) (cf. Exercise B.B).

Suppose k ∈ Z+ is squarefree with k ≡ 1, 2 (mod 4). Then it is not hard to show
that if y2 + k = x3, then the ideal ⟨y+

√
−k, y−

√
−k⟩ of Z[

√
−k] is all of Z[

√
−k].

Thus the elements y±
√
−k are comaximal: ⟨y+

√
−k, y−

√
−k⟩ = Z[

√
−k]. More

concretely, two elements a and b of a ring are comaximal if there are c, d ∈ R such
that ac+ bd = 1. In a UFD if a, b are comaximal then they are certainly coprime:
any element that divides both a and b must divide 1 so must be a unit. (In a
general UFD being comaximal may be stronger: e.g. the polynomial ring C[x, y]
is a UFD and the elements x, y are coprime but not comaximal. But in a PID the
two conditions coincide.)

Thus if Z[
√
−k] were a UFD we could run the above argument and, it turns

out, use it to find all solutions to y2 + k = x3. However, as we have already seen,
this only applies to Z[

√
−1] and Z[

√
−2]. However, it turns out that in order to

write each of y±
√
−k as a unit times a cube, it suffices for Z[

√
−k] to have a weaker

property: namely for any ideal I of Z[
√
−k], if I3 is principal, then I is principal.

We will see later that (with our conditions on k), the ring Z[
√
−k] is a Dedekind

domain that has a finite ideal class group ClZ[
√
−k]. For any n ∈ Z+ and any
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Dedekind domain R, the condition that for all ideals I of R, if In is principal then
I is principal is equivalent to the n-torsion subgroup (ClR)[n] being trivial. Thus
in the finite commutative group ClZ[

√
−k], the property that the cube of an ideal

is principal implies that the ideal is principal holds if and only if the class number
#ClZ[

√
−k] is not divisible by 3. This condition holds for many integers k; con-

jecturally for a positive proportion.

Similarly, for N ≥ 3 we have the famous Fermat equation

xN + yN = zN .

Put ζN := e2πi/N . Then in Z[ζN ] we have xN + yN =
∏−1

i=0(x + ζky), so similarly
one imagines that it would be helpful if Z[ζN ] were a UFD. If N ≡ 2 (mod 4) then
ζ2N lies in the subgroup generated by ζN and −1, so Z[ζ2N ] = Z[ζN ]. For N ̸ ≡2
(mod 4) we have that Z[ζN ] is a UFD if and only if

N ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20,
21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84}.

However, again the ring Z[ζN ] is a Dedekind domain with finite class group, and
already in 1847 Kummer showed that if the class number of Z[ζp] is not divisible by
p – such primes are called regular and admit a more elementary characterization in
terms of Bernoulli numbers – then the Fermat equation xp+yp = zp has no integer
solutions with xyz ̸= 0. (The details of this are significantly more complicated than
for the Mordell Equation considered above.) Siegel conjectured that the relative

asymptotic density of the set of regular primes is e
−1
2 ≈ .6065. In fact it is known

that there are infinitely many irregular primes, not known that there are infinitely
many regular primes, and – thanks to work of Wiles, Taylor and Ribet in the early
1990’s – that for all N ≥ 3 the Fermat Equation has no integer solutions with
xyz ̸= 0, but still: not bad for the 1847!

1. Introducing Dedekind Domains

As we hoped to indicate in the previous section, once we are given a PID we are
just about maximally pleased, but the issue is that the condition of a domain to be
a PID is in many respects too delicate. Moreover, in number theory one naturally
wants to pass to certain “extensions” of the domain that one is given, but the class
of PIDs does not behave at all well under this extension process.

Before we dial in on this, let us further clarify the connection between PIDs and
UFDs. As we know, every PID is a UFD. The converse is certainly not true: a well-
known result essentially going back to Gauss shows that if R is a UFD then so is the
polynomial ring R[t], so for instance since C[x] is a PID, the ring C[x, y] = (C[x])[y]
is a UFD, and it is easy to see that the ideal ⟨x, y⟩ is not prinicpal: x and y are not
both multiples of any nonconstant polynomial. The criterion for when a UFD is a
PID involves the concept of Krull dimension. A ring R is said to have finite Krull
dimension if there is some d ∈ N such that for every ascending chain

p0 ⊊ p1 ⊊ . . . ⊊ pn

of prime ideals of R, we have n ≤ d, and in this case the least such d is called the
Krull dimension. Alternately, for every prime ideal p of R, the height of p is the
maximum of lengths of ascending chains of prime ideals terminating at p, assuming
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this maximum exists; otherwise p is said to have infinite height. Then the Krull
dimension is the maximum of the heights of its prime ideals, again assuming this
maximum exists.

In truth, although we wanted to give the general definitions of dimension and
height, in our course we only need to look at rings of dimension 0 and 1. A ring
has dimension 0 if there are no proper containments among prime ideals. Since in a
domain the zero ideal is prime and evidently contained in every other prime ideal,
a domain has dimension zero if and only if it is a field. Similarly, a domain has
Krull dimension 1 if every nonzero prime ideal is maximal. Now here is the desired
result.

Theorem 1.5. For a UFD R, the following are equivalent:

(i) R is a PID.
(ii) R has dimension at most 1.

Proof. (i) =⇒ (ii): Let R be a PID that is not a field. Then every nonzero
prime ideal of R is generated by a prime element p. For prime elements p and q, it
is not possible to have (p) ⊊ (q): indeed, if (p) ⊆ (q) then p = aq for some a ∈ R;
since p is prime it is irreducible, and thus a ∈ R× and (p) = (q). Thus there is no
proper containment among nonzero ideals of R, so R has dimension 1.
(ii) =⇒ (i): Since a field is a PID, we may assume that R is a one-dimensional
UFD. Let p be a nonzero prime ideal of R, and let x ∈ p• be a nonzero element.
Then x is a finite product of prime elements and p is a prime ideal, so p contains
some prime element p: thus we have a containment of prime ideals (0) ⊊ (p) ⊆ p,
and because R has dimension 1 we must have p = (p). That is, every nonzero
prime ideal of R is principal; the zero ideal is also principal, so every prime ideal is
principal. By a result of Cohen [CA, Thm. 4.32], this implies that R is a PID. □

Now we come to one of the key definitions, which is a generalization of the passage
from Z to rings like Z[

√
N ] and Z(ζN ). Let R ⊆ T be an extension of rings. An

element x of T is integral over R if there is a monic polynomial

p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ R[t]

such that p(x) = 0. Thus for instance the complex number
√
N is integral over

Z because it satisfies the monic polynomial equation t2 −N = 0 and the complex
number ζN is integral over Z because it satisfies the monic polynomial equation
tN − 1 = 0. We say that an extension of rings R ⊆ T is an integral extension
if every element of T is integral over R. When R is a field, any nozero polynomial
equation can be rescaled to give a monic polynomial equation, so a field extension
L/K is integral precisely when it is algebraic. It turns out that for any extension
R ⊆ T of rings, the set IT (R) of elements of T that are integral over R is a subing
of T (clearly containing R; every x ∈ R is a root of the polynomial t − x) that is
caled the integral closure of R in T.

Example 1.6.

a) The integral closure of Q in C is Q, the field of all algebraic numbers. In
general, the algebraic closure of a field in an algebraically closed extension
field is algebraically closed.
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b) The integral closure of Z in C is denoted Z and is called the ring of all
algebraic integers. All of the “higher rings of integers” we saw above are
subrings of Z.

c) The integral closure of Z in Q is just Z. Indeed, let x = a
b be a nonzero

rational number, written in lowest terms and that p(x) = 0 where

p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ Z[t].

Plugging in x and clearing denominators, we get

an + ban−1a
n−1 + . . .+ bn−1a1a+ bna0 = 0.

Bringing an to the other side we see that b | an. If b were not ±1, then it
would be divisible by some prime number p, and then p | an, hence p | a,
and the fraction a

b has both numerator and denominator divisible by p so
is not in lowest terms, contradiction.

d) The integral closure of Z in Q(
√
−1) is Z[

√
−1]. This is not obvious. It’s

clear that
√
−1 is integral over Z – it satisfies the polynomial t4− 1 – and

since the set of elements that are integral over Z form a Z-subalgebra, it
follows that every element of Z[

√
−1] is integral over Q, but we still need

to show that no other elements of Q[
√
−1] are integral over Z.

e) The integral closure of Z in Q(
√
−5) is not Z[

√
−5]. Indeed, it is clear

that Z[
√
−5] is an integral extension of Z, but how do we know that no

other elements of Q(
√
−5) is integral over Z? In fact, the golden ratio

φ :=
1 +

√
5

2

is integral over Z, since it satisfies the polynomial t2 − t − 1. Please
first check that this is true and then remind yourself of the high school
algebra needed to find this polynomial. This is an important cautionary
tale: integral elements can “have denominators.”

Let R be a domain with fraction field K. We say that R is integrally closed if
its integral closure in K is R itself, i.e., every element of K that satisfies a monic
polynomial equation with coefficients in R already lies in R.

Proposition 1.7. A UFD is integrally closed.

Exercise 1.9. Prove it.
(Hint: the proof we gave that Z is integrally closed really works in any UFD.)

Wouldn’t it be nice if after taking the integral closure we always got something
integrally closed? Just because the terminology suggests something doesn’t make
it true,1 and there is something to show here: essentially that being integral over
an integral extension of a ring R is the same as being integral over R. It is indeed
true that if A ⊆ B ⊆ C are ring extensions, B is integral over A and C is integral
over B, then C is integral over A [CA, Cor. 14.5], and indeed that implies the
desired fact [CA, Cor. 14.11]:

Theorem 1.8. Let A be a domain with fraction field K, let L/K be any field
extension, and let B be the integral closure of A in L. Then B is integrally closed.

1At the end of [CA, Chapter 14] I discuss the concept of complete integral closure and
completely integrally closed domains. It is unfortunately not the case that when one takes

the complete integral closure, one necessarily gets something that is completely integrally closed!
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Proof. See [CA, Cor. 14.11]. □

We can now make the most important definition of classical algebraic number the-
ory: let K be a number field; that is, a finite-degree field extension of Q. Note that
we are in characteristic 0, so the Primitive Element Theorem applies here: every K
is of the form Q[t]/(f) for an irreducible polynomial f ∈ Q[t]. We define the ring
of integers of K to be the integral closure of Z in K and denote it ZK . Note that
we have ZK = K ∩ Z.

Okay, let me spoil things a bit, for clarity:

Theorem 1.9.

a) Let d be an integer that is squarefree, not a square, and congruent to 2 or

3 modulo 4. Then the ring of integers of Q(
√
d) is Z[

√
d].

b) Let d be an integer that is squarefree, not a square and congruent to 1

modulo 4. Then the ring of integers of Q(
√
d) is Z[

√
d+1
2 ].

c) Let N ∈ Z+. Then the ring of integers of Q(ζN ) is Z[ζN ].

Thus the concept of integral closure is what is taking us from the PID Z to the sort
of “higher rings of integers” that intervene (for instance!) when one is studying cer-
tain Diophantine equations. More precisely, some of the higher rings of integers we
considered were proper subrings of ZK with fraction fieldK that are not the full ring
of integers ZK of K. This is actually related to the failure of Z[

√
−N ] to be a UFD

for certain values of N ≥ 3. Namely, if N ≡ 3 (mod 4) then −N ≡ 1 (mod 4), so

the element
√
N+1
2 ∈ Q(

√
N) is integral over Z[

√
−N ] but does not lie in Z[

√
−N ],

so Z[
√
−N ] is not integrally closed and therefore cannot be a UFD. The word for

this kind of subring is nonmaximal order and we will come back to it later. But
if N is squarefree and congruent to 1 or 2 modulo 4 then Z[

√
−N ] = ZQ(

√
−N) and

still we saw that it is not a UFD, so being integrally closed is necessary but not
sufficient for a domain to be a UFD.

Next I want to mention some important and general “spectral properties” of inte-
gral extensions. For a ring R, let SpecR be the set of prime ideals of R and let
MaxSpecR be the set of maximal ideals of R. If ι : R→ T is a ring homomorphism
and P is a prime ideal of T , it is easy to see that

ι∗(P) := ι−1(P)

is always a prime ideal of R. In general though if P is maximal, then ι−1(P) need
not be maximal: e.g. take ι : Z ↪→ Q be the natural inclusion map. Since Q is a
field, the zero ideal (0) is maximal; its inverse image in Z is just the zero ideal (0)
of Z, which is prime but not maximal. However:

Theorem 1.10. Let R ⊆ T be an integral extension of rings.

a) The map ι∗ : SpecT → SpecR by P 7→ P ∩R is surjective.
b) For P ∈ SpecT , the ideal P is maximal if and only if the ideal P ∩ R is

maximal.
c) R has finite Krull dimension if and only if T has finite Krull dimension,

and if so the Krull dimension of R is equal to the Krull dimension of T .

Since Z is a PID that is not a field, it has dimension 1, so by the previous theorem
so does ZK for any number field K. Thus ZK is a one-dimensional integrally closed
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domain. We are getting close to the definition of a Dedekind domain. To get a
hint of what is missing, consider the ring Z of all algebraic integers. For exactly
the same reasons discussed above, this is also a one-dimensional integrally closed
domain. However, I claim that not only do nonzero nonunit elements not uniquely
factor into irreducibles in Z, they do not factor into irreducibles at all...because
there are no irreducibles! Indeed, let x be any nonzero nonunit in Z. Then there is
y ∈ Q such that y2 = x, and y satisfies the equation t2 − x = 0, so y ∈ Z. y is cer-
tainly nonzero, and if it were a unit, then so would be x = y2, so x is not irreducible.

This is striking evidence that the ring Z is “too big” in a basic algebraic sense.
We want to impose the single most important finiteness condition in commutative
algebra: a ring R is Noetherian if all ideals of R are finitely generated.

Exercise 1.10. Show: a ring R is Noetherian if and only if there are no
ascending chains

I1 ⊊ I2 ⊊ . . . ⊊ In ⊊
of ideals in R.

Earlier we worked a little bit to show that a principal ring satisfies the ascending
chain condition on principal ideals (ACCP). With the preceding exercise, this is
clear: in a principal ring every ideal is singly generated, hence finitely generated,
hence principal rings are Noetherian, so there are no ascending chains of principal
ideals, hence certainly no ascending chains of principal ideals.

Exercise 1.11. A domain R is called atomic if every nonzero unit factors
as a (finite!) product of irreducibles. (Notice that this is one of the two defining
properties of a UFD).

a) Show: if R satisfies (ACCP), then R is atomic.2

(Suggestion: whether an element x factors into irreducibles depends only
on the principal ideal (x). If there are principal ideals without this property
in an (ACCP) domain, there must be a maximal such ideal...)

b) Deduce: the ring Z is not Noetherian.
c) Exhibit an explicit ideal in Z that is not finitely generated.

We can now make the definition that begins modern algebraic number theory: a
Dedekind domain is a Noetherian domain that is integrally closed and of Krull
dimension at most one: nonzero prime ideals are maximal. This definition allows
fields to be Dedekind domains...which is good, but for almost everything we are
doing we are interested in Dedekind domains that are not fields: these are the in-
tegarlly closed Noetherian domains of dimension one.

Here is one thing that is clear from the definition:

Proposition 1.11. A PID is a Dedekind domain.

Proof. We may assume that R is a PID and not a field. As we saw, R
is Noetherian and a one-dimensional UFD, hence a Noetherian, one-dimensional
integrally closed domain. □

2The converse is not true, but this is by no means obvious. Rather it is a theorem of Grams:
[Gr74].
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Thus a Dedekind domain is a certain kind of generalization of a PID. In order
to try to understand the relation, we next want to introduce a certain kind of
specialization of a PID:

Proposition 1.12. For a domain R that is not a field, the following are equiv-
alent:

(i) There is an element π such that every nonzero ideal of R is of the form
(πn) for a unique n ∈ Z≥0.

(ii) R is a local PID: that is, a PID with a unique maximal ideal.

A ring satisfying these equivalent conditions is called a discrete valuation ring
(DVR).

Proof. (i) =⇒ (ii): We’ve assumed that all the ideals of R are principal...so
R is a PID. And we’ve assumed that the nonzero ideals form a descending chain:

R = (π0) ⊋ (π1) ⊋ (π2) ⊋ . . . ⊋ (πn) ⊋ . . .

so the unique maximal ideal is (π1).
(ii) =⇒ (i): To say that R is a local PID is to say that it has a unique prime
element, up to units. Since every nonzero proper ideal in a PID is generated by
a finite product of prime elements, every such ideal must be of the form (πn) for
some n ∈ Z+. □

Soon enough we will see that every Dedekind domain generates many examples of
DVRs, but let us give some initial examples.

Example 1.13.

a) Let p be a prime. We denote by Z(p) the subring of Q consisting of rational
numbers a

b with a, b ∈ Z and p ∤ b. In this ring, the units are the fractions
in which (when written in lowest terms) p does not divide the numerator.
The nonunits are therefore the elements divisible by p so form an ideal (p),
and it is clear that every element in Z•

(p) can be written as a unit times a

power of p. Now let I be any nonzero ideal of Z(p); as above, every x ∈ I•

may be written as u · p(k(x) with u ∈ Z×
(p) and k(x) ∈ N. Let K be the

minimum of k(x) as x ranges over nonzero elements of I. Then pK ∈ I
and every element of I is divisible by pK , so I = (pk). It follows that Z(p)

is a DVR.
b) Let k be a field, and let R := k[[t]] be the ring of formal power series with

coefficients in k: that is, elements are formal expressons f =
∑∞

n=0 ant
n

with an ∈ k for all n ∈ N and addition and multiplication are as in cal-
culus. In this ring, the units are the elements with a0 ̸= 0. The nonunits
are therefore the elements divisible by t, so form an ideal (t), and again
it is clear that every element in k[[t]]• can be written as a unit times a
power of t. Arguing as in part a) we find that k[[t]] is a DVR.

Exercise 1.12. Let k be a field, and let k(t) be the field of rational functions
in the indeterminate t – this is just the fraction field of the polynomial ring k[t].

a) Let R0 be the subring of k(t) of rational functions of the form f(t)
g(t) with

g(0) ̸= 0. Show: R0 is a DVR with maximal ideal (t).

b) Let R∞ be the subring of k(t) of rational functions of the form f(t)
g(t) with

g ̸= 0 and deg(f) ≤ deg(g). (Here we use the convention that the 0



16 1. INTRODUCTION

polynomial has degree −∞.) Show: R∞ is a DVR and find a generator of
its maximal ideal.

Let R be a one-dimensional Noetherian domain that is local, with unique maximal
ideal m. I claim that R is a Dedekind domain if and only if R is a PID. Indeed,
there is a result in commutative algebra [CA, Thm. 17.8] that says many “nice”
properties of a one-dimensional local Noetherian domain are equivalent, including:
(i) R is a PID; (ii) m is principal; (iii) R is integrally closed; and (iv) R is regular:
dimR/m m/m2 = 1. The coincidence of the last two conditions in particular is a
miracle of dimension one: for any local Noetherian ring, being “regular” means
that dimR/m m/m2 = dimR. Regularity is a “nonsingularity” condition of a geo-
metric sort; it always implies integral closure (“normality”), which is a condition
of a much more algebraic flavor. Starting in dimension 2, integally closed domains
need not be regular, and this is a main source of the additional complication in the
study of higher-dimensional algebraic varieties versus algebraic curves. Anyway, (i)
⇐⇒ (iv) establishes our claim that a local Dedekind domain is a PID.

So we have DVR =⇒ PID =⇒ Dedekind.

My contention is that PIDs sit somewhat awkwardly in the middle of these two
classes of rings, which I will try to preliminarily explain in at least two ways. First,
for any domain R with fraction field K, a multiplicative subset of R is a subset
S ⊆ R• that contains 1 and is closed under multiplication: S · S = S. To such
an S we can define a localization of R: a more principled and general definition
will come later, but in this case S−1R is the subring of the fraction field K of R
obtained by adjoining the inverses 1

s of the elmeents s ∈ S. (If we take S := R•

then we adjoin the inverses of all nonzero elements of R, so we get the fraction field.
Thus we can think of localization as a sort of “partial ring of fractions” construc-
tion.) Localization is one of the fundamental operations in commutative algebra: it
is equally as important as passing to quotient rings and in some ways complemen-
tary to it. Among fundamental operations in commutative algebra, localization is
certainly the most benevolent.

Exercise 1.13. Let R be a domain, and let S ⊆ R• be a multiplicative subset.
Recall S−1R := R[ 1s | s ∈ S].

a) Show: if R is a PID, so is S−1R.
b) Show: if R is a UFD, so is S−1R.

Also if R is a Dedekind domain, then so is every localization S−1R. This is an
example of the benevolence of localization: (i) the localization of a Noetherian
ring is Noetherian; (ii) the localization of an integrally closed domain is integrally
closed (and this is true because being integrally closed is in a certain sense a local
property), and (iii) localization preserves or decreases Krull dimension. So if all
of UFDs, PIDs and Dedekind domains behave well under localization, what’s the
issue?

There is a special kind of localization that is especially important: for an ideal
I of a domain R, I looks like a multiplicative subset: it is certainly closed under
multiplication. However, our definition of multiplicative subset excluded 0: we do
not want 0 as a denominator. (The more general definition of localization in a ring
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that is not a domain does allow the presence of 0, but if 0 ∈ S then in S−1R we
have 0 = 1: it is the zero ring.) However, the complement R \ I is a multiplicative
subset if and only if I is a prime ideal, so for a prime ideal p of R, we denote by Rp

the localization at S := R \ p: that is, we allow every element of R lying outside of
p to serve as a denominator. It is part of the basic theory of localization that Rp

is a local ring of dimension equal to the height of p. So if R is a Dedekind domain
then for any nonzero prime p of R, the localization Rp is a local Dedekind domain,
hence a DVR. Again though exactly the same holds for any PID: so what?

Here’s what:

Theorem 1.14. Let R be a Noetherian domain such that for every maximal
ideal p of R, the local domain Rm is a DVR. Then R is a Dedekind domain.

We will discuss this in more detail later: again it is a quick consequence of the
benevolence of localization. The consequence is: a Noetherian domain is locally a
PID if and only if it is a Dedekind domain. This means that (among Noetherian
domains, which not asking too much) Dedekind domains are precisely the global
analogues of DVRs. This suggests that certain results about Dedekind domains
could be attacked by reduction to the case of DVRs, and we will see in the course
that this is absolutely correct. It turns out though that being locally a PID is a
more basic and robust property than being globally a PID : the latter is great when
you have it but is most often too much to ask.

We now move on to the next and more important reason that Dedekind domains
are a more robust class of rings than PIDs. As we saw in §1, though Z is a PID,
the ring ZK of integers in a number field may not be and in certain regimes will
usually not be. In contrast, there is the following remarkable result:

Theorem 1.15. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree field extension, and let B be the integral closure of A in L. Then B
is a Dedekind domain.

Theorem 1.15 immediately implies that the ring of integers ZK of a number field is a
Dedekind domain. Similarly, for any field k, the polynomial ring k[t] is a PID, with
fraction field k(t). Let L/k(t) be a finite degree field extension. Then the integral
clsoure B of k[t] in L is a Dedekind domain. In arithmetic geometry, one learns
that B = k[C◦] is the affine coordinate ring of a regular, integral affine algebraic
curve C◦/k and that conversely, for any regular integral affine curve C◦ over a field
k with fraction field k(C), there is t ∈ k[C◦] such that B is the integral closure of
k[t] in k(C). (You should think about how to prove this if and only if you know
about affine and projective curves and the Riemann-Roch Theorem.) In contrast,
whether there are infinitely many number fields K such that ZK is a PID has been
an open problem since Gauss’s time.

In our course we will prove Theorem 1.15 under the additional hypothesis that
L/K is separable, which is automatic in characteristic 0. Under that hypothesis,
the arugment will also show that B is finitely generated as an A-module, which
need not be true in the general case. From this it follows easily that if A is a PID
and [L : K] = n, then B is free of rank n as an A-module, i.e., isomorphic to the
direct sum of n copies of A. In the case A = Z this will show that the ring ZK has
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an integral basis: there are α1, . . . , αn ∈ ZK such that every element of ZK can
be written uniquely as a Z-linear combination of α1, . . . , αn.

In truth about half of our course will be concerned with the “ANTI square”: A is
a Dedekind domain with fraction field K, L is a finite degree separable field exten-
sion, and B is its integral closure in L. This is the context in which we will study
splitting / inertness /ramification of prime ideals of A, the discriminant ideal and
the different ideal. However, there are some results of classical algebraic number
theory that hold for the rings ZK that absolutely do not hold for arbitrary Dedekind
domains, as we will now explain.

Let R be a Dedekind domain. Then, obviously, R may fail to be a PID precisely
in that there may be ideals of R that are not principal. However, this failure of
ideals to be principal can be made much more precise: as mentioned before, every
Dedekind domain has a class group ClR. Here is a quick and dirty definition: we
will give a better one later. For any domain R, let Int(R) be the set of nonzero
ideals of R. On Int(R) we introduce an equivalence relation: I ∼ J if there are
x, y ∈ R• such that (x)I = (y)J . Let C(R) be the quotient Int(R)/ ∼. It is not
hard to see that the multiplication of ideals descends to a well-defined binary oper-
ation on C(R) that makes it into a commutative monoid with identity element the
class of R = (1). It turns out that C(R) is a group if and only if R is Dedekind: in
simpler terms, in a Dedekind domain, for every nonzero ideal I there is a nonzero
ideal J such that IJ = (x) is principal, and then in C(R) J becomes the inverse of
I. This is one definition of ClR for a Dedekind domain. Even this definition makes
clear that R is a PID if and only if the class group is trivial.

Theorem 1.16.

a) For any number field K, the class group ClZK is finite.
b) Let Fq be a finite field, let L/Fq(t) be a finite degree field extension, and

let B be the integral closure of Fq[t] in L. Then ClB is finite.

We will prove part a) in our course. Most approaches to part b) use some geome-
try: indeed, it is morally equivalent to the fact that an algebraic curve over a fintie
field Fq has only finitely many Fq-rational points. It is possible however to give an
algebraic approach roughly in parallel with the number field case; if time permits,
I will make some exercises about this.

On the other hand:

Theorem 1.17 (Claborn [Cl66]). Let G be a commutative group. Then there
is a Dedekind domain R such that ClR ∼= G.

Thus Claborn’s Theorem says that, up to isomorphism, any commtuative group
whatsoever can serve as the ideal class group of a Dedekind domain. A second
proof of Claborn’s Theorem was given by Leedham-Green [LG72], whose argu-
ment showed that the Dedekind domain R can be taken to be the integral closure
of a PID in a quadratic field extension. I gave a third proof of Claborn’s Theorem
[Cl09] (and Leedham-Green’s refinement) using elliptic curves, following a 1976
paper of Rosen who had treated the case of countable groups.

Thus there is more to the number theory of ZK than the algebra of Dedekind
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domains. In the last portion of the course we will come back to earth and prove the
remaining three fundamental finiteness theorems of number theory: the finiteness
of the class group (mentioned above), Dirichlet’s Theorem on the finite generation
and structure of the unit group Z×

K , and Hermite’s Theorems on number fields with
prescribed ramification.





CHAPTER 2

Some Background Algebra

In these notes all rings are commutative with 1. All modules are left modules.

In this first chapter we review some key definitions and results from commuta-
tive algebra. Sufficiently short and enlightening proofs will be given, but the text
[CA] provides a common reference for all of this material.

1. Chinese Remainder Theorem

Two ideals I and J in a ring R are comaximal if no proper ideal of R contains
both of them: equivalently, the ideal I + J = R. A set of ideals is called pairwise
comaximal if any two distinct ideals in the set are comaximal.

Theorem 2.1 (Chinese Remainder Theorem). Let I1, . . . , Ir be pairwise co-
maximal ideals in a ring R. Then:

a) We have I1 · · · Ir =
⋂r

i=1 Ii.
b) The natural map Φ : R →

∏r
i=1R/Ii is surjective, and thus – applying

part a) – we get an isomorphism

Φ : R/(I1 · · · Ir)
∼→

n∏
i=1

R/II .

Proof. This is [CA, Lemma 4.19 and Thm. 4.20]. □

2. Prime and Maximal Ideals; Krull Dimension

Recall that an ideal I of R is prime if I ⊊ R and:

∀x, y ∈ R, xy ∈ I ⇐⇒ x ∈ I or y ∈ I.

Equivalently, I is prime if and only if R/I is a domain.

For a ring R, we denote by SpecR the set of prime ideals of R. It is partially
ordered under inclusion. It also carries a natural topology, the Zariski topology
[CA, Chapter13], but we will have no need of that in these notes. A maximal
ideal is defined to be an ideal that is maximal among all proper ideals of R. An
ideal I is maximal if and only if R/I is a field, so it follows that maximal ideals are
prime and moreover the maximal ideals are the maximal elements of SpecR. We
denote the partially ordered set of maximal ideals as MaxSpecR. Note though that
MaxSpecR is in general much less interesting than SpecR as a partially ordered
set : in MaxSpecR any two distinct elements are incomparable.

A standard Zorn’s Lemma argument shows that every proper ideal is contained
in at least one maximal ideal.

21
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A ring R has finite Krull dimension if there is some number d such that for
every finite chain of prime ideals p0 ⊊ p1 ⊊ . . . ⊊ pℓ we have ℓ ≤ d. In this case
the maximal length of such a chain is called the Krull dimension of R and de-
noted by dimR. If R does not have finite Krull dimension it is traditional to put
dimR = ∞.1

Exercise 2.1.

a) Show that a field has Krull dimension 0.
b) Show that a finite ring has Krull dimension 0.
c) Show that Z has Krull dimension 1.
d) More generally, let R be a principal ideal domain (PID) that is not a field.

Show: dimR = 1.

3. Chain Conditions

Let (X,≤) be a partially ordered set. We say X satisfies the ascending chain
condition (ACC) if there is no infinite sequence {xn}∞n=1 of elements of X with
xn < xn+1 for all n ∈ Z+.

In a partially ordered set (X,≤), a maximal element if an element x ∈ X such
that for no element x′ in X do we have x < x′. Since X is only partially ordered,
this is not as strong as saying that for all x′ ̸= x we have x′ < x: such an element
would be called a top element.2

Exercise 2.2. Show: a partially ordered set (X,≤) satisfies ACC if and only
if for every nonempty subset has a maximal element.

Although we already have a perfectly good name for this condition, it is helpful to
give it another one: a partially ordered set is Noetherian if it satisfies ACC.

Working in this level of generality it is clear that we ought to make a second,
“dual” definition. Namely, we say that a partially ordered subset satisfies the de-
scending chain condition (DCC) if there is no infinite sequence {xn}∞n=1 of
elements of X with xn > xn+1 for all n ∈ Z+.

Exercise 2.3. State and prove the analogue of Exercise 2.2 for the descending
chain condition (DCC).

Again we give a second name to this: a partially ordered set (X,≤) is Artinian if
it satisfies (DCC).

For any partially ordered set (X,≤) we can define the dual ordering ≤∗ in which
x ≤∗ y if and only if y ≤ x. Evidently a partially ordered set is Noetherian if and
only if its dual is Artinian, and a partially ordered set is Artinian if and only its
dual is Noetherian, so at this level of generality we really have “the same concept.”

1For a ring R, one could define the cardinal Krull dimension carddim(R) as the supremum

of the set of cardinalities of totally ordered subsets of SpecR: this is a cardinal number that may
be infinite. This definition is made for instance in [Cl17]. We will certainly not need it here.

2Some people say “maximum element” where we say “top element.” To me this seems terrible:
we change an adjective to the corresponding noun and the meaning changes. As Serge Lang once

said: the terminology should be functorial with respect to the ideas.
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However, in practice the two concepts separate themselves, as we will now see.

Let R be a commutative ring, and let M be an R-module. The set of all R-
submodules of M is a partially ordered set under inclusion. We say that M is a
Noetherian module if this partially ordered set is Noetherian: i.e., if there are
no infinite ascending chains of submodules.

Proposition 2.2. An R-module M is Noetherian iff every submodule of M is
finitely generated.

Exercise 2.4. Prove Proposition 2.2.

A ring R is Noetherian if R is a Noetherian R-module: in other words, if every
ideal of R is finitely generated. A ring R is Artinian if R is an Artinian R-module.

Proposition 2.3. Let R be a ring.

a) R is Noetherian iff every finitely generated R-module is Noetherian.
b) R is Artinian iff every finitely generated R-module is Artinian.

Proof. This is [CA, Exc. 8.4]. (It looks a little weird to refer to an exercise
as a proof, so let me note that the content here is [CA, Thm. 8.4] – which is proved
in the notes! – from which this follows very quickly.) □

So far Noetherian and Artinian still look like “dual” conditions on a ring, but that
is really not the case, as the following result shows.

Theorem 2.4 (Akizuki-Hopkins). For a ring R, the following are equivalent:

(i) R is Artinian.
(ii) R is Noetherian and dimR = 0.

Proof. See [CA, Thm. 8.35]. □

Thus the class of Artinian rings is a tiny subclass of the class of all Noetherian rings.

A ring R is local if it has a unique maximal ideal.

It is clear that every finite ring is Artinian: indeed, a finite ring is has only finitely
many ideals, and obviously finite sets are both Noetherian and Artinian. So for
instance Z/NZ is any Artinian ring. If we factor N = pa1

1 · · · par
r then the ideals

(pa1
1 ), . . . , (par

r ) of Z are pairwise comaximal, so the Chinese Remainder Theorem
gives an isomorphism

Z/NZ ∼→
r∏

i=1

Z/pai
i Z.

Each ring Z/pai
i Z is finite local, with maximal ideal generated by the class of p.

In fact this kind of CRT decomposition extends to all Artinian rings:

Theorem 2.5. Every Artinian ring is a finite product of local Artinian rings.
Thus an Artinian ring has finitely many prime ideals, all of which are maximal.

Proof. This is [CA, Thm. 8.37]. □

Exercise 2.5. Let R be an Artinian ring, with prime ideals p1, . . . , pr. Show
that the following are equivalent:

(i) The ring R is finite.
(ii) For all 1 ≤ i ≤ r, the field R/pi is finite.
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4. Prime Avoidance

Lemma 2.6 (Prime Avoidance). Let R be a ring, and let I1, . . . , In, J be ideals
of R. Suppose that all but at most two3 of the Ii’s are prime ideals and that J ⊆⋃n

i=1 Ii. Then J ⊆ Ii for some i.

Proof. This is [CA, Lemma 8.51]. □

5. Annihilators

Let M be an R-module, and let m ∈M . The annihilator of m is

ann(m) := {x ∈ R | xm = 0}.

This is an ideal of R. If R is a domain, we say an R-module M is torsionfree if
for all m ∈M• :=M \ {0} we have ann(m) = 0.

More generally, if S is any subset of M then we can define

ann(S) := {x ∈ R | xm = 0 ∀x ∈ S}.

In fact we have

ann(S) =
⋂
m∈S

ann(m),

so ann(S) is also an ideal of R.

Exercise 2.6. Let M be an R-module, let S ⊆ M be a subset, and let ⟨S⟩R
denote the R-submodule generated by S. Show:

annS = ann⟨S⟩R.

The extreme case is annM , the set of elements x ∈ R such that x acts on M as
the zero endomorphism. A module M is called faithful if annM = 0.

Exercise 2.7. Show that every R-module M is, in a canonical way, a faithful
R/ ann(M)-module.

An R-module M is cyclic if it can be generated by a single element.

Exercise 2.8. Let M be a cyclic R-module. Show:

M ∼= R/ ann(M).

An R-moduleM is simple if it is not the zero module and it has no nonzero proper
submodules.

Exercise 2.9. Let M be a simple R-module. Show: there is a unique maximal
ideal m of R such that M ∼= R/m.

3That one or two of the ideals Ii are allowed not to be prime is what the proof gives. But I
know of no application of this extra generality, and it seems easier to remember the result under

the hypothesis that every Ii is a prime ideal.
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6. Jordan-Hölder Series

Recall that a Jordan-Hölder series for a finite group is a finite chain of subgroups,
each normal in the next, with simple successive quotients. The simple quotients
are called Jordan-Hölder factors, and we count them with multiplicity. For
instance, the Jordan-Hölder factors of Z/pa1

1 · · · par
r Z are Z/p1Z, . . . ,Z/prZ, with

multiplicities a1, . . . , ar.

Much the same holds for modules. A Jordan-Hölder series for an R-module
M is a finite chain of R-submodules, each of whose successive quotients is a simple
R-module. A module admits a Jordan-Hölder series iff it is both Noetherian and
Artinian [CA, Thm. 8.14]. (Thus for instance a module over an Artinian ring
admits a Jordan-Hölder series iff it is finitely generated.) Such modules are said
to be of finite length. The Jordan-Hölder Theorem still holds here: in any two
Jordan-Hölder series for the same finite length module, the same simple modules
(up to isomorphism, of course) appear, with the same multiplicities. Again we call
these the Jordan-Hölder factors. In particular the number of Jordan-Hölder fac-
tors – equivalently, the length of any Jordan-Hölder series – is an invariant of the
module, which is called its length.

7. Projective Modules

Theorem 2.7. For an R-module P , the following are equivalent:

(i) There is an R-module Q such that P ⊕Q is free.
(ii) If π :M → N is a surjection of R-modules and φ : P → N is an R-module

map, then there is a “lift” of φ to Φ : P →M : that is, φ = π ◦ Φ.
(iii) The functor Hom(P, ·) is eaxct.
(iv) Each short exact sequence of R-modules terminating at P – that is:

0 → N →M
q→ P → 0

splits: there is an R-module map σ : P → M such that q ◦ σ = 1P . This
gives an internal direct sum decomposition M = N ⊕ σ(P ).

A module satisfying these equivalent conditions is called projective.

For an R-module M , we put M∨ := HomR(M,R); this is again an R-module.

Theorem 2.8. For an R-module A, the following are equivalent:

(i) A is finitely generated projective.
(ii) For all R-modules B, the natural map

Φ : A∨ ⊗R B → HomR(A,B)

induced by (f, b) 7→ (a 7→ f(a)b) is an isomorphism.

Proof. This is [CA, Thm. 7.32]. □

Exercise 2.10.

a) Show: if M ∼= Rn for some n ∈ Z+, then also M∨ ∼= Rn.
b) Show: if P is finitely generated projective, so is P∨.

If R is a domain with fraction fieldK, then to a finitely generated projective module
P we can attach a rank:

rk(P ) := dimK(P ⊗R K).
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(We only speak of the rank for finitely generated projective modules, so when we
say “P has rank n” then it is understood that P is finitely generated.) If it helps
you to hear this, we can think geometrically of P as a vector bundle on SpecR
and the rank is, well, the rank of the vector bundle, i.e., the common dimension of
the fibers. In particular we can think of rank 1 projective modules as line bundles.

Exercise 2.11. Let R be a domain, and let I be a nonzero ideal of R.

a) Show: I is principal ⇐⇒ I is a free R-module ⇐⇒ I ∼=R R.
b) Show: if I is projective, then it has rank 1.

Still in the case that R is a domain, it is easy to see that for two finitely generated
projective modules P1 and P2 we have

rk(P1 ⊕ P2) = rkP1 + rkP2, rk(P1 ⊗R P1) = (rkP1)(rkP2).

Thus the tensor product of two rank one projective modules is another rank 1
projective module. Thus ⊗R gives a binary operation on isomorphism classes of
rank one projective R-modules. Since P ⊗RR = P , the free rank 1 R-module – i.e.,
R – gives an identity for this operation. If we believe the analogy between rank 1
projective modules and line bundles, we should expect that there are also inverses:
i.e., for every rank one projective R-module P , there i rank 1 projective R-module
P ′ such that P ⊗R P

′ ∼= R. f
I claim that P∨ serves this role: for any rank 1 projective R-module P , we have

P ⊗R P
∨ ∼= R. To see this, the first step is to apply Theorem 2.8: we get

P∨ ⊗R P ∼= HomR(P, P ) = EndR(P ).

It remains to show that if P is rank 1 projective, then EndR(P ) ∼= R. This is true
if R is free. We will deduce the general case using localization...as we now discuss.

8. Localization

8.1. Localization of Rings. The concept of localization of a commutative
ring stems from the construction of the field of fractions of a domain. Namely we
formally introduce ordered pairs (a, b) of elements of R with b ∈ R•, and we form
the fraction field by imposing the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ ad = bc

and checking that the familiar formulas for addition and multiplication of fractions

(a1, b1) + (a2, b2) :=
a1b2 + b1a2

b1b2
, (a1, b1) · (a2, b2) :=

a1a2
b1b2

are well-defined on equivalence classes. The ring F that we get is certainly a field,
because when a1 ̸= 0, the inverse of (a1, b1) is (b1, a1). Moreover we have R ↪→ F
via a 7→ (a, 1). Of course we write a

b for the equivalence class of (a, b).

More generally, for a domain R it makes sense to invert some but not all elements
of R \ {0}. To do this, we can just take any subset B \ R• and form R[ 1b | b ∈ B],
the subring of F generated by r and the inverses of elements of B. However, it
is to our advantage to be a bit more careful: e.g. if R = Z and B = {2, 3}, then
the subring Z[ 12 ,

1
3 ] can be described more precisely as { a

2b13b2
| a ∈ Z, b1, b2 ∈ N}.

Because the units in any ring form a group, if we invert 2 and invert 3 we must also
invert 2b13b2 . This leads us to the idea of a multiplicative subset S ⊆ R: this
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is a subset containing 1 and closed under multiplication: SS ⊆ S. If we start with
such a set, then indeed

R

[
1

s
| s ∈ S

]
=

{
a

s
| a ∈ R, s ∈ S

}
,

while if we start with an arbitrary subset B ⊆ R• as above, then we can take SB to
be the submonoid of R• generated by B – i.e., the set consisting of 1 and all finite
products of elements of B – and then

R

[
1

b
| b ∈ B

]
= R

[
1

s
| s ∈ SB

]
=

{
a

s
| s ∈ S

}
.

If for an arbitrary ring R we performed this construction with S a multiplicative
subset of nonzerodivisors of R – i.e., elements r ∈ R with ann r = 0 – then every-
thing holds as above. In particular, if we take R◦ to be the set of nonzerodivisors
of R, then this is the largest such multiplicatively closed subset, and the ring that
we get in this way is called the total fraction ring of R. When we move on to
inverting zero-divisors, things get one step more complicated: one would like to
define S−1R as the set of ordered pairs (a, s) with a ∈ R and s ∈ S, with

(a1, s1) ∼ (a2, s2) ⇐⇒ s2a1 = s1a2.

However it turns out that this need not be an equivalence relation!

Exercise 2.12. Find a commutative ring R and a multiplicative subset S ⊆ R
such that the relation ∼ on R × S defined by (a1, s1) ∼ (a2, s2) ⇐⇒ s2a1 = s1a2
is not an equivalence relation.

To fix this, we put

(a1, s1) ∼ (a2, s2) ⇐⇒ ∃s ∈ S such that ss2a1 = ss1a2.

(If no element of S is a zero divisor, then ss2a1 = ss1a2 ⇐⇒ s2a1 = s1a2, so this
definition is equivalent to the old one.)

Exercise 2.13. Let R be a ring, and let S be a multiplicative subset.

a) Define a relation ∼ on R× S as above:

(a1, s1) ∼ (a2, s2) ⇐⇒ ∃s ∈ S | ss2a1 = ss1a2.

Show: this is an equivalence relation.
b) Show: + and · are well-defined on equivalence classes, which makes the

set of equivalence classes into a commutative ring, denoted S−1R.
c) Show: S−1R is the zero ring (i.e., with one element 0 = 1) if and only if

0 ∈ S.
(Because of this, the case in which 0 ∈ S is often tacitly excluded.)

d) Show: there is a ring homomorphism ι : R → S−1R defined by a 7→ a
1
:=

[(a, 1)]. Also show: the kernel of ι is the set of elements r of R whose
annihilator meets S: ann(r) ∩ S ̸= ∅.

e) Show: ι is surjective if and only if S ⊆ R×, in which case ι is an isomor-
phism.

Exercise 2.14 (Universal Property of Localization). Let S be a multiplicative
subset of a ring R. Show that the homomorphism ι : R → S−1R is universal for
homomorphisms φ : R → T in which φ(S) ⊆ T×: that is, for any such homomor-
phism, there is a unique homomorphism Φ : S−1R→ T such that φ = Φ ◦ ι.
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Localization at a prime ideal: Let I be an ideal of a ring R. Then I is a multi-
plicative subset...but not an interesting one: since 0 ∈ I, the localization I−1R is
the zero ring. Notice however that the complement R \ I is a multiplicative subset
if and only if I is a prime ideal. Thus for p ∈ SpecR, we define the localization
of R at p as

Rp := (R \ p)−1R.

We claim that Rp is a local ring. We will deduce this from some more general
recalled spectral properties of the localization map ι : R→ S−1R.

For any ring homomorphism f : A→ B, we may use f to “push forward” ideals of
A to get ideals of B: for an ideal I of A, we put

f∗(I) := IB = ⟨f(i) | i ∈ I⟩B .

We may also use f to “pull back” ideals of B to get ideals of A: for an ideal J of
B, we put

f∗(J) := f−1(J) = {x ∈ R | f(x) ∈ J}.

Exercise 2.15. If f : A → B is a ring homomorphism and p is a prime ideal
of B, show that f∗(p) is a prime ideal of A. Thus we get an induced map

f∗ : SpecB → SpecA.

Lemma 2.9. Let ι : R→ S−1R be a localization map. Let I be an ideal of R.

a) We have ι∗(I) =
{

x
s ∈ S−1R | x ∈ I and s ∈ S

}
.

b) The following are equivalent:
(i) We have I ∩ S = ∅.
(ii) We have ι∗(I) ⊊ S−1R.

Proof. Part a) is [CA, Lemma 7.2]. Part b) is [CA, Lemma 7.4]. □

Proposition 2.10. Let S ⊆ R be multiplicatively closed, and let ι : R→ S−1R
be the localization map. If J is an ideal of S−1R, we have

J = ι∗ι
∗J.

Proof. This is [CA, Prop. 7.3]. □

Thus using ι∗, we may view the set of ideals of S−1R as a subset of the ideals of
R. It would be desirable to characterize the image of ι∗. Combining the last two
results, we see that the only proper ideals of R lying in the image of ι∗ are those
that are disjoint from S. If we restrict to prime ideals, this turns out to the only
condition:

Proposition 2.11. Let S ⊆ R be multiplicatively closed, and let ι : R→ S−1R
be the localization map.

a) If p ∈ SpecR is a prime ideal that is disjoint from S, then ι∗(p) is a prime
ideal of S−1R. Moreover we have

ι∗(ι∗p) = p.

b) The maps ι∗ and ι∗ give mutually inverse bijections from SpecS−1R to
the set of prime ideals of R that are disjoint from S.

Proof. This is [CA, Prop. 7.5] and [CA, Cor. 7.6]. □
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These considerations apply especially nicely to the case in which S = R \ p for
a prime ideal p of R. In this case, SpecRp consists of prime ideals q of R that
are disjoint from R \ p, i.e., such that q ⊆ p. Thus we find that Rp is a local
ring with unique maximal ideal pRp (often this is notationally shortened to just
p). Overall, to any commutative ring R we have attached a family of local rings
parametrized by the prime ideals of R. This is a useful construction, to say the least!

This example also shows that localization is “roughly dual” to taking quotients:
that is, let is try to compare a localization map

ι : R→ S−1R

to a quotient map attached to an ideal I of R:

q : R→ R/I.

Quotient maps also have the “pull-push property” – for all ideals J of R/I we have
q∗(q∗J) = J [CA, §1.5]. Moreover, under ι∗ the ideals of R/I correspond bijec-
tively to the ideals of R that contain I. Thus whereas quotienting by an arbitrary
ideal I “cuts off the lattice of ideals of R below I,” making I the smallest element
of the new lattice, localizing at a prime ideal p “cuts off the lattice of prime ideals
of R above p,” making p the largest element of the new lattice. The analogy is not
perfect, but it seems close enough to be helpful.

There is also a useful compatibility between quotients and localization:

Lemma 2.12. Let R be a ring, let S ⊆ R be a multiplicatively closed subset, and
let I be an ideal of R. Let q : R → R/I be the quotient map, and put S := q(S).
Then there is a canonical isomorphism

S−1R/IS−1R ∼= S
−1
R/I.

Proof. This is [CA, Lemma 7.7]. □

Exercise 2.16. Let m be a maximal ideal in a ring R.

a) Use the universal property of localization to show that the quotient map
q : R → R/m factors through the localization map ι : R → Rm: i.e., there
is a unique ring homomorphism α : Rm → R/m such that q = α ◦ ι.

b) Show: Ker(α) = mRm. Deduce that α induces an isomorphism

Rm/mRm
∼→ R/m.

c) Show: For all a ∈ Z+ we have a canonical isomorphism

Rm/(mRm)
a ∼→ R/ma.

Exercise 2.17 (Semilocalization). Let p1, . . . , pr be prime ideals in a ring R,
none containing any of the others. Let

S :=

r⋂
i=1

(R \ pi).

a) Show: S is a multiplicatively closed subset. We define the semilocaliza-
tion of R at p1, . . . , pr as

Rp1,...,pr
:= S−1R.
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b) Show: under the identification of SpecS−1R with the elements of SpecR
that are disjoint from S, we have

MaxSpecRp1,...,pr = {p1, . . . , pr}.

Suggestion: use Prime Avoidance (Lemma 2.6).

8.2. Localization of Modules. Let S ⊆ R be a multiplicative subset. To an
R-module M , we want to define an S−1R-module S−1M and a homomorphism of
R-modules ιM : M → S−1M . In order to define these maps, the minor complica-
tion is that there are two perfectly good contructions that present themselves:

• We observe that the localization construction makes sense on M just as well
as on R: i.e., we take the quotient of M × S under the equivalence relation
(m1, s1) ∼ (m2, s2) if there is s ∈ S such that ss2m1 = ss1m2.

• Or we could put S−1M := S−1R⊗R M .

In order to check that both of these constructions work, perhaps the cleanest ap-
proach is to identify the following desired properties of S−1M and ιM : S−1M
should be an R-module on which each element of s acts bijectively, and among all
R-module maps f :M → N for which N is an R-module on which each element of
S acts bijectively, ιM : M → S−1M should be the universal such map: i.e., there
should be a unique R-module homomorphism F : S−1M → N such that f = F ◦ιM .
As usual, this determines ιM up to a unique isomorphism. So it suffices to check
that both of the above constructions satisfy this universal mapping property. We
leave this as an exercise.

Here is a closely related remark: an R-module M can be endowed with the struc-
ture of an S−1R-module compatibly with its R-module structure if and only if each
s ∈ S acts bijectively on M , in which case this S−1R-module structure is unique:
indeed, we can and must define x

s as s−1 ◦ x (where s−1 denotes the inverse of
s as an endomorphism of M). Thus for instance a Q-vector space is precisely a
commutative group in which mutiplication by n is bijective for all n ∈ Z \ {0}.
By the way, this is also analogous to the case of quotients: for an ideal I of R,
an R-module M can be given the compatible structure of an R/I-module if and
only if each element of I acts on M as the zero endomorphism, in which case the
compatible R/I-module structure is unique.

Exercise 2.18. Let S ⊆ R be a multiplicatively closed subset. Show: the kernel
of ιM :M → S−1M is the set of m ∈M such that ann(m) ∩ S ̸= ∅.

Exercise 2.19. Let R be a domain, with fraction field K, and let M be an
R-module.

a) Let R be a domain with fraction field K. Let M be an R-module. show:

Ker(M →M ⊗K) =M [tors].

b) Suppose that M is finitely generated. Show: the following are equivalent:
(i) M is torsionfree.
(ii) M embeds in a finitely generated free module.
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8.3. Local Properties.

Proposition 2.13. Let f : M → N be a homomorphism of R-modules. Then
f is injective (resp. surjective, resp. bijective) if and only if fm : Mm → Nm is
injective (resp. surjective, resp. bijective) for all m ∈ MaxSpecR.

Proof. This is [CA, Prop. 7.14]. □

Exercise 2.20. Let R be a ring, M and R-module and let N1, N2 be R-
submodules of M .

a) Show: N1 ⊆ N2 if and only if (N1)m ⊆ (N2)m for all m ∈ MaxSpecR.
(Hint: N1 ⊆ N1 ⇐⇒ (N1 +N2)/N2 = 0.)

b) Show: N1 = N2 if and only if (N1)m = (N2)m for all m ∈ MaxSpecR.

Proposition 2.14. Let R be a domain with fraction field K, let V be a finite-
dimensional K-vector space, and let Λ be a finitely generated R-submodule of V .
Then inside V we have ⋂

m∈MaxSpecR

Λm = Λ.

Proof. This is [CA, Thm. 7.16]. □

8.4. Localization and Projective Modules. One of the most important
properties that is not local is being freeness of modules. This is highly relevant to
us, because a nonzero ideal I in a domain R is principal if and only if it is free, in
which case it is free of rank 1. We cannot check locally whether ideals are principal:
as we will soon see, in any Dedekind domain that is not a PID, every ideal is locally
free but not every ideal is free. However, what we can check locally is projectivity,
at least with some fine print.

Theorem 2.15. Let R be a ring. Suppose that R is either Noetherian or a
domain. Let M be a finitely generated R-module. The following are equivalent:

(i) M is projective.
(ii) M is locally free: Mm is free for all m ∈ MaxSpecR.

Proof. When R is Noetherian this follows from [CA, Thm. 7.29]. When R
is a domain this follows from [CA, Cor. 13.36]. □

Corollary 2.16. For a domain R and a rank 1 projective module P , we have
EndR(P ) ∼= R.

Proof. For any R-module M , we have a homomorphism of R-modules f :
R→ EndR(M). By Proposition 2.13, we have that f : P → EndR(P ) is a bijection
if and only if fm : Rm → EndR(P )⊗ Rm = EndRm

(Mm), so we are reduced to the
case in which R is a local ring. But then by Theorem 2.15 we have that M ∼= R,
and as mentioned before we certainly have EndR(R) = R. □

Thus we have shown that for a domain R, isomorphism classes of rank 1 projective
R-modules form a group under ⊗. This group is called the Picard group of R
and denoted PicR.

Digression: Over an arbitrary ring R, a finitely generated module M has a rank
function: for p ∈ SpecR, let kp := Rp/pRp. Then we put rkp(M) := dimkp

M⊗Rkp.
This function is continuous, so is constant on the connected components of SpecR.
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If R is a domain then SpecR is connected, so we get a constant function, and
evaluating at p = (0) we get our previous definition of the rank. In general define a
rank 1 projective module to be a finitely generated projective module whose rank
function is constantly 1, and then once again PicR is the group of isomorphism
classes of rank 1 projective modules under ⊗.

In turn this is a special case of the Picard group of a locally ringed space....
However, since R is a domain we can give a more down-to-earth description of PicR
in terms of certain ideals of R. We do this next.

9. Fractional Ideals

Let R be a domain with fraction field K. A fractional ideal of R is a nonzero
R-submodule I of K for which there is a ∈ R• such that aI ⊆ R (equivalently,
I ⊆ 1

aR). Then aI is a nonzero ideal of R, so a good way to think about a
fractional ideal is as a (nonzero) ideal divided by a (nonzero) principal ideal.

Remark 2.17. One can extend the notion of “fractional R-ideal” to commuta-
tive rings with zero divisors. First one replaces the fraction field K with the “total
fraction ring” of R, i.e., the localization at the set of all nonzerodivisors. Second,
instead of nonzero ideals one works with ideals containing a regular element: that
is, a nonzerodivisor. In principle this is the right level of generality. Maybe I will
do this in a future version of these notes, but for now I will restrict to domains.

Exercise 2.21. Let R be a domain with fraction field K.

a) Show: every finitely generated R-submodule of K is a fractional R-ideal.
b) Show that the following are equivalent:

(i) R is Noetherian.
(ii) Every fractional R-ideal is a finitely generated R-submodule of K.

We denote the set of all fractional R-ideals by Frac(R).

If I and J are fractional R-ideals, then all of following are also fractional R-ideals
[CA, Thm. 19.1]:

• I ∩ J .
• I + J := {x+ y ∈ x ∈ I, y ∈ J} = ⟨I, J⟩R.
• IJ := {

∑n
i=1 xiyj | xi ∈ I, yi ∈ J}.

• (I : J) := {x ∈ K | xJ ⊆ I}.

Exercise 2.22. Let R be a domain, and let S ⊆ R be a multiplicatively closed
subset. Let I and J be fractional R-ideals. Show:

a) S−1(I ∩ J) = (S−1I) ∩ (S−1J).
b) S−1(I + J) = S−1I + S−1J .
c) S−1(IJ) = (S−1I)(S−1J).
d) If J is finitely generated, then S−1(I : J) = (S−1I : S−1J).

Exercise 2.23. Let R be a domain, and let I and J be fractional R-ideals.
Show that the map

(I : J) → HomR(J, I), x 7→ (y 7→ xy)

is an isomorphism of R-modules.
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Exercise 2.24. Let R be a domain. For fractional R-ideals I and J , show that
the following are equivalent:

(i) I and J are isomorphic as R-modules.
(ii) There is x ∈ K× such that J = (x)I.

Certainly we have RI = R for all I ∈ Frac(R), so Frac(R) forms a commutative
monoid under multiplication of ideals. A fractional ideal is invertible if it has an
inverse in this monoid: i.e., if there is another fractional ideal I ′ such that II ′ = R.
Thus FracR is a group if and only if every fractional R-ideal is invertible. When
does this happen? In the next chapter we will identify the class of domains for
which this holds.

Exercise 2.25. Let R be a domain, and let J be an invertible fractional R-
ideal. Show: for all I ∈ Frac(R) we have

(I : J) = IJ−1.

This provides some intuition for the colon ideal construction: when J is invertible,
(I : J) is literally I divided by J . But – intriguingly – this definition makes sense
even if J is not invertible. To follow up on this, for I ∈ Frac(R), we put

I∗ := (R : I).

Exercise 2.26. Let R be a domain, and let I ∈ Frac(R). Show: II∗ ⊆ R.

Now we have a very important lemma:

Lemma 2.18. Let R be a domain.

a) For a fractional R-ideal I, the following are equivalent:
(i) I is invertible.
(ii) We have II∗ = R.

b) (To contain is to divide) If I ⊆ J are fractional R-ideals with J in-
vertible, then

I = J(I : J).

Proof. See [CA, Lemma 19.8]. (I encourage you to read the proof.) □

Let ι : II∗ ↪→ R be the inclusion map, an injection of R-modules. Whether ι is
a bijection can be checked locally! It follows that invertibility of fractional ideals
can also be checked locally. There is one kind of fractional ideal that is rather
obviously invertible: namely, a fractional R-ideal is principal if it is monogenic as
an R-module: that is I = (a) := Ra for some a ∈ K×. Indeed, we have

(a)−1 = (a−1).

So it follows that a fractional ideal is invertible if it is locally principal. Since a
nonzero ideal in any domain is principal if and only if it is free if and only if it
is free of rank 1 as an R-module, we deduce from Theorem 2.15 that a finitely
generated fractional R-ideal is locally principal if and only if it is projective if and
only if it is projective of rank 1.

So finitely generated projective fractional ideals are invertible. It turns out that
the converse is also true, so we get:
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Theorem 2.19. Let R be a domain, and let I be a fractional R-ideal. Then I
is invertible if and only if I is finitely generated projective.

Proof. This is [CA, Thm. 19.11]. □

Thus over any domain, a fractional R-ideal is invertible if and only if it is finitely
generated projective as an R-module, in which case (by Exercise 2.11) it has rank 1.

Furthermore:

Theorem 2.20. Let R be a domain, and let I and J be invertible fractional
R-ideals.

a) Multiplication induces an isomorphism of R-modules I ⊗R J
∼→ IJ .

b) Let P be a rank 1 projective R-module. Then there is a fractional ideal I
of R such that M ∼=R I.

Proof. Part a) is [CA, Thm. 19.14]. Part b) is [CA, Thm. 19.16]. □

By Theorem 2.20, every rank 1 projective R-module is isomorphic to a fractional
ideal I. By Exercise 2.24 this ideal I is well-determined precisely up to multipli-
cation by a principal fractional ideal, so the set of isomorphism classes of rank 1
projective modules gets identified with the set of invertible ideal classes. To make
that last part more precise, we denote by Inv(R) the group of invertible fractional
R-ideals (this is the unit group of the commutative monoid Frac(R)). The principal
fractional R-ideals form a subgroup of Inv(R) that we denote Prin(R).

Now (but not for long!) we define the Cartier class group as the quotient

CaCl(R) := Inv(R)/Frac(R).

But the point is that we have named the same group twice: we have just explained
that the canonical map CaCl(R) → PicR that associates to every invertible ideal
class the isomorphism class of the underlying rank 1 projective module is an iso-
morphism, and by Theorem 2.20b) it is an isomorphism of groups.

This is an exciting result: the general trend in commutative algebra is to move
from the study of rings to the study of ideals to the study of modules. But here we
have managed to come back the other way: for any domain R, rank 1 projective
R-modules can be completely understood in terms of invertible fractional R-ideals.

Aside: we spoke of the Cartier class group of R rather than just the class group.
As you might surmise, there is another kind of class group. If R is a Noether-
ian integrally closed domain, then there is a divisor class group denoted Cl(R):
see [CA, §19.4] for one possible definition. There is a canonical injective group
homomorphism

PicR ↪→ Cl(R)

that can fail to be surjective: in algebraic geometry this corresponds to the fact
that every Cartier (= locally principal) divisor is a Weil divisor, but not necessar-
ily conversely. These two groups however do coincide whenever we have that Rm

is a UFD for all m ∈ MaxSpecR. In turn this happens whenever R is a regular ring.

In our course we are only interested in one-dimensional Noetherian domains, in
which case as mentioned before, integrally closed is the same as regular, so we
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only have one kind of class group. Nevertheless the notion of a Weil divisor in a
Dedekind domain is indeed a familiar and important one: it is a finite formal Z-
linear combination of height 1 (= maximal, here) prime ideals. Thus Weil divisors
correspond to fractional ideals and “every Weil divisor is Cartier” is a fancy way of
saying that all fractional ideals are invertible.

We will also be interested in one-dimensional Noetherian domains that are not
integrally closed, especially in the case of non-maximal orders O in a number field.
In this case the Picard group PicO is still meaningful and important, but its non-
triviality is no longer the sole obtruction to O being a PID.

10. Integral Extensions

10.1. Basic Properties. Let A ⊆ B be a ring extension. We may also write
“let B/A be a ring extension.”

Exercise 2.27. Let B/A be a ring extension. Show: B is a faithful A-module.

An element α ∈ B is integral over A if there are a0, . . . , an−1 ∈ A such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0.

In other words, α ∈ B is integral over A if there is a monic polynomial P ∈ A[t]
such that P (α) = 0.

Theorem 2.21. Let B/A be a ring extension. For α ∈ B, the following are
equivalent:

(i) α is integral over A.
(ii) A[α] is a finitely generated A-module.
(iii) There is an intermediate ring A ⊆ C ⊆ B such that α ∈ C and C is

finitely generated as an A-module.
(iv) There is a faithful A[α]-submodule of C that is finitely generated as an

A-module.

Proof. This is [CA, Thm. 14.1]. □

We say a ring extension B/A is integral if every element of B is integral over A.
Notice that a field extension is integral if and only if it is algebraic.

Lemma 2.22. Let A ⊆ B ⊆ C be a tower of rings.

a) If B is a finitely generated A-module and C is a finitely generated B-
module, then C is a finitely generated A-module: indeed, if {βi}mi=1 gen-
erates B as an A-module and {γj}nj=1 generates C as a B-module, then
{αiβj}1≤i≤m, 1≤j≤n generates C as an A-module.

b) If B is integral over A and C is integral over B, then C is integral over
A.

Proof. a) This is [CA, Lemma 14.4]. b) This is [CA, Lemma 14.3]. □

A good intuition for integral extensions B/A is that they are the ring extensions
of A that are “locally finitely generated as A-modules.” The following result shows
that under integrality, the weaker finiteness condition of being finitely generated
as an A-algebra is equivalent to the stronger finiteness condition of being finitely
generated as an A-module.
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Corollary 2.23. Let B/A be a ring extension.

a) If B is finitely generated as an A-module, then B is integral over A.
b) If B is integral over A and finitely generated as an A-algebra, then it is

finitely generated as an A-module.

Proof. (i) =⇒ (ii): If B is finitely generated as an A-module, let α ∈ B.
Condition (iii) of Theorem 2.21 applies with C = B, so α is integral over A.
(ii) =⇒ (i): Since B is finitely generated as an A-algebra, we may write B =
A[α1, . . . , αn]. Since α1 is integral over A, by Theorem 2.21, A[α1] is finitely gen-
erated as an A-module. Since α2 is integral over A, it is also integral over A[α1],
so A[α1, α2] is finitely generated as an A[α1]-module. By Lemma 2.22a), A[α1, α2]
is finitely generated as an A-module. Continuing in this manner, we get that
A[α1, . . . , αn] is finitely generated as an A-module. □

10.2. Integral Extensions of Domains. If B/A is a ring extension, then
the integral closure of A in B is the set of all elements of B that are integral
over A. We will denote this by IB(A). It is a subring of B [CA, Cor. 14.6].

Proposition 2.24. Let A ⊆ B be domains, let K be the fraction field of A and
let L be the fraction field of B.

a) The fraction field of IB(A) is IL(K).
b) In particular, if L/K is an algebraic extension, then the fraction field of

IB(A) is L.

Proof. a) This is [CA, Prop. 14.10]. b) If L/K is algebraic, then IL(K) = L,
so this follows from part a). □

Exercise 2.28. Let A be a domain with fraction field K, let L/K be an al-
gebraic field extension, and let B be the integral closure of A in L. Show: for all
α ∈ L, there is a ∈ A• such that aα ∈ B.

The following result tells us that localization commutes with integral closure.

Theorem 2.25. Let B/A be an extension of domains, and let S ⊆ A be a
multiplicatively closed subset. Then

IS−1B(S
−1A) = S−1IB(A).

Proof. This is [CA, Thm. 14.9]. □

If B/A is a ring extension, A is integrally closed in B is IB(A) = A: that is, if
every element of B that is integral over A arleady lies in A. If A is a domain with
fraction field K, we say that A is integrally closed if A is integrally closed in K.

Proposition 2.26. A unique factorization domain (UFD) is integrally closed.

Proof. Let A be a UFD with fraction field K, and let α ∈ K be integral over
A, so there are a0, . . . , an−1 ∈ A such that

αn + an−1α
n−1 + . . .+ α1x+ α0 = 0.

Certainly we may assume that x ̸= 0. Then, since R is a UFD, we may write α = r
s

with r, s ∈ A• and with gcd(r, s) = 1. Substituting this in gives(r
s

)n
+ an−1

(r
s

)n−1

+ . . .+ a1

(r
s

)
+ a0 = 0,
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and clearing denominators, we get

rn + aN−1sr
n−1 + . . .+ sn−1a1r + sna0 = 0.

This shows that s | rn. If s is not a unit of A it is divisible by some prime element
p, and thus p | rn and then p | r, contradicting the coprimality of r and s. So
s ∈ R× and thus α = r

s ∈ A. □

Theorem 2.27. Let A be a domain with fraction field K. Let L/K be a field
extension, and let α ∈ L be integral over A. Let P ∈ K[t] be the minimal polynomial
of α.

a) We have P (t) ∈ IK(A)[t].
b) If A is integrally closed, then α is integral over A if and only if P ∈ A[t].

Proof. This is [CA, Thm. 14.18]. □

Theorem 2.28 (Local nature of integral closure). For a domain R, the follow-
ing are equivalent:

(i) R is integrally closed.
(ii) For all p ∈ SpecR, the ring Rp is integrally closed.
(iii) For all m ∈ MaxSpecR, the ring Rm is integrally closed.

Proof. This is [CA, Thm. 14.19]. □

10.3. Spectral Properties of Integral Extensions.

Theorem 2.29. Let ι : A ↪→ B be an integral ring extension. Then:

a) The pullback map ι∗ : SpecB → SpecA is surjective.
b) If I ⊊ A is a proper ideal of A, then ι∗(I) ⊊ B is a proper ideal of B.
c) For p ∈ SpecB, we have that p is maximal if and only if ι∗(p) is maximal.
d) The pullback map ι∗ : MaxSpecB → MaxSpecA is surjective.
e) We have dimA = dimB.

Proof. a) This is [CA, Thm. 14.13].
b) By Zorn’s Lemma, I is contained in a maximal ideal m of R. Since ι∗(I) ⊆ ι∗(m),
it suffices to show that ι∗(m) is a proper ideal of B. By part a) there is a prime
ideal P of B such that ι∗(P) = m. This means that P ∩A = m, so P is an ideal of
B containing m, so ι∗(m) ⊆ P ⊊ B. c) This is [CA, Cor. 14.16].
d) Let m ∈ MaxSpecA. By part a), there is P ∈ SpecB such that ι∗(P) = m. By
part c), P is maximal.
e) This is [CA, Cor. 14.17]. □

If B/A is an integral extension and p is a prime ideal of A, then a prime ideal P of
B is said to lie over p if ι∗(P) = p, or in other words if P = p.

10.4. Normalization Theorem.

Theorem 2.30 (Normalization Theorem). Let A be an integrally closed Noe-
therian domain with fraction field K, let L/K be a finite degree separable field
extension, and let B be the integral closure of R in L. Then:

a) B is finitely generated as an A-module.
b) If A is a PID, then B ∼=A A[L:K].

Proof. This is [CA, Thm. 18.1]. □
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The proof of Theorem 2.30 given in [CA] is a classic algebraic number theory
argument: it involves traces, discriminants and so forth. We will give a (different,
but not that different) proof of Theorem 2.30 later on: see Theorem 5.20.

10.5. The Ring of Integers of a Number Field. Let K be a number field,
i.e., a finite degree extension of Q, say of degree n. We denote by ZK the integral
closure of Z in K. By Theorem 2.30, ZK a free Z-module of rank n. Moreover ZK

is a Noetherian ring: indeed, since Z is Noetherian and ZK is finitely generated as
a Z-module, by Proposition 2.3 ZK is a Noetherian Z-module. This means that ZK

satisfies (ACC) on Z-submodules, so certainly it satisfies (ACC) on ZK-submodules.
Finally, by Theorem 2.29e), we have that dimZK = 1. In the next chapter we will
define a Dedekind domain to be a Noetherian, one-dimensional integrally closed
domain; thus ZK is a Dedekind domain.

The proof of Theorem 2.30 does not actually compute a Z-basis for ZK . In general
to do so is a nontrivial problem. We will present an algorithm for this later in the
course. For now, we treat the case of n = 2:

Every quadratic number field is of the form K = Q(
√
d) for a squarefree d ∈

Z \ {0, 1}. We will compute ZK . First, we observe that
√
d ∈ ZK : indeed

√
d sat-

isfies the monic polynomial t2 − d ∈ Z[t]. It follows that Z[
√
d] ⊆ ZK . Notice that

Z[
√
d] is itself a free Z-module generated by 1 and

√
d. So the only honest first guess

is that ZK = Z[
√
d]. It turns out that this may or may not be true, depending on d.

Indeed, an arbitrary element of K can be written as α = a + b
√
d with a, b ∈ Q.

Since (α− a)2 = db2, we have found the minimal polynomial of α: it is

P (t) = t2 − 2aα+ a2 − db2.

The ring Z is a PID, hence a UFD, hence integrally closed. So by Theorem 2.27b),
we get that α ∈ ZK if and only if P (t) ∈ Z[t], hence if and only if 2a, a2 − db2 ∈ Z.

Suppose first that a ∈ Z. Then we get that db2 ∈ Z. Since d is squarefree, this
happens if and only if b ∈ Z

Now suppose that 2a ∈ Z but a /∈ Z, so that a = c
2 with c an odd integer.

Then a2 − db2 = c2−4db2

4 ∈ Z, so there exists an integer e with c2 − 4db2 = 4e.
Such an e exists only if ord2(b) = −1 and d ≡ 1 (mod 4). We conclude that if

d ≡ 2, 3 (mod 4) ZK = Z[
√
d], whereas if d ≡ 1 (mod 4), ZK is the set of all

a+b
√
d where a, b are rational numbers which are either both integers or both half-

integers. A little thought shows that this latter case can be written more cleanly

as ZK = Z[ 1+
√
d

2 ].
In summary:

Theorem 2.31. Let d be a squarefree integer not equal to 0 or 1, and put
K = Q(

√
d). Then:

ZK =

Z[
√
d] d ≡ 2, 3 (mod 4)

Z
[
1+

√
d

2

]
d ≡ 1 (mod 4).

.
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11. The Dual Module

If R is a ring andM and N are R-modules, the set HomR(M,N) of R-module maps
from M to N itself has the structure of an R-module: for f1, f2 ∈ HomR(M,N)
and a ∈ R, we put

(af1 + f2) := (m 7→ af1(m) + f2(m).

Note that we are using here that R is commutative.

Exercise 2.29. Let M,M1,M2, N,N1, N2 be R-modules. In the following ex-
ercise we state equalities; they are actually canonical isomorphisms that ist is your
task to define.

a) Show: HomR(R,N) = N .
b) Show: HomR(M1 ⊕M2, N) = HomR(M1, N)⊕HomR(M2, N).
c) Show: HomR(M,N1 ⊕N2) = HomR(M,N1)⊕HomR(M,N2).
d) An R-module map φ :M1 →M2 induces an R-module map

φ∗ : HomR(M2, N) → HomR(M1, N).

If φ is surjective, then φ∗ is injective.
e) An R-module map ψ : N1 → N2 induces an R-module map

ψ∗ : HomR(M,N1) → HomR(M,N2).

If ψ is injective, then ψ∗ is injective.

Proposition 2.32. If R is Noetherian and M and N are finitely generated,
then HomR(M,N) is also finitely generated.

Proof. Since M is finitely generated, there is n ∈ Z+ and a surjective R-
module map Rn →M , which by Exercise 2.30d) induces an injective R-module map
HomR(M,N) → HomR(R

n, N). By Exercise 2.30 b) and a) we have HomR(R
n, N) =

HomR(R,N)n = Nn is finitely generated. Since R is Noetherian, the submodule
HomR(M,N) of Nn is also finitely generated. □

Exercise 2.30. Let R be a ring, and let I be an ideal of R.

a) Show: HomR(R/I,R) = ann I.
b) Find an example of R and I such that ann I is not finitely generated.

For a ring R and an R-module M , we put

M∨ := HomR(M,R).

This is also an R-module, via a ∈ R, f ∈M∨ 7→ (x ∈M 7→ af(x)). It follows from
Exercise 2.30 that a map ι :M1 →M2 induces a map ι∨ := ι∗ :M∨

2 →M∨
1 that is

injective if ι is surjective. Moreover by Exercise 2.30 we have

(M1 ⊕M2)
∨ =M∨

1 ⊕M∨
2 .

By Proposition 2.32, when R is Noetherian and M is finitely generated, M∨ is also
finitely generated. (Moreover, by Exercise 2.30, there is an ideal I in a ring R such
that the dual (R/I)∨ of the cyclic module R/I is not finitely generated.)

There is a natural bilinear pairing

⟨·, ·⟩ :M ×M∨ → R, ⟨x, f⟩ := f(x).
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As a general rule, we should consider duals of infinitely generated modules only if
we are interested in set-theoretic issues. Even for a vector space V over a field K, if
dimV is infinite, then dimV ∨ > dimV in the sense of cardinal arithmetic. Similar
but wilder things can happen for infinitely generated modules over rings.

Exercise 2.31. Let R be a ring, and let F be a finitely generated free R-module,
with basis e1, . . . , en.

a) For 1 ≤ i ≤ n, show that there is a unique e∨i ∈ F∨ such that for all
1 ≤ j ≤ n, we have

e∨i (ej) = δ(i, j) =

{
1 if i = j

0 otherwise
.

b) Show: e1, . . . , en is a basis for F∨, called the dual basis.
c) Deduce: F∨ ∼= F .

Exercise 2.32. Let R be a ring, and let P be a finitely generated projective
R-module. Show: P∨ is also finitely generated projective.

For any R-module M we have a natural map

ιM :M →M∨∨, (x, f) ∈M ×M∨ 7→ f(x) ∈ R.

We say that M is torsionless if ιM is an injection and that M is reflexive if ιM
is an isomorphism.

Lemma 2.33. For an R-module M , the following are equivalent:

(i) M is torsionless.
(ii) There is a set I such that M is a submodule of RI :=

∏
i∈I R.

Proof. Suppose there is an R-module embedding ι : M ↪→ RI for some set
I. For each i ∈ I, let πi : RI → R be projection onto the ith factor and let
ιi := πi ◦ ι ∈ M∨. For x ∈ M•, since ι is an injection there is i ∈ I such that
ιi(x) ̸= 0. Thus M is torsionless. Conversely, if M is torsionless then the natural

map M → RM∨
given by x 7→ (f(x))f∈M∨ is an injection. □

In particular, every submodule of a free module is torsionless.

Lemma 2.34. Let R be a Noetherian domain, and let M be a finitely generated
R-module. The following are equivalent:

(i) M is torsionless.
(ii) M is torsionfree.
(iii) M is a submodule of a finitely generated free module.

Exercise 2.33. Show that the additive group (Q,+) of the rational numbers is
a torsionfree Z-module that is not torsionless.

Exercise 2.34. Let G := ZN be the direct product of countably infinitely many
copies of the Z. Show: G is a torsionless Z-module that is not free.

Exercise 2.35. a) Show: a projective module is torsionless.
b) Show: a submodule of a torsionless module is torsionless.
c) Show: a finitely generated free module is reflexive.
d) Show: a finitely generated projective module is reflexive.
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12. Eisenstein’s Criterion

Let A be a UFD with fraction field K. A nonzero polynomial f = ant
n+ . . .+a1t+

a0 ∈ R[t] is primitive if for all x ∈ A•, if x | ai for all 0 ≤ i ≤ n, then x ∈ A×. If
A is a PID, a polynomial is primitive if and only if ⟨a0, . . . , an⟩ = A, but in general
the latter condition is stronger: e.g. in the UFD A = C[x, y], the polynomial xt+ y
is primitive but its coefficients generate a maximal ideal ⟨x, y⟩.

The following is one of the results that goes under the name Gauss’s Lemma:
in [CA] it is derived as a corollary of another result that bears that name.

Proposition 2.35. Let A be a UFD with fraction field K, and let f ∈ A[t] be
a polynomial of positive degree.

a) The following are equivalent:
(i) f ∈ A[t] is irreducible.
(ii) f is primitive and f ∈ K[t] is irreducible.

b) The following are equivalent:
(i) f ∈ K[t] is reducible.
(ii) There are g, h ∈ A[t] such that deg(g),deg(h) < deg f and f = gh.

Proof. This is [CA, Cor. 15.25]. □

If A is a domain, f = adt
d + . . .+ a1t+ a0 ∈ A[t] is a polynomial of positive degree

and p ∈ SpecA is a prime ideal such that a0 /∈ p2, for all 0 ≤ i < d we have ai ∈ p
and ad /∈ p, we say that f is Eisenstein at p.

Theorem 2.36 (Schönnemann-Eisenstein Criterion). Let A be a UFD with
fraction field K and let

f = adt
d + . . .+ a1t+ a0 ∈ A[t]

be a polynomial of positive degree. If there is p ∈ SpecA such that f is Eisenstein
at p, then f is irreducible in K[t].

Proof. uppose to the contrary that f ∈ K[t] is reducible. Then by Proposition
2.35 there are g, h ∈ A[t] with deg(g),deg(h) < deg f and gh = f . Write

g = bmt
m + . . .+ b1t+ b0 and h = cnt

n + . . .+ c1t+ c0 withbmcn ̸= 0.

Since a0 = b0c0 ∈ p \ p2, t follows that exactly one of b0 and c0 lies in p: without
loss of generality, we may suppose that b0 /∈ p and c0 ∈ p. Since ad = bmcn /∈ p, we
have cn /∈ p. Let 0 < k ≤ n < d be minimal such that ck /∈ p. Then

b0ck = ak − (b1ck−1 + . . .+ bkc0) ∈ p.

Since p is prime, one of b0 and ck lies in p, which is a contradiction. □

For a domain A, a polynomial f ∈ A[t] of positive degree and p ∈ SpecA, we say
that f is locally Eisenstein at p if f ∈ Ap[t] is primitive and Eisenstein with
respect to the maximal ideal pAp of the local ring Ap. Since the fraction field of Ap

if K, if f is locally Eisenstein at p, then Theorem 2.36 applies to show that f ∈ K[t]
is irreducible. The following exercise shows that in a PID, being Eisenstein at p is
the same as being locally Eisenstein at p.

Exercise 2.36. Let A be a PID, and let f ∈ A[t] be a polynomial of positive
degree. Let p ∈ MaxSpecA.
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a) Show: f ∈ A[t] is primitive if and only if f ∈ Ap[t] is primitive for all
p ∈ MaxSpecA.

b) Let p ∈ MaxSpecA. Show: f is Eisenstein at p if and only if f ∈ Ap[t] is
Eisenstein at pAp.



CHAPTER 3

Dedekind Domains

1. PIDs and DVRs

Let R be a PID: a domain that is not a field and for which each ideal is principal.
Let K be the fraction field of R.

Then R is certainly Noetherian: indeed, every ideal is generated by a single el-
ement. By Exercise 2.1 a PID has Krull dimension 1.

Moreover R is a unique factorization domain (UFD). This is a well-known un-
dergraduate level result that can be established e.g. by first establishing that the
gcd of any two elements can be expressed as a linear combination of those elements
and then proving “Euclid’s Lemma” that irreducible elements generate prime ideals.
Here is a slightly more sophisticated approach:

Theorem 3.1 (Kaplansky). For a Noetherian domain R, the following are
equivalent:

(i) R is a UFD.
(ii) Every height 1 prime of R is principal.

Proof. See [CA, Cor. 15.2]. □

The module theory of PIDs is also especially simple and pleasant.

Theorem 3.2. Let R be a PID. Let M be a finitely generated R-module, and
let N be any R-module.

a) M is isomorphic to a direct sum of cyclic R-modules.
b) M is torsionfree if and only if M is free.
c) The following are equivalent:

(i) N is free.
(ii) N is projective.
(iii) N is a submodule of a free module.

d) The following are equivalent:
(i) N is torsionfree.
(ii) N is flat.

Proof. a) This is [CA, Thm. 16.11]. b) This is [CA, Prop. 3.62].
c) Certainly (i) implies both (ii) and (iii). That (iii) =⇒ (i) is part of [CA, Thm.
3.60]. Suppose N is projective. If N is finitely generated, then finitely generated
projective implies finitely generated torsionfree implies finitely generated free, the
latter by part b). It is a general result of Bass that over any Noetherian domain
R (or more generally, any Noetherian ring R without nontrivial idempotents) that

43
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every infinitely generated projective module is free [CA, Thm. 6.11].
d) This is [CA, Cor. 3.96]. □

For a module over any domain R we have
free =⇒ projective =⇒ flat =⇒ torsionfree.

Theorem 3.2 says that all of these conditions coincide for finitely generated modules
over a PID. For infinitely generated modules we still have that free = projective and
flat = torsionfree, but these two classes remain distinct: e.g. the additive group of
(Q,+) is a torsionfree but not free Z-module. In fact:

Exercise 3.1. Let R be a domain that is not a field, with fraction field K.
Show: the R-module K is flat but not projective.

The Z-module (Q,+) is also not a direct sum of cyclic modules. In fact, by a result
of Cohen-Kaplansky, the rings R over which every R-module is a direct sum of
cyclic modules are precisely the principal Artinian rings.

All this is to say that PIDs are a truly wonderful class of rings. If you encounter a
ring R “in real life”, you would be delighted to learn that it is a PID, as this will
make whatever you are trying to do with it much easier. The only catch is that it
is usually difficult to show that a ring is a PID. (In a first course on the subject
you learn about Euclidean rings, a subclass of Euclidean rings, and a good way
to show that rings like Z and k[t] for a field k are PIDs is to show that they are
Euclidean. But this is highly unrepresentative: most of the time it is even harder
to show that a ring is Euclidean.) As I will now try to explain, the class of PIDs is
a “delicate” class of rings that is intermediate in size between two more “robust”
classes: namely discrete valuation rings and Dedekind domains.

Exercise 3.2. Let R be a PID, and let I be a nonzero fractional R-ideal. Show:
there are distinct p1, . . . , pr ∈ MaxSpecR and unique a1, . . . , ar ∈ Z such that

I = pa1
1 · · · par

r .

Let p ∈ MaxSpecR. We use Exercise 3.2 to define a map vp : K× → Z: namely, for
each x ∈ K× we factor the fractional ideal (x) into products of primes and define
vp(x) to be the power of p that appears.

For any field K, a map v : K× → Z is a discrete valuation if:
(V0) There is x ∈ K× such that v(x) ̸= 0,
(V1) For all x, y ∈ K×, we have v(xy) = v(x) + v(y), and
(V2) For all x, y ∈ K× with x+ y ̸= 0, we have v(x+ y) ≥ min v(x), v(y).

We say that v is normalized if v(K×) = Z. By (V0) and (V1), a discrete valuation
is in particular a nontrivial group homomorphism K× → Z, so if it is not surjective
then its image is of the form eZ for some e ∈ Z+. Then 1

ev is a normalized discrete
valuation. So we don’t miss out on much by restricting to normalized valuations.

In this context it is convenient to extend v to all ofK by formally putting v(0) = ∞;
i.e., some element that is larger than every integer.

Exercise 3.3. Let R be a PID with fraction field K, and let p ∈ MaxSpecR.
Show: the map vp defined above is a normalized discrete valuation of K.
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Exercise 3.4. Let K be a field, and let v : K× → Z be a normalized discrete
valuation on K. Put

R := {x ∈ K× | v(x) ≥ 0} ∪ {0}.
a) Show that R is a domain with fraction field K.
b) Let π be an element of K with v(π) = 1. Show that R is a local PID with

maximal ideal m = (π).

Let S be a multiplicatively closed subset of our PID R. Then the localization S−1R
is a PID: indeed, for any localization map ι : R → S−1R and any ideal J of S−1R
we have J = ι∗ι

∗J , so every ideal in a localization comes by pushing forward an
ideal of R. The pushforward of a principal ideal is principal.

Let’s consider the special case in which we localize at a nonzero prime ideal p = (π)
of R. Then Rp = (R \ p)−1R is a local PID. By Exercise 3.2, every nonzero frac-
tional ideal of K is of the form (πn) for a unique n ∈ Z. Indeed Rp is nothing else
than the valuation ring attached to the discrete valuation vp.

A discrete valuation ring (DVR) is a local PID. For a field K, it follows from
our discussion that there is a bijective correspondence between DVRs with fraction
field K and normalized discrete valuations on K. In fact, if R is a PID with fraction
field K, then the discrete valuation rings R̃ with R ⊆ R̃ ⊊ K are precisely Rp for
p ∈ MaxSpecR.

In summary, a DVR is a local PID, so it is in particular an integrally closed Noe-
therian local domain of Krull dimension 1. It turns out though that all these other
conditions imply that ideals are principal. In fact, among Noetherian local domains
of Krull dimension 1, there are many equivalent “nice” conditions:

Theorem 3.3 (DVR Recognition Theorem). Let (R,m) be a one-dimensional
Noetherian local domain. The following are equivalent:

(i) R is a PID.
(ii) R is a UFD.
(iii) R is integrally closed.
(iv) m is principal.
(v) R is a regular local ring: dimR/m m/m2 = 1.

Proof. This is [CA, Thm. 17.21]. □

For those who are geometrically minded, the last condition is probably the key
one. We can view any one-dimensional Noetherian domain R as being a kind of
“generalized affine curve” (or rather, as the ring of functions on such a curve, but
there is a categorical equivalence here), and condition (v) at a maximal ideal p of
R is telling us that the curve is “nonsingular at p.” Thus all the other conditions
are necessary and sufficient for this nonsingularity in the one-dimensional case.
In particular being integrally closed is what geometers call “normal.” In general
normality is weaker than nonsingularity but they coincide in dimension 1. It is
an extremely important foundational fact that nonsingularity makes the maximal
ideal principal after localization.

This result provdes all-important motivation for us: it allows us to see that while
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PIDs are nice, in some sense the condition that ideals be “globally principal” is
more than we need in order to deduce most of the other facts about PIDs of this
section. Suppose instead that we consider the class of Noetherian domains R such
that Rm is a DVR for all m ∈ MaxSpecR. Such a domain must be one-dimensional:
since some Rm is not a field, R is not a field, and if there were a maximal ideal m of
height at least 2, then Rm would have dimension at least 2 so not be a DVR. But
here is a key point: by Theorem 2.28, in order for each Rm to be integrally closed,
it is necessary and sufficient for R itself to be integrally closed. So we have shown:

Theorem 3.4. For a Noetherian domain R, the following are equivalent:

(i) R is one-dimensional and integrally closed.
(ii) For all m ∈ MaxSpecR, the local ring Rm is a DVR.

2. Dedekind domains

Theorem 3.4 allows us to make the single most important definition of this text: a
ring R is a Dedekind domain if it is an integrally closed Noetherian domain of
Krull dimension 1.

Let R be a Dedekind domain, and let I be a fractional R-ideal. Then for all
p ∈ MaxSpecR we have that Ip := IRp is a fractional Rp-ideal. Since Rp is a DVR,
necessarily Ip is principal. Thus I is locally principal, hence projective, hence in-
vertible (cf. Theorem 2.19).

Actually this is a characteristic property of Dedekind domains:

Theorem 3.5. Let R be a domain. The following are equivalent:

(i) R is a Dedekind domain.
(ii) Every ideal of R is a projective module.1

(iii) Every fractional ideal of R is invertible.

Proof. (ii) ⇐⇒ (iii) was 2.19. We just showed (i) =⇒ (ii). For (iii) =⇒
(i) see [CA, Thm. 20.1]. □

Theorem 3.6. Let R be a Dedekind domain, and let I be a nonzero, proper
ideal of R. Then there are distinct p1, . . . , pr ∈ MaxSpecR and a1, . . . , ar ∈ Z+

such that I = pa1
1 · · · par

r .

Proof. Of course, if an ideal factors into a product of not necessarily distinct
prime ideals, then just by grouping together instances of the same prime ideal we
get a “standard form factorization” as in the statement of the theorem.

Let S be the set of nonzero, proper ideals of R that do not factor into products
of primes, partially ordered under inclusion. We want to show that S is empty,
so seeking a contradiction we assume that it is nonempty. Then because R is
Noetherian there is a maximal element I ∈ S. Then I is contained in some maximal
ideal p of R. We just saw that all nonzero ideals are invertible, so “to contain is to
divide” (Lemma 2.18): we have I = pJ for some ideal J . Then J := p−1I strictly
contains I (the ideal I is invertible too; alternately, in any Noetherian domain, the

1A module is called hereditary if every submodule is projective. (Seems like “hereditarily
projective” would be better, no?) Thus Dedekind domains are precsiely the domains that are

hereditary rings: all ideals are projective.
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equality I = pI would violate the Krull Intersection Theorem), so there are prime
ideals q1, . . . , qs such that

p−1I = q1 · · · qs,
so

I = pq1 · · · qs,
and I is a product of prime ideals after all: contradiction. □

Exercise 3.5. Let R be a Dedekind domain.

a) Show that the factorization of an ideal into primes is unique: if we have
not necessarily distinct prime ideals p1, . . . , pr and q1, . . . , qs such that

p1 · · · pr = q1 · · · qs,
then there is a bijection σ : {1, . . . , r} → {1, . . . , s} such that for all 1 ≤
i ≤ r we have qσ(i) = pi.

b) Let I be a fractional R-ideal. Show that there is a unique function a :
MaxSpecR → Z such that a(p) = 0 for all but finitely many maximal
ideals p and I =

∏
p∈MaxSpecR pa(p). Show also that I is integral if and

only if a(p) ≥ 0 for all p ∈ MaxSpecR.

Exercise 3.6. Let R be a Dedekind domain with fraction field K.

a) Let p ∈ MaxSpecR. Define a function vp : K× → Z as follows: vp(x) is
the power to which p appears in the prime factorization of the fractional
ideal (x). Show: vp is a normalized discrete valuation on K. Show that
the corresponding valuation ring

{x ∈ K | vp(x) ≥ 0} ∪ {0}
is Rp.

b) Show:
⋂

p∈MaxSpecRRp = R.

Exercise 3.7. Let I, J be fractional ideals in a Dedekind domain R, and write

I =
∏

pap , J =
∏

pbp .

(Of course for all but finitely many p we have ap = bp = 0.)

a) Show: I + J =
∏

pmin ap,bp .
b) Show: IJ =

∏
p p

ap+bp .

c) Show: I ∩ J =
∏

p p
max ap,bp .

Exercise 3.8. Let I and J be fractional ideals in a Dedekind domain. We say
that I | J if JI−1 ⊆ R.

a) Show that the following are equivalent:
(i) I | J .
(ii) J ⊆ I.
(iii) For all p ∈ MaxSpecR we have vp(I) ≤ vp(J).

b) Show that the set FracR of fractional R-ideals, partially ordered by inclu-
sion, is a lattice, with the least upper bound (or “join”) of I and J being
I + J and the greatest lower bound (or “meet”) of I and J being I ∩ J .

c) Show: IJ = (I ∩ J)(I + J).

Again it turns out that the factorization of ideals into primes characterizes Dedekind
domains among all domains:
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Theorem 3.7 (Matusita, 1944). Let R be a domain in which every nonzero,
proper ideal is a product of prime ideals. Then R is a Dedekind domain.

Proof. This is [CA, Thm. 20.8]. □

3. Moving Lemma

For a fractional ideal I in a Dedekind domain, we define the support supp I
to be the set of maximal ideals p of R for which vp(I) ̸= 0: this is a finite set.
We say that two fractional ideals I and J of R are coprime if their supports are
disjoint: in other words, no maximal ideal p appears with nonzero exponent in the
factorization of both I and J .

Lemma 3.8. Let R be a Dedekind domain, and let S = {p1, . . . , pn} be a finite
set of maximal ideals of R.

a) Let I be a fractional ideal of R. There is x ∈ I such that

(1) ∀1 ≤ i ≤ n, vpi
(x) = vpi

(I).

b) [Moving Lemma] Let a be a fractional ideal of R. Then there is an integral
ideal b of a with support disjoint from S lying in the same class as a.

Proof. a) Step 1: Suppose that I is an integral ideal. We may write

I = pa1
1 · · · par

r qb11 · · · qbss
where the qj ’s are the maximal ideals containing I other than p1, . . . , pn and ai ≥ 0
for all i and bj ≥ 1 for all j. By the Chinese Remainder Theorem, the diagonal
ring homomorphism

R→
r∏

i=1

R/pai+1
i ×

s∏
j=1

R/q
bj+1
j

is surjective. From this it follows that there is x ∈ R such that

∀i, x ∈ pai
i \ pai+1

i and ∀j, x ∈ q
bj
j \ qbj+1

j .

Equivalently, this element x satisfies

∀i, vpi
(x) = ai = vpi

(I) and ∀j, vqj
(x) = bj = vqj

(J).

This latter condition first of all ensures that x is an element of I and second of all
gives (1).
Step 2: Now suppose that I is a fractional ideal; we may write I = J

b for J an
integral ideal and b ∈ R•. By part a), there is x ∈ R• such that for every prime
divisor p of J we have ordp(x) = ordp(J), which once again ensures that x ∈ J .

Then the element x
b does what we want: it lies in J

b = I and

∀i, vpi(
x

b
) = vpi(x)− vpi(b) = vpi(J)− vpi(b) = vpi(J).

b) Applying part a) with I = a−1, there is x ∈ a−1 such that for all 1 ≤ i ≤≤ n we
have vpi(x) = vpi(a

−1). Then the fractional ideal a−1x−1 has support prime to S
and

a−1x−1 ⊇ a−1(a−1)−1 = R.

It follows that xa has support prime to S and is contained in R. □

Corollary 3.9. Let R be a Dedekind domain.

a) Exactly one of the following holds:
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(i) R is a PID.
(ii) R has infinitely many nonprincipal prime ideals.

b) If R is semilocal – i.e., MaxSpecR is finite – then R is a PID.

Proof. Let K be the fraction field of R.
a) Conditions (i) and (ii) are certainly mutually exclusive, so it suffices to assume
that there is a finite subset S ⊆ MaxSpecR such that every p ∈ (MaxSpecR) \ S
is principal and show that every fractional ideal of R is principal.

Let I be a fractional ideal of R. By Lemma 3.8b), there is x ∈ K• such that
the support of xI is disjoint from S. By assumption, this means that xI is of the
form

∏s
j=1 q

bi
j with each qj a principal prime ideal and bi ∈ Z. But this means that

xI = (y) is principal, so I = ( yx ) is principal.
b) This follows immediately from part a). □

Here are some further applications:

Proposition 3.10. Let I be a nonzero ideal in a Dedekind domain R. Then:

a) The ring R/I is a principal ring.
b) The ring R/I is Artinian. More precisely: if

I = pa1
1 · · · par

r ,

then the ideals of R/I correspond bijectively to the ideals pb11 · · · pbrr of R
with 0 ≤ bi ≤ ai for all 1 ≤ i ≤ r. In particular, there are precisely∏r

i=1(ai + 1) ideals of R.

Proof. a) The ring R/I is also a quotient of the semilocalization Rp1,...,pr
,

which by Corollary 3.9 is a PID. Thus R/I is a quotient of a principal ring, hence
principal.
b) This follows immediately from the fact that the ideals of R containing I are

precisely pb11 · · · pbrr with 0 ≤ bi ≤ ai for all 1 ≤ i ≤ r. □

For r ∈ N, we say that a ring R has the r-generation property if every ideal of
R can be generated by at most r elements. We say that a ring R has the (r + ϵ)-
generation property if for every nonzero ideal I of R and every nonzero element
x ∈ I, then there are y1, . . . , yr ∈ R such that I = ⟨x, y1, . . . , yr⟩R.

Exercise 3.9. Let r ∈ Z≥0. Suppose that a ring R has the r-generation prop-
erty (resp. the (r + ϵ)-generation property). Show: every localization S−1R of R
has the r-generation property (resp. the (r + ϵ)-generation property).

Theorem 3.11 (Asano-Jensen). For a domain R, the following are equivalent:

(i) R is a Dedekind domain.
(ii) R has the (1 + ϵ)-generation property.

Proof. (i) =⇒ (ii): let I be a nonzero ideal of R, and let x ∈ I \ {0}. We
have a short exact sequence of R-modules

0 → (x) → I → I/(x) → 0.

By Proposition 3.10 the R-module I/(x) is cyclic; let y be any generator, and lift
it to y ∈ I. Then I = ⟨x, y⟩.
(ii) =⇒ (ii) Suppose R has the (1 + ϵ)-generation property. In particular every
ideal is finitely generated, so it is a Noetherian domain, so it suffices to show that
for each nonzero p ∈ SpecR we have that the localization Rp is a DVR. By the
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preceding exercise, Rp has the (1 + ϵ)-generation property. Let I be a nonzero,
proper ideal of Rp. Then p is generated by any nonzero element x ∈ Ip together
with some other element y ∈ p, so

p = Ip+ yRp.

It follows that I + p = yRp + p, and by Nakayama’s Lemma we have I = bRp. So
Rp is a local PID, hence a DVR. □

4. Modules Over a Dedekind Domain

4.1. Structure Theory for Finitely Generated Modules.

Theorem 3.12. Let R be a Dedekind domain, and let M be a finitely generated
R-module. Then:

a) P :=M/M [tors] is finitely generated projective, say of rank r.
b) (i) If r = 0, then M =M [tors].

(ii) If r ≥ 1 then there is a nonzero ideal I of R such that

M ∼=M [tors]⊕ P ∼=M [tors]⊕Rr−1 ⊕ I.

c) The class [I] of I in PicR is an isomorphism invariant of M . Thus for
each r ≥ 1, the set of isomorphism classes of rank r projective R-modules
is in bijection with PicR.

d) If M [tors] is nontrivial, then there are N,n1, . . . , nN ∈ Z+ and maximal
ideals p1, . . . , pN of R such that

M [tors] ∼=
N⊕
i=1

R/pni
i .

The proof of Theorem 3.12 is not especially difficult, but it is a bit lengthy. Let us
try to separate it out into steps:
Step 1: We show: each finitely generated torsion R-module is a direct sum of cyclic
modules with prime power annihilator.
Step 2: We show: each finitely generated torsionfree R-module P is projective.
Step 3: We show: each rank n projective module P is isomorphic to a direct sum
of rank 1 projective modules and thus to

⊕n
i=1 Ii for nonzero ideals I1, . . . , In of R.

Step 4: We show: for nonzero ideals I and J of R, we have I ⊕ J ∼= IJ .
Step 5: From Steps 3 and 4, it follows that if P is a rank n projective module then
P ∼= Rn−1 ⊕ I for some nonzero ideal I of R. Finally, we show: the class of I in
PicR depends only on the isomorphism class of P .

Step 1: Let M be a finitely generated torsion R-module. If M = ⟨x1, . . . , xn⟩
then annM =

⋂n
i=1 ann(xi) ⊇

∏n
i=1 ann(xi) ⊋ (0), since in any domain the prod-

uct of nonzero ideals is nonzero. So we may write

annM = pa1
1 · · · par

r

and thusM is an R/pa1
1 · · · par module. Since the homomorphism R→ R/pa1

1 · · · par
r

factors through the semilocalization Rp1,...,pr
, M is also an Rp1,...,pr

-module. Since
MaxSpecRp1,...,pr = {p1, . . . , pr} is finite, by Corolalry 3.9 we have that Rp1,...,pr

is a PID. This allows us to completely reduce to the structure theory of finitely
generated torsion modules over a PID: M is isomorphic to a direct sum of cyclic
modules with prime power annihilator, i.e., to a direct sum of modules of the form



4. MODULES OVER A DEDEKIND DOMAIN 51

Rp1,...,pr
/pai

i
∼= R/pai

i .

Step 2: Let P be a finitely generated torsionfree R-module. By Theorem 2.15, P
is projective if and only if it is locally free: for all p ∈ MaxSpecR we have that Pp

is a free Rp-module. But this is easy: for any domain R and multiplicative subset
S ⊆ R, if M is a finitely generated torsionfree R-module, then MS :=M ⊗R S

−1R
is a finitely generated torsionfree S−1R-module. So Pp is a finitely generated tor-
sionfree module over the local PID Rp...so Pp is free.

Step 2 allows us to establish the following important fact:

Proposition 3.13. Let R be a Dedekind domain with fraction field K. For a
finitely generated R-module M , the following are equivalent:

(i) M is projective.
(ii) There is a finite-dimensional K-vector space V and an injective R-module

map M ↪→ V .

Proof. (i) =⇒ (ii): If M is projective, then it is torsionfree, so the map
M ↪→ M ⊗R K is injective (see Exercise 2.19). Take V := M ⊗R K; then V is a
finite-dimensional K-vector space, and we have an injection M ↪→ V .
(ii) =⇒ (i): Since V is a K-module, it is an R-module on which each nonzero
element of R acts invertibly, hence a torsionfree R-module. Since we have an
injective R-module map M ↪→ V , we conclude that M is a finitely generated
torsionfree R-module, hence projective by Step 2 above. □

Step 3: Let P be a finitely generated projective R-module of rank r ≥ 1. Then
V := P ⊗R K is an r-dimensional K-vector space. Let λ : V → K be a surjective
K-linear map. Then Q := λ(P ) is a finitely generated R-submodule of K, hence
projective by Proposition 3.13, and clearly of rank 1. Let K be the kernel of
λ|P : P → K; then we have a short exact sequence of R-modules

0 → K → P → Q→ 0.

Because Q is projective, this sequence splits, and we have shown that P ∼= K ⊕Q.
It follows that K is projective of rank r−1, so an evident inductive argument allows
us to write P as a direct sum of r rank one projective modules.

Step 4: The proof here is less conceptual, and for now we will just cite the result:

Lemma 3.14. Let I1, . . . , In be fractional ideals in a Dedekind domain R. Then
the R-modules

⊕n
i=1 Ii and R

n−1 ⊕ I1 · · · In are isomorphic.

Proof. See [CA, Lemma 20.17]. □

Step 5: Finally, suppose that I and J are fractional ideals of a Dedekind domain
R. We want to show that for all n ≥ 1, if Rn ⊕ I ∼=R Rn ⊕ J , then I and J lie in
the same ideal class (the converse is immediate). Using Lemma 3.14 we have

Rn+1 ⊕R = Rn+2 ∼= (Rn ⊕ I)⊕ I−1 ∼= (Rn ⊕ J)⊕ I−1 ∼= Rn+1 ⊕ JI−1.

This means that JI−1 is a rank 1 projective module that is stably free: after
taking the direct sum with a finitely generated free module, it becomes isomorphic
to a finitely generated free module. By [CA, Prop. 7.17] we conclude that JI−1 is
free, i.e., principal, hence J and I lie in the same ideal class.
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This completes the proof of the structure theorem for finitely generated modules
over a Dedekind domain. To summarize: whereas a finitely generated module M
over a PID is classified up to isomorphism by a finite sequence of ideals (a1, . . . , ar)
– such thatM [tors] ∼=

⊕r
i=1R/ai – together with a natural number r(M), its rank,

to classify a finitely generated module M over a Dedekind domain, one needs one
further invariant: we may write M/M [tors] ∼= Rr−1 ⊕ I, and then that invariant is
the class of I in PicR. We call this the Steinitz class St(M) of M . In particular:

Corollary 3.15. For a finitely generated module M over a Dedekind domain,
the following are equivalent:

(i) M is free.
(ii) M is torsionfree with trivial Steinitz class: St(M) = 0.

4.2. The Characteristic Ideal. Let R be a ring, and letM be a finite length
R-module. As discussed in Chapter 1, any two Jordan-Hölder series for M have
the same associated finite multiset of simple modules, and any simple R-module
is isomorphic to R/m for a unique m ∈ MaxSpecR, so the “invariant data on
M” obtained by considering Jordan-Hölder series is precisely a finite multiset of
maximal ideals m1, . . . ,mr (it is convenient to write it as a finite sequence, with the
understanding that the sequence is well-defined up to permutations of the terms).
From this data we define the characteristic ideal of M:

χ(M) := m1 · · ·mr.

Exercise 3.10. Let M be a finite length R-module.

a) Show: χ(M) annihilates M .
b) Deduce: M is an R/χ(M)-module. Show by example that M need not be

a faithful R/χ(M)-module.

Exercise 3.11. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
R-modules.

a) Show: M2 has finite length if and only if both M1 and M3 have finite
length.

b) If M2 has finite length, show: χ(M2) = χ(M1)χ(M3).

Exercise 3.12. Let R be a domain, and let M be an R-module.

a) Suppose that M has finite length. Show: M is finitely generated torsion.
b) Find a domain R and a finitely generated torsion R-module M that does

not have finite length.

For the rest of this section we again assume that R is a Dedekind domain.

Exercise 3.13. Let R be a Dedekind domain, and let M be an R-module.

a) Show: M has finite length if and only if M is finitely generated torsion.
b) Suppose M is finitely generated torsion. As we know, we may write

M ∼=
r⊕

i=1

R/Ii.

Show: χ(M) = I1 · · · Ir.
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How should we think of the characteristic ideal χ(M) of a finitely generated torsion
R-module M? By Exercise 3.10, we know that χ(M) ⊆ annM , but the inequality
may be strict. Indeed, if we write M ∼=

⊕r
i=1R/Ii, then whereas χ(M) = I1 · · · Ir,

we have annM = lcm I1 · · · Ir. It follows that every nonzero ideal of R is a charac-
teristic ideal, and a nonzero ideal I of R is the characteristic ideal of a unique (up
to isomorphism) module if and only if I is squarefree (a product of distinct primes).

To get a little more insight, let us consider two special cases:

Example 3.16.

a) Suppose R = Z. Then a Z-module M has finite length if and only if it is
finite. When this occurs, we have M ∼=

∏r
i=1 Z/niZ and then χ(M) is the

ideal generated by n1 · · ·nr = #M . Thus one interpretation of χ(M) is a
measure of the “size” of M . Like the cardinality of a finite Z-module, the
characteristic ideal is multiplicative on short exact sequences.

b) Let k be a field, let R = k[t] be the univariate polynomial ring, and let
M be an R-module. Then M is finitely generated torsion if and only if
it is finite-dimensional as a k-vector space. Suppose that M is finitely
generated torsion. After choosing a k-basis we may identify M with kn

for some n ∈ Z+, and the R-module structure is determined by the k-
linear map t•, which we may represent as a matrix m ∈ Mn(k). The
characteristic ideal χ(M) has a unique monic polynomial generator P (t),
which is nothing else than the characteristic polynomial det(t−m). (See
e.g. [Cl-IS, Thm. 9.2].) This should help to explain “characteristic ideal.”
That χ(M) annihilates M is a version of the Cayley-Hamilton Theorem.2

This example should serve to show that in general χ(M) is measuring
something more refined than the “size” of M , since in this case the k-
dimension n sems to be a purer measure of the size of M . In general,
the length ℓ(M) is also measuring its size (in a different way from the k-
dimension). The following exercise formalizes the fact that χ(M) is “the
universal additive (on short exact sequences) invariant of M .

Exercise 3.14. Let R be a Dedekind domain. Show: mapping a finite length
R-module to its characteristic ideal induces an isomorphism from the Grothendieck
group of the category of finite length R-modules to the group FracR.

Exercise 3.15. Let R be a Dedekind domain, and let I ⊆ J be fractional
R-ideals. Show: J/I has finite length and

χ(J/I) = IJ−1.

Exercise 3.16. Show that over a Dedekind domain R, the characteristic ideal
can be computed locally: let M be a finitely generated torsion R-module. For p ∈
MaxSpecR, let Mp :=M ⊗R Rp.

a) Show: Mp is a finitely generated torsion Rp-module.
b) Since Rp is a DVR, we may write χ(Mp) as papRp for some ap ≥ 0.

Show: we have ap = 0 for all but finitely many p ∈ MaxSpecR, and

χ(M) =
∏

p∈MaxSpecR

pap .

2One could argue that in this approach to Cayley-Hamilton, most of the content resides in
showing the equivalence of our two descriptions of the characteristic polynomial.





CHAPTER 4

Quadratic Lattices over a Dedekind Domain

1. Lattices: Basic Definitions

Let R be a Dedekind domain with fraction fieldK, and let V be a finite-dimensional
K-vector space. An R-lattice in V is a finite-dimensional R-submodule Λ of V
that spans V as a K-vector space: the last condition is equivalent to the natural
map Λ ⊗R K → V being an isomorphism. By Proposition 3.13, every lattice Λ is
finitely generated projective, and conversely every rank r projective module Λ is a
lattice in Λ⊗R K.

Exercise 4.1. Show: R-lattices in K are precisely fractional ideals of K.

Exercise 4.2. Let V be a finite-dimensional K-vector space, and let Λ1 ⊆ Λ2

be R-lattices in V . Let M be a subset of V such that Λ1 ⊆M ⊆ Λ2. Show that the
following are equivalent:

(i) M is an R-lattice in V .
(ii) M is an R-submodule of V .

Our definition of lattice makes sense for any domain R, but for any domain R
that is not Dedekind (and not a field) there will be nonprojective lattices: indeed,
already in K itself, by the previous exercise. Over a more general domain, the
theory of R-lattices in K-vector spaces does not get very far without some further
assumptions on the underlying R-modules.

Let V be an n-dimensional K-vector space. Choose a K-basis (e1, . . . , en) and
let E := ⟨e1, . . . , en⟩R, a free R-lattice in V . We will call the lattice E standard.

This definition, I hope, feels slightly wrong: in what way is E actually distin-
guished from all other free lattices in V ? It isn’t, of course.1 What is happening is
a bit more subtle: to compare lattices with each other, it will help to compare to a
fixed lattice...any fixed lattice. So we fixed one.
Now let Λ be any R-lattice in V . Because Λ spans V as a K-vector space, it con-
tains some K-basis λ1, . . . , λn of V , and then each ei is a K-linear combination of
the λi’s. Clearing denominators, there is d ∈ R• such that for all 1 ≤ i ≤ n we
have that de1, . . . , den is an R-linear combination of the λi’s hence lies in Λ. On
the other hand, let x1, . . . , xN generate Λ as an R-module. We may write each xi
as a K-linear combination of e1, . . . , eN , and let D be the product of all the de-
nominators of the coefficients in each of these combinations. Thus we have shown
that there are d,D ∈ R• such that

(2) dE ⊆ Λ ⊆ 1

D
E .

1Moreover, the fact that E is free will not actually be used!

55
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Exercise 4.3. Let Λ1,Λ2 be R-lattices in V . Show: there is d ∈ R• such that

dΛ1 ⊆ Λ2 ⊆ 1

d
Λ1.

2. Action of AutK(V ) on Lattices

Again let V be a finite-dimensionalK-vector space. The group AutK(V ) ofK-linear
automorphisms acts on the set of R-lattices in V . This is by no means surprising:
quite generally, if R is a ring and M is an R-module, then the group AutR(M) acts
on the set SubR(M) of R-submodules ofM , just by g ·N := {gn | n ∈ N}. The map
g : N → gN is an R-module isomorphism. Since V is moreover a K-module and
K is the fraction field of R, every R-linear endomorphism of V is also a K-linear
endomorphism, so EndR(V ) = EndK(V ) and thus

AutR(V ) = EndR(V )× = EndK(V )× = AutK(V ).

Thus AutK(V ) acts on all R-submodules of V , and the action takes each submod-
ule to an isomorphic submodule, so finitely generated submodules get mapped to
finitely generated submodules.

As above, we choose a K-basis e1, . . . , en of K and consider the standard lattice
E := ⟨x1, . . . , xn⟩. This choice of basis allows us to identify AutK(V ) with GLn(K).

Proposition 4.1. Let V be a finite-dimensional K-vector space with K-basis
e1, . . . , en, and put E := ⟨e1, . . . , en⟩.

a) The orbit of GLn(K) on E is the set of all free R-lattices in V .
b) The stabilizer of E is GLn(R).
c) It follows that the set of free R-lattices in K is isomorphic as a GLn(K)-

set to GLn(K)/GLn(R).

Exercise 4.4. Prove Proposition 4.1.

This is a good description of the free R-lattices in V . What about the others? Here
is an important observation

Proposition 4.2. Let V be a (nontrivial) finite-dimensional K-vector space.
Then every R-lattice in V is free if and only if R is a PID.

Proof. Lattices are finitely generated torsionfree R-modules, so if R is a PID
they are all free. Conversely, suppose that R is not a PID, so there is a nonprincipal
ideal I. Choose a basis e1, . . . , en for V , and consider the lattice

Λ := Re1 ⊕Re2 . . .⊕ Ien ∼= Rn−1 ⊕ I.

Then the Steinitz class St(Λ) is [I], the class of I, which is nontrivial, so by Corollary
3.15 the lattice Λ is not free. □

Let Λ be any R-lattice in the n-dimensional K-vector space V . By Theorem 3.12,
there is an isomorphism

φ :

(
n−1⊕
i=1

R

)
⊕ I → Λ.

If we tensor with K we get an isomorphism

φK : Kn → V.
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Let e1, . . . , en be the standard basis vectors for Kn, and let v1, . . . , vn be their im-
ages under φ. If I = (α) were principal, then v1, . . . , vn−1, αvn is a basis for Λ. If
I is not principal, then Λ has no basis, but we still get something rather close: Λ
is the direct sum of its submodules Rv1, . . . , Rvn−1, Ivn.

From this we can deduce the following:

Corollary 4.3. Let V be a finite-dimensional K-vector space.

a) Let Λ1 and Λ2 be two R-lattices in V . Then Λ1 and Λ2 lie in the same
AutK(V )-orbit if and only if they have the same Steinitz class: St(Λ1) =
St(Λ2).

b) Thus the set of AutK(V )-orbits on lattices in V is naturally in bijection
with PicR.

Exercise 4.5. Let I be a fractional R-ideal, and let n ≥ 2. Find the subgroup
of GLn(K) that stabilizes the R-lattice Rn−1 ⊕ I in Kn.

The above considerations also serve to motivate the following definition: if Λ is
an R-lattice in an n-dimensional K-vector space, then a pseudobasis for Λ is a
K-basis x1, . . . , xn for which there are fractional R-ideals a1, . . . , an such that

Λ = a1x1 ⊕ . . .⊕ anxn.

Above we showed that every lattice has a pseudobasis of a very particular form.
But if we take the more permissive approach, we get analogues of the Hermite and
Smith normal forms:

Theorem 4.4. Let V be an n-dimensional K-vector space.

a) [Hermite Normal Form] Let y1, . . . , yn be a K-basis for V , and let Λ be
an R-lattice in V . Then there are x1, . . . , xn ∈ V and fractional R-ideals
a1, . . . , an such that

M = a1x1 ⊕ . . .⊕ anxn

and for all 1 ≤ j ≤ n, we have xj ∈ ⟨y1, . . . , yj⟩K .
b) [Smith Normal Form] Let Λ1 and Λ2 be R-lattices in V . There is a K-basis

x1, . . . , xn of V and fractional ideals a1, . . . , an, b1, . . . , bn such that

Λ1 = a1x1 ⊕ . . .⊕ anxn,

Λ2 = b1x1 ⊕ . . .⊕ bnxn.

If for all i we put di := aib
−1
i , then we may further require that d1 ⊆ . . . ⊆

dn, in which case the fractional ideals d1, . . . , dn are uniquely determined
by Λ1 and Λ2.

Proof. A future version of these notes will give a full proof. For now: a
complete proof of part b) (Smith Normal Form) can be found in [O’M, §81D].
Given this, a complete proof of part a) (Hermite Normal Form) can be found in
[Ch96]. Cohen’s article also takes an algorithmic approach that is very useful e.g.
in the case in which one wishes to do computations in number fields in the “relative
case”: i.e., when the bottom number field is not Q. □
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3. The Fröhlich Invariant

Now to a pair of R-lattices Λ1, Λ2 in V we will associate a fractional R-ideal
χ(Λ2,Λ1). Suppose first that we have a containment Λ1 ⊆ Λ2 of R-lattices in V .
Since Λ2 ⊆ dΛ1 for some d ∈ R•, the quotient Λ2/Λ1 is a finitely generated torsion
R-module, hence it has a characteristic ideal χ(Λ2/Λ1).

In general we choose α ∈ R• such that αΛ1 ⊆ Λ2; we put

χ(Λ2,Λ1) := (α)−nχ(Λ2/αΛ1).

Exercise 4.6.

a) Show that χ(Λ2,Λ1) is well-defined: it does not depend upon the choice of
α used to scale Λ1 inside Λ2.

(b) If χ(Λ2,Λ1) is an integral R-ideal, does it follow that Λ1 ⊆ Λ2?

Exercise 4.7. Let I and J be fractional R-ideals, viewed as lattices in the
one-dimensional R-vector space K. Show:

χ(I, J) = JI−1.

(Comment: One might have expected it to come out to be IJ−1 instead. The
inversion is however clearly present in the defintiion: e.g. if I ∈ IntR, then
χ(R, I) = χ(R/I) = I = IR−1.)

Exercise 4.8. Let Λ1 and Λ2 be R-lattices in the n-dimensional K-vector space
V . Then Smith Normal Form (Theorem 4.4b) supplies us with a K-basis x1, . . . , xn
and fractional ideals a1, . . . , an, b1, . . . , bn such that

Λ1 = a1x1 ⊕ . . .⊕ anxn,

Λ2 = b1x1 ⊕ . . .⊕ bnxn.

For 1 ≤ i ≤ n, put di := aib
−1
i . Show:

χ(Λ2,Λ1) = d1 · · · dn.

Proposition 4.5. Let Λ1,Λ2,Λ3 be R-lattices in the n-dimensional K-vector
space V . Then:

a)

χ(Λ3,Λ1) = χ(Λ3,Λ2)χ(Λ2,Λ1).

b)

χ(Λ2,Λ1) = χ(Λ1,Λ2)
−1.

c) For α ∈ K×, we have

χ(Λ2, αΛ1) = (αn)χ(Λ2,Λ1)

and

χ(αΛ2,Λ1) = (α−n)χ(Λ2,Λ1).

Exercise 4.9. Prove Proposition 4.5.

Proposition 4.6. Let V be an n-dimensional K-vector space. Let M ∈
AutK(V ) and let Λ be an R-lattice in V . Then:

(3) χ(Λ,MΛ) = (detM).
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Proof. Both sides of (3) can be computed locally, so we reduce to the case
of R a DVR. We may therefore assume that Λ is free: let x1, . . . , xn be an R-basis
for Λ. Then x1, . . . , xn is also a K-basis for V , which we may use to represent M
by a matrix in GLn(K). Now let α ∈ K×. Under replacement of M by αM , both
(detM) and χ(Λ,MΛ) scale by (αn): the former is a well-known linear algebra fact
and the latter is Proposition 4.5c). Thus the result holds forM if and only if it holds
for αM , so by a suitable choice of α we may assume that M ∈ Mn(R) ∩GLn(K):
i.e., the entries of M lie in R and the determinant is nonzero.2

The classical version of Smith Normal Form – see e.g. [C-L, Thm. 5.3.10] –
tells us that there are matrices P,Q ∈ GLn(R) such that PMQ is diagonal. Since
detP,detQ ∈ R×, we have (detPMQ) = (detM). Moreover, since P and Q are
bijective lienar maps we have MΛ = PMQΛ. Thus we may assume that M is
diagonal, say with diagonal entries d1, . . . , dn ∈ R•. Then MΛ is free with basis
d1x1, . . . , dnxn, so M/(MΛ) ∼=

⊕n
i=1R/diR. Moreover, since M ∈Mn(R) we have

MΛ ⊆ Λ, so the Fröhlich invariant is the characteristic ideal of the quotient:

χ(Λ,MΛ) = χ(Λ/MΛ) = χ(

n⊕
i=1

R/diR) = (d1 · · · dn) = (detM). □

4. The Local-Global Principle

Again we have a Dedekind domain R with fraction field K, a finite-dimensional
K-vector space V . After choosing a basis e1, . . . , en of V , we get a standard lattice

E := ⟨e1, . . . , en⟩R.
Let Λ be a lattice in V . For any multiplicatively closed subset S of R, the localiza-
tion Λ := S−1R is an S−1R-lattice in V . For each p ∈ MaxSpecR we put

Λp := Λ⊗R Rp,

an Rp-lattice in V . We have
Λ ⊆ Λp ⊆ V.

Each Λp is a simpler object than Λ: since Rp is a DVR, the Rp-module Λp is
free. So it is natural to ask to what exent we can study the “global” lattice Λ in
terms of the “package of local lattices” {Λp}p∈MaxSpecR. The answer is: completely!

First of all, as a special case of Proposition 2.14 we have

Λ =
⋂

p∈MaxSpecR

Λp.

This ensures that the mapping

L : Λ 7→ {Λp}p∈MaxSpecR

that sends a global lattice to its local package is injective. It remains to determine
the image of L.

When n = 1 and MaxSpecR is infinite, the map L is not surjective. Indeed,
when n = 1 a lattice is a fractional ideal I, and for each p outside the support
supp I we have Ip = Rp. Conversely, if for each p ∈ MaxSpecR we are given a

2If R is a domain with fraction field K and R ⊊ K, then GLn(R) ⊊ Mn(R) ∩GLn(K): the
right hand side consists of matrices with entries in R whose determinant lies in R•, while the left

hand side consists of matrices with entries in R whose determinant lies in R×.
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fractional Rp-ideal I(p) in such a way that I(p) = Rp for all but finitely many
p ∈ MaxSpecR, then there is a fractional R-ideal I such that

∀p ∈ MaxSpecR, IRp = I(p).

Indeed, we may write I(p) = (pRp)
ap and our assumption is that ap = 0 for all but

finitely many p, so we may (and must!) take

I =
∏

p∈MaxSpecR

pap .

In order to generalize this to n ≥ 2 we use our standard lattice E , as follows:

Theorem 4.7 (Local-Global Principle for Lattices). With notation as above,
let {Λ(p)}p∈SpecR be a package of local lattices in V . The following are equivalent:

(i) For all but finitely many p ∈ MaxSpecR we have Λ(p) = Ep.
(ii) There is an R-lattice Λ in V such that Λp = Λ(p) for all p ∈ MaxSpecR.

When these conditions hold, the lattice Λ is uniquely determined: it is
⋂

p∈MaxSpecR Λ(p).

Proof. (ii) =⇒ (i) For any R-lattice Λ we have Λp = Ep for all but finitely
many p ∈ MaxSpecR. Indeed, by 2 there are d,D ∈ R• such that

dE ⊆ Λ ⊆ 1

D
E

from which it follows that Λp = Ep for all p lying outside the support of (dD).
(i) =⇒ (ii): Put Λ :=

⋂
p∈MaxSpecR Λ(p). We first observe that there are d,D ∈ R•

such that

∀p ∈ MaxSpecR, dEp ⊆ Λ(p) ⊆ 1

D
Ep.

For each p we can certainly find dp and Dp in R• such

dpEp ⊆ Λ(p) ⊆ 1

Dp
Ep

and because of Condition (i) we can choose dp = Dp = 1 for all but finitely many
p. Then we may take d =

∏
p dp and D =

∏
pDp. It follows that

dE =
⋂
p

dEp =
⋂
p

Λ(p) ⊆
⋂
p

1

D
Ep =

1

D
E .

Thus Λ =
⋂
Λ(p) is an R-submodule of V that is intermediate between two R-

lattices, so it is an R-lattice. Let p ∈ MaxSpecR. Since Λ(p) is an Rp-module
containing Λ, it also contains ⟨Λ⟩Rp

= Λp. Conversely, let x ∈ Λ(p). Then x
lies in dEq for all but finitely many q, so also lies in Λ(q) for all but a finite set
q1, . . . , qr of prime ideals. There are elements f1, . . . , fr ∈ R•, each prime to p such
that x ∈ 1

fi
Λ(qi) for all i. (Indeed, by The Chinese Remainder Theorem, for each

1 ≤ i ≤ r there is an element πi ∈ R such that vqi
(πi) = 1 and vp(πi) = 0, and we

may take fi to be any sufficiently large power of πi.) Then f := f1 · · · fr is prime
to p and fx ∈

⋂
q Λ(q) = Λ. It follows that x ∈ 1

fΛ ⊆ Λp. Thus Λ(p) = Λp. □
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5. Lattices in a Quadratic Space

5.1. Bilinear Forms on a Vector Space. Let K be a field, and let V be a
finite-dimensional K-vector space. A bilinear pairing on V is a map

⟨·, ·⟩ : V × V → K

such that
∀x, y, z ∈ V, ∀α ∈ K, ⟨αx+ y, z⟩ = α⟨x, z⟩+ ⟨y, z⟩

and
∀x, y, z ∈ V, ∀α ∈ K, ⟨x, αy + z⟩ = α⟨x, y⟩+ ⟨x, z⟩.

Because of this, we get induced mappings

ΦL : V → V ∨, FΦL(x) 7→ ⟨x, ·⟩ : V → K,

ΦR : V → V ∨, ΦR(x) 7→ ⟨·, x⟩ : V → K.

Because V is finite-dimensional, we have V ∨ ∼=K V , so ΦL is injective if and only if
it is surjective if and only if it is an isomorphism. When these equivalent conditions
hold, we say that the bilinear form is left-nondegenerate. Similarly, we say that
the bilinear form is right-nondegenerate if ΦR is an isomorphism (equivalently,
is injective, equivalenty, is surjective).

Let e1, . . . , en be a K-basis for V . Using this basis we define the Gram matrix of
⟨·, ·⟩: it is the matrix G ∈Mn(K) with (i, j) entry G(i, j) := ⟨ei, ej⟩.

Exercise 4.10. Using the basis e1, . . . , en we identify V with Kn. Show: for
all v, w ∈ Kn we have

⟨v, w⟩ = vTGw.

Thus the Gram matrix of a bilinear form completely determines the bilinear form.

Proposition 4.8. With notation as above, the following are equivalent:

(i) The bilinear form ⟨·, ·⟩ is left-nondegnerate.
(ii) The bilinear form ⟨·, ·⟩ is right-nondegenerate.
(iii) The Gram matrix G is nonsingular: detG ̸= 0.

Proof. We will identify V with Kn using the basis e1, . . . , en.
Suppose first that G is singular, so there is 0 ̸= w ∈ Kn such that Gw = 0.

Then for all v ∈ Kn we have

⟨v, w⟩ = vTGw = vT 0 = 0,

so w is a nonzero element of ΦR and thus the bilinear form is right-degenerate.
Also detGT = detG = 0, so there is a nonzero v ∈ Kn such that GT v = 0, so

0 = (GT v)T = vTG,

from which it follows that for all w ∈ Kn we have

0 = vTGw = ⟨v, w⟩,
so v is a nonzero element of ΦL and the bilinear form is also left-degenerate.

Next suppose that G is nonsingular. Then for all nonzero w ∈ Kn we have that
Gw is nonzero; if i is a nonzero component of Gw then ⟨ei, w⟩ = eTi (Gw) ̸= 0, so w
does not lie in the kernel of ΦR and thus the bilinear form is right-nondegenerate.
And again, GT is nonsingular, so for all nonzero v ∈ Kn we have that GT v is
nonzero, hence vTG = (GT v)T is nonzero; if j is a nonzero component of vTG
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then ⟨v, ej⟩ ̸= 0, so v does not lie in the kernel of ΦL and thus the bilinear form is
left-nondegenerate. □

The proof shows that we can just say nondegenerate or degenerate; there is no
need to distinguish between left and right. Synonyms here include regular and
nonsingular.

Exercise 4.11. Let K be a field. For i = 1, 2, let (Vi, ⟨·, ·⟩i) be a bilinear form
on a finite-dimensional K-vector space. Put

V := V1 ⊕ V2,

and define
⟨·, ·⟩ : V × V → K

by: for x1, y1 ∈ V1 and x2, y2 ∈ V2,

⟨(x1, x2), ⟨(y1, y2)⟩ := ⟨x1, y1⟩1 + ⟨x2, y2⟩2.
We call V the orthogonal direct sum of the bilinear spaces V1 and V2.

3

a) For i = 1, 2, let Bi be a K-basis for Vi. Viewing V1 and V2 as subspaces
of V via v1 7→ (v1, 0) and v2 7→ (0, v2), B := B1 ∪B2 is a K-basis for V .
For i = 1, 2, let Gi be the Gram matrix for ⟨·, ·⟩i with respect to the basis
Bi. Show that the Gram matrix for ⟨·, ⟩ is the block diagonal matrix[

G1 0
0 G2

]
.

b) Deduce: V is nondegenerate if and only if both V1 and V2 are.

Exercise 4.12. Show that for a bilinear form ⟨·, ·⟩ on a finite-dimensional
K-vector space V , the following are equivalent:

(i) The bilinear form is symmetric: for all x, y ∈ V we have ⟨x, y⟩ = ⟨y, x⟩.
(ii) The Gram matrix G is symmetric: GT = G.

If we have a nondegenerate bilinear form ⟨·, ·⟩ on a finite-dimensional K-vector
space V , then to a K-basis e1, . . . , en we attach the dual basis e1, . . . , en of V
characterized by:

∀1 ≤ i, j ≤ n, ⟨ei, ej⟩ = δ(i, j) :=

{
1 i = j

0 otherwise
.

One way to see the existence is to take e1, . . . , en to be the images of the dual
basis e∨1 , . . . , e

∨
n of V ∨ under the isomorphism Φ−1

R : V ∨ → V . The uniqueness is
immediate from the nondegeneracy.

Although we could continue to develop the theory of not-necessarily-symmetric
bilinear forms, in all of our applications we will have a symmetric form, so let us
impose that condition now. In this case there is an associated quadratic form

q : V → K, q(x) := ⟨x, x⟩.
When the characteristic of K is not 2, one can recover the bilinear form from the
associated quadratic form q, so the two structures are equivalent. We don’t actually
need to discuss this, but just mention it because one often speaks of the structure
(V, ⟨·, ·⟩) as a quadratic space (rather than as a symmetric bilinear space).

3Other common terminology: orthogonal sum.
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5.2. Bilinear Forms on a Free Module. Now suppose that in place of a
field K we take a commutative ring R, and in place of a finite-dimensional K-
vector space we take a finitely generated free R-module M . Then some of the
above discussion goes through verbatim: namely, the definition of an R-bilinear
form ⟨·, ·⟩ : M ×M → R is a map that is R-linear in each variable for each fixed
value of the other variable. And again, a choice of a basis e1, . . . , en for M gives us
a Gram matrix

Ge(i, j) := ⟨ei, ej⟩.
Note that we have put a subscripted “e” on G to remember the dependence on the
basis; this will be further discussed shortly.

However, the notion of degeneracy becomes more complicated here: if R is
not a field, then an R-linear endomorphism of Rn can be injective without being
surjective: e.g. take R = Z; then multiplication by 2 on Zn is injective but not
surjective. It is still true that a surjective R-linear endomorphism must be an iso-
morphism [CA, Thm. 3.45]. So we need more careful terminology: we say that
the pairing is left-nondegenerate (resp. right-nondegnerate) if the associated
map ΦL :M →M∨ (resp. ΦR :M →M∨) is an injection. We say that the pairing
is left-perfect (resp. right-perfect) if ΦL (resp. ΦR) is an isomorphism.

At least in the case where R is a domain, it is not so hard to sort this all out:

Proposition 4.9. Let R be a domain, let M be finitely generated, free R-
module, and let ⟨·, ·⟩ :M ×M → R be a bilinear form. Let e1, . . . , en be an R-basis
for M .

a) The following are equivalent:
(i) The pairing is left-nondegenerate: ΦL :M ↪→M∨.
(ii) The pairing is right-nondegenerate: ΦR :M ↪→M∨.
(iii) The Gram matrix Ge (with respect to e1, . . . , en) has nonzero deter-

minant.
b) The following are equivalent:

(i) The pairing is left-perfect: ΦL :M
∼→M∨.

(ii) The pairing is right-perfect: ΦR :M
∼→M∨.

(iii) We have detGe ∈ R×. (In other words, Ge ∈ GLn(R).)
(iv) There are elements e1, . . . , en of M such that:

∀1 ≤ i, j ≤ n, ⟨ei, ej⟩ = δ(i, j).

Proof. a) The proof in the case where R is a field still works to show this.
b) (ii) ⇐⇒ (iv): Again, if ΦR is an isomorphism then we take ej to be Φ−1

R (e∨j ).

Conversely, if e1, . . . , en satisfy (iv) and ℓ ∈M∨ is an R-linear functional, then

∀x ∈ V, ℓ(x) = ⟨x, ℓ(e1)e1 + . . .+ ℓ(en)e
n⟩.

(Indeed, both sides agree at x = e1, . . . , en, so they are equal.)
(iv) =⇒ (iii): If (iv) holds, then let H ∈Mn(R) be the matrix with jth column ej .
Then one can check that H is the inverse of the Gram matrix Ge, so detGe ∈ R×.
(iii) =⇒ (ii): Similarly, if detGe ∈ R× then Ge is invertible; if H is its inverse,
then we can take ej to be the jth column of H.
(i) ⇐⇒ (ii): Similarly to the above, left-perfection holds if and only if GT

e is
invertible. The adjugate equation GeG

T
e = (detGe)In shows that this happens if

and only if Ge is invertible if and only if right-perfection holds. □
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In particular we don’t need to say left-perfect or right-perfect, so we won’t: we will
just say perfect. We may also say unimodular, referring to the fact that the
determinant of the Gram matrix is a unit in R.

Our next order of business is to examine what happens to the Gram matrix when
we change the basis: let f1, . . . , fn be another R-basis for M , and let P ∈ GLn(R)
be the change-of-basis matrix, i.e., the unique matrix such that Pei = fi for all
1 ≤ i ≤ n. Let Ge be the Gram matrix for e1, . . . , en and Gf be the Gram matrix
for f1, . . . , fn. Then:

∀1 ≤ i, j ≤ n, ⟨fi, fj⟩ = ⟨Pei, P ej⟩ = (Pei)
TGe(Pej) = eTi P

TGePej .

This shows that
Gf = PTGeP.

Taking determinants, we get

detGf = det(PTGeP ) = det(Ge)(detP )
2.

Since P ∈ GLn(R), we have detP ∈ R×. This shows that the “determinant” of
⟨·, ·⟩ is not well-defined – it depends on the choice of basis – but the class of the
determinant in R/R×2 is well-defined. We call this class the discriminant δ(M)
of the bilinear module (M, ⟨·, ·⟩).

5.3. Bilinear Lattices. We now wish to expand the definition of a bilinear
lattice in two ways.

First let Λ be a finitely generated free R-module, which we view as an R-lattice in
V := Λ ⊗R K. Let ⟨·, ·⟩ : V × V → K be a K-bilinear form. Then if we restrict
⟨·, ⟩ to Λ, we do not necessarily get an R-bilinear form because we may not have
⟨Λ,Λ⟩ ⊆ R. If this occurs we say that the lattice is integral with respect to the bi-
linear form. But it can be natural and useful to consider the case of not necessarily
integral lattices in bilinear spaces. A little thought shows that in this case, associ-
ated to any R-basis e1, . . . , en of Λ we still have a Gram matrix Ge, which however
now lies in Mn(K) (and in GLn(K) iff the bilinear form is nondegenerate). The
above discussion about change of R-basis goes through verbatim. In particular, we
still have a well-defined notion of discriminant here: the discriminant is 0 iff the
bilinear form is degenerate; otherwise the discriminant is a well-defined element of
K×/R×, so in particular defines a principal fractional idea δ.

Our final generalization is probably not surprising. Namely, suppose that we have
a symmetric bilinear form ⟨·, ·⟩ on a finite-dimensional K-vector space V and that
we have a (projective, but) not necessarily free R-lattice Λ in V . Again we define
Λ to be integral if ⟨Λ,Λ⟩ ⊆ R. We say that Λ is maximal if it is integral and not
strictly contained in any other integral lattice in V .

What is clear is:

Exercise 4.13. Let ⟨·, ·⟩ be a bilinear form an a finite-dimensional K-vector
space V .

a) Show: being integral for ⟨·, ·⟩ is a local property of lattices: Λ is R-integral
if and only if Λp is Rp-integral for all p ∈ MaxSpecR.

b) Show: being maximal for ⟨·, ·⟩ is a local property of lattices: Λ is maximal
if and only if Λp is maximal for all p ∈ MaxSpecR.
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c) Show: for any bilinear form ⟨·, ·⟩ on a finite-dimensional K-vector space
V , there is an integral R-lattice in V .

We would naturally next like to show that every integral lattice in a bilinear space
V is contained in a maximal lattice. It may at first seem that this is a standard
Zorn’s Lemma argument, but that is not quite true. Notice that if R ⊊ K then if
we ignore the bilinear form there are no maximal R-lattices in V : if Λ ∈ L(V ) and
D ∈ R• \R× then Λ ⊊ 1

DΛ. The proof that every integral lattice in a nondegener-
ate K-space is contained in maximal lattice uses the next key concept that we now
define, namely the discriminant.

Let Λ be an R-lattice in the bilinear space (V, ⟨·, ·⟩). If the bilinear form is de-
generate, we put δ(Λ) := 0; now we assume that the bilinear form is nondegenerate.
Then, as always when we are working with fractional ideals in a Dedekind domain,
we may proceed locally: let p ∈ MaxSpecR, and look at the Rp-lattice Λp in V .
Since Rp is a DVR, this is is a free lattice, so has a discriminant, which is a frac-

tional Rp-ideal, which we may identify with pδp(Λ) for some well-defined δp(Λ) ∈ Z.
We then wish to define

δ(Λ) :=
∏

p∈MaxSpecR

pδp(Λ),

but there is one thing to check: that δp(M) = 0 for all but finitely many p. We
can see this as follows: take any K-basis e1, . . . , en for V , and define E to be the
“standard” lattice

E := ⟨e1, . . . , en⟩.
Then there is a finite subset S of MaxSpecR such that for all p ∈ MaxSpecR \ S,
we have Ep = Λp, so it suffices to show that δ(Ep) = Rp for all but finitely many
p ∈ MaxSpecR\S. For all such p, δ(Ep) is the determinant of the Gram matrix Ge

with respect to the basis e1, . . . ,n. Since the bilinear form is nondegenerate we have
detGe ̸= 0, and it then follows that for all but finitely many p ∈ MaxSpecR \S we
have that Ge ∈ GLn(Rp), so δ(Ep) = Rp.

Exercise 4.14. Let R be a Dedekind domain with fraction field K. For i = 1, 2,
let Vi be a finite-dimensional K-vector space endowed with a bilinear form ⟨·, ·⟩i.
Let V := V1 ⊕ V2 be the orthogonal direct sum of the biilnear spaces V1 and V2 (cf.
Exercise 4.11). For i = 1, 2, let Λi be an R-lattice in Vi.

a) Show: Λ := Λ1 ⊕ Λ2 is an R-lattice in V .
b) Show: δ(Λ) = δ(Λ1)δ(Λ2).

It is also possible to give a “global” definition of the discriminant. For this, we first
observe that for any n-tuple of elements x1, . . . , xn in a symmetric K-bilinear space
(V, ⟨·, ·⟩) we may define the discriminant

δ(x1, . . . , xn) := det⟨xi, xj⟩.

Exercise 4.15. With notation as above, show:

a) If the space is degenerate, then δ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ V .
b) If the space is nondegenerate, then for x1, . . . , xn in V , we have that

δ(x1, . . . , xn) ̸= 0 iff x1, . . . , xn is a K-basis for V .

Now we can give our global definition of the discriminant:
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Proposition 4.10. Let R be a Dedekind domain with fraction field K, let
V be a finite-dimensional K-vector space equipped with a symmetric bilinear form
⟨·, ·⟩, and let Λ be an R-lattice in K. Let D be the fractional R-ideal generated by
δ(x1, . . . , xn) as x1, . . . , xn ranges over all n-tuples of elements of Λ. Then

δ(Λ) = D.

Exercise 4.16. Prove Proposition 4.10.

Exercise 4.17. Let (V, ⟨·, ·⟩) be a finite-dimensional K-vector space equipped
with a nondegenerate bilinear form.

a) Show: if Λ is an integral lattice, then disc(Λ) is an integral ideal of R.
b) Let ⟨·, ·⟩ be the standard inner product on K2 (in other words, the “dot

product”; in other words, the bilinear form whose Gram matrix is the
identity). Suppose R is not a field, and let d ∈ R• \R×. With e1 = (1, 0)
and e2 = (0, 2), put

Λ := de1 ⊕
1

d
e2.

Show: Λ is not integral, but discΛ = R.

Theorem 4.11. Let (V, ⟨·, ·⟩) be a nondegenerate bilinear K-vector space, and
let Λ1,Λ2 ∈ L(V ) be two R-lattices in V . Then:

a) We have δ(Λ1) = δ(Λ2)χ(Λ1,Λ2)
2.

b) If Λ2 ⊆ Λ1, then δ(Λ2) = δ(Λ1)a
2 for an ideal a of R.

Proof. Once again both sides can be computed locally, so we may assume
that R is a DVR, so Λ1 and Λ2 are free R-lattices. Let x1, . . . , xn be an R-basis for
Λ1 and y1, . . . , yn be an R-basis for Λ2, and let P ∈ GLn(K) be such that yi = Pxi
for all i. Let G1 be the Gram matrix for the basis x1, . . . , xn and let G2 be the
Gram matrix for the basis y1, . . . , yn. Then G2 = PTG1P , so

(4) δ(Λ2) = (detP )2δ(Λ1).

Moreover we have Λ2 = PΛ1, so by Propositions 4.5 and 4.6 we have

(5) χ(Λ1,Λ2) = χ(Λ1, PΛ1) = (detP ).

Combining (4) and (5) we get part a). Part b) follows: indeed a = χ(Λ1,Λ2), which
is an integral ideal since Λ2 ⊆ Λ1. □

Corollary 4.12. Maintain the notation of Theorem 4.11. Let Λ be an integral
R-lattice in V . Then Λ is contained in a maximal R-lattice in V .

Proof. If Λ1 ⊊ Λ2 is a proper containment of integral R-lattices in V , then
Theorem 4.11b) gives a proper containment of integral R-ideals discΛ1 ⊊ discΛ2.
Thus the ascending chain condition on ideals of R (which holds: R is Noetherian!)
implies the ascending chain condition holds on integral R-lattices in V . □

Exercise 4.18. Let (V, ⟨·, ·) be a degenerate quadratic K-vector space. Show:
there is an integral R-lattice in V that is not contained in any maximal R-lattice.

Exercise 4.19. Let ⟨·, ·⟩ be a nondegenerate symmetric K-bilinear form on a
finite-dimensional K-vector space V , let Λ be an R-lattice in V , and let δ ∈ FracR
be the discriminant of Λ.
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a) Let [δ] be the class of δ in PicR. Show that [δ] is a square: i.e., there is
I ∈ FracR such that [δ] = [I]2.

b) Let St(Λ) be the Steinitz class of Λ. Show:

[δ] = St(Λ)2.

Exercise 4.20 (Compability of Discriminants with Localization). Let R be a
Dedekind domain with fraction field K, and let S ⊆ R be a multiplicatively closed
subset. Let (V, ⟨·, ·⟩) be a bilinear K-space, and let Λ be an R-lattice in V , with
discriminant δΛ ∈ FracR. Then S−1Λ is an S−1R-lattice in V , with discriminant
δS−1Λ ∈ FracS−1R. Let ι : R ↪→ S−1R be the localization map. For I ∈ FracR, we
have that S−1I ∈ Frac(S−1R). Show:

δS−1Λ = S−1δΛ.

6. Dual Lattices

Throughout this section: R is a Dedekind domain with fraction field K, and a
quadratic K-space is a finite-dimensional K-vector space V equipped with a
nondegenerate symmetric bilinear form ⟨·, ·⟩ : V × V → K.

To an R-lattice Λ in a K-bilinear space we may attrach its dual lattice

Λ∗ := {x ∈ V | ⟨x,Λ⟩ ⊆ R}.

We will show shortly that Λ∗ is actually an R-lattice in V , but first of all we observe
that Λ∗ is certainly an R-submodule of V .

Exercise 4.21. Equip K itself with the bilinear form ⟨x, y⟩ := xy. Let I ∈
FracR. Show: I∗ = I−1.

Exercise 4.22. Let Λ,Λ1,Λ2 ∈ L(V ) and let α ∈ K×.

a) Show: (αΛ)∗ = 1
αΛ

∗.
b) Show: Λ ⊆ Λ∗∗.
c) Show: Λ1 ⊆ Λ2 =⇒ Λ∗

2 ⊆ Λ∗
1.

Proposition 4.13. Let e1, . . . , en be a K-basis for V , and put E := ⟨e1, . . . , en⟩.
Let e′1, . . . , e

′
n be the unique elements of V such that for all 1 ≤ i, j ≤ n we have

⟨ei, ej⟩ = δ(i, j). Then E∗ = ⟨e1 . . . , en⟩R is a free R-lattice.

Proof. As we know, the R-span of any K-basis of V is a free R-lattice, so it
suffices to show that E∗ = ⟨e1 . . . , en⟩. Half of this is immediate: for all 1 ≤ j ≤ n
we have ⟨Λ, ej⟩ ∈ ⟨⟨ei, ej⟩ | 1 ≤ i ≤ n⟩R = R, so ⟨e1, . . . , en⟩ ⊆ E∗. Conversely, let
v ∈ E∗ and write v =

∑n
j=1 αje

j for α1, . . . , αn ∈ K. For all 1 ≤ i ≤ n we have

αj = ⟨ei,
n∑

j=1

αje
j⟩ = ⟨ei, v⟩ ∈ R,

so v ∈ ⟨e1, . . . , en⟩R. □

Theorem 4.14. Let Λ be an R-lattice in V . Then Λ∗ is an R-lattice in V that
is isomorphic as an R-module to Λ∨ := HomR(Λ, R).
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Proof. Step 1: We can choose free R-lattices E1 and E2 such that

E1 ⊆ Λ ⊆ E2.

By Exercise 4.22 we have

E∗
2 ⊆ Λ∗ ⊆ E∗

1 .

By Proposition 4.13, both E∗
1 and E∗

2 are (free) R-lattices; since Λ∗ is an R-
submodule, by Exercise 4.2, also Λ∗ is an R-lattice in V .
Step 2: We define a homomorphism of R-modules

φ : Λ∗ → Λ∨, x 7→ (m 7→ ⟨x,m⟩).

We claim that the R-module homomorphism

ψ : Λ∨ → V, f 7→
n∑

i=1

f(ei)e
′
i

is the inverse of φ. First we need to check that for all f ∈ Λ∨ we have ψ(f) ∈ Λ∗,
so let f ∈ Λ∨ and let m =

∑m
j=1mjej ∈ Λ. Then

⟨ψ(f),m⟩ = ⟨
n∑

i=1

f(ei)e
′
i,

m∑
j=1

mjej⟩ = f(m) ∈ R.

Now let x =
∑n

i=1 xie
′
i ∈ Λ∗. Then

ψ(φ(x)) =

n∑
i=1

φ(x)(ei)e
′
i =

n∑
i=1

⟨x, ei⟩e′i =
n∑

i=1

xie
′
i = x.

If f ∈ Λ∨ and m =
∑n

j=1mjej ∈ Λ then

φ(ψ(f))(m) = φ(

n∑
i=1

f(ei)e
′
i)(m) =

n∑
i=1

⟨f(ei)e′i,
n∑

j=1

mjej⟩ = f(m). □

Exercise 4.23. Let Λ be a lattice in a quadratic K-space. Recalling that StM
is the Steinitz class of a finitely generated R-module, show:

StΛ∗ = (StΛ)−1.

Exercise 4.24. For i = 1, 2, let (Vi, ⟨·, ·⟩i) be a quadratic K-space.

a) Show: ⟨·, ·⟩1 + ⟨·, ·⟩2 defines a nondegenerate K-bilinear pairing on V :=
V1 ⊕ V2.

b) For i = 1, 2, let Λi be an R-lattice in Vi. Show: Λ := Λ1 ⊕ Λ2 is an
R-lattice in V and Λ∗ = Λ∗

1 ⊕ Λ∗
2.

Lemma 4.15. Let (V, ⟨·, ·⟩) be a quadratic K-space, and let Λ ∈ L(V ). Let S
be a multiplicative subset of R. Then

(S−1Λ)∗ = S−1Λ∗.

Exercise 4.25. Prove Lemma 4.15.

Proposition 4.16. Let Λ be a lattice in the quadratic K-space (V, ⟨·, ·⟩). Then
Λ∗∗ = Λ.
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Proof. By Exercise 4.22c) we have Λ ⊆ Λ∗∗. By Proposition 2.13 it suffices
to check the equality after replacing R by Rp for each p ∈ MaxSpecR, so we reduce
to the case in which Λ is free. In view of Proposition 4.13 this comes down to the
(immediate!) fact that if e1, . . . , en is a K-basis of V with dual basis e1, . . . , en,
then the dual basis of e1, . . . , en is e1, . . . , en. □

There is an important relation among the discriminant, the dual lattice and the
Fröhlich invariant:

Corollary 4.17. Let (V, ⟨·, ·⟩) be a quadratic K-space. If Λ ∈ L(V ), then:

δ(Λ) = χ(Λ∗,Λ).

Proof. This equality of fractional ideals can be checked locally, so we may
assume that R is a DVR. Then Λ is free with basis (e1, . . . , en) and Λ∗ is free with
basis (e1, . . . , en) such that ⟨ei, ej⟩ = δ(i, j). Let us use e1, . . . , en to identify V
with Kn. We may then define a matrix M =M(i, j) ∈ GLn(K) by

∀1 ≤ i ≤ n, ei =

n∑
k=1

M(k, i)ek

and then we have

Λ =MΛ∗,

so using Proposition 4.6 we get

χ(Λ∗,Λ) = χ(Λ∗,MΛ∗) = (detM).

On the other hand, for all 1 ≤ i, jgf ≤ n we calculate

⟨ei, ej⟩ = ⟨
n∑

k=1

M(k, i)ek, ej⟩ =M(j, i).

This shows that if G is the Gram matrix for Λ with respect to e1, . . . , en, then

G =MT ,

so

χ(Λ∗,Λ) = (detM) = (detMT ) = (detG) = δ(Λ). □

Exercise 4.26. Let Λ be a lattice in the quadratic K-space (V, ⟨·, ·⟩).
a) Show: Λ is integral if and only if Λ ⊆ Λ∗.
b) Show: Λ = Λ∗ if and only if Λ is integral and disc(Λ) = R.

(Exercise 4.17 shows that the second condition does not imply the first.)

I want to end this chapter with some “fancy” remarks that are motivated by Ex-
ercise 4.19. In the next chapter we will introduce the standard ANT1 setup: we
have a Dedekind domain A with fraction field K and a finite degree sparable field
extension L/K, and we take B to the integral closure of A in L. Then the trace
form (to be studied in detail) on B/A defines a nondegenerate quadratic form
⟨x, y⟩ := Trace(xy) on L. Using this we can define the discriminant δB/A as the
discriminant of the A-lattice B with respect to the trace form. In the classical
case A = Z, the discriminant is a principal ideal because Z is a PID. However, in
general – even for a relative extension of number fields – the discriminant δ is a not
necessarily principal integral A-ideal, and then Exercise 4.19 applies to show that
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its class in PicA is a square.
We will see later that B∗ is a fractional B-ideal, whose inverse

∆B/A := (B∗)−1

is an integral B-ideal, called the different ideal. As we will see, it is deeply related
to ramification in the extension B/A. When K is a number field, it is a theorem
of Hecke from circa 1923 [He, Satz 176, p. 261] that the class of the different ideal
∆B/A in PicB is a square. This deep result raises the question of whether the
squareness [∆B/A] in PicB holds in the standard ANT1 setup: i.e., for the integral
closure of an arbitrary Dedekind domain in a finite degree separable field extension.
The answer is negative, as was shown later by Fröhlich, Serre and Tate [FST62].

Their example is of an arithmetic geometric character, and indeed the paper
[FST62] is a must-read for those interested in the arithmetic of algebraic curves. It
is slightly over one page long. Let me say just a little bit about their construction
with the hope of tempting you to read it: they show that for an perfect field k and
any nice genus zero curve C/k without k-rational points and containing a closed
point P of degree divisible by 4 — these hypotheses are satisfied e.g. for the conic

C/Q : X2 + Y 2 + Z2 = 0,

one can take B to the the affine coordinate ring k[C \ {P}]. By a version of the
Noether Normalization Theorem [CA, Thm. 14.24], there is a k-subalgebra A of B
that is isomorphic to k[t] and such that B is finitely generated as an A-module. It
follows that B is the integral closure of A in L := k(C). If ∆ is the discriminant of
B/A, then it is actually an easy consequence of the Differential Pullback Theorem
[AC, Thm. 3.18] that ∆ cannot be a square in PicB.

In the above construction there is a lot of latitude in the choice of k, but it will
not work to choose k finite, since genus 0 curves over a finite field necessarily have
k-rational points. The authors of [FST62] raise the question of whether Hecke’s
Theorem continues to hold when A is the affine coordinate ring of a nice affine
curve over a finite field (this is well-known to be the closest function field analogue
of the number field case). This was shown affirmatively by Armitage [Ar67], who
also gives a new proof of Hecke’s theorem in the number field case.

Some further algebraic number theory of differents, discriminants and Steinitz
classes is given in [Sc13].



CHAPTER 5

Algebraic Number Theory in Dedekind Domains

1. Etale Algebras

Let k be a field. In this section, by a “k-algebra” we mean a commutative ring A
that contains k as a subring and is finite-dimensional as a k-vector space.

Exercise 5.1. Let k be a field, and let f, g ∈ k[t] be polynomials, not both 0.
By the gcd of f and g we mean the monic generator of the ideal ⟨f, g⟩. Let l/k be
a field extension. Show that gcd(f, g) as computed in k[t] is the same as gcd(f, g)
as computed in l[t].

Exercise 5.2. Let k be a field, and let f ∈ k[t] be a nonzero polynomial. Let
f ′ be its “formal” derivative. We say f is separable if gcd(f, f ′) = 1.

a) Suppose f ∈ k[t] is irreducible. Show: f is separable if and only if f ′ ̸= 0.
b) Show: f is separable if and only if it is squarefree (there is no irreducible

polynomial p such that p2 | f) and every irreducible factor of f is separable.
c) Let l/k be a field extension. Show: if f ∈ k[t], then f is separable if and

only if f is separable when regarded as a polynomial over l.
d) Suppose k is algebraically closed. Show: f is separable if and only if it is

a product of distinct linear factors.
e) Let K/k be an algebraically closed extension field. Show: f is separable if

and only if f splits into distinct linear factors in K.

Recall that an algebraic field extension l/k is separable if for all x ∈ l, the min-
imal polynomial of x over k is separable.1 This holds if and only if every finite
degree subextension of l/k is separable. A field k is perfect if every algebraic
field extension l/k is separable. If k is a field of characteristic 0, then for every
f ∈ k[t] of positive degree, we have deg(f ′) = deg(f) − 1, so Exercise 5.2 implies
that every irreducible polynomial in k[t] is separable and thus every algebraic field
extension is separable: thus fields of characteristic 0 are perfect. It turns out that in
characteristic p > 0, a field k is perfect if and only if the Frobenius endomorphism

Fr : k → k, x 7→ xp

is surjective [Cl-FT, Prop. 5.3]. Half of the proof goes as follows: if there is x ∈ k
that is not a pth power in k, then the polynomial

f := tp − x ∈ k[t]

turns out to be irreducible [Cl-FT, Lemma 9.20]. Evidently we have f ′ = 0, so
f is not separable, and thus k(x1/p)/k is an inseparable degree p field extension.

1In more advanced field theory one defines separability of transcendental field extensions as
well: see e.g. [Cl-FT, §12.4]. This concept is useful when studying algebraic curves, but it will

not come up in this text.
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Alternately, we observe that if x1/p is a pth root of x in an algebraic closure of k,
then

f = tp − x = (t− x1/p)p,

so f has a single root of multiplicity p.

It is clear that the Frobenius map is surjective when k is finite or when k is alge-
braically closed, so these fields are perfect. The simplest example of an imperfect
field is a rational function field k(t), where k is any field of characteristic p. Then t is

certainly not a pth power in k(t): every f
g ∈ k(t)• has a degree deg(f)−deg(g) ∈ Z,

and deg(xy) = deg(x) + deg(y), so deg(fp) = pdeg(f). Since deg(t) = 1 and 1 is
not a multiple of p, the element t is not a pth power, and thus k(t1/p)/k(t) is an
inseparable field extension.

Let k be a field. An étale k-algebra is a finite dimensional commutative k-algebra
l that is isomorphic to

∏r
i=1 li where each li/k is a finite degree separable field

extension. The dimension of an étale algebra is its dimension as a k-vector space.

Lemma 5.1. Let A be a finite-dimensional commutative k-algebra. The follow-
ing are equivalent:

(i) A is reduced.
(ii) A is a finite product of finite degree field extensions of k.

Proof. (i) =⇒ (ii): The descending chain condition holds on k-submodules
of A, hence on A-submodules of A: A is Artinian. By Theorem 2.5 there are local
Artinian rings (ri,mi)

r
i=1 such that A =

∏r
i=1 ri. Since A is reduced, so is each ri.

Since mi is the nilradical of ri we have mi = 0 for all i, and thus ri is a field.
(ii) =⇒ (i): Fields are reduced, and any product of reduced rings is reduced. □

Exercise 5.3. Show that for a field k, the following are equivalent:

(i) k is perfect.
(ii) A finite-dimensional commutative k-algebra A is étale if and only if it is

reduced.

We say that a k-algebra A is monogenic if there is x ∈ A such that the k-
subalgebra of A generated by x is A itself. Evidently a k-algebra is monogenic if
and only if it is a quotient of k[t]. Recall that every finite degree separable field
extension if monogenic: the Primitive Element Corollary [Cl-FT, Cor. 7.3]. Does
this monogenicity hold for separable k-algebras that are not fields? Let’s see:

Exercise 5.4. Let k be a field, and let l = k[α] be a field extension of degree
2 ≤ d < ℵ0. Let G be the set of generators of l as a k-algebra: that is, the set of
β ∈ l such that k[β] = l. Show: G is infinite if and only if k is infinite.

Exercise 5.5. Let k be an infinite field, and let A =
∏r

i=1 li be an étale k-
algebra. By the Primitive Element Theorem, for 1 ≤ i ≤ r, there is a monic
irreducible polynomial fi ∈ k[t] such that k[t]/(fi) ∼= li.

a) Suppose that the polynomials f1, . . . , fr are pairwise distinct. Show that
A ∼= k[t]/(f1 · · · fr) and thus A is monogenic.

b) Use the previous exercise to show that we can always choose the polyno-
mials f1, . . . , fr to be pairwise distinct.
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Exercise 5.6. Let q be a prime power, and let A = Fr
q, viewed as an étale Fq-

algebra. Let N ∈ Z+, and suppose we have a surjective Fq-algebra homomorphism

φ : Fq[t1, . . . , tN ] → A.

a) Let I = ⟨tq1 − t1, . . . , t
q
N − tN ⟩. Show that I ⊆ Kerφ, so φ induces a

surjective Fq-algebra homomorphism

φ : Fq[t1, . . . , tN ]/I → A.

b) A monomial ta1
1 · · · taN

N is reduced if ai < q for all 1 ≤ i ≤ N . A polyno-
mial g ∈ Fq[t1, . . . , tN ] if it is an Fq-linear combination of reduced mono-

mials. Show: the number of reduced polynomials is qq
N

.
c) Show: for all f ∈ Fq[t1, . . . , tN ] there is a reduced polynomial g such that

f − g ∈ I. Deduce:

#Fq[t1, . . . , tN ]/I ≤ qq
N

.

d) Deduce: qN ≥ r.

Exercise 5.7.

a) In the notation of Exercise 5.6, show that there is an Fq-algebra isomor-

phism Fq[t1, . . . , tN ]/I ∼= FqN

q .
b) Show: the minimal number of generators for Fr

q as an Fq-algebra is ⌈logq(r)⌉.

Exercise 5.8. For a field k, show that the following are equivalent:

(i) Every étale k-algebra is isomorphic to kn for some n ∈ Z+.
(ii) The field k is separably closed.

For a k-algebra A and a field extension l/k, we may “extend scalars” to get

Al := A⊗k l,

which is an l-algebra.

Example 5.2. We consider C as an R-algebra. Then

CC = C⊗R C = R[t]/(t2 + 1)⊗R C ∼= C[t]/(t2 + 1)

∼= C[t]/((t+
√
−1)(t−

√
−1)) ∼= C[t]/(t+

√
−1)× C[t]/(t−

√
−1) ∼= C× C.

Notice that C is a field but its scalar extension CC is not. However, CC is still an
étale C-algebra.

Example 5.2 suggests that the class of étale K-algebras behaves better under ex-
tension of scalars than the class of separable field extensions. This is true: our
next major result is that for a k-algebra A and a field extension l/k, A is an étale
k-algebra if and only if A/l is an étale l-algebra. If this is true, then we can check

whether a k-algebra A is étale by extending scalars to the algebraic closure k, where
according to Exercise 5.3 it suffices to check whether Ak is reduced. In fact we will
establish this consequence first and use it to prove that if A/l is étale then so is A.

Proposition 5.3. Let k be a field, let A/k be a k-algebra, and let l/k be a field
extension. If A is an étale k-algebra, then A/l := A⊗k l is an étale l-algebra.
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Proof. A finite product of étale algebras is an étale algebra, so we may assume
that A/k is a finite degree separable field extension. By the Primitive Element
Corollary we have A ∼= k[t]/(f) for some monic separable polynomial f , and then

Al
∼= k[t]/(f)⊗k l ∼= l[t]/(f).

By Exercise 5.2, the polynomial f ∈ l[t] remains separable and factors as f1 · · · fr
for distinct monic separable f1, . . . , fr. The Chinese Remainder Theorem gives

Al
∼= l[t]/(f) ∼=

r∏
i=1

l[t]/(fi),

so Al is a separable l-algebra. □

Theorem 5.4. Let k be a field, and let A be a finite-dimensional commutative
k-algebra. The following are equivalent:

(i) A is an étale k-algebra.
(ii) For every algebraically closed field extension K/k, the ring AK = A⊗kK

is reduced.
(iii) There is an algebraically closed field extension K/k such that the ring AK

is reduced.

Proof. (i) =⇒ (ii): Suppose that A is étale, and let K/k be an algebraically
closed field extenion. By Proposition 5.3 we have that A/K is étale, hence reduced.
(ii) =⇒ (iii) is of course immediate.
(iii) =⇒ (i): By contraposition, it suffices to show that if A is not étale and K/k
is an algebraically closed field extension, then AK is not rediuced. Since A is a
commutative Artinian ring, it is a finite product of local Artinian k-algebras, so
because A is not étale, either is A is not reduced or it is a finite product of finite
degree field extensions, one of which is inseparable. We take the two cases in turn:
• Suppose A is not reduced. Since A is a subring of AK , also AK is not reduced.
• If A = B × C is a product of two k-algebras and BK is not reduced, then also
AK = BK × CK is not reduced. So we may suppose that A/k is a finite degree
inseparable field extension. Let x ∈ A be an element with inseparable minimal
polynomial, so k(x)/k is a monogenic inseparable subalgebra of A. Then k[x]K is
a subalgebra of AK , so it is enough to show that k[x]K is not reduced. If f ∈ k[t]
is the minimal polynomial of x, then

k[x]K ∼= K[t]/(f).

By Exercise 5.2d), we may write f =
∏r

i=1(t − αi)
ei with distinct α1, . . . , αr ∈ K

and e1, . . . , er ∈ Z+ with e1 ≥ 2. By the Chinese Remainder Theorem, we have

K[t]/(f) ∼= K[t]/(t− α1)
e1 ×K[t]/(

r∏
i=2

(t− αi)
ei).

Then t−α1 is a nonzero nilpotent in K[t]/(t−α1)
e1 , so K[t]/(f) is not reduced. □

Corollary 5.5. Let k be a field, and let A be a finite-dimensional commutative
k-algebra. Then:

a) If A is an étale k-algebra, then so is every k-subalgebra of A.
b) Let l/k be any field extension. If Al is an étale k-algebra, then A is an

étale k-algebra.



1. ETALE ALGEBRAS 75

Proof. a) Let B be a k-subalgebra of A. If K is any algebraically closed field
containing k, then AK is reduced, hence so is its subring BK , so B is an étale
k-algebra.
b) Let K be an algebraically closed field extension of l. Since Al is etale, AK is
reduced. Since K is also an algebraically closed field extension of k, we conclude
that A is an étale k-algebra. □

Theorem 5.6. Let A be a finite-dimensional commutative k-algebra. Consider
the following conditions:

(i) A is an étale k-algebra.
(ii) For all α ∈ A, the minimal polynomial f ∈ k[t] of α is separable.
(iii) For every field extension l/k, the l-algebra Al := A⊗k l is reduced.
(iv) For every field extension l/k, the l-algebra Al is a product of fields.
(v) We have A = k[t]/(f) for a separable polynomial f ∈ k[t].

Then:

a) We have (v) =⇒ (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
b) If k is infinite, then (i) =⇒ (v).

Proof. a) (v) =⇒ (i): We may assume without loss of generality that f is
monic. A monic separable polynomial f is a product of distinct irreducible monic
separable polynomials: f = g1 · · · gr. By the Chinese Remainder Theorem we have

A = k[t]/(f) ∼=
r∏

i=1

k[t]/(gi),

and each k[t]/(gi) is a separable field extension of k, so A is an étale k-algebra.
(i) ⇐⇒ (iii): If A is étale, then by Theorem 5.4 we have A ⊗k K is reduced for
every algebraically closed field extension K. Because if l/k is a field extension with
algebraic closure K we have A⊗k l ↪→ A⊗kK, also A⊗k l is reduced, so (iii) holds.
The converse follows directly from Theorem 5.4.
(i) =⇒ (ii): Suppose that for 1 ≤ i ≤ r, we have a finite degree separable
field extension li/k such that A =

∏r
i=1Ai. Let α = (α1, . . . , αr) ∈ A. Since

subextensions of separable field extensions are separable, for all 1 ≤ i ≤ r the
minimal polynomial fi ∈ k[t] of αi is separable. Then the minimal polynomial of α
is the least common multiple of f1, . . . , fr, and the least common multiple of finitely
many separable polnomials is separable.
(ii) =⇒ (iii): First, A must be reduced: the minimal polynomial of a nonzero
nilpotent element is tk for some k ≥ 2, which is not separable. By Lemma 5.1 we
therefore have A ∼=

∏r
i=1 li with each li/k a finite degree field extension. If for some

1 ≤ i ≤ r the field extension li/k is inseparable, let αi ∈ li be an element with
inseparable minimal polynomial fi ∈ k[t]. The element α ∈ A with ith coordinate
αi and all other coordinates 0 has minimal polynomial fi, so is inseparable.
b) This is Exercise 5.5. □

Exercise 5.9. Let l/k be a finite degree separable field extension.

a) Show: if A is a reduced k-algebra, then Al = A⊗k l is also reduced.
(Hint: for k-algebras A and B, we have A⊗k B ∼= B ⊗k A.)

b) Deduce: if f ∈ k[t] is squarefree (i.e., is a product of mutually nonassociate
irreducible factors), then f ∈ l[t] is also squarefree.
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Exercise 5.10. Let l/k be a finite degree field extension. If l/k is separable,
then by Proposition 5.3 we have that l ⊗k l is étale and hence reduced. In this
exercise we will show that if l/k is inseparable then l ⊗k l is not reduced.

a) By definition of inseparability, there is α ∈ l such that the minimal poly-
nomial f ∈ k[t] of α is inseparable. Show: if k[α] ⊗k k[α] is not reduced,
then l ⊗k l is not reduced. So we may assume that l = k[α] is monogenic
over k.

b) By part a), we have l⊗k l ∼= l[t]/(p)), with p ∈ k[t] the minimal polynomial
of α. In l[t] we may write

f = (t− α)g(t).

By taking derivatives, show: g(α) = 0, and thus in l[t] we may write

f = (t− α)eh(t)

with e > 1 and h(α) ̸= 0.
c) Deduce: l ⊗k l is not reduced.
d) Suppose that l/k is an inseparable algebraic extension that is not neces-

sarily of finite degree. Show: l ⊗k l is not reduced.

Let Ak be an étale algebra of dimension n. A splitting field for A is a field
extension l/k such that

Al
∼= ln.

We also say that l splits A if l is a splitting field for A. It follows from Corollary 5.5
and Exercise 5.8 that a separably closed extension l/k is a splitting field for every
étale k-algebra. Conversely, if a field extension l/k splits every étale k-algebra,
then every irreducible separable polynomial f ∈ k[t] has a root in l, so l contains a
separable closure of k.

However, any given étale algebra A admits a splitting field that is a finite Galois
extension of k. Indeed, let k be an algebraic closure of k; then A ∼=

∏r
i=1 li with

each li a finite degree separable subextension of k/k. Let l be a subextension of
k/k. Then l splits A if and only if l splits li for all 1 ≤ i ≤ r. For all 1 ≤ i ≤ r,
we have li ∼= k[t]/(fi) for an irreducible separable polynomial fi, and then l splits
li if and only if fi splits into linear factors in l, so l splits li if and only if l contains
the Galois closure of li/l. Thus all in all, the unique minimal subextension l of k/k
that splits A is the Galois closure of the compositum l1 · · · lr, which is the splitting
field of the polynomial f1 · · · fr.

Exercise 5.11. Let L/K be a degree n field extension. Show that the following
are equivalent:

(i) L/K is Galois.
(ii) L is a splitting field for l: that is, L⊗K L ∼= Ln.

Proposition 5.7. Let K be a field, let A be an étale K-algebra, and let L/K
be a splitting field for A. Then we have an isomorphism of étale L-algebras

AL
Σ→ LHomK(A,L)

given by

Σ : β ⊗ γ 7→ (γσ(β))σ.
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Proof. It is easy to reduce to the case in which A/K is a separable field
extension, say of degree n. Because A/K is separable and L is a splitting field for
K, we have #HomK(A,L) = n. Let us order the elements as σ1, . . . , σn. Then we
have a K-algebra map

A ↪→ Ln, β 7→ (σ1(β), . . . , σn(β)).

This map has a unique extension to an L-algebra map AL → Ln, which is (up
to fixing an ordering on the elements of HomK(A,L), as we have) the map Σ.
Because both AL and Ln are n-dimensional vector spaces, in order to see that Σ is
an isomorphism it suffices to show that it is injective.

Suppose that
∑

j βj ⊗ γj lies in the kernel of Σ: that is,

∀1 ≤ i ≤ n,
∑
j

σi(βj)γj = 0.

We want to show that each γj = 0, so assume not: then the matrixM ∈Mn(L) with
M(i, j) = σi(βj) is not invertible, hence neither its transpose: there are λ1, . . . , λn ∈
L, not all zero, such that

∀1 ≤ j ≤ n,
∑
i

λiσi(βj) = 0.

Let α1, . . . , αn be a K-basis for A. Every element β ∈ A may be written as
β =

∑n
j=1 ajαj with a1, . . . , an ∈ K, so we get

n∑
i=1

λiσi(β) =

n∑
i=1

λiσi(

n∑
j=1

βjαj) =

n∑
j=1

βj

n∑
i=1

λiσi(αj) = 0,

contradicting Corollary 5.15. □

2. Norm and Trace

Let A ⊆ B be an extension of commutative rings such that B is free and finitely
generated as an A-module. Then for any b ∈ B, the map b· : B → B is B-linear
hence also A-linear. After choosing an A-basis e1, . . . , en of B, we may represent
this map by a matrix m(b) ∈Mn(A). In this way we can define a trace map

TB/A : B → A, b 7→ trm(b) =

n∑
i=1

m(b)i,i.

The trace is an A-linear functional on B, i.e., an A-valued A-linear map. We can
also define the norm map

NB/A : B → A, b 7→ detm(b) ∈ A.

The norm map is mutiplicative, so it restricts to a group homomorphism

NB/A : B× → A×.

Exercise 5.12. Let B1, B2 be two ring extensions of A that are each free and
finitely generated as A-modules. Show that for all b = (b1, b2) ∈ B1 ×B2, we have

TB1×B2/A(b1, b2) = TB1/A(b1) + TB2/A(b2)

and

NB1×B2/A(b1, b2) = NB1/A(b1)NB2/A(b2).
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The following result shows the compatibility of the trace and norm with base
change. The proof is almost immediate, but it is very important.

Proposition 5.8. Let A ⊆ B be a ring extension such that B is free of finite
rank n as an A-module, and let φ : A → A′ be a ring homomorphism. Then
B′ := B ⊗A A

′ is free of rank n as an A′-module, and

∀b ∈ B, φ(TB/A(b)) = TB′/A′(b⊗ 1), φ(NB/A(b)) = NB′/A(b⊗ 1).

Exercise 5.13. Prove Proposition 5.8.

Theorem 5.9. Let k be a field, and let Ak be an étale k-algebra. Let K/k be a
field extension that splits A. Then for all a ∈ A we have

TA/k(a) =
∑

σ∈Homk(A,K)

σ(a) and NA/k(a) =
∏

σ∈Homk(A,K)

σ(a).

Proof. Let n = dimk A. Then the isomorphism AK → Kn of Proposition 5.7
maps a⊗1 to (σ1(a), . . . , σn(a)). The matrix of multiplication by (σ1(a), . . . , σa(n))
is just the diagonal matrix with entries σ1(a), . . . , σn(a). It follows that

TA/k(a) = TAK/K(a⊗ 1) = TKn/K(σ1(a), . . . , σn(a)) =

n∑
i=1

σi(a)

and

NA/k(a) = NAK/K(a⊗ 1) = NKn/K(σ1(a), . . . , σn(a)) =

n∏
i=1

σi(a). □

Proposition 5.10. Let l/k be a field extension of degree n, and let K/k be
a field containing the normal closure of l/k. Let a ∈ l× have minimal polynomial

f =
∑d

i=0 ait
i ∈ k[t] that splits in K as f =

∏d
i=1(t− αi) (since we do not assume

that l/k is separable, the αi’s need not be distinct). Let χ ∈ k[t] be the characteristic
polynomial of a· acting on l. Put

e := [l : k(a)].

Then:

a) We have χ(t) = f(t)e.

b) We have Tl/k(a) = e
∑d

i=1 αi = −ead−1.

c) We have Nl/k(a) =
∏d

i=1 α
e
i = (−1)deae0.

Proof. a) This is [Cl-FT, Cor. 6.5].
b),c) From part a) it follows that the eigenvalues of a• are the roots of f , with each

multiplicity multiplied by e, so Tl/k = e
∑f

i=1 αi and Nl/k =
∏d

i=1 α
e
i . By standard

algebra on roots and coefficients of polynomials we have α1 + . . . + αd = −ad−1

– from which the second formula for the trace follows by multiplying by e – and
α1 · · ·αd = (−1)da0 – from which the second formula for the norm follows by raising
to the eth power. □

Here is a generalization of Theorem 5.9 to all finite degree field extensions. It makes
use of the notions of separable degree and inseparable degree of a finite degree field
extension K/F . For this, see [Cl-FT, §5.2].
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Theorem 5.11. Let K/F be a field extension of degree n < ∞ and separable
degree ns. Put pe = n

ns
= [K : F ]i. Let K be an algebraic closure of K. Let α ∈ K

and let f(t) be the characteristic polynomial of α• ∈ EndF (K). Let τ1, . . . , τns be
the distinct F -algebra embeddings of K into K. Then

f(t) =

ns∏
i=1

(t− τi(α))
pe

.

It follows that

(6) NK/F (α) = (

ns∏
i=1

τi(α))
pe

and

(7) TrK/F (α) = pe
m∑
i=1

τi(α).

Proof. Put L = F [α]. Let d = [L : F ] be the degree, let ds = [L : F ]s be the
separable degree and let di = [L : F ]i be the inseparable degree. Also let ns be the
separable degree ofK/F . Let σ1, . . . , σds be the distinct F -algebra homomorphisms
from L into F . For each 1 ≤ i ≤ ds, σi extends to ns

ds
F -algebra homomorphisms

from K into F . Let

f(t) = (

ds∏
i=1

(t− σi(α)))
di

be the minimal polynomial of α over F , and let g(t) be the characteristic polynomial
of α• on K, so by Proposition 5.10 we have

g(t) = f(t)[K:L] = (

ds∏
i=1

(t− σi(α))
di

n
d =

(
(

ds∏
i=1

(t− σi(α))
ns
ds

)ni

=

(
ns∏
i=1

(t− τi(α))

)pi

.

Equations (6) and (7) follow immediately. □

Corollary 5.12. Let A be an integrally closed domain with fraction field K,
and let L/K be a finite degree field extension. If x ∈ L is integral over A, then

TL/K(x), NL/K(x) ∈ A.

Proof. This is immediate from Proposition 5.10 and Theorem 2.27. □

Theorem 5.13 (Transitivity of Trace and Norm). Let A ⊆ B ⊆ C be com-
mutative rings with B free and finitely generated over A and C free and finitely
generated over B. Then C is free and finitely generated over A and

TC/A = TB/A ◦ TC/B and NC/A = NB/A ◦NC/B .

Proof. That C is free and finitely generated over A is an easy exercise. The
rest of it is annoyingly more difficult than one might like: it should be in my field
theory notes, but isn’t yet. For now, please see [B, §III.9.4]. □
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3. The Trace Form

3.1. Definition and First Examples. Suppose that A ⊆ B is an extension
of commutative rings with B free of rank N as an A-module. Using the trace, we
define a symmetric A-bilinear form on B:

⟨x, y⟩ := Tr(xy).

We define the discriminant δB/A as the discriminant of the trace form; again, this
is well-defined up to the square of a unit in A, hence gives a well-defined principal
ideal of A. We will allow some ambiguity in whether δB/A means a principal ideal

or an element of A/A×2. As a rule of thumb: when A = Z, then Z/Z×2 = Z, so we
may and shall regard δB/Z as an integer. Otherwise we will usually regard δB/A as
a principal ideal.

Exercise 5.14. Let A be a ring, let B1 and B2 be A-algebras that are free and
finitely generated as A-modules, and put B := B1 × A2, so B is also an A-algebra
that is free and finitely generated as an A-module.

a) Show: if we embed B1 in B via x 7→ (x, 0) and B2 in B via y 7→ (0, y),
the trace form ⟨·, ·⟩ on B is the orthogonal direct sum (cf. Exercise 4.11)
of the trace form ⟨·, ·⟩1 on B1 and the trace form ⟨·, ·⟩2 on B2.

b) Show: we may choose A-bases for B1, B2 and A in such a way that the

Gram matrix G for ⟨·, ·⟩ is the “matrix direct sum”

[
G1 0
0 G2

]
, where

Gi is the Gram matrix for the trace form on Bi.
c) Deduce:

δB/A = δB1/AδB2/A.

In particular, the trace pairing on B is nondegenerate (resp. perfect) if
the trace pairings on both B1 and B2 are nondegenerate (resp. perfect).

The following exercise is a refresher on quadratic field extensions, including the
characteristic 2 case.

Exercise 5.15. Let L/K be a quadratic field extension.

a) Suppose that K does not have characteristic 2. Show: there is α ∈ L with

minimal polynomial t2−D for some D ∈ K×\K×2, and thus L = K[
√
D]

and L/K is separable. Conversely, for all D ∈ K× \K×2, show: t2 −D
is irreducible and K[t]/(t2 −D) is a separable quadratic field extension.

b) Suppose that K has characteristic 2 and L/K is not separable. Show:
there is α ∈ L with minimal polynomial t2 −D for some D ∈ K× \K×2

and thus L = K[
√
D]. (Suggestion: in characteristic p > 0, an irreducible

polynomial f ∈ K[t] is inseparable if and only if it is of the form f = g(tp)
for some g ∈ K[t].) Conversely, for all D ∈ K× \K×2, show that t2 −D
is an ireducible polynomial and K[t]/(t2 −D) is an inseparable quadratic
field extension.

c) Suppose that K has characteristic 2 and L/K is separable. Show: there
is α ∈ L with minimal polynomial t2 + t+ c for some c ∈ K. Conversely,
if c ∈ K is not of the form x2 + x for any x ∈ K, show that t2 + t+ c is
irreducible and K[t]/(t2+t+c)/K is a separable quadratic field extension.

Exercise 5.16. Let A be a ring, let D ∈ A, and put B := A[t]/(t2 − D).
(Thus, when A is a domain and D is not a square in the fraction field of A, we
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have B := A[
√
D].) Then B is an A-algebra that is free and finitely generated as

an A-module with basis given by (the images in B of) 1 and t.

a) Let a0, a1 ∈ A, so α := a0+a1t is an arbitrary element of B. Show that the

matrix of multiplication by α with respect to the basis 1, t is

[
a0 a1D
a1 a0

]
.

Deduce:

TB/A(α) = 2a0 and NB/A(α) = a20 −Da21.

b) Show: the Gram matrix of the trace form on B/A with respect to the basis

1, t is

[
2 0
0 2D

]
and thus the discriminant of B/A is 4D (mod A×2).

c) Deduce: in characteristic different from 2, the trace form on a quadratic
field extension is nondegenerate, while if L/K is an inseparable quadratic
extension in characteristic 2, the trace map TL/K is identically 0.

Exercise 5.17. Let A be a ring of characteristic 2, let c ∈ A, and put B :=
A[t]/(t2 + t + c). Then B is an A-algebra that is free and finitely generated as an
A-module with basis given by (the images in B of) 1 and t.

a) Let a0, a1 ∈ A, so α := a0 + a1t is an arbitrary element of B. Show
that the matrix of multiplication by α with respect to the basis 1, t is[
a0 a1D
a1v a0 + a1

]
. Deduce:

TB/A(α) = a1 and NB/A(α) = a20 + a0a1 + ca21.

b) Show: the Gram matrix of the trace form on B/A with respect to the basis

1, t is

[
0 1
1 1

]
and thus the discriminant of B/A is 1 (mod A×2).

c) Deduce: the trace form on a separable quadratic field extension in charac-
teristic 2 is nondegenerate.

Exercise 5.18. Let A be a ring. We consider the A-algebra An, which is
certainly free and finitely generated as an A-module.

a) We work with the standard basis e = (e1, . . . , en) of An. Show: the ma-
trix of multiplication by x := (x1, . . . , xn) on An is the diagonal matrix
diag(x1, . . . , xn). Deduce:

TAn/A(x) = x1 + . . .+ xn and NAn/A(x) = x1 · · ·xn.

b) Show: the Gram matrix Ge for the trace form on An/A with respect to
the basis e is the identity matrix In. In other words, the trace form ⟨·, ·⟩
on An/A is the standard dot product.

Exercise 5.19. Let A/R be an étale algebra, so A ∼= Rr ×Cs for some r, s ≥ 0.

a) Show: there is an R-basis for A with respect to which the Gram matrix
for the trace form is is diagonal, with r + s diagonal entries +1 and s
diagonal entries −1.

b) Deduce: δA/R = (−1)s ∈ R×/R×2.

Exercise 5.20. Let R be a ring, let B,C ∈ R, and let

A := R[t]/(t3 +Bt+ C).
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Notice that A is free of rank 3 as an R-module, with basis given by the classes of
1, t, t2 in A.

a) Show: the Gram matrix for the trace form on A with respect to the above
basis is  3 0 −2B

0 −2B −3C
−2B −3C 2B2

 .
b) Deduce: δA/R = −4B3 − 27C2 (mod R×2).
c) Suppose R = R. Show: δA/R is positive, zero, or negative acording to

whether the cubic t3 +Bt+ C has three, two or one real roots.

Having computed discriminants of all étale R-algebras, the next simplest case is
probably that of a finite field Fq. If q is even, then every étale Fq-algebra has
square discriminant because every element of F×

q is a square. So the interesting

case is when q is odd, in which case [F×
q : F×2

q ] = 2 and we just need to determine
whether the discriminant is a square or not, and we immediately reduce to the
question: for d ∈ Z+, when is δF

qd
/Fq

a square? The answer is triially yes when

d = 1 and is no when d = 2 by Exercise 5.16. Unfortunately Exercise ?? is less
immediately helpful, as we first need to choose B and C so that t3 + Bt + C is
irreducible and then we need to determine whether −4B3−27C2 is a square in F×

q ,
but compuations will suggest that the discriminant is always a square in this case.
We will take up this question again later in this section.

3.2. The Trace Form of a Field Extension.

Theorem 5.14. (Dedekind’s Lemma on Linear Independence of Characters)
Let M be a monoid and L a field. The set X(M,L) of all monoid homomorphisms
M → L× is linearly independent as a subset of the L-vector space LM of all func-
tions from M to L.

Proof. By definition, a subset of a vector space is linearly independent iff
every nonempty finite subset is linearly independent. So it’s enough to show that
for all N ∈ Z+, every N -element subset of X(M,L) is linearly independent in LM .
We show this by induction on N . The base case, N = 1, is immediate: the only
one element linearly dependent subset of LM is the zero function, and elements of
X(M,L) are nonzero at all values of M . So suppose N ≥ 2, that every N − 1
element subset of X(M,L) is linearly independent, and let χ1, . . . , χN be distinct
elements of X(M,L). Let α1, . . . , αN ∈ L be such that for all x ∈M , we have

(8) α1χ1(x) + . . .+ αNχN (x) = 0.

Our goal is to show that α1 = . . . = αN = 0. Since χ1 ̸= χN , there is m ∈M such
that χ1(m) ̸= χN (m). Substituting mx for x in (8), we get that for all x ∈M ,

(9) α1χ1(m)χ1(x) + α2χ2(m)χ2(x) + . . .+ αNχN (m)χN (x) = 0.

Multiplying (9) by χ1(m)−1 and subtracting this from (8), we get

(10) ∀x ∈M, α2

(
χ2(m)

χ1(m)
− 1

)
χ2(x) + . . .+ αN

(
χN (m)

χ1(m)
− 1

)
χN (x) = 0.

By induction, χ2, . . . , χN are linearly independent, so αN

(
χN (m)
χ1(m) − 1

)
= 0 and thus

αN = 0. Thus (8) gives a linear dependence relation among the N − 1 characters
χ1, . . . , χN−1, so by induction α1 = · · · = αN−1 = 0. □
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Corollary 5.15. Let K/F and L/F be field extensions. Let σ1, . . . , σn : K →
L be distinct F -algebra emdeddings. Then in the L vector space LK of all maps
from K to L, the maps σ1, . . . , σn are linearly independent.

Proof. We apply Theorem 5.14 with M := K× and get that the restrictions
of σ1, . . . , σn to K× are linearly independent as maps from K× to L, which imme-
diately implies that they are linearly independent as maps from K to L. □

Theorem 5.16. Let K/F be a field extension of finite degree n. The following
are equivalent:

(i) The trace form T : K ×K → F is nondegenerate.
(ii) There exists some x ∈ K such that Tr(x) ̸= 0.
(iii) The trace function Tr : K → F is surjective.
(iv) The extension K/F is separable.

Proof. (i) =⇒ (ii): This is immediate.
(ii) =⇒ (iii): Since Tr : K → F is F -linear and nonzero, it must be surjective.
(iii) =⇒ (iv): It follows from (7) that TrK/F ≡ 0 when K/F is not separable.
(iv) =⇒ (i): Let x = (x1, . . . , xn) ∈ Kn be any basis for K/F . We must show
that ∆(x) = detT (xixj) ̸= 0. Seeking a contradiction we suppose ∆(x) = 0; then

by (11), we have det(σi(xj)) = 0, and this means that there are α1, . . . , αn ∈ F ,
not all 0, such that

n∑
i=1

αiσi(xj) = 0 ∀j.

Since this holds for all elements of a basis of K/F , we deduce

∀x ∈ K,

n∑
i=1

αiσi(x) = 0,

contradicting Dedekind’s Lemma (Theorem 5.14). □

Exercise 5.21. Give a different proof of (iv) =⇒ (i) in Theorem 5.16 using
the Primitive Element Corollary and the Vandermonde determinant.

Exercise 5.22. Let K/F be a degree n field extension, and let x = (x1, . . . , xn) ∈
Kn be linearly dependent over F . Show that ∆(x) = detTrK/F (xixj) = 0.

3.3. The Trace Form on an Étale K-Algebra.

Theorem 5.17. Let A be a finite dimensional commutative K-algebra. The
following are equivalent:

(i) A is an étale K-algebra.
(ii) The trace form ⟨·, ·⟩ : A×A→ K is nondegenerate.
(iii) δA/K ̸= (0).

Proof. A bilinear space over a field is nondegenerate if and only if its discrim-
inant is nonzero, so (ii) ⇐⇒ (iii).
Step 1: Suppose A ∼=

∏r
i=1 li is a finite product of finite degree field extensions

li/k. By Exercise 5.14 we have

δA/k =

r∏
i=1

δli/k,
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and by Theorem 5.16 for each 1 ≤ i ≤ r we have δli/k ̸= (0) if and only if li/k
is separable. Thus in this case we have that δA/k ̸= 0 if and only if each li/k is
separable. This shows that (i) =⇒ (iii).
Step 2: Suppose A is not an étale k-algebra. Then either A is isomorphic to a finite
product of finite degree field extensions at least one of which is inseparable – in
which case Step 1 shows that δA/k = (0) – or A is not reduced: there is x ∈ A• and

n ∈ Z+ such that xn = 0. Then for all y ∈ A we have (xy)n = xnyn = 0.2 After
choosing a k-basis for A, this means that xy is represented by a nilpotent matrix,
so all its eigenvalues are 0, so its trace is 0. Thus ⟨x, y⟩ = 0 for all y ∈ A and the
trace form on A is degenerate. □

Now let A/K be an étale K-algebra, and let L/K be a splitting field for K: e.g.
we may take L = K to be an algebraic closure of K. Let n = dimK A, and let
σ1, . . . , σn : A → L be the K-algebra maps from A to L. By Propoposition 5.7,
the map A → Ln by x 7→ (σ1(x), . . . , σn(x)) extends uniquely to an L-algebra
isomorphism AL → Ln. For all x ∈ A, we have

TA/K(x) = TAL/L(x⊗ 1) = TLn/L(σ(x⊗ 1)) =

n∑
i=1

σi(x).

Now let x = (x1, . . . , xn) ∈ An, and let S(x) ∈Mn(L) be the matrix with

S(x)ij = σi(xj).

Then

(S(x)TS(x))ij =

n∑
k=1

σk(xi)σk(xj) =

n∑
k=1

σk(xixj) = TrA/K(xixj).

In particular, if x is a K-basis for A and Gx is the Gram matrix for the trace form
on A/K with respect to x, then we have

Gx = S(x)TS(x),

so if we set

δ(x) := detGx,

then we have

(11) δ(x) = (detS(x))2.

Exercise 5.23. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree separable extension, and let B be the integral closure of A in L. Let
M/K be the Galois closure of L/K.

a) Show: M contains K(
√
δL/K). Deduce: if [L : K] is odd, then δL/K ∈

K×2 if and only if L/K is Galois.
b) Let Λ be any A-lattice in L. Show: M contains K(

√
δΛ).

Let R := Z[a0, . . . , an−1]; here a0, . . . , an−1 are independent indeterminates, so A
is a UFD (CITE). Consider the polynomial

f := tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ R[t].

2Note that we are using the commutativity of A here: for matrices m1,m2 ∈ Mn(k), if m1

and m2 are both nilpotent, then m1m2 need not be...unless m1 and m2 commute, in which case
the above one line computation shows that m1m2 is nilpotent.
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Then f is irreducible (in both R[t] and K[t]): indeed, it is a primitive polynomial
over a UFD, so reducibility would imply that it is a product of two polynomials of
degree smaller than n, but such a factorization would imply a similar factorization
for every monic degree n polynomial g ∈ Z[t], which is clearly impossible. Put

Af := R[t]/(f),

which is free of rank n as an R-algebra. Since R× = Z× = {±1}, we have R×2 =
{1}, so the discriminant

δ(f) := δAf/R

is a well-defined element of R. We will obtain a useful formula for δ(f). Over an
algebraic closure K of the fraction field K of R, we may factor

f(t) =

n∏
i=1

(t− αi).

Put α := α1, L := K(α) and M := K(α1, . . . , αn), so M is the splitting field of
f ∈ K[t]. Under the isomorphism Af → R[α] obtained by mapping t to α, the
R-basis 1, t, . . . , tn−1 maps to the power basis x = (1, α, . . . , αn−1) of R[α]. We
may choose the K-algebra embeddings {σi : L ↪→ M}ni=1 such that αi = σi(α) for

all 1 ≤ i ≤ n. Then as above, if we put S(x)ij = σi(α
j) = αj

i , then

δ(f) = δ(x) = (detS(x))2.

The matrix S(x) is Vandermonde, so its determinant is

(12) s = s(α1, . . . , αn) :=
∏

1≤i<j≤n

(αj − αi),

so altogether we find:

δ(f) =
∏

1≤i ̸=j≤n

(αi − αj).

This means that
∏

1≤i ̸=j≤n(αi−αj) is of the form Pn(a0, . . . , an−1) ∈ Z[a0, . . . , an−1].
For instance, we have

P1(a0) = 1, P2(a0, a1) = a21−4a0, P3(a0, a1, a2) = a22a
2
1−4a31−4a32a0−27a20+18a0a1a2.

Now for any ring R and any monic

f := tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ R[t],

we may define
δ(f) := Pn(a1, . . . , an−1) ∈ R.

For elements α1, . . . , αn of a domainR, we define the semidiscriminant s(α1, . . . , αn)
using (12), so δ(f) = s2. If we start with a monic degree n polynomial over a do-
main R, the semi-discriminant is defined using an ordering of the roots α1, . . . , αn

(which we view as lying in the splitting field M of f) so it is natural to ask whether
the semidiscriminant is an invariant of f itself. The symmetric group Sn acts on
Mn by permutation of coordinates, and for α = (α1, . . . , αn) ∈Mn, we have

s(σ(α)) = sgn(σ)s(α),

where sgn(σ) ∈ {±1} is the sign of the permutation σ. If we assume that f is
separable – that is, α1, . . . , αn are distinct; otherwise δ(f) = s(α) = 0 – then we
have s(σ(α)) = s(α) if and only if σ lies in the alternating group An, so if n ≥ 2
the answer is that ±s(α) depends only on f .
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Proposition 5.18. Let K be a field of characteristic different from 2, let f ∈
K[t] be a monic separable degree n polynomial with irreducible factorization p1 · · · pr
and roots α1, . . . , αn in its splitting fieldM . Suppose that G := Aut(M/K) is cyclic.
Then δ(f) ∈ K×2 if and only if n+ r is even.

Proof. Let σ be a generator of the finite cyclic group G. We may view G as
acting faithfully on {α1, . . . , αn}, and its orbits are in bijection with the irreducible
factors p1, . . . , pr. Then σ must cyclically permute the roots of each pi, so it has
cyclic type (deg p1, . . . ,deg pr) and thus sign (−1)

∑r
i=1(deg pi)−1 = (−1)n+r. □

Exercise 5.24. Use Proposition 5.18 to give another proof of Exercise 5.19b).

Exercise 5.25. Let q be an odd prime power and let n ∈ Z+. Use Proposition
5.18 to show that δFn

q /Fq
∈ F×2

q if and only if n is odd.

3.4. The Trace Form on an Artinian Principal K-Algebra.

Exercise 5.26. Let k be a field, and let A be a finite dimensional commutative
k-algebra. In this exercise we will determine when the trace map T : A → k is
identically 0 in the case when A is a principal ideal ring.

a) Show: we can write A =
∏r

i=1Ai with each Ai a local, Artinian principal
ring: there is a principal maximal ideal p = (π); if e is the least positive
integer such that πe = 0 then all the ideals of A are

(13) A ⊋ p ⊋ p2 ⊋ . . . ⊋ pe−1 ⊋ pe = (0).

b) For x ∈ A =
∏r

i=1Ai, write x = (x1, . . . , xr). Show: T (x) =
∑r

i=1 TAi/k(xi).
Thus T : A→ k is the zero map if and only if each Ti = TAi/k is the zero
map, so we may assume that A is local.

c) Let x ∈ A. Since each pe is an A-submodule, it is in particular a k-
subspace of A, so (13) gives a filtration of the finite-dimensional k-vector
space A by subspaces invariant under the k-linear map x•. IfW ′ ⊆W ⊆ A
are subspaces such that x(W ′) ⊆ W ′ and x(W ) ⊆ W , then x• gives a
well-defined k-linear map on the quotient W/W ′; we denote its trace by
T (x|W/W ′). Show:

T (x) =
e−1∑
i=0

T (x|pi/pi+1).

d) Let 0 ≤ i ≤ e−1. Show: multiplication by πe induces an A-module isomor-
phism A/p → pi/pi+1 that commutes with multiplication by x. Deduce:
for all 0 ≤ i ≤ e− 1 we have T (x|pi/pi+1) = T (x|A/p) and thus

T (x) = eT (x|A/p).
e) Conclude that the trace form on a local principal Artinian k-algebra (A, p)

is identically 0 if and only if A/p is an inseparable field extension of k or
e is divisible by the characteristic of k.

3.5. AKLB Applications.

Proposition 5.19. Let A be a domain with fraction field K, let L/K be a
finite degree field extension, and let B be the integral closure of A in L. Then:

a) Every element of L may be written as b
a with b ∈ B and a ∈ A•.

b) Thus ⟨B⟩K = L and L is the fraction field of B.
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Proof. Let α ∈ L. By scaling the minimal polynomial of α by an element of
A• we get a polynomial

f(t) = ant
n + . . .+ a1t+ a0 ∈ A[t]

such that an ̸= 0 and f(α) = 0. Thus

an−1
n f(

α

an
) = tn + an−1t

n−1 + anan−2t
n−2 + . . .+ an−2

n a1t+ an−1
n a0 ∈ A[t]

is monic and has anα as a root. So anα is integral over A, and thus s := anα lies
in B, the integral closure of A in L and α = s

an
, establishing part a). It follows

immediately that ⟨B⟩K = L, and then the fraction field of B contains A hence also
contains its fraction field K. So the fraction field of B is L. □

Theorem 5.20 (Normalization Theorem). Let A be an integrally closed Noe-
therian domain with fraction field K, let L/K be a finite degree separable field
extension, and let B be the integral closure of A in L. Then:

a) B is an A-lattice in L. In particular, B is finitely generated as an A-
module.

b) We have that A is a Dedekind domain if and only if B is a Dedekind
domain.

Proof. Step 1: We write ⟨·, ·⟩ for the trace pairing on B: ⟨x, y⟩ := TB/A(xy).
Let x ∈ S. By Corollary 5.12, for all y ∈ B we have ⟨x, y⟩ = TB/A(xy) ∈ A, which
shows that

B ⊆ B∗.

Step 2: By Proposition 5.19 we know that B spans L as a K-vector space, so B
contains a K-basis (e1, . . . , dn) of L. So

Λ := ⟨e1, . . . , en⟩A
is an A-lattice in L and Λ ⊆ B. It follows that

B ⊆ B∗ ⊆ Λ∗.

Since Λ∗ is a (free) R-lattice in L, it is finitely generated as an A-module. Since A
is Noetherian, the submodule B is also finitely generated. Thus B is an A-lattice
in L. This completes the proof of part a).
Step 3: Since B is a finitely generated module over the Noetherian ring A, the
A-module B is Noetherian: every submodule is finitely generated. Let I be an
ideal of B. Then I is an B-submodule of B, hence also an A-submodule of B, so I
is finitely generated as an A-module, hence also finitely generated as an B-module,
i.e., finitely generated as an ideal. Thus B is Noetherian. It is integrally closed
by [CA, Cor. 14.11] (which states that the integral closure of a domain in any
field extension is integrally closed.) Since B/A is an integral extension, we have
dimA = dimB [CA, Cor. 14.17]. Thus B is a Dedekind domain if and only if
dimB = 1 if and only if dimA = 1 if and only if A is a Dedekind domain. □

Splitting of primes: suppose that A is a Dedekind domain with fraction field K,
L/K is a finite degree field extension, and B is the integral closure of A in L. We
assume that B is finitely generated as an A-module, which we just saw happens
when L/K is separable. Let ι : A ↪→ B denote the inclusion map.
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Theorem 5.21. Let R be a Dedekind domain with fraction field K, let L/K be
a separable field extension, and let α ∈ L be such that [L : K(α)] is not divisible by
the characteristic of K.3 The following are equivalent:

(i) The element α is integral over R.
(ii) For all i ∈ Z+ we have TrL/K(αi) ∈ R.

Proof. If α is integral over R then so is αi for all i ∈ Z+. So (i) =⇒ (ii) is
a special case of Corollary 5.12.
(ii) =⇒ (i): Suppose that we have TrL/K(αi) ∈ R for all i ∈ Z+. Put

d := [L : K(α)].

By hypothesis, d ∈ R•. By Theorem 5.13 we have

(14) TrL/K(αi) = TrK(α)/K(TrL/K(α)(α
ii)) = dTrK(α)/K(αi).

Put n := [K(α) : K], so d, dα, . . . , dαn−1 is a K-basis for K(α). Thus

Λ := ⟨d, dα, . . . , dαn−1⟩
is a (free) R-lattice in K(α), which we view as a quadratic K-space under the trace
form. Using (14) we get

R[α] ⊆ Λ∗.

Since Λ∗ is an R-lattice in K(α), hence a finitely generated R-module, and R is
Noetherian, it follows that R[α] is a finitely generated R-module, which by Theorem
2.21 means α is integral over R. □

Remark 5.22. In Theorem 5.21, the hypothesis that the characteristic of K
does not divide [L : K(α)] may look like an artifact of the proof. On the contrary, it
is actually necessary for the result to hold. Indeed, suppose that K has characteristic
p > 0, and let L/K be a separable extension of degree divisible by p, and take
α ∈ K \R, so p | [L : K] = [L : K(α)]. For all i ∈ Z+ we have

TrL/K(αi) = [L : K]αi = 0.

Corollary 5.23. Let R be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, and use the trace form on L/K to view
L as a quadratic K-space. Suppose:

char(K) ∤ [L : K].

Then the integral closure S of R in L is the unique maximal R-lattice in L.

If I is a nonzero ideal of A, consider the pushforward

ι∗(I) := IB.

We claim that just because ι is an integral ring extension, if I is a proper ideal of A
then ι∗(I) is a proper ideal of B. Indeed, since I is proper there is a maximal ideal
p of A containing I, and ι∗(I) ⊆ ι∗(p), so it suffices to show that ι∗(p) is proper.
By Theorem 2.29d), there is a maximal ideal P of B such that ι∗(P) = p. Then
ι∗p = ⟨p⟩B ⊆ ⟨P⟩B = P, so is proper.

Exercise 5.27. Let ι : A ↪→ B be an integral extension of domains, and let p
be a maximal ideal of A. Show:

ι∗ι∗p = p.

3Notice that this indivisbility hypothesis is vacuous in characteristic 0.
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Now suppose that A is a Dedekind domain, hence so is B. Because the pushforward
is multiplicative, we may focus on the case of pushing forward a prime ideal. For
p ∈ MaxSpecA, write

pS = Pe1
1 · · · Per

r .

The exponent ei is called the ramification index of Pi over p; we denote it by
e(Pi|p). When the “downstairs prime” p is undertood, we may also write ePi

.

The ideals P1, . . . ,Pr are precisely the prime ideals of B that contain p. We claim:

(ι∗)−1{p} = {P1, . . . ,Pr}.

First, if P ∈ MaxSpecB is such that P ∩ A = p, then P contains p, so P = Pi for
some i. Conversely, for 1 ≤ i ≤ r we have that Pi ∩A is a maximal ideal of A that
contains p, so Pi ∩A = p.

If P lies over p then the kernel of the composite map A ↪→ B → B/P is P ∩A = p,
so we get an induced injection

A/p ↪→ B/P.

Since p and P are both maximal ideals, this is a field homomorphism. Since B is
finitely generated as an A-module, certainly B/P is finitely generated as an A/p
vector space (the images of any set of generators will still generate). We define the
residual degree

fP = f(P|p) := [B/P : A/p].

Lemma 5.24. Let A be a Dedekind domain with fraction field K, let K ⊆ L ⊆
M be a tower of finite degree field extensions, let B be the integral closure of A in L
and let C be the integral closure of A inM . We suppose that B is finitely generated
as an A-module and C is finitely generated as a B-module.4 Let r ∈ MaxSpecC,
let q := r ∩B and let p := q ∩A. Then:

e(r|p) = e(r|q)e(q|p) and f(r|p) = f(r|q)f(q|p).

Exercise 5.28. Prove Lemma 5.24.

Lemma 5.25. Let R be a Dedekind domain, p ∈ MaxSpecR and e ∈ Z+. Then

dimR/p p
e/pe+1 = 1.

Proof. Let S := R \ p and Rp := S−1R. Then R/p = Rp/pRp and pe/pe+1 =
(pRp)

e/(pRp)
e+1. So we may replace R with Rp and thereby assume that R is

a DVR, hence a PID. If p = (π), then multiplication by πe gives an R-module
isomorphism from R/p to pe/pe+1. □

Theorem 5.26. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree field extension, let B be the integral closure of A in L, and assume
that B is finitely generated as an R-module. Let p ∈ MaxSpecR.

a) We have dimR/pB/pB = [L : K].
b) We have

∑
P|p ePfP = [L : K].

4It follows that C is finitely generated as an A-module.
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Proof. Put n := [L : K].
a) Let S := A \ p, and let Ap := S−1A, Bp := S−1B. By Lemma 2.12 we get
canonical isomorphisms

Ap/pAp
∼→ A/p and Bp/pBp

∼→ B/pB

which we will regard as equalities. Thus if the result holds for Ap and Bp then it
holds for A and B, so we may assume that A is a PID and B is a free A-module of
rank n. Then as A-modules we have

pB ∼= pAn = (pA)n,

so
B/pB ∼= (A/pA)n,

giving the result.
b) As in part a), we may assume that A is a DVR and thus B is a semilocal
Dedekind domain, hence a PID. Write

pB = Pe1
1 · · · Peg

g .

By the Chinese Remainder Theorem we have

B/pB = B/

g∏
i=1

Pei
i

∼=
g∏

i=1

B/Pei
i .

By part a) we have

n = [L : K] = dimA/pB/pB =

g∑
i=1

dimA/pB/Pei
i .

Now consider
B ⊇ Pi ⊇ P2

i ⊇ . . . ⊇ Pei
i .

By Lemma 5.25, each successive quotient Pa
i /P

a+1
i is a one-dimensional B/Pi-

vector space, hence an fPi
-dimensional A/p-vector space. It follows that

dimA/pB/Pei
i = eifPi

so

n =

g∑
i=1

eifPi
. □

Under the hypotheses of Theorem 5.26 let us introduce some further terminology:

• We say L/K is totally ramified at P if eP = [L : K].
• We say L/K is unramified at P if eP = 1 and (B/P)/(A/p) is separable; oth-
erwise we say that L/K is ramified at P.
• We say L/K is unramified over p if every P lying over p is unramified. This
holds if and only if B/pB is an étale A/p-algebra.
• We say p is inert in L if L/K is unramified over p and pB is a prime ideal.
• We say p splits completely in L if there are [L : K] primes of B lying over p.

Notice that L/K is both unramified at P and totally ramified at P if and only
if L = K (a trivial case).

Exercise 5.29. Show: if p in A splits completely in B, then L/K is unramified
over p.
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Example 5.27. Let A be a domain with fraction field K, let L/K be a purely
inseparable algebraic extension (possibly of infinite degree), and let B be the integral
closure of A in L. For p ∈ SpecR, there is a unique prime of S lying over p, namely

rad(pB) := {x ∈ B | xn ∈ pB for some n ∈ Z+}.

This is [CA, Lemma 14.20].

4. The Discriminant

Let A be a Dedekind domain with fraction field K, let L/K be a finite degree
separable field extension, and let B be the integral closure of A in L. Let ⟨·, ·⟩ be
the trace form for L/K: that is, for x, y ∈ L, we put

⟨x, y⟩ := T (xy) ∈ K.

For x1, . . . , xn ∈ L, we put

δ(x1, . . . , xn) := det⟨xi, xj⟩.

Exercise 5.30. Show: for x1, . . . , xn ∈ L we have δ(x1, . . . , xn) ̸= 0 if and
only if x1 . . . , xn are linearly independent over K.

Since A is integrally closed, the quadratic lattice B is integral : ⟨B,B⟩ ⊆ A. Thus
for any integral A-lattice Λ in B, for the discriminant δΛ of Λ (cf. §4.5) we have

δΛ ∈ IntA.

Especially, we define the discriminant ideal δB/A to be δB .

Proposition 5.28. Let L/K be a separable field extension of degree n, and let
K/K be a field extension containing a Galois closure of L: equivalently, for which
there are distinct elements σ1, . . . , σn ∈ HomK(L,K).

a) For a1, . . . , an ∈ L we have

δ(a1, . . . , an) = (detσi(aj))
2
.

b) For x ∈ L we have

δ(1, x, x2, . . . , xn−1) =
∏

1≤i<j≤n

(σi(x)− σj(x))
2
.

Proof. Part a) essentially repeats (11). Part b) follows from part a) using the
Vandermonde determinant. □

Proposition 5.29. Let S ⊆ A be a multiplicative subset. Then

S−1δB/A = δS−1B/S−1A.

Proof. If x1, . . . , xn ∈ B then δ(x1, . . . , xn) is an element of both δB/A and
of δS−1B/S−1A. Thus

S−1δB/A = ⟨δ(x1, . . . , xn) | x1, . . . , xn ∈ B⟩S−1A ⊆ δS−1B/S−1A.

Conversely, if y1, . . . , yn ∈ S−1B then there is s ∈ S such that syi ∈ B for all i.
Then

δ(y1, . . . , yn) = s−2nδ(sy1, . . . , syn) ∈ S−1δB/A,

so δS−1B/S−1A ⊆ S−1δB/A. □
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Theorem 5.30. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree field extension, and let B be the integral closure of A in L. We
suppose that B is finitely generated as an A-module (by Theorem 5.20, this holds
if L/K is separable, the case of most interest to us). Let δ be the discriminant ideal
of B/A. For p ∈ MaxSpecA, the following are equivalent:

(i) The prime p ramifies in L.
(ii) We have p | δ.

Proof. Both conditions are local on A: that is, we may replace A with Ap

and B with Bp := B ⊗A Ap, with the usual pleasant consequence: A is a DVR and
B is a semilocal PID that is a free A-module. Because of the compatibility of the
trace form with base change, we have that p | δ if and only if the trace form on
the A/p-algebra B/pB has discriminant 0. Let us put k(p) := A/p. Since k(p) is a
field, by Theorem 5.4 the discrminant of B/pB is 0 if and only if B/pB is not an
étale k(p)-algebra. We may factor

pB = Pe1
1 · · · Per

r ,

and then

B/pB ∼= B/

r∏
i=1

B/Pei
i

∼=
r∏

i=1

B/Pei
i .

A finite product of k-algebras is étale if and only if each factor is étale. For B/Pei
i

to be étale, it must be reduced, which holds iff ei = 1. The B/Pi is an étale
k(p)-algebra if and only if the extension is separable. Thus p ∤ δ if and only if each
ramification index equals 1 and each residual extension (B/Pi)/k(p) is separable,
which is precisely the definition for p to be unramified in L. □

This has the following very important consequence:

Corollary 5.31. Maintain the hypotheses of Theorem 5.30. Then:

(i) If L/K is separable, then only finitely many p ∈ MaxSpecA ramify in L.
(ii) If L/K is inseparable, then every p ∈ MaxSpecA ramifies in L.

Proof. By Theorem 5.16 and the compatbility of the discriminant with re-
spect to the localization map map A ↪→ K (Exercise 4.20), we have that δ is
a nonzero ideal of A if and only if L/K is separable. A nonzero ideal in the
Dedekind domain A is divisible by – equivalently, contained in – only finitely many
p ∈ MaxSpecA, whereas the zero ideal is divisible by – equivalently, contained in
– every p ∈ MaxSpecA. □

The next three exercises share the following setup:
• l/k is a degree n field extension;
• A := k[t], a PID with fraction field l(t);
• L := k(t);
• B is the integral closure of A in L.

Exercise 5.31. Show: B = l[t]. Deduce: B is a finitely generated A-module.
(Suggestion: it is enough to show that l[t] is an integral extension of k[t] that is
integrally closed and has fraction field L.)

Exercise 5.32. With notation as above, suppose that l/k is separable.

a) Show: δB/A is generated by an element of A×. Deduce: every p ∈
MaxSpecA is uramified in B.
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b) Show again that every p ∈ MaxSpecA is unramified in B by working
directly with pB.

Exercise 5.33. With notation as above, suppose that l/k is inseparable.

a) Show: δB/A = (0). Deduce: every p ∈ MaxSpecA is unramified in B.
b) Let p = ⟨t⟩. Show: P = pB is a prime ideal, so e(P|p) = 1. Compute

k(p) := A/p and l(P) := B/P and show that l(P)/k(p) is inseparable.
c) Show: there is p ∈ MaxSpecA and a prime ideal P of B lying over p such

that e(P|p) > 1.
(Suggestion: There is α ∈ l such that the minimal polynomial f ∈ k[t] of
α is inseparable. Take p = ⟨f⟩ and use Exercise 5.10.)

Example 5.32. Let k be a field of characteristic p > 0. Put A := k[t], a PID
with fraction field K := k(t). Let L := k(t1/p). Then L/K is inseparable of degree
p. Let B be the integral closure of A in L. We claim that B = k[t1/p]: on the one
hand, t1/p is certainly integral over A, so k[t1/p] ⊆ B. On the other hand, k[t1/p]
is isomorphic to k[t], hence a PID, hence is integrally closed and has fraction field
L, so any element of L that is integral over A would also be integral over k[t1/p]
and hence have to lie in k[t1/p].

Let p ∈ MaxSpecA. Then p = ⟨f⟩ for a monic irreducible polynomial

f = tn + an−1t
n−1 + . . .+ a0 ∈ k[t].

By Example 5.27, the ideal pB is a prime power. More explicitly, pB is the principal
ideal of k[t1/p] generated by f(t). If we make the “change of variable” s := t1/p,
then pB is the principal ideal of k[s] generated by

f(t) = f(sp) = snp + an−1s
(n−1)p) + . . .+ a1s

p + a0.

Then f(sp)′ = 0, so f(sp) is not separable.
Case 1: Suppose k is perfect. Then f(sp)′ = 0 means that f(sp) cannot be irre-
ducible. More explicitly we have

f(sp) = (sn + a
1/p
n−1s

n−1 + . . .+ a
1/p
1 s+ a

1/p
0 )p = g(s)p,

where g(s) = sn+a
1/p
n−1s

n−1+ . . .+a
1/p
1 s+a

1/p
0 . Because k is perfect, the pth power

map is a field automorphism of k, which induces a ring automorphism of k[t], and
under this automorphism g(s) maps to the irreducible polynomial f(s), so g(s) is
also irreducible. Thus P := ⟨g(s)⟩ ∈ MaxSpecB and

pB = Pp.

In particular we have e(P/p) = p.
Case 2: Suppose k is imperfect: there is α ∈ k \ kp. By [Cl-FT, Lemma 9.20] we
have that for all n ∈ Z+, the polynomial tp

n − α ∈ k[t] is irreducible. Let us take

f(t) := tp − α,

so pB = ⟨g(s)⟩, where
g(s) = (sp)p − α = sp

2

− α.

In this case, if we put

k(p) := A/p and l(P) := B/P,

then k(p) = k(α1/p) and l(P) = k(α1/p2

), so l(P)/k(P) is an inseparable field
extension of degree p.
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5. The Ideal Norm

Let A be a Dedekind domain with fraction field K, let L/K be a degree n field
extension, and let B be the integral closure of A in L, so B is a Dedekind domain.
We will assume that B is finitely generated as an A-module, which once again will
be the case if L/K is separable.

As for any inclusion ι : A ↪→ B of domains, we have a group homomorphism
ι∗ : FracA→ FracB defined by

ι∗(I) := BI = I ⊗A B.

We will now define a group homomorphism

N : FracB → FracA

in the other direction. Because FracB is a free Z-module with basis MaxSpecB,
we may freely define N(P) for all P ∈ MaxSpecB and this extends to a unique
group homomorphism. The most obvious such map is probably the one that sends
P to the unique prime p of A that lies below it. However, we will make a different
choice (and explain why!).

Let J be a nonzero integral ideal of B. We claim that B/J is a finitely gen-
erated torsion A-module. Indeed, if J = P1 · · · Pr for not necessarily distinct
Pj ∈ MaxSpecB, then

J ∩A ⊇ (P1 ∩A) · · · (Pr ∩A),
which is a nonzero ideal of A, so B/J is a finitely generated A/(J∩A)-module, hence
a finitely generated torsion A-module. Therefore we may take the characteristic
ideal of B/J as an A-module, which we write as χA(B/J). By definition, this is
the ideal norm of J :

N(J) := χA(B/J).

It is sometimes convenient for bookkeeping to also define the norm of the zero ideal:
as you surely suspected, we will put

N((0)) := (0).

Lemma 5.33. For any nonzero ideals I and J in a Dedekind domain A, we
have I/(IJ) ∼=A A/J .

Proof. Both sides are A/J-modules, so if we factor J = pa1
1 · · · par

r , they are
also modules over the semilocalization Ap1,...,pr . Thus we may assume that A is a
PID, and in this case the result is easy: if I = (α) then multiplication by α gives
an isomorphism from A/J to I/(IJ). □

Proposition 5.34. For any nonzero ideals J1, J2 of B, we have

N(J1J2) = N(J1)N(J2).

Proof. We have a short exact sequence of finite length A-modules

0 → J2/(J1J2) → B/(J1J2) → B/J2 → 0,

so χA(B/J1J2) = χA(J2/(J1J2))χA(B/J2). By Lemma 5.33 we know that J2/(J1J2)
and B/J1 are isomorphic B-modules, so certainly they are isomorphic A-modules.
Thus χA(J2/(J1J2) = χA(B/J1), and the result follows. □
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So far we have defined the ideal norm as a map from integral B-ideals to integral
A-ideals. We want to extend this to a map

N : FracB → FracA.

There are two very reasonable ways to do this:
(1) For nonzero integral ideals I, J of B, we put

(15) N(IJ−1) :=
N(I)

N(J)
.

Indeed, by Proposition 5.34, the ideal norm on integral ideals is a homomorphism
from the monoid IntB of nonzero integral ideals of B under multiplication to the
monoid IntA of nonzero integral ideals of A. For a Dedekind domain A, the monoid
IntA of nonzero A-ideals under multiplication is the free commutative monoid on
MaxSpecA and FracA is its group completion, the free commutative group on
MaxSpecA. From this it follows easily that there is a unique way to extend any
monoid homomorphism IntB → IntA to a group homomorphism FracB → FracA:
namely, as we did above.

(2) For a fractional ideal J of B, we may view B and J as A-lattices in the K-vector
space L and take their Fröhlich invariant χA(B, J). (Here we write the subscripted
A because B and J are also B-lattices in the one-dimensional L-vector space L,
but χB(B, J) = J is not what we want.)

Happily, (1) and (2) turn out to be the same. For notational simplicity, let us
define the ideal norm of a fractional ideal via (15). Then:

Proposition 5.35. Let J ∈ FracB. Then N(J) = χA(B, J).

Proof. This is the definition of N(J) for integral ideals J . If J is a fractional
B-ideal, let α ∈ A• be such that I := αJ ⊆ B, so J = I(α)−1. We observe that
N((α)) = (α)n: indeed, by localizing we can reduce to the case that A is a PID
and then if e1, . . . , en is an A-basis for B, then αe1, . . . , αen is an A-basis for αB,
so B/αB ∼=

⊕n
i=1A/(α). Then we have

χA(B, J) = (α)−nχ(B/αJ) = N(αB)−1N(αJ) =
N(I)

N(αB)
. □

Let us introduce a different notion of an ideal norm. If R is a ring and I is an ideal
such that R/I is finite, we put

||I|| := #R/I.

When A = Z there is a close realtionship between these two norms. In this case
B = ZL is the ring of integers of the number field L. Since the characteristic ideal
of a finite length Z-module M is the principal ideal generated by #M , we find:

∀J ∈ IntZL, N(J) = ||J ||.
The latter ideal norm ||J || – when it is different from N(J) – will make only very
sporadic appearances in these notes (e.g. in our discussion of the Chebotarev
Density Theorem in the function field case). But while we are here, let us record
one result about it.

Theorem 5.36 (Samuel [Sa71]). Let R be a Noetherian ring, and let n ∈ Z+.
The set of ideals I of R with ||I|| = n is finite.
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Proof. For n ∈ Z+, the number of isomorphism classes of rings of cardinality
n is finite, so it is enough to fix any ring S of cardinality n and show that the set
{bi}i∈I of ideals of R such that R/bi ∼= S is finite.

Putting b =
⋂

i∈I bi, we have a monomorphism of rings

(16) B := R/b ↪→
∏
i∈I

R/bi ∼= SI .

Let m1, . . . ,mr be the maximal ideals of the (finite, hence Artinian) ring S, and for
each 1 ≤ j ≤ r, let qj be the cardinality of the finite field S/mj . Then m1 · · ·mr =⋂r

j=1 mj is the Jacobson radical, which coincides with the nilradical, hence there

exists s ∈ Z+ such that (m1 · · ·mr)
s = 0. Let P (t) ∈ Z[t] be the polynomial

P (t) =

r∏
j=1

(tqj − t)s.

Then for any x ∈ S and any 1 ≤ j ≤ r, we have xqj − x ∈ mj , so P (x) = 0. It
follows that for all X = (xi) ∈ SI , P (X) = (P (xi)) = 0. From (16) it follows that
P (x) = 0 for all x ∈ B. Since the nonzero polynomial P has only finitely many
roots in any domain, for each prime ideal p of B, we conclude that B/p is finite.
Thus B is Noetherian of Krull dimension 0 hence is Artinian. By Exercise 2.5, an
Artinian ring with finite residue fields is actually finite. That is, R/b is finite, so
there are only finitely many ideals of R containing b. In particular I is finite. □

Now let us compute the ideal norm more concretely. As above, multiplicativity
reduces us to the case of N(P) for P ∈ MaxSpecB. In this case, p := P ∩ A is a
prime ideal of A, so B/P is a finite-dimensional A/p-vector space, so

χ(B/P) = pdimA/p B/P = pfP|p .

Corollary 5.37. Let n := [L : K].

a) For all I ∈ FracA we have N(ι∗(I)) = In.
b) The pushforward map ι∗ : FracA→ FracB is injective.

Proof. a) Both sides of N(ι∗(I)) = In are multiplicative in I, so it is enough
to consider the case of a prime ideal p of A. Then ι∗(p) = Pe1

1 · · · Per
r . Fo each

1 ≤ i ≤ r we have N(P) = pf(P|p), so using Theorem 5.26b), we get

N(ι∗(p))) =

r∏
i=1

peP|pfP|p = p
∑r

i=1 e(P|p)f(P|p) = pn.

b) By part a), the composition N ◦ ι∗ on FracA is I 7→ In, which is injective since
as a Z-module FracA is free, hence torsionfree. Therefore ι∗ is also injective. □

We now give still another interpretation of the ideal norm in terms of the norm
NL/K of the field extension L/K. First:

Proposition 5.38. Let β ∈ L. Then N((β)) = NL/K(β).

Proof. We have N((β)) = χA(B/(βB)). Since βB is the image of the lattice
B under the linear transformation β·, by Proposition 4.6 we have

χA(B/(βB)) = (detβ·) = NL/K(β). □
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Proposition 5.38 shows in particular that using the notation N for the ideal norm
is not as “overloaded” as it first appeared.

If A is a DVR, then B is a PID, so every fractional ideal is principal. In gen-
eral, like any ideal in a Dedekind domain, the ideal norm can be computed locally,
and this leads to the following result.

Theorem 5.39. Let J ∈ FracB. Then

N(J) = ⟨NL/K(β) | β ∈ J⟩A.
Proof. Let I be the A-module generated by NL/K(β) for β ∈ J , so we want

to show that I = N(J). If we write I =
∏

p p
ap and N(J) =

∏
p p

bp then we want
to show that ap = bp for all p or, equivalently, that for all p ∈ MaxSpecA we have
Ip = N(J)p as ideals of Ap. Note that

Ip = ⟨NL/K(β) | β ∈ J⟩Ap
= ⟨NL/K(β) | β ∈ Jp⟩Ap

and N(J)p = N(Jp). Since Bp is a PID, Jp is principal, say, Jp = (πp), and then
N(Jp) = ⟨NL/Kπp⟩Ap

, which shows that N(Jp) ⊆ Ip. On the other hand, every
β ∈ Jp is therefore of the form πpγp for some γp ∈ Bp, and thus NL/K(β) =
NL/K(πp)NL/K(γp) ∈ ⟨NL/K(πp)⟩Ap

= N(J)p, so Ip ⊆ N(Jp). □

6. Dedekind-Kummer and Monogenicity

6.1. Dedekind-Kummer Version 1.

Exercise 5.34. Let R be a Dedekind domain with fraction field K, let V be a
finite-dimensional K-vector space. Let Λ1,Λ2,Λ3 be three lattices in V . Suppose:

(i) We have Λ2 ⊆ Λ3.
(ii) We have χ(Λ1,Λ2) = χ(Λ1,Λ3).

Then Λ2 = Λ3.

Exercise 5.35. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree field extension, and let B be the integral closure of A in L, which we
assume is finitely generated as an A-module. Let I and J be nonzero ideals of B.
Suppose that I ⊆ J and N(I) = N(J). Show: I = J .

Theorem 5.40 (Dedekind-Kummer, Take 1). Let A be a Dedekind domain with
fraction field K, let L/K be a degree n separable field extension, and let B be the
integral closure of A in L. We suppose that there is α ∈ B such that B = A[α].
Let f ∈ A[t] be the minimal polynomial of α. Then: for p ∈ MaxSpecA, let

f =

r∏
i=1

gi
ei

be the factorization of the image f of f in A/p[t]. For 1 ≤ i ≤ r, let gi be any lift
of gi to a monic polynomial in A[t], and put

Pi := ⟨p, gi(α)⟩.
Then each Pi is a maximal ideal of B, we have

pB =

r∏
i=1

Pei
i

and we have B/Pi
∼= A[t]/gi. In particular, we have f(Pi|pi) = deg(gi).
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Proof. Step 1: Since B = A[α] ∼= A[t]/(f), we have

B/Pi = A[α]/⟨p, gi(α) ∼= A[t]/⟨f, p, gi⟩ ∼= (A/p)[t]/⟨f, gi⟩ ∼= (A/p)[t]/(gi).

Now p is a maximal ideal of A, so A/p is a field, so (A/p)[t] is a PID and thus
the irreducible polynomial gi generates a maximal ideal in it. This shows that Pi

is a maximal ideal of B, and evidently it contains p. Moreover it is clear that the
residual degree f(Pi|p) = [(A/p)[t]/(gi) : A/p] = deg gi.
Step 2: We claim that pB divides

∏r
i=1 P

ei
i . Indeed, we have

r∏
i=1

Pei
i =

r∏
i=1

⟨p, gi(α)⟩ei =
r∏

i=1

(pB + (gi(α))
ei .

When we multiply out this product, it is clear that every term is divisible by p,
except possibly for the term in which p does not appear, but this latter term is

r∏
i=1

(gi(α)
ei) ≡ (f(α)) ≡ 0 (mod pB).

Step 3: We now know that pB ⊃
∏r

i=1 P
ei
i . To show equality it suffices to show

that N(
∏r

i=1 P
ei
i ) = pn, since then N(

∏r
i=1 P

ei
i ) = pn = N(pB), so pB =

∏r
i=1 P

ei
i

by Exercise 5.35.
So: we have

N(

r∏
i=1

Pei
i ) = p

∑r
i=1 f(Pi|p)ei = p

∑r
i=1 ei deg gi = pdeg f = pn. □.

Let us give some applications.

Example 5.41. Let D ∈ Z• be a squarefree integer that is not a square, and
let K = Q(

√
D).

a) Suppose D ≡ 2, 3 (mod 4). Then ZK = Z[
√
D], and the discriminant is

∆ = 4D. The minimal polynomial of
√
D is f(t) = t2 −D. Let p ∈ Z be

a prime number. By Dedekind-Kummer:
• If ∆ is a nonzero square modulo p, then let u ∈ (Z/pZ)2 by such that
u2 = ∆. Then f factors mod p as (t+ u)(t− u). By Dedekind-Kummer,

(p) splits in ZK into two primes P1 = ⟨p,
√
D + u⟩, P2 = ⟨p,

√
D − u⟩.

• If ∆ is not a square modulo p, then t2 −D remains irreducible modulo
p, so p is inert in ZK . Notice that Dedekind-Kummer says that the ideal

over p is generated by p and
√
D

2 −D, but of course the latter element is
0, so the ideal is generated by p: that’s what inert means.
• If p | ∆, then f factors modulo p as t2. The unique prime P of ZK over

(p) is P := ⟨p,
√
D⟩.

b) Suppose D ≡ 1 (mod 4). Then ZK = Z[α] where α = 1+
√
D

2 , and the

discriminant is ∆ = D. The minimal polynomial of α is f(t) = t2 +
t + 1−D

4 . Let p be an odd prime number. Since the discriminant of this
polynomial is D, this goes much the same as in the previous part:
• If D is a nonzero square modulo p, then (p) splits into P1 = ⟨p, t + u
and P2 = ⟨p, t− u⟩, where u is a root of t2 + t+ 1−D

4 modulo p.
• If D is not a square modulo p, then (p) is inert in ZK .
• If p | D, then let r ∈ Z be such that modulo p we have t2 + t + 1−D

4 =

(t− r)2. Then (p) = P2, where P = ⟨p, α− r⟩.
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Exercise 5.36. Let D ̸= 1 be a squarefree integer such that D ≡ 1 (mod 4),

and let K = Q(
√
D). Show:

a) If D ≡ 1 (mod 8), then 2 splits in ZK .
b) If D ≡ 5 (mod 8), then 2 is inert in ZK .

Example 5.42. Let A be a PID with fraction field K, let L/K be a separable
quadratic field extension, and let B be the integral closure of A in L. I claim that
B/A is a free A-module (necessarily of rank 1): if not, there is x ∈ B \ A and
a ∈ A• such that ax ∈ A. But then x ∈ 1

aA ⊆ K and also is integral over A; since
A is integrally closed, we get x ∈ A, a contradiction. Let α be the lift of a generator
of B/A to A. Then B = A[α], so B is monogenic. Let f(t) = t2 + bt + c ∈ A[t]
be the minimal polynomial for α, and let ∆ = b2 − 4c. Let p = (p) ∈ MaxSpecA.
Then if ∆ is a nonzero square in A/(p), then (p) splits in B, if ∆ is not a square
in A/(p), then (p) is inert in B, and if p | ∆ then p ramifies in B.

Example 5.43. Let N ∈ Z≥3. Let ζN = e2πi/N and put K := Q(ζN ), the N th
cyclotomic field. By [Cl-FT, Thm. 9.8], the minimal polynomial for ζN is ΦN (t),
the monic polynomial whose roots are the primitive N th roots of unity. We will
use the fact that ZK = Z[ζN ]. Thus the factorization of a prime ideal (p) of Z
corresponds to the factorization of ΦN modulo p. In particular:
• Suppose p ≡ 1 (mod N). Then N | (p−1), so the cyclic group F×

p has an element
of order N , or in the other words, the fiinite field Fp contains a primitive N th root
of unity, so ΦN (t) splits completely modulo p and thus (p) splits in ZK .
• Conversely, let p ∤ N . Then ΦN (t) is separable in Fp. If it splits completely, then
the primitive N th roots of unity live in Fp, so N | p− 1, so p ≡ 1 (mod N). Thus
a prime p splits completely in ZK iff p ≡ 1 (mod N).
• If p | N , there is no primitive pth root of unity in Fp, hence no primitive N th
root of unity in Fp. Thus Φn(t) is not separable in Fp[t], so p ramifies in ZK .

The obvious limitation in Theorem 5.40 is the assumption that B = A[α] for some
α ∈ B: when this holds for a ring extension B/A, we say that B is monogenic over
A. One might at first think that this monogenicity is automatic: after all, it is for
a finite separable field extension L/K, as part of the Primitive Element Theorem.
But such an extension B/A of Dedekind domains need not be monogenic, even
when A is a PID. The following result allows for the production of a large class of
counterexamples.

Theorem 5.44. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree field extension, and let B be the integral closure of A in L. Let
p ∈ MaxSpecA be such that A/p has order q. Suppose that there are α1, . . . , αm ∈ B
such that B = A[α1, . . . , αm], and let r be the number of prime ideals P of B lying
over p of degree 1: f(P|p) = 1. Then:

m ≥ logq(r).

Proof. Put Fq := A/p, a finite field of order q. Since B = A[α1, . . . , αm], we
have a surjective A-algebra homomorphism

A[t1, . . . , tm] → B.

Tensoring to A/p (or noting that the composite map A[t1, . . . , tm] → B → B/pB
factors through A/p[t1, . . . , tm]) we get a surjective Fq-algebra homomorphism

(17) Fq[t1, . . . , tm] → B/pB.
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In turn, we may write pB = Pe1
1 · · · Per

r J with the Pi’s degree 1 primes and
gcd(P1 · · · Pr, J) = 1. We then get surjective Fq-algebra maps

(18) B/pB
∼→

r∏
i=1

B/PeI
i ×B/J →

r∏
i=1

B/Pi = Fr
q.

Composing (17) and (18) we get a surjective Fq-algebra homomorphism

Fq[t1, . . . , tm] → Fr
q.

Since Fr
q has rmaximal ideals, each with residue field Fq, it follows that Fq[t1, . . . , tm]

has at least r maximal ideals with residue field Fq. But by [CA, Lemma 11.2], for
any fieldK, there is a bijection fromKm to the set of maximal ideals ofK[t1, . . . , tm]
with residue field K given by

(x1, . . . , xm) 7→ ⟨t1 − x1, . . . , tm − xm⟩.

So Fq[t1, . . . , tm] has precisely qm maximal ideals with residue field Fq, and it follows
that qm ≥ r and thus logqm ≥ r. □

If we apply Theorem 5.44 with A = Z, we find: if K is a number field of degree n
and p is a prime number such that ZK has more than p degree 1 primes lying over
p, then ZK is not monogenic. The number of degree 1 primes is certainly at most
n, so in order for this strategy to succeed we need n ≥ p+ 1 ≥ 3.

Using the methods of Number Theory II one can prove that such examples abound:
e.g. for any prime p and n, r ∈ Z+ such that 1 ≤ r ≤ n, there is a degree n number
field K for which ZK has precisely r degree 1 primes lying over (p), so if r > p
then ZK is not monogenic. In particular, for all n ≥ 2 there is a number field K of
degree n in which 2 splits completely, so there are n degree 1 primes of ZK lying
over (2), and by Theorem 5.44, the Z-algebra ZK requires ⌈log2 n⌉ generators. Re-
markably, this bound is sharp: Pleasants has shown that for each number field K
of degree n ≥ 2, ZK can be generated as a Z-algebra by ⌈log2 n⌉ generators [Pl74].
In fact he gives more precise results on the minimal number of generators of ZK as
a Z-algebra and also the minimal number of generators of ZL as a ZK-algebra for
an extension of number fields L/K from which this bound is a consequence.

To give “Number Theory I” examples we will borrow from the following fact that
will be covered later on: let A be a Dedekind domain with fraction field K, let L1

and L2 be finite degree separable field extensions inside an algebraic closure K of
K, and let L be the compositum L1L2. For i = 1, 2 let Bi be the integral clousre
of A in Li, and let B be the integral closure of A in L. Suppose p ∈ MaxSpecA
splits completely in both B1 and in B2. Then p splits completely in B.

We can apply this to show that various biquadratic number fieldsKd1,d2
:= Q(

√
d1,

√
d2)

are not monogenic. First suppose that d1 and d2 are distinct squarefree integers,
each different from 1, such that d1 ≡ d2 ≡ 1 (mod 8). By Exercise 5.36, 2 splits
in both Q(

√
d1) and Q(

√
d2), so by the above observation, 2 splits completely in

Kd1,d2
. Thus ZKd1,d2

has 4 > 2 degree 1 primes lying over (2), so by Proposition
5.44, the Dedekind domain ZKd1,d2

is not monogenic over Z.

Now replace the congruence condition d1 ≡ d2 ≡ 1 (mod 8) by d1 ≡ d2 ≡ 1
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(mod 3). Then 3 splits in both Q(
√
d1) and Q(

√
d2), so 3 splits completely in

Kd1,d2 . Thus ZKd1,d2
has 4 > 3 degree 1 primes lying over (3), so by Proposition

5.44, the Dedekind domain ZKd1,d2
is not monogenic over Z.

Exercise 5.37. Let f := t3 − t2 − 2t− 8 ∈ Q[t].

a) Show: f is irreducible. Let α ∈ C be a root of f , and put K := Q[α], so
K/Q is a cubic number field.

b) Put O := Z[α]. Show: ∆O = −22 · 503. (Note: 503 is prime!)

c) Show: β := α+α2

2 ∈ ZK . Conclude: ZK = Z[α, β] and ∆ZK
= −503.

d) For x ∈ Z•
K , we write N(x) for the positive generator of N((x)), the norm

of the principal ideal (x). Recall that this is on the one hand |NK/Q(x)|
and on the other hand is #ZK/(α). Show: N(α) = 8 and N(α− 1) = 10.
Use this to show that 2 splits completely in ZK .

e) Show: ZK is not monogenic.

6.2. Supplements to Dedekind-Kummer. The material of this section
comes from [Se:CL, Ch. III].

Proposition 5.45. Let R be a DVR with maximal ideal m and residue field k.
Let f ∈ R[t] be monic of positive degree, and put

S := R[t]/(f).

Then S is a semi-local ring, and its maximal ideals are obtained as follows: let f be
the image of f in k[t], and factor it: f = pe11 · · · perr with p1, . . . , pr ∈ k[t] distinct
monic irreducible polynomials. For each 1 ≤ i ≤ r, choose gi ∈ R[t] that lifts pi
(i.e., so that the reduction of gi modulo m is pi). For 1 ≤ i ≤ r, put

Pi := ⟨m, gi⟩.
Then MaxSpecS = {P1, . . . ,Pr}.

Proof. For 1 ≤ i ≤ r, we have

S/Pi = R[t]/⟨m, f, gi⟩ = k[t]/(pi)

is a (finite degree) field extension of k, so Pi is a maximal ideal of S. The ideals
P1, . . . ,Pg are precisely the maximal ideals of S that contain mS. We claim that
these are all the maximal ideals of S. To see this, let P be any maximal ideal of S. If
P did not contain mS, then we would have P+mS = S; since S is finitely generated
as a module over the local ring (R,m), Nakayama’s Lemma implies P = S, a
contradiction. □

Lemma 5.46. Let R be a commutative ring, let f ∈ R[t], and let a ∈ R. There
is a unique g ∈ R[t] such that

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

Proof. By the universal property of polynomial rings, there is a unique R-
algebra homomorphism Ψ : R[t] → R[t] that maps t to t − a. Clearly the unique
homomorphism that maps t to t + a is its inverse, so Ψ is an isomorphism. In
particular, it is an R-module isomorphism, so it carries the R-basis {tn | n ∈ N} to
the R-basis {(t− a)n | n ∈ N}. Thus there unique {bn}∞n=0 in R, all but finitely of
which are zero, such that

f =

∞∑
n=0

bn(t− a)n = b0 + b1(t− a) + (t− a)2
∞∑

n=2

bn(t− a)n−2.
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Evaluating at a we find b0 = f(a). Differentiating and then evaluating at a we find
that b1 = f ′(a). Taking g :=

∑∞
n=2 bn(t− a)n−2, we get

f(t) = f(a) + f ′(a)(t− a) + (t− a)2g(t).

The polynomial g has to be unique, for if another polynomial h worked in its place
we would have (t − a)2(g(t) − h(t)) = 0, but the monic polynomial (t − a)2 is not
a zero divisor in R[t]. □

Let R be a Dedekind domain with fraction field K, let L/K be a finite degree
field extension, and let S be the integral closure of R in L. We say that S/R is
monogenic if there is α ∈ S such that S = R[α]. (In particular this implies that
S is finitely generated as an R-module, which is always true if L/K is separable
but need not hold in general.) In a “global” context, monogenicity is a sensitive
issue: it is far from guaranteed that e.g. the ring of integers of a number field
is monogenic over Z. (In this classical context, instead of monogenicty one often
speaks in terms of the existence of a power basis.) However, in the local context
monogenicity is much easier: the following result shows in particular that if R is a
complete discrete valuation ring with perfect residue field then S/R is monogenic
for every finite degree separable field extension L/K. In particular, the ring of
integers of every p-adic field is monogenic over Zp.

Theorem 5.47. Let R be a DVR with fraction field K. Let L/K be a separable
finite degree field extension, and let S be the integral closure of R in L. We assume:

(i) S is a DVR; and
(ii) the residual extension l/k is separable.

Then S is monogenic over R.

Proof. Let p be the maximal ideal of R and P be the maximal ideal of S,
and let π be a uniformizer of S. Let e = e(L/K), so pS = (πe). Let k := R/p
and l := S/P, so f = [l : k]. By Theorem 5.26 we have ef = [L : K]. Since l/k
is assumed separable, by the Primitive Element Theorem there is x ∈ l such that
l = k[x]. Let x be a lift of x to S.
Step 1: We claim that {xiπj}0≤i<f, 0≤j<e span S as an R-module.5 By Nakayama’s
Lemma it is enough to show that their images in S/pS span it as an R-module.
Since pS = πeS, it is enough to show that for all 0 ≤ m < e, if the elements span
S/πmS then they span S/πm+1S. For m = 0, we have S/πS = l, so certainly
the elements 1, x, . . . , xf−1 span. Inductively we assume that for 1 ≤ m < e the
elements xiπj with 0 ≤ j < m span S/πmS, and let x ∈ S. Then by assumption
there are ri,j ∈ R and y ∈ S such that

x−
∑
i,j

ri,jx
iπj = πmy.

There are a0, . . . , af−1 ∈ R such that y −
∑

i aix
i ∈ πS. Thus

x−
∑
i,j

ri,jx
iπi −

f−1∑
i=0

aix
iπm ∈ πm+1S.

5Since L/K is separable, S is free of rank n as an R-module. By [CA, Thm. 3.44], the claim
implies that {xiπj} − 0 ≤ i < f, 0 ≤ j < e in fact form an R-basis of S.
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Step 2: We claim that we may choose x such that there is g ∈ R[t] monic of degree
f such that g(x) is a uniformizer of S.
Proof: Start first with g ∈ R[t] monic that reduces to the minimal polynomial of x
over k. Let w be the normalized valuation on L, so w(g(x)) ≥ 1. If w(g(x)) = 1,
we have found our g. Otherwise w(g(x)) ≥ 2. Let π be a uniformizer for L. By
Lemma 5.46 there is s ∈ S such that

g(x+ π) = g(x) + πg′(x) + π2s.

Since l/k is separable, we have g′(x) ̸= 0, so w(πg′(x)) = 1 and thus w(g(x+π)) = 1.
Thus x+ π is an acceptable choice of x.
Step 3: Choose x as in Step 2 and put π := g(x). By Step 1, the elements
{xig(x)j}0≤i<f, 0≤j<e span S over R. Thus S = R[x]. □

Theorem 5.48. Let A be a Dedekind domain with fraction field K, let L/K
be a degree n separable field extension, let B be the integral closure of A in L. Let
α ∈ B be such that L = K[α], let f ∈ A[t] be the minimal polynomial of α, and put

O := A[α].

Suppose there is p ∈ MaxSpecA such that f is locally Eisenstein at p. Then O is
maximal at p: we have Op = Bp, or equvialently that p ∤ χA(B/O).

Proof. We may replace A with Ap and therefore assume: A is a DVR with
maximal ideal p = (π), f is Eisenstein at p and show that O = B. Assume not:
then there is ξ ∈ B \ O such that πξ ∈ O. There are b0, . . . , bn−1 ∈ A, not all
divisible by π, such that

πξ = bn−1α
n−1 + . . .+ b1α+ b0 ∈ O.

Let 0 ≤ j ≤ n− 1 be the minimal index such that bj /∈ πA. Then

η := ξ −
(
b0
π

+
b1
π
α+ . . .+

bj−1

π
αj−1

)

=
bj
π
αj +

bj+1

π
αj+1 + . . .+

bn−1

π
αn−1 ∈ B.

Then for all 0 ≤ j ≤ n− 1 we have

bj
π
αn−1 +

αn

π

(
bj+1 + bj+2α+ . . .+ bn−1α

n−j−2
)
∈ B.

Because f is Eisenstein at p = (π), we have that

αn

π
= −

(an−1

π
αn−1 + . . .+

a0
π

)
∈ B,

and it follows that
bj
π
αn−1 ∈ B.

But we have

NL/K(
bj
π
αn−1) =

bnjNL/K(α)n−1

πn
=

(−1)nbnj a
n−1
0

πn
,

which does not lie in A because π ∤ bj and π2 ∤ a0, contradicting Corollary 5.12. □
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Exercise 5.38. Let a ∈ Z+ and let n ∈ Z+. Suppose the polynomial tn − a ∈
Q[t] is irreducible. (By [Cl-FT, Thm. 9.21], when 4 ∤ n, this holds if for all primes
p | n we have a /∈ Q×p: that is, for no prime p dividing n is a a pth power in Q; if
4 | n, if we add the condition that −4a /∈ Q×4, then tn − a is irreducible.) Let α be
a root of tn − a in C, and let K := Q[α].

a) Show: δZ[α]/Z = (−1)
(n+2)(n−1)

2 nnan−1. Deduce: for a prime number p, if
p ∤ na, then Z[α] is maximal at p and p is unramified in ZK .

b) Show: if p ∤ na, then Z/pZ[t]/(tn − a) is an étale Z/pZ-algebra. Once
again deduce: for a prime number p, if p ∤ na, then Z[α] is maximal at p
and p is unramified in ZK .

c) Let p be a prime. Suppose p | a and p2 ∤ a. Show: Z[α] is maximal at p.
d) Suppose: all p | n, we have a /∈ Q×p; if 4 | n, also suppose −4a /∈ Q×4.

Suppose moreover that a | n, a is squarefree, and for all primes p we have
p | a ⇐⇒ p | n. (In other words, a is squarefree and n is obtained from
a by multiplying by primes p | a and possibly by −1.) Show:

ZK = Z[α].
Exercise 5.39. For n ∈ Z+, let Φn(t) ∈ C[t] be the unique monic separable

polynomial whose roots are the primitive nth roots of unity. Then Φn(t) ∈ Z[t]
[Cl-FT, Prop. 9.6] and Φn has degree φ(n) (Euler’s totient function). As Gauss
showed, Φn(t) ∈ Q[t] is irreducible [Cl-FT, Thm. 9.8]. Put

ζn := e2πi/n,

a root of Φn(t). The nth cyclotomic field is

Q(ζn) ∼= Q[t]/(Φn).

An important basic result is that ZQ(ζn) = Z[ζn]. In this exercise we will prove this
when n = pa is a prime power; later we will deduce the general case from this.
From now on we put

ζ := ζpa = e2πi/p
a

.

a) Show: there is N ∈ Z≥0 and ϵ ∈ {±1} such that δZ[ζ]/Z = ϵpN .
(Hint: It is equivalent to show that for all primes ℓ ̸= p, the Z/ℓZ-algebra
Z/ℓZ[t]/(Φpa) is étale. For this, notice that Φpa(t) | tpa − 1, while for any
n ∈ Z+, if K is a field of characteristic not dividing n, then tn − 1 ∈ K[t]
is a separable polynomial.)

b) We claim that Φpa(t+ 1) is Eisenstein at p. To see this:

(i) Show: The image of Φpa(t) ∈ Z/pZ[t] is tφ(pa).
(ii) Show: Φpa(1) = p.

c) Show: ZQ(ζ) = Z[ζ] and (with notation as in part a)) δ(Q(ζ) = ϵpN .

7. The Different

Throughout this section we will maintain the following setup: let A be a Dedekind
domain with fraction field K, let L/K be a finite degree separable field extension,
and let B be the integral closure of A in L.

During the proof of Theorem 5.20 we observed that B∗ is an A-lattice in L and

B ⊆ B∗.

We make the following additional observation:
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Lemma 5.49. B∗ is a fractional B-ideal.

Proof. It is enough to check that BB∗ ⊆ B∗: for then B∗ is a B-submodule
of L that is finitely generated as an A-module, hence certainly finitely generated as
a B-module, and thus it is a fractional B-ideal.

Let x ∈ B and y ∈ B∗. We need to check that for all z ∈ B, TL/K(xyz) ∈ A.
Now TL/K(xyz) = TL/K((zx)y) ∈ A since zx ∈ B and y ∈ B∗. □

Since B∗ is a fractional B-ideal containing B, when we factor it as
∏

pai
i all the

nonzero exponents are negative. Therefore its inverse is a proper B-ideal: we call
it the different of S over R:

∆B/A := (B∗)−1.

Proposition 5.50. Let A be a Dedekind domain with fraction field K, let
K ⊆ L ⊆M be a tower of finite degree field extensions, let B be the integral closure
of A in L and let C be the integral closure of A in M (C is also the integral closure
of B in M). Then we have

∆C/A = ∆B/A∆C/B .

Proof. See [N, pp. 195-196]. □

Proposition 5.51. Let S ⊆ A be a multiplicative subset. Then we have

S−1∆B/A = ∆S−1B/S−1A.

Proof. Both inverses and duals are compatible with localization. □

Theorem 5.52. We have

δB/A = NB/A(∆B/A).

Proof. Using Corollary 4.17 and Proposition 5.35, we get

δB/A = χA(B
∗/B) = χA(B/B

∗)−1 = N(B∗)−1 = N((B∗)−1) = N(∆B/A). □

Lemma 5.53. For a nonzero ideal I of B, we have I | ∆B/A if and only if

TrL/K(I−1) ⊆ A.

Proof. We have I | ∆B/A if and only if I ⊇ ∆B/A if and only if I−1 ⊆ B∗. if

and only if TrL/K(I−1) = TrL/K(I−1B) ⊆ A. □

Theorem 5.54 (Dedekind’s Different Theorem). Let P ∈ MaxSpecB lie over
p ∈ MaxSpecA. Let e = e(P|p). Then:

a) If e /∈ p and (B/P)/(A/p) is separable, then ordP(∆B/A) = e− 1.
b) If e ∈ p or (B/P)/(A/p) is inseparable, then ordP(∆B/A) ≥ e.

Proof. We may localize and thus assume that A is a DVR. Write p = (p).
We observe that to establish a) and b) it suffices to show:

(19) Pe−1 | ∆B/A

and

(20) Pe | ∆B/A ⇐⇒ e ∈ p or (B/(P))/(A/p) is inseparable.

Step 1: We will show (19). For this, write

pB = Pe−1a.
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Since by definition e = ordP(pB), we still have P | a. By Lemma 5.53 it suffices to
show that TrL/K(P−(e−1)) ⊆ A. Since

P−(e−1) =
1

p
a,

we have TrL/K(P−(e−1)) ⊆ A if and only if

TrL/K(a) ⊆ pA.

Let α ∈ a. Then TrL/K(α) = TrB/A(α) and

TrB/A(α) (mod (p)) = Tr(B/pB)/A/(p)(α).

Since pB = pB and a are divisible by the same prime ideals of B, they have the same
radical: rad(pB) = rad(a). It follows that there is N ∈ Z+ such that αN ∈ pB, so
α is a nilpotent element of B/pB, so its trace is 0.
Step 2: We will show (20). Write p = Peb, so P ∤ b. As above, we have that
Pe | ∆B/A if and only if Tr(b) ⊆ pA if and only if:

∀β ∈ b, Tr(B/pB)/A/pA(β) = 0.

In what follows, all our traces will have bottom ring the field A/pA, so if X is
a finite-dimensional commutative A/pA-algebra and x ∈ X, we will simplify the
notation by writing TX(x) instead of TrX/(A/pA)(x).

Since the ideals Pe and b are coprime, the Chinese Remainder Theorem gives
B/pB ∼= B/Pe×B/b and thus for all x = (x1, x2) ∈ B/pB = B/Pe×B/b we have

TB/pB(x) = TB/Pe(x1) + TB/b(x2).

Of course if x ∈ b and we write x = (x1, x2), then x2 = 0. It follows that for all
x ∈ b we have

TB/pB(x) = TB/Pe(x1) = TB/Pe(x).

Moreover, for all y ∈ B, there is x ∈ B such that

{
x ≡ y (mod Pe)

x ≡ 0 (mod b)
, so

TB/Pe(y) = TB/Pe(x) = TB/pB(x).

Thus we conclude that

TB/π(b) = 0 ⇐⇒ TB/Pe(B/Pe) = 0.

Now B/Pe is a local principal Artinian A/p-algebra, so by Exercise 5.26 its trace
map is identically 0 if and only if the residue extension (B/P)/(A/p) is inseparable
or e is divisible by the characteristic of A/p; the latter holds if and only if e ∈ p. □

Corollary 5.55. Let P ∈ MaxSpecB lie over p ∈ MaxSpecA. Then:

a) We have that P ramifies if and only if P | ∆B/A.
b) We have that p ramifies if and only if p | δB/A.

Proof. Part a) follows from Dedekind’s Different Theorem. As for part b),
because NB/A(∆B/A) = δB/A, the primes of A that divide δB/A are precisely the
primes p that lie under a prime P of B that divides ∆B/A, which by part a) are
precisely the primes of A lying under ramified primes of B, which are (by definition!)
precisely the ramified primes of A. □
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Remark 5.56. The argument that a) =⇒ b) in Corollary 5.55 can be reversed
to show that b) =⇒ a) if we moreover assume that P is the only prime of B that
lies over A. This does not seem like an especially helpful remark, but actually it
is: in Number Theory II one introduces completions, and then it is easy to check
that just as the different is compatible with localization, it is also compatible with
completion, so one can assume that A is a complete DVR. This forces B to also
be a (complete) DVR: i.e., there is only one prime lying over p. This is the way
Sutherland proves Corollary 5.55 in his notes.

Corollary 5.57. Let A be a Dedekind domain with fraction field K, let L/K
be a degree n separable field extension, and let B be the integral closure of A in L.
Let p ∈ MaxSpecA, and write

pB = Pe1
1 · · · Per

r , fi = f(Pi|p).
Then:

a) We have

(21) vp(δK) ≥ n−
g∑

i=1

fi.

b) Equality holds in (21) if and only if p ∤ e1 · · · er and each residue extension
(B/Pi)/(A/p) is separable.

Proof. By Theorem 5.54, we have Pe1−1
1 · · · Per−1

r | ∆K . The discriminant is
the norm of the different, so we find that δB/A is divisible by

pf1(e1−1)+...fr(er−1) = p
∑r

i=1 eifi−
∑r

i=1 fi = pn−
∑r

i=1 fi .

Moreover, according to Theorem 5.54, we get no further p-divisibility if and only if
no ramification index is divisible by p and every residual extension is separable. □

Dedekind’s Different Theorem is a very useful tool in computational number theory.
Here is an example due to K. Conrad:

Example 5.58. Let K = Q( 3
√
2). There is an obvious Z-order in K, namely

O = Z( 3
√
2). We will show that O = ZK . Since O ∼= Z[t]/(t3 − 2), the dicriminant

of O is Res(f, f ′) = −108 = −4 ·27. We will show that |δZK
| = 108: then O = ZK .

Since δZK
| 108, the only primes that could ramifiy in K are 2 and 3. In fact 2

and 3 are each totally ramified in K:

(2) = (
3
√
2)3.

To see that 3 is totally ramified, put

α :=
3
√
2 + 1, u :=

3
√
4 +

3
√
2 + 1.

Since u( 3
√
2− 1) = 1, u ∈ O×. Moreover

α3 = 3(α2 − α+ 1) = 3(
3
√
4 +

3
√
2 + 1),

so (α)3 = 3. By Dedekind’s Different Theorem, the unique prime of K lying over 2
contributes a factor of 22 to δK and the unique prime of K lying over 3 contributes
at least a factor of 33 to δK , so δK is divisible by 108.

Exercise 5.40. Let K be a field, let f ∈ K[t] be a monic separable polynomial,
with roots α1, . . . , αn in an algebraic closure of K.
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a) Show:
∑n

i=1
1

f ′(αi)
= f(t)

t−αi
= 1.

(Suggestion: The left hand side is a polynomial of degree at most n. Show
that it evaluates to 1 at αi for 1 ≤ i ≤ n.)

b) Similarly, show: for all 0 ≤ k ≤ n− 1, we have

(22)

n∑
i=1

αk
i

f ′(αi)

f(t)

t− αi
= tk.

c) Write

f(t) = (t− α)(cn−1(α)t
n−1 + . . .+ c1(α)t+ c0(α)) ∈ K[t].

Show: for all 0 ≤ i, j ≤ n− 1 we have
n∑

i=1

αk
i

f ′(αi)
cj(αi) = δj,k.

(Suggestion: equate the coefficients of tj in the LHS and RHS of (22).)

Theorem 5.59. Let R be a Dedekind domain with fraction field K, and let
L = K(α) be a finite degree separable field extension. Let f ∈ K[t] be the minimal
polynomial of α. Write

f = (t− α)(cn−1(α)t
n−1 + . . .+ c1(α)t+ c0(α)) ∈ L[t].

a) The dual basis to the basis (1, . . . , αn−1) of L is ( c0(α)f ′(α) ,
c1(α)
f ′(α) , . . . ,

cn−1(α)
f ′(α) ).

b) Suppose α is integral over R and put Λ := A[α]. Then

Λ∗ =
1

f ′(α)
Λ.

Proof. Step 1: Write f(t) = ant
n + . . .+ an−1t+ a0 ∈ K[t]; we have an = 1.

Then
f(t)

t− α
=
f(t)− f(α)

t− α
=

n∑
i=1

ti − αi

t− α

=

n∑
i=1

n−1∑
j=0

aiα
i−1−jtj

=

n−1∑
j=0

 n∑
i=j+1

aiα
i−1−j

 tj .

It follows that

cj(α) =

n∑
i=j+1

aiα
i−1−j

and in particular that cj(α) is a polynomial in α with coefficients in K.
Step 2: Let the roots of αin an algebraic closure of F be α1 = α, α2, . . . , αn. By
Exercise 5.40, for 0 ≤ j, k ≤ n− 1 we have

TrL/K(
αkcj(α)

f ′(α)
=

n∑
i=1

αk
i

f ′(αi)
cj(αi) = δj,k,

so the dual basis to (1, α, . . . , αn−1) is ( c0(α)f ′(α) ,
c1(α)
f ′(α) , . . . ,

cn−1(α)
f ′(α) ).

Step 3: Suppose that α is integral over A, so the coefficients ai of the minimal
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polynomial f lie in R. Using the fact that an = 1, our formula for cj(α) gives a
system of equations

cn−1(α) = 1,

cn−2(α) = an−1 + α,

cn−3(α) = an−2 + an−1α+ α2,

...

c1(α) = a2 + a3α+ . . .+ an−2α
n−2,

c0(α) = a1 + a2α+ . . .+ αn−1.

The equations imply that each ci(α) lies in A[α], the A-submodule of L spanned
by the powers of α. But their particular form implies that each power of α lies in
⟨c0(α), . . . , cn−1(α)⟩A. So

Λ∗ =
1

f ′(α)
⟨c0(α), . . . , cn−1(α)⟩A =

1

f ′(α)
⟨1, α, . . . , αn−1⟩A =

1

f ′(α)
Λ. □

Corollary 5.60. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, let B be the integral closure of A in L,
and let α ∈ B be such that L = K(α), and let f ∈ A[t] be the minimal polynomial
of α. Let δ := δA[α]/A, a nonzero principal ideal of A. Then we have

(23) δ = (NL/K(f ′(α))).

Exercise 5.41. Prove Corollary 5.60.
(Suggestion: combine Theorem 5.59b), Proposition 4.6 and Proposition 5.38.)

The different ideal can be computed by passing to the completion of A at each
p ∈ MaxSpecA. In Number Theory II we will see that if (A, p) is a complete DVR
with fraction field K, L/K is a finite degree separable extension, B is the integral
closure of A in L, then B is a complete DVR with maximal ideal P, say. Then if the
residual extension (B/P)/(A/p) is separable then B is monogenic as an A-algebra.
Thus Theorem 5.59 can in principle always be used to compute the different of an
extension B/A so long as the residue fields of A are perfect.

Exercise 5.42. Let A be a domain, let f ∈ A[t] be a monic polynomial, and let
B := A[t]/(f). Let ΩB/A be the module of Kähler differentials (see [Cl-FT, §13.2]):
this is a B-module equipped with a universal A-derivation d : B → ΩB/A.

a) Show: the map 1 7→ dt induces a B-module isomorphism

B/(f ′(t))B
∼→ ΩB/A.

b) Suppose that A and B are Dedekind domains. Show:

(24) annΩB/A = ∆B/A.

In fact (24) holds whenever A is a Dedekind domain with fraction field K and B
is its integral closure in a finite degree separable field extension [N, Prop. III.2.7].
This provides a hint as to why the different ideal ∆B/A appears when one studies
ramification of coverings of algebraic curves.
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8. Prime Decomposition in a Galois Extension

8.1. Invariants under a Galois Extension. Let A be an integrally closed
Noetherian domain with fraction field K, let L/K be a separable field extension of
finite degree N , and let B be the integral closure of A in L. By Theorem 5.20, B is
an integrally closed Noetherian domain that is finitely generated as an A-module,
and moreover dimB = dimA.

Now we suppose that L/K is Galois, and let G = Aut(L/K) be its Galois group.
For a subring B of L, we put

BG := {x ∈ B | ∀σ ∈ G, σ(x) = x}.

Notice that if B = L, then by basic Galois theory we have LG = K.

Proposition 5.61. Let A be an integrally closed domain with fraction field K,
let L/K be a finite Galois field extension with Aut(L/K) = G. Then BG = A.

Proof. It is clear that A = AG ⊆ BG ⊆ LG = K. Since B/A is an integral
extension, also BG/A is integral. So if x ∈ BG then x is an element of K that is
integral over A, hence x ∈ A since A is integrally closed. □

Exercise 5.43. Let B be a domain, and let G be a finite group acting effectively
on B by ring automorphisms. Let K be the fraction field of BG, and let L be the
fraction field of B.

a) Show that the action of G on B extends uniquely to an action of G on L.
Show also that L/K is a finite Galois extension with Aut(L/K) = G.

b) Show that there is a unique extension of the G-action to the rational
function field L(t) such that each element of G fixes t. Show also that
L(t)/K(t) is a finite Galois extension with Aut(L(t)/K(t)) = G.

c) For x ∈ B, consider the polynomial Φx :=
∏

σ∈G(t− σx). Show that

Φx = NL(t)/K(t)(t− x),

so

Φx ∈ (B[t])G = BG[t].

Deduce that B/BG is an integral extension.
d) Show: if B is integrally closed, so is BG.

Proposition 5.62. Let G be a finite group acting effectively by automorphisms
on a ring B, with invariant ring BG. Let ι : BG ↪→ B.

a) If P ∈ SpecB and σ ∈ G, then σ(P) := {σ(x) | x ∈ P} is a prime ideal
of R. Moreover if p := ι∗(P) = P ∩BG, then also ι∗(σ(P)) = p.

That is: G acts on SpecB and this action stabilizes each fiber of the
map ι∗ : SpecB → SpecBG.

b) Let p ∈ SpecBG. Then the G-action on the fiber (ι∗)−1(p) is transitive.

Proof. a) We leave this as an exercise.
b) Let P1 and P2 be two prime ideals of B lying over the prime ideal p of BG. For
x ∈ B, we put NG(x) :=

∏
σ∈G σ(x) ∈ BG. If x ∈ P1, then

NG(x) ∈ P1 ∩BG = p ⊆ P2.
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Since P2 is a prime ideal containing NG(x), there is at least one σ ∈ G such that
σ(x) ∈ P2, so it follows that

P1 ⊆
⋃
σ∈G

σ(P2).

By part a) and Prime Avoidance (Lemma 2.6) it follows that there is σ ∈ G such
that P1 ⊆ σ(P2). Since B/BG is integral, there are no proper containments of
prime ideals of B lying over the same prime ideal of BG [CA, Cor. 14.15], so
P1 = σ(P2). □

Exercise 5.44. Prove Proposition 5.62a).

8.2. Galois Symmetry. We now intersect with our standard setup: suppose
that A is a Dedekind domain with fraction field K, that L/K is a Galois extension
of finite degree n, with G = Aut(L/K), and B is the integral closure of A in L.
Then all of the previous results apply: in particular, for any p ∈ MaxSpecA, the
Galois group G acts transitively on the set of primes of B lying over p.

The presence of this transitive group action both simplifies and deepens our dis-
cussion of how prime ideals of A decompose in B. Indeed, let P1 and P2 be two
maximal ideals of B lying over the same maximal ideal p of A. By Proposition 5.62
there is σ ∈ G such that σ(P1) = P2. Then σ induces a field isomorphism

σ : B/P1
∼→ σ(B)/σ(P1) = B/P2.

In fact, because G acts trivially on A, this is not just a field isomorphism but an
A/p-algebra isomorphism. It follows that

f(P1|p) = [B/P1 : A/p] = [B/P2 : A/p] = f(P2|p).
The Galois group G also acts on FracB. The following result analyzes this action.

Proposition 5.63. Let A be a Dedekind domain with fraction field K, let L/K
be a finite Galois extension with G := Aut(L/K), and let B be the integral closure
of A in L. For I ∈ FracB, consider the following three conditions:

(i) There is a fractional ideal a of A such that aB = I.
(ii) For all σ ∈ G we have σ(I) = I.
(iii) For all p ∈ MaxSpecA, if P1,P2 ∈ MaxSpecB both lie over p, then

vP1(I) = vP2(I).

Then: (i) =⇒ (ii) ⇐⇒ (iii).

Proof. (i) =⇒ (ii): If aB = I, then I is the B-module generated by the
subset a, so for all σ ∈ G, σ(I) is the B-module generated by the subset σ(a). But
since a ⊆ K we have σ(a) = a, so σ(I) = I.
(ii) ⇐⇒ (iii): We have

I =
∏

p∈MaxSpecA

∏
P|p

PvP(I).

For p ∈ MaxSpecA, since G permutes {P | p}, if I has the same valuation at every
such P, then σ(I) = I. Conversely, since the action on {P | p} is transitive, if there
were P1 and P2 both lying over p such that vP1

(I) ̸= vP2
(I), then there is σ ∈ G

such that σ(P1) = P2, and then

vP2
(σ(I)) = vP1

(I) ̸= vP2
(I),
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so σ(I) ̸= I. □

Condition (i) is indeed generally stronger than the other two conditions: indeed,
suppose p ∈ MaxSpecA is totally ramified in B: pA = Pe is a prime power with
e ≥ 2. Then P = PG but P is not pushed forward from A.

From Proposition 5.63 we deduce: if P1,P2 ∈ MaxSpecB both lie over p ∈
MaxSpecA, then

e(P1|p) = e(P2|p).
Indeed, condition (i) applies to pB, and hence so does condition (iii).

Exercise 5.45. With notation as above, let J ∈ FracB.

a) Show: there is a unique I ∈ FracA such that ι∗(I) =
∏

σ∈G σ(J).
b) Show that I = N(J), i.e., I is the ideal norm of J . Thus we have:

(25)
∏
σ∈G

σ(J) = N(J)B.

Corollary 5.64. With notation as above, let p ∈ MaxSpecA, and let P1, . . . ,Pg

be the primess of B lying over p. Then we may write ep for the common value
e(Pi|p) for all i and fp for the common value f(Pi|p) for all i, and then we have

pB = (P1 · · · Pr)
e
p

and
epfpg = [L : K].

Exercise 5.46. Let I ∈ FracB. As explained above, condition (iii) of Propo-
sition 5.63 is not enough to ensure that I = aB for some a ∈ FracA. However,
there is a similar, but stronger, condition that is necessary and sufficient to ensure
that I = aB. Find it and prove it. (Hint: use the ramification indices ep.)

Exercise 5.47. Suppose L/K is a quadratic Galois with Aut(L/K) = ⟨σ⟩, and
let J ∈ FracB be such that σ(J) = J . Show: there is I ∈ FracA and a subset S of
ramified primes of B – that is, for all P ∈ S, we have eP∩A = 2 – such that

J = IB ·
∏
P∈S

P.

8.3. Decomposition and Inertia Groups and Fields. We maintain our
running assumptions:we have a Dedekind domain A with fraction field K, a degree
nGalois extension L/K withG = Aut(L/K), andB is the integral closure of A in L.

Let p ∈ MaxSpecA, and let P ∈ MaxSpecB lie over p. We define the decom-
position group

D(P|p) := {σ ∈ L | σ(P) = P}.
As we know, G acts transitively on the fiber {P | p}. Recall that whenever a group
G acts on a set X, if x ∈ X and g ∈ G, if Stabx is the stabilizer of x, then we have

Stabgx = g Stabx g
−1.

In particular, if G acts transitively on X then the various point stabilizers precisely
yield a full, single conjugacy class of subgroups.

So this happens here: when we switch from one prime lying over p to a different
prime lying over p, the decomposition group changes to a conjugate subgroup, and
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all conjugates of any one decomposition group do arise this way. The most favorable
case is that in which the extension L/K is abelian – i.e., G is commutative. Then
conjugation is trivial, so the decomposition group depends only on the downstairs
prime p, and in this case will be denoted by D(p).

It follows from Corollary 5.64 and the Orbit-Stabilizer Theorem that

#D(P|p) = epfp.

To ease the notation in what follows, let us write

k(p) := A/p

for the residue field at p and

l(P) := B/P
for the residue field at P. Thus l(P)/k(p) is a field extension of finite degree f(P|p).

Using the decomposition group D := D(P|p), we can break up L/K into the
tower of fields L/LD(P|p)/K. Let AD be the integral closure of A in LD. Let
pD := P ∩ AD, so P | pD | p. On the one hand, D = Aut(L/LD) acts transitively
on the set of primes of B lying over pD. On the other hand, by definition D acts
trivially on the set of primes of B lying over p, so it certainly acts trivially on the
smaller set of primes of B lying over pD. Taking these together, we find that P is
the only prime of B lying over pD, so e(P|pD)f(P|pD) = #D = epfp, and thus

e(pD|p) = f(pD|p) = 1.

If D is normal in G, then LD/K is Galois: in this case p splits completely in LD.
The general case is a bit more complicated, and it is addressed in our next result.

Exercise 5.48. With notation as above, let M be a subextension of L/K. Let
P ∈ MaxSpecB lie over pM ∈ MaxSpecAM , which lies over p ∈ MaxSpecA.

a) Show:

D(P|pM ) = D(P|p) ∩Aut(L/M).

b) Show: LD(P|pM ) = LDM .

Exercise 5.49. With notation as above, let M be a subextension of L/K, let
AM be the integral closure of A in M , and let pM := P∩M . Show that the following
are equivalent:

(i) We have M ⊆ LD(P|p).
(ii) we have e(pM/p) = f(pM/p) = 1.

(Hint for (ii) =⇒ (i): use part b) of the previous Exercise.)

Theorem 5.65. Let A be a Dedekind domain with fraction field K, let L/K be
a finite degree separable field extension, and let B be the integral closure of A in L.
Let p ∈ MaxSpecA.

a) There is a unique subextension Ls of L/K with the following property: for
a subextension F of L/K, the prime p splits completely in F if and only
if F ⊆ Ls.

b) If L/K is Galois, then so is Ls/K.
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Proof. a) LetM be the Galois closure of L/K, let BM be the integral closure
of A in M , and suppose that

pBN = Pe1
1 · · · Per

r .

If F is a subextension of M/K, let AF be the integral closure of A in F . For
1 ≤ i ≤ r, put qi := Pi ∩ AF . Then p splits completely in F if and only if
we have e(qi|p)f(qi|p) = 1 for all i. By Exercise 5.49, this holds if and only if
F ⊆

⋂r
i=1M

D(Pi|p). Thus we may take

Ls := L ∩
s⋂

i=1

MD(Pi|p).

b) If L/K is Galois, then M = L and Ls =
⋂s

i=1 L
D(Pi|p) = L⟨D(Pi|p)⟩. Since the

D(Pi|p) form a full conjugacy class of subgroups of G = Aut(L/K), the subgroup
⟨D(Pi|p)⟩ is the precisely the least normal subgroup generatated by any one of the
decomposition groups D(Pi|p). In particular it is normal, so its fixed field Ls is
Galois over K. □

Theorem 5.66. Let A be a Dedekind domain with fraction field K. Let Ksep

be a separable closure of K, and let K1, . . . ,Kr be subextensions of Ksep/K, each
with finite degree over K, and put

L := K1 · · ·Kr.

For 1 ≤ i ≤ r, let Ai be the integral closure of A in Ki and let B be the integral
closure of A in L. Let p ∈ MaxSpecA be a prime that splits completely in Ai for
all i. Then p splits completely in B.

Proof. Let Ls be the subextension of L/K given by Corollary 5.66. For
1 ≤ i ≤ r, since p splits in Ai, we have Ki ⊆ Ls. Therefore L = K1 · · ·Kr is also
contained in Ls, so p splits completely in B. □

Corollary 5.67. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable extension, with Galois closure M . For a prime p ∈
MaxSpecA, the following are equivalent:

(i) p splits completely in L.
(ii) p splits completely in M .

Proof. (i) =⇒ (ii): The Galois closure M of L/K is the compositum of
the finitely many distinct fields σ(L) as σ runs through embeddings of L into an
algebraic (or, if you like, separable algebraic) closure ofK. So Theorem 5.66 applies.
(ii) =⇒ (i): This is immediate from the multiplicativity of ramification degrees
and inertial indices in towers. □

Next we turn to a naturally defined “reduction” homomorphism

r : D(P|p) → Aut(l(P)/k(p)) :

indeed, for σ ∈ D(P|p), we have σ(P) = P and thus σ induces an automorphism

r(σ) : B/P → σ(B)/σ(P) = B/P.
Let us give a name to the kernel of this homomorphism: we call this the inertia
group I(P|p). That is:

I(P|p) := {σ ∈ D(P|p) | σ acts trivially on B/P}.
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Exercise 5.50. Show that I(P|p) is also the set of σ ∈ G such that for all
x ∈ B we have σ(x)− x ∈ P.

In order to make progress we want to throw in one more assumption: namely that
the residue field k(p) = A/p is perfect. By definition, this means that every finite
extension is separable, so in particular the extension l(P)/k(p) is separable. Every
field of characteristic 0 is perfect, as is every finite field. The latter is the more
important observation for us, since classical algebraic number theory takes place in
the case A = Z, in which case the residue fields are just Z/pZ.

Theorem 5.68. With notation as above, suppose that for p ∈ MaxSpecA the
residue field k(p) := A/p is perfect. Let P ∈ MaxSpecB lie over p, and put l(P) :=
B/P. Then:

a) The extension l(P)/k(p) is finite Galois (of degree fp).
b) The reduction map r : D(P|p) → Aut(l(P)/l(p) is surjective.
c) We have #I(P|p) = #Ker r = ep.

Proof. a) Let us abbreviate D := D(P|p) and I := I(P|p). Let AD be the
integral closure of A in LD, and let pD := P ∩ LD. Let’s further put

eD := e(P|pD), fD := f(P|pD).

As seen above, we have e(pD|p) = f(pD|p) = 1. The latter gives us AD/pD = A/p.
Because l(P)/k(p) is a finite degree separable extension, it has a primitive

element: say l(P) = k(p)[α]. Lift α to an element α ∈ B, and let f ∈ LD[t] be
the minimal polynomial for α. Because α is integral over A it is also integral over
AD, so in fact f ∈ AD[t]. Because L/LD is Galois, the polynomial f splits in L
and every root of f is of the form σ(α) for some α ∈ D. Now let f be the image of
f in AD/pD[t] = A/p[t]. It follows that the roots of f are all of the form r(σ)(α)
for some σ ∈ D. All of these roots lie in l(P), so l(P) is the splitting field of the
polynomial f ∈ k(p) and therefore is a normal extension of k(p), hence a Galois
extension of k(p) since we assumed that k(p) was perfect.
b) Since every conjugate of α over k(p) is of the form r(σ)(α), every element of
Aut(l(P)/k(p)) is of the form r(σ) for some σ ∈ D. Thus r is surjective.
c) We know that r : D → Aut(l(P)/k(p) is surjective with kernel I(P|p), so

#I(P|p) = #D

#Aut(l(P)/k(p))
=
epfp
fp

= ep. □

For L/K a finite Galois extension with G = Aut(L/K) and P ∈ MaxSpecB lying
over p ∈ MaxSpecA, using the inertia group we can refine our filtration of subfields:

K
r
⊆ LD(P|p) f

⊆ LI(P|p) e
⊆ L.

We have a parallel to much of the above discussion when we replace the de-
composition subgroup D(P|p) by the inertia subgroup I(P|p) and the condition
e(P|p)f(P|p) = 1 with the condition e(P|p) = 1. We leave the proofs as exercises.

Exercise 5.51. Let L/K be finite Galois, and let M be a subextension of L/K.
Let P ∈ MaxSpecB lie over pM ∈ MaxSpecAM , which lies over p ∈ MaxSpecA.

a Show:

I(P|pM ) = I(P|p) ∩Aut(L/M).

b) Show: LI(P|pM ) = LD(P|p)M .
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Exercise 5.52. Let L/K be finite Galois, let M be a subextension of L/K,
let AM be the integral closure of A in M , and put pM := P ∩ AM . Show that the
following are equivalent:

(i) We have M ⊆ LI(P|p).
(ii) We have e(pM |p) = 1.

Corollary 5.69. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, and let B be the integral closure of A in
L. Let p ∈ MaxSpecA.

(i) There is a unique subextension Li of L/K with the following property: for
a subextension F of L/K, the prime p is unramified in F if and only if
F ⊆ Li.

(ii) If L/K is Galois, then so is Li/K.

Exercise 5.53. Prove Corollary 5.69.

Theorem 5.70. Let A be a Dedekind domain with fraction field K. Let Ksep

be a separable closure of K, and let K1, . . . ,Kr be subextensions of Ksep/K, each
with finite degree over K, and put

L := K1 · · ·Kr.

For 1 ≤ i ≤ r, let Ai be the integral closure of A in Ki, and let B be the integral
closure of A in L. Let p ∈ MaxSpecA be a prime that is unramified in Ai for all i.
Then p is unramified in B.

Exercise 5.54. Prove Theorem 5.70.

Corollary 5.71. Let A be a Dedekind domain with fraction field K, let L/K
be a finite degree separable field extension, with Galois closure M . For a prime
p ∈ MaxSpecA, the following are equivalent:

(i) p is unramified in L.
(ii) p is unramified in M .

8.4. Frobenius Elements. We maintain the standard setup of this section:
suppose A is a Dedekind domain with fraction field K, L/K is a finite Galois ex-
tension with G = Aut(L/K), and B is the integral closure of A in L. To this we
now add the hypotheses that for p ∈ MaxSpecA the residue field k(p) = A/p is
finite, say of cardinality q = pa.

Let P ∈ MaxSpecB lie over A. Our hypothesis gives us a complete description
of D(P|p)/I(P|p). By Theorem 5.68, the reduction map induces an isomorphism
fromD(P|p)/I(P|p) to Aut(l(P)/k(p), where once again we put l(P) = B/P. Since
k(p) is finite of cardinality q, l(P) must be finite of cardinality qfp , and it follows
that Aut(l(P)/k(p)) is cyclic of order f .

This already implies some Galois-theoretic restrictions on how primes of A can
decompose in B:

Exercise 5.55. Let A be a Dedekind domain with fraction field K, let L/K be
a degree n Galois extension with Galois group G, and let p ∈ MaxSpecA.

a) Suppose that:
(i) The residue field k(p) := A/p is finite.
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(ii) The prime p is inert in B: i.e., pB is a prime ideal of B.
Show: G is cyclic.

b) Find infinitely many number fields K that are Galois over Q and such
that no prime (p) of Z is inert in ZK .

We continue with the above dicsussion. Beyond being cyclic, Aut(l(P)/k(p) has a
canonical generator, namely the q-power Frobenius map Fq : x 7→ xq. We define a
Frobenius element τP|p to be an element of D(P|p) that maps under r to this
canonical generator Fq. In general, τP|p is well-defined up to an element of the
inertia group I(P|p), so when p is unramified in B – as we will henceforth assume
– we get a uniquely defined Frobenius element τP|p.

Exercise 5.56. With notation as above, suppose p is unramified in L/K, let
P be a prime of B lying over p, and let σ ∈ G = Aut(L/k).

a) Show:
τσ(P)|p = στP|pσ

−1.

b) Deduce that the set {τP|p | P lies over p} of Frobenius elements attached
to the set of primes of B lying over p fill out a full conjugacy class in G.

Exercise 5.57. Let n ≥ 3, let K := Q, and let L := Q(ζn) be the nth cyclo-
tomic field. Then L/K is Galois, with G = Aut(L/K) canonically isomorphic to
(Z/nZ)×. Later (Theorem 7.6) we will prove that if p ramifies in ZL then p | n, so
for each p ∤ n we have a Frobenius element6 τp ∈ (Z/nZ)×.

a) Show: for p ∤ n we have τp = p (mod N).
b) Let c denote complex conjugation, viewed as an element of G. Show:

c = −1 (mod p).

8.5. Supplement on Inseparable Extensions. Some of the above holds
when the degree n field extension L/K is normal but not separable. With the lack
of separability, we still have that B is a Dedekind domain but it need not be the
case that B is finitely generated as an A-module. But the results we discuss here
do not require B to be finitely generated as an A-module.

Proposition 5.72. Suppose that L/K is normal, and put G = Aut(L/K). Let
p ∈ MaxSpecR. Then G acts transitively on MaxSpecS/pS, i.e., on the set of
maximal ideals of S lying over p.

Proof. Let pa be the inseparable degree of L/K, so for x ∈ L,

(26) NL/K(x) =

(∏
σ∈G

σ(x)

)pa

.

Suppose to the contrary that there are maximal ideals P1 ̸= P2 lying over p such
that for all σ ∈ G, P2 ̸= σP1. By the Chinese Remainder Theorem, there is x ∈ S
such that

x ∈ P2,

∀σ ∈ G, x ≡ 1 ∈ σ(P1).

Then

NL/K(x) = x

xpa−1 ·
∏

1̸=σ∈G

σ(x)

 ∈ P2 ∩R = p.

6We get an element rather than a conjugacy class because G is commutative.
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On the other hand, for all σ ∈ G, x /∈ σP1; equivalently σ−1x /∈ P1, and as σ
runs through all elements of G so does σ−1, so for all σ ∈ G, σ(x) /∈ P1. Thus
NL/K(x) ∈ p ⊆ P1 but by (26) is a product of elements none of which are in P1,
contradicting the primality of P1. □

Exercise 5.58. Let A be an integrally closed domain with fraction field K, let
L/K be a degree n purely inseparable field extension, and let B be the integral
closure of A in L.

a) Deduce from Proposition 5.72 that the natural map MaxSpecB → MaxSpecA
is a bijection.

b) Show directly the following stronger result: let A be a domain with fraction
field K, L/K a purely separable algebraic extension (possibly of infinite
degree), B the integral closure of A in L, and p ∈ SpecA. Then rad(pA)
is the unique prime ideal of B lying over p.

Exercise 5.59. Suppose that A is a Dedekind domain with fraction field K,
that L/K is an arbitrary finite degree field extension, and that B is the integral
closure of A in L. Show that the natural map SpecB → SpecB has finite fibers:
for all p ∈ SpecA, SpecB/pB is finite. (Suggestion: localize to reduce to the case
in which p is maximal. Then reduce to the case in which L/K is normal by passing
to the normal closure.)

9. Hensel’s Different Theorem

Theorem 5.73 (Hensel). Let P ∈ MaxSpecB lie over p ∈ MaxSpecA. We
put: k := A/p, l := B/P, e := e(P|p). Suppose that l/k is separable. Then:

(27) vP(∆B/A) ≤ e− 1 + vP(e)

Notice that in the hypothesis of Hensel’s Theorem, if P/p is tamely ramified then
the upper bound is vP(∆B/A) ≤ e−1. In fact, by Theorem 5.54a) we have equality
in this case. Thus the new content of Hensel’s Theorem is an upper bound on
vP(∆B/A) in the presence of wild ramification (and a separable residual extension).

We will give the proof of Theorem 5.73, but our proof will use some results from
Number Theory II [NTII]. You will probably wish to wait to read this proof until
they are familiar with the theory of completions of discretely valued fields.

Proof. We will use the fact that ∆B/A can be computed after completion:
if BP is the completion of B with respect to the P-adic valuation and Ap is the
completion of A with respect to the p-adic valuation, then [N, Prop. III.2.2(iii)]

∆B/A ⊗B BP = ∆BP/Ap
.

To ease the notation, we simply assume that A and B are complete DVRs. By
Theorem 5.47, we get that B is monogenic over A: say B = A[α]. Let

f = tN +

n−1∑
i=0

ait
i =

n∑
i=0

ait
i ∈ A[t]

be the minimal polynomial of α. By Theorem 5.59 we have

s = vP(f
′(α)).
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Suppose first that L/K is unramified. By Dedekind-Kummer, the polynomial f ∈
k[t] is separable, so f

′
(α) ̸= 0 and thus s = vP(f

′(α)) = 0 = e − 1.7 By
Corollary 5.69 there is a unique maximal unramified subextension L′ of L/K. Let
B′ be the integral closure of A in L′, let P ′ be the unique prime of B′ lying over
p, and let l′ := B′/P ′. We claim that L/L′ is totally ramified over P ′. If not, then
l/l′ is a proper, finite degree separable field extension. As argued in [NTII, §2.2]
using Hensel’s Lemma, this gives an unramified subextension M of L/L′ such that
[M : L′] = [l : l′] > 1, contradicting the fact that L′ was the maximal unramified
subextension of L/K. Using this and Proposition 5.50 we reduce to the case in
which L/K is totally ramified over p. Then by [NTII, Thm. 2.11], if α = Π is a
uniformizing element for P then B = A[Π] and the minimal polynomial f of α is
is Eisenstein at p: we have a0 ∈ p \ p2 and ai ∈ p for all 1 ≤ i ≤ N − 1. Thus

f ′(α) =

e∑
i=1

iaiα
i−1.

For 1 ≤ i ≤ e we have

vP(iaiα
i−1) = vP(i+vP(ai) + (i− 1)vP(α)

= e (vp(i) + vp(ai)) + (i− 1) ≡ i− 1 (mod e),

so all of these valuations are distinct. It follows that

s = vP(f
′(α)) = min

1≤e
vP(iaiα

i−1) ≤ vP(eα
e−1) = e− 1 + vP(e). □

10. The Chebotarev Density Theorem

Let k be either Q or Fp(t); o = Z or Fp[t]. Let K/k be a finite separable extension
and L/K be a finite Galois extension. Let R be the integral closure of o in K, S
the integral closure of o in S. We further write ΣR (resp. ΣS) for the set of nonzero
prime ideals of R (resp. of S). For brevity, we summarize this situation by saying
that S/R is a Galois extension of global rings.

Notice that R and S are Dedekind rings with finite quotients, so all of the ma-
terial of the previous section applies: especially, for any prime p in R not dividing
∆(S/R), we have a Frobenius conjugacy class τp ⊆ Gal(L/K).

We also have (just!) one more thing: we have a norm map on the nonzero in-
tegral ideals of R, with the property that there are only finitely many ideals of
norm less than or equal to any given number.

Let T ⊆ ΣR. We say that T has a natural density if

lim
x→∞

#{I ∈ T | N(I) ≤ x}
#{I ∈ ΣR | N(I) ≤ x}

exists; if so we define its natural density δ(T ) ∈ [0, 1] to be the above limit.

7We knew this already from Theorem 5.54, but this is a different argument from the one
given above.
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We say that T has a Dirichlet density if

lim
s→1+

∑
p∈T N(p)−s∑
p∈ΣR

N(p)−s

exists; if so we define its Dirichlet density δD(T ) ∈ [0, 1] to be the above limit.

Exercise 5.60. Let T ⊆ ΣR.

a) Show that if T has a natural density, then it has a Dirichlet density and
δD(T ) = δ(T ).

b) Exhibit a T which has a Dirichlet density but no natural density.

For any group G, a normal subset T ⊆ G will be a subset which is invariant
under conjugation: for all σ ∈ G, σTσ−1 = S.

Exercise 5.61. Show that a subset T of G is normal iff it is a disjoint union
of conjugacy classes.

Notice that if G is abelian, then all subsets are normal.

10.1. The Chebotarev Density Theorem.

Theorem 5.74. (Chebotarev, 1922) Let S/R be a Galois extension of global
rings, with G = Gal(L/K). Let X ⊆ G be a normal subset, and consider the
Chebotarev set TX ⊆ ΣR of prime ideals p which are unramified in S and such
that the Frobenius conjugacy class τp is contained in X.

a) The set TX has Dirichlet density #X
#G .

b) If charK = 0, then TX has natural density #X
#G .

Exercise 5.62. Suppose that you know Chebotarev Density when T ⊆ G is a
single conjugacy class. Deduce the general case.

Corollary 5.75. For any separable extension S/R of global rings with [L :
K] = n, the density of the set S of primes p of R which split completely in S is

1
#Gal(M/K) , where M is the Galois closure of L/K. In particular we have

1

n!
≤ δ(S) ≤ 1

n
.

Exercise 5.63. Prove Corollary 5.75.

Corollary 5.76. (Equidistribution of Frobenius elements in the abelian case)
With notation as above, suppose that G = Gal(L/K) is commutative. Then for any
σ ∈ G, the set of unramified primes p such that τp = σ has density 1

#G .

The “intersection” of Corollaries 5.75 and 5.76 is important in of itself: that in an
abelian extension L/K of degree n, the set of unramified primes p of R for which
τp = 1 – i.e., which split completely in L – has density 1

n .
8

Exercise 5.64. Let L/K be an extension of number fields. Corollary 5.75
shows that the density of primes p ∈ MaxSpecZK that split completely in ZL is
positive (and computes it). It is remarkable how much easier it is to show that
infinitely many primes split completely in ZL. We follow an argument of Poonen
on MathOverflow [Po10].

8This special case was proved much earlier by Frobenius: see below.
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a) Explain why it suffices to show in any finite degree Galois extension K/Q,
there are infinitely many prime numbers p that split completely in ZK .

b) Choose α ∈ ZK such that K = Q[α], and let f ∈ Z[t] be the minimal
polynomial of α. Let p be a prime number that does not divide the dis-
criminant of f . Show: p splits completely in ZK if and only if there is
n ∈ Z such that p | f(n).

c) Fill in the details of the following argument to show that for any noncon-
stant polynomial f ∈ Z[t], there are infintiely many prime numbers p such
that p | f(n) for some n ∈ Z.

We may assume that f(0) ̸= 0, let p1, . . . , pk be the prime divisors of
f(0) (k = 0 is possible), and let q1, . . . , qℓ be any other prime numbers.
For 1 ≤ i ≤ k, let ai be the p-adic valuation of f(0), and for N ∈ Z+, put

xN := f(Npa1+1
1 · · · pak+1

k q1 · · · qℓ).

Show: for all but finitely many values of N , the integer xN is divisible by
a prime different from any of p1, . . . , pk, q1, . . . , qℓ.

Example 5.77. Let L/K be a quadratic extension. Then the set of ramified
primes is finite, and the set of primes which split completely and the set of inert
primes both have density 1

2 . Applying this in particular to K = Q, L = Q(
√
D),

this gives: for (p, 4D) = 1, the set of primes p such that (Dp ) = 1 and the set such

that (Dp ) = −1 each have density 1
2 .

Example 5.78. Let K = Q and L = Q(ζn), where ζn is (still) a primitive nth
root of unity. The well-known irreducibility of the cyclotomic polynomials easily
implies that Gal(L/K) = (Z/nZ)×, the isomorphism being given by a (mod n) 7→
(ζn 7→ ζan). Recall that every prime not dividing n is unramified. So for p with
gcd(p, n) = 1, there is a well-defined Frobenius element τp in G; it is a great
exercise to check that under the above isomorphism τp is precisely the class of p
in (Z/nZ)×. Thus in this very special case we recover the following seminal result:

Theorem 5.79. (Dirichlet’s Theorem) For n ∈ Z+ and any a with gcd(a, n) =
1, the set of primes p that are congruent to a (mod n) has density 1

φ(n) .

Exercise 5.65. Let P (t) ∈ Z[t] be a monic polynomial of positive degree d.

For a prime number ℓ, let P̃ℓ ∈ Fℓ[t] denote the obvious (coefficientwise) modulo ℓ
reduction of P .

a) If P is reducible over Z[t], then for all ℓ, P̃ℓ is reducible over Fℓ[t]. Thus,
applying the contrapositive, we get a sufficient condition for irreducibility
of P : it suffices for P̃ℓ to be reducible for some ℓ.

b) Suppose that the degree d is a prime number. Show a (much more

interesting) converse: the set of primes ℓ such that P̃ℓ(t) is irreducible has
positive density.

c) Find an irreducible quartic (i.e., d = 4) polynomial all of whose mod ℓ
reductions are reducible.

d) Show that a polynomial as in part c) exists for all composite degrees d.9

9This is proved in [Br86]. The generalization to polynomials over any global ring is proved
in [GSS05].
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10.2. Some further remarks.

Theorem 5.74 was conjectured by Frobenius in 1896. He was able to prove a sub-
stantial special case: in the Frobenius Density Theorem the subset T must be
invariant under conjugation and also have the property that if σ ∈ T , so is every
other generator of the cyclic subgroup generated by σ, i.e., for all i prime to the
order of σ, σi ∈ T . Note that when G is a symmetric group (which is what the
Galois group of an extension of global fields will be “with probability 1”) the first
condition implies the second, since σi has the same cycle type as σ. Also Frobenius’
theorem applies in the case in which T is a normal subgroup of G; in particular it
applies to T = {e}, giving Corollary 5.75.

Nikolai Grigorevich Chebotarev was born in 1896 and died in 1947. He proved
the density theorem in summer of 1922, having just turned 26, while being physi-
cally occupied with rather menial labor (e.g., bringing buckets of cabbages to the
market for his mother to sell) in the city of Odessa. He was not able to defend his
dissertation (on the density theorem) until 1927.

Strictly speaking what Chebotarev proved was weaker than Theorem 5.74: he
proved the result when K is a number field and for the Dirichlet density δD(TX).
The generalization to natural density in the number field case is a significant piece
of analytic number theory. Even in the special case of Dirichlet’s Theorem (proved
in the case of Dirichlet density by....Dirichlet), the version for natural density was
not proven until much later by de la Vallée Poussin. Apparently the replacement
of Dirichlet density by natural density in the full-fledged Chebotarev Theorem was
first done by Hecke (and is sufficiently difficult not to be found in any of the stan-
dard texts that I have consulted). It should be noted that in the vast majority of
cases the real import of the Density Theorem is to show that the set of primes in
question is infinite, and for this it certainly doesn’t matter which density is used.

The proof in the function field case – charK > 0 – is not dramatically different,
and in some ways it is simpler. It seems to have first been proven by Reichardt in
1936. The argument is similar to Chebotarev’s and in some ways simpler.

However, in the function field case it is not always true that the natural density
δ(TX) exists! It turns out that δD(TX) exists when the extension L/K has trivial
constant field extension – i.e., if the algebraic closure of Fp in K is algebraically
closed in L – but there are counterexamples in the general case. This was pointed
out to me by Melanie Matchett Wood on 6/19/13, correcting an error in the way
Theorem 5.74 had originally been stated (in spring 2008). Wood also suggests the
reference [Ba08] for more information on this phenomenon.

There are effective versions of the Chebotarev Density Theorem, i.e., one can
give an explicit upper bound on the norm of the least unramified prime p whose
Frobenius conjugacy class lies in the normal subset T of Gal(L/K). I have had oc-
casion to look at such estimates: as one might imagine, the estimates depend on all
the quantities in question (especially, the discriminant ∆(S/R)) in a somewhat com-
plicated way. What is unconditionally known is somewhat disappointingly weaker
than what should be true: if one is willing to assume the Generalized Riemann
Hypothesis (GRH) then there are bounds which are a full logarithm better than
the unconditional bounds.



CHAPTER 6

Geometry of Numbers

1. Geometry of Numbers

1.1. Convex subsets of RN . Let N ∈ Z+, and let Ω be a subset of RN . A
point p ∈ RN is a center for Ω if for all x ∈ Ω, the reflection of x through p also
lies in Ω.

Exercise 6.1. A bounded subset Ω of RN can have at most one center.

We define a subset Ω to be centrally symmetric if 0 is a center for Ω: that is,
for all x ∈ RN we have x ∈ Ω ⇐⇒ −x ∈ Ω.

A subset Ω of RN is convex if for all P,Q ∈ RN , if P,Q ∈ Ω then the entire
line segment from P to Q is contained in Ω: precisely, for all λ ∈ [0, 1] we have
(1− λ)P + λQ ∈ Ω.

Here are some “undergraduate level facts” about convexity (indeed, most of these
results were either proved or assigned as exercises in the undergraduate real analysis
course I taught in Fall 2022):

Exercise 6.2. Let Ω be a nonempty subset of R. Show: Ω is convex if and
only if Ω is an interval.

Exercise 6.3.

a) Let {Ωi}i∈I be a family of convex subsets of RN indexed by a nonempty
set I. Show:

⋂
i∈I Ωi is always convex, but if #I ≥ 2 then

⋃
i∈I Ωi need

not be.
b) Let Ω1 ⊆ Ω2 ⊆ . . . ⊆ Ωn ⊆ . . . be an ascending chain of convex subsets of

RN . Show:
⋃∞

n=1 Ωn is convex.
c) Let Ω1 ⊆ RN1 and ω2 ⊆ RN2 be convex subsets. Show that the Cartesian

product Ω1 × Ω2 ⊆ RN1+N2 is convex.

Exercise 6.4. Show: open and closed balls in RN are convex.

And here are some results about convexity that are just a little deeper than the
ones above. First we need the notion of a convex combination: if x1, . . . , xn are
vectors in RN , then a convex combination of x1, . . . , xn is a linear combination

λ1x1 + . . .+ λnxn

satisfying the extra conditions

λ1, . . . , λn ≥ 0, λ1 + . . .+ λn = 1.

For a subset S ⊆ RN , we define ConvS to be the set of convex combinations of
x1, . . . , xn, where we range over all finite sequences of elements of S. Notice that

123
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if S = {x, y} then ConvS is the line segment from x to y. A nonempty subset
S ⊆ RN is affinely independent if for each x0 ∈ S, the set {x− x0 | x ∈ S \ {0}}
is linearly independent. Actually, it suffices to require this condition for any one
x0 ∈ S: this means that after S is translated back to the origin, its set of nonzero
elements is linearly independent. Evidently if S ⊆ RN is affinely independent, then
#S ≤ N + 1. If S is an affinely independent set with cardinality n + 1, we call
ConvS an n-simplex.

Exercise 6.5. Let S ⊆ RN .

a) Show that there is a unique subset C(S) of RN with the properties that:
C(S) ⊇ S, C(S) is convex, and for all convex subsets Ω ⊇ S we have
Ω ⊇ C(S).

b) Show that C(S) = ConvS.

This subset is called the convex hull of S.

Exercise 6.6. Let (X, τ) be a topological space. For a subset Y ⊆ X we denote
by Y ◦ the interior of Y , i.e., the largest open subset contained in Y ; and we denote
by Y the closure of Y , i.e., the smallest closed subset containing Y . A subset Y is
regular-open if Y = (Y )◦. A subset Y is regular-closed if Y = Y ◦.

a) Show: evey regular-open subset of a topological space is open. Exhibit a
subset Y of R that is open but not regular-open.

b) Show: every regular-closed subset of a topological space is closed. Exhibit
a subset Z of R that is closed but not regular-closed.

c) Show: if Ω ⊆ RN is convex, then Ω◦ = (Ω)◦. Deduce: an open convex set
is regular-open.

d) Show: if Ω ⊆ RN is convex, then Ω = Ω◦. Deduce: a closed convex set is
regular-closed.

Exercise 6.7. Let Ω be a subset of RN . Show that the following are equivalent:

(i) Ω is convex.
(ii) Ω◦ is convex.
(iii) Ω is convex.

A bounded subset Ω ⊆ RN is Jordan measurable if its characteristic function

1Ω : RN → R by x 7→

{
1 x ∈ Ω

0 x /∈ Ω

is Riemann integrable. Yes, I said Riemann! Because Riemann integrable functions
are Lebesgue integrable, a bounded Jordan measurable subset is certainly also
Lebesgue measurable, but being Jordan measurable is strictly stronger: indeed,
Lebesgue’s Criterion1 says that the bounded function 1Ω is Riemann integrable if
and only if its discontinuities form a set of Lebesgue measure zero. It is easy to see
that 1Ω is discontinuous precisely on the boundary ∂Ω of Ω, so....a bounded set is
Jordan measurable if and only if its boundary has Lebesgue measure zero.

Here is a basic fact:

1My colleague Roy Smith showed me where this result appears in Riemann’s work, so I don’t
know why it is not named after Riemann....but it isn’t.
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Theorem 6.1. A bounded convex subset Ω ⊆ RN is Jordan measurable (hence
Lebesgue measurable).

Proof. See e.g. [Sz97]. □

1.2. Lattices in RN . Let N ∈ Z+. A lattice Λ in RN is the Z-span of an
R-basis of RN .

Let L(RN ) be the set of lattices in RN . If Λ ∈ L(RN ) and M ∈ GLN (R), then

MΛ := {Mx | x ∈ Λ}
also lies in L(RN ): indeed, if Λ is the Z-span of the R-basis x1, . . . , xN then MΛ
is the Z-span of the R-basis Mx1, . . . ,MxN . The space L(RN ) can be topologized
as a quotient space of GLN (R), as explored in the following exercise.

Exercise 6.8.

a) Show: GLN (R) acts transitively on L(RN ) and that the stabilizer of ZN

is GLN (Z). Deduce an isomorphism of GLN (R)-sets

ι : L(RN )
∼→ GLN (R)/GLN (Z).

b) GLN (R) is a topological space – indeed, a Lie group whose underlying R-
manifold has dimension N2 – and this allows us to endow L(RN ) with a
topology, the quotient topology with respect to the map

q : GLN (R) → L(RN ), M 7→MZN .

(This is really the quotient topology on GLN (R)/GLN (Z) “transported”
via the bijection ι.) Show: q is a covering map. Deduce: L(RN ) is a
Hausdorff, second-countable R-manifold of dimension N2.

c) Show: if Λ ∈ L(R), then Λ = ⟨λ⟩ for a unique λ ∈ R>0. Deduce: L(R) is
homeomorphic to R>0.

d) Let {Λn}∞n=1 be a sequence in L(RN ) and let Λ ∈ L(RN ). Show: Λn → Λ
if and only if for all n ∈ Z+ there is an ordered Z-basis xn of Λn and an
ordered Z-basis x of Λ such that, as vectors in RNn we have xn → x.
(Hint: if π : Y → X is a covering map and xn → x is a convergent
sequence in X, then for any lift x̃ of x to Y , one can lift each xn to x̃n
such that x̃n → xn: indeed, after choosing x̃, for all sufficiently large n
the desired lift x̃n of xn is unique.)

For a Dedekind domainA with fraction fieldK, in Chapter 4 we studiedA-lattices in
a finite-dimensionalK-vector space. TakingA = Z, we have the notion of a Z-lattice
Λ in QN : because Z is a PID, Λ is necessarily the Z-span of a Q-basis x1, . . . , xN
for QN . If L/K is a field extension, V is a K-vector space and S is a subset of
V , then S is K-linearly independent if and only if S is L-linearly independent in
VL := V ⊗K L; it follows that x1, . . . , xN are also R-linearly independent hence
form an R-basis for RN . That is, Λ is also an R-lattice in RN , so we get:

L(QN ) ⊆ L(RN ).

It is easy to see that L(QN ) is a countable dense subset of L(RN ).

Thus our new notion of lattice is evidently related to our old notion of lattice,
but there are still some differences. Here is one:
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Exercise 6.9. Let Λ be a subgroup of QN . Show: Λ is a Z-lattice in QN if
and only if Λ ∼= ZN .

It is clear that if Λ ∈ L(RN ), then Λ ∼=Z ZN . The converse holds when N = 1,
just because any nonzero element of R is an R-basis for R. However the converse
fails for N ≥ 2: since R is an infinite-dimensional Q-vector space for all N ≥ 1
there is an injective group homomorphism ZN ↪→ R. Viewing R as a subset of RN

via x 7→ (x, 0, . . . , 0), we see that for all N ≥ 2 we get an injective homomorphism
ι : ZN → RN such that dim⟨ι(ZN )⟩R = 1.

Let Λ ⊆ RN be a subgroup such that Λ ∼= ZN . We claim that Λ is a lattice in RN

if and only if Λ is discrete. One direction of this is clear: indeed, if M ∈ GLN (R),
then M · : RN → RN is an isomorphism of topological groups (i.e., a group isomor-
phism and a homeomorphism) so it carries discrete subgroups to discrete subgroups.
Clearly ZN is a discrete subgroup of RN , so also MZN is a discrete subgroup of
RN , and every lattice in RN is of this form.
The converse takes more work. We will give a complete proof, but let me mention
that this result is not needed for any of our number-theoretic applications so can
safely be skipped if desired. We will work a bit more generally. First:

Lemma 6.2. Let G be a Hausdorff topological group, and let H be a locally
compact subgroup of G. Then:

a) The subgroup H is closed in G.
b) In particular: if H is discrete, then H is closed in G.

Proof. a) Let K be a compact neighborhood of the identity element e in H.
Let U be an open neighborhood of e in G such that U ∩H ⊆ K. Let x lie in the
closure H of H. Then there is a neighborhood V of x in G such that V −1V ⊆ U ,
and thus

(V ∩H)−1(V ∩H) ⊆ U ∩H ⊆ K.

Since x ∈ H, we have that V ∩H is nonempty. Choose y ∈ V ∩H; then V ∩H ⊆ yK.
For every neighborhood W of x, also W ∩ V is a neighborhood of x, so W ∩ V ∩H
nonempty; it follows that x ∈ V ∩H. Since yK is a compact subset of the Hausdorff
space H, it is closed, an thus

x ∈ V ∩H ⊆ yK = Y K ⊆ H.

It follows that H is closed.
b) This is immediate from part a): discrete groups are locally compact. □

For a subgroup G ⊆ RN , we define the real rank r(G) to be the maximal size
of an R-linearly independent subset of G, so 0 ≤ r(G) ≤ N . This is a reasonable
definition for us to make at this point because, as we saw, if Λ ⊆ RN is a subgroup
that is isomorphic to ZN , then Λ is a lattice precisely when r(Λ) = N . Now:

Theorem 6.3. Let G be a discrete subgroup of (RN ,+), of real rank r. Then
there are R-linearly independent elements v1, . . . , vr ∈ RN forming a Z-basis for G.

Proof. By Lemma 6.2, we know that G is closed. Evidently we have r =
0 ⇐⇒ G = {0}, so we may assume that 1 ≤ r ≤ N .

By definition of the real rank, there are e1, . . . , er ∈ G that are R-linearly
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independent. Let

P :=

{ r∑
i=1

xiei | xi ∈ [0, 1]

}
be the corresponding paralleletope. Then G ∩ P is closed, discrete and compact,
hence finite. Let x ∈ G. Since r is the real rank of G, there are λ1, . . . , λr ∈ R such
that

x =

r∑
i=1

λiei.

For j ∈ Z, put

xj := jx−
r∑

i=1

⌊jλi⌋ei.

Thus

xj =

r∑
i=1

(jλi − ⌊jλi⌋) ei,

so xj ∈ G ∩ P. Since x = x1 +
∑r

i=1⌊λi⌋ei, we see that G is generated as a Z-
module by G ∩ P, hence is finitely generated. Moreover, since G ∩ P is finite and
Z is infinite, there are distinct j, k ∈ Z such that xj = xk. Then

∀1 ≤ i ≤ r, (j − k)λi = ⌊jλi⌋ − ⌊kλi⌋,

so λi ∈ Q for all i. Thus G is generated as a Z-module by a finite number of Q-
linear combinations of the ei’s. Let d be a common denominator for the coefficients
of this finite generating set, so

dG ⊆ ⟨e1, . . . , er⟩Z.

This shows that the free rank of dG is at most r, but the free rank of dG is equal to
the free rank of G, so the free rank of G is at most r. Conversely, since e1, . . . , er
are R-linearly independent they are certainly Z-linearly independent, so G is free
of rank r. Let v1, . . . , vr be any Z-basis for G. Since the R-span of v1, . . . , vr
contains the R-linearly indendent set e1, . . . , er,t he elements v1, . . . , vr must also
be R-linearly independent. □

A lattice Λ in RN has a covolume Covol Λ ∈ R>0: if v1, . . . , vN is a Z-basis for Λ,
let Mv ∈ GLN (R) be the matrix whose columns are v1, . . . , vN ; then we put

Covol Λ := |detMv|.

We should check that this is independent of the chosen Z-basis, but this is easy:
if w1, . . . , wN is another Z-basis of Λ, let A be the matrix representing the linear
automorphism of RN that carries vi to wi for all 1 ≤ i ≤ N . Then, ifMw ∈ GLN (R)
is the matrix with columns w1, . . . , wN , we have

Mw = AMv.

Moreover the jth column of A gives the coefficients in the unique expression of
wj as an R-linear combination of v1, . . . , vN ; but wj is a Z-linear combnation of
v1, . . . , vN , so A ∈MN (Z). The same argument with the v’s and w’s reversed shows
that A−1 ∈MN (Z), so A ∈ GLN (Z) and thus detA ∈ Z× = {±1}, so

|detMw| = |detMv|.
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Exercise 6.10. Let Λ ∈ L(RN ) and M ∈ GLN (R). Show:

Covol(MΛ) = |detM |Covol(Λ).

Exercise 6.11.

a) Let Λn → Λ be a convergent sequence in L(RN ). Show: Covol Λn →
Covol Λ.

b) Show: for no N ∈ Z+ is L(RN ) compact.
(Suggestion: because L(RN ) is metrizable, it is equivalent to find a se-
quence of lattices with no convergent subsequence.)

There are some unanswered questions about Covol Λ: e.g. why “volume” and
why “co”? Let us give a geometric interpretation: multiplication by Mv gives the
linear automorphism of RN that carries the standard basis (e1, . . . , eN ) to the basis
(v1, . . . , vN ). ThereforeMv maps the unit cube CN := [0, 1]N to the paralleletope

Pv := {x1v1 + . . .+ xNvN | x1, . . . , xN ∈ [0, 1]}.
A standard interpretation of the determinant of M ∈ GLN (R) is that it is the
change in “signed volume” effected by the linear transformation M ·, so that

|detMv| = Vol(Pv).

(Here we denote the Lebesgue measure on RN by Vol.) More generally, if X ⊂ RN

is any bounded Lebesgue-measurable set and M ∈ GLN (R), then

(28) Vol(MX) = |detM |Vol(X).

Thus, if we put Λv := ⟨v1, . . . , vN ⟩Z, we find:

Covol Λv = Vol(Pv).

This is a special case of something quite general, which we now briefly sketch out.
Suppose a group G acts on a set X. A fundamental region for the action of G
is a subset R ⊂ X that contains exactly one element of each G-orbit on X. Thus
fundamental regions correspond to sections of the quotient map

X → G\X
and thereby exist in great abundance. For the natural action of Λv on RN , the
paralleletope Pv is almost a fundamental region, but it is slightly too large: rather

Rv := {x1v1 + . . .+ xNvN | x1, . . . , xN ∈ [0, 1)}
is a fundamental region. Notice that Rv is neither open nor closed but its closure
is Pv and we have Vol(Rv) = Vol(Pv).

Suppose now that our G-set X is a topological space equipped with a Borel mea-
sure µ and that G acts on X by measure-preserving homeomorphisms. Under some
further reasonable hypotheses – which we need not digress to specify – both of the
following will hold: (i) there is a measurable fundamental region R for the action
of G; and (ii) any two measurable fundamental regions for the action of G have the
same measure. Then we can define µ(G\X) to be the measure of any fundamental
region. This is what is happening in the context of Λx acting on RN : the Lebesgue
measure on RN induces a measure on the quotient space RN/Λx (which is homeo-
morphic to an N -dimensional torus, i.e., to (S1)N ) inherits a measure, whose total
mass is Covol Λx.
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Notice that Covol Λ is not the measure of Λ: Λ is countable so has measure
zero. It is rather the measure of any fundamental paralleletope for Λ, which we can
think of as measuring “the space between the points of Λ.” In particular, a lattice
with large covlume has sparsely spaced vectors, while a lattice with small covolume
has densely spaced vectors. In particular:

Exercise 6.12. Let Λ1 ⊆ Λ2 be two latices in RN . Show:

Covol Λ1 = [Λ2 : Λ1] Covol Λ2.

In fact, if we have lattices Λ1 ⊆ Λ2 in RN and one of Λ1 and Λ2 is contained in
QN then so is the other, and in this case Exercise 6.12 is a quick consequence of
Proposition 4.6. It is actually possible to deduce the general case of Exercise 6.12
from this using an approximation by rational lattices...though I don’t claim this is
the easiest way to proceed.

Finally, we remark that different fundamental parallelepipeds for the same lattice
all have the same size (volume = measure) but have very different shapes. In-
deed, any bounded subset of RN contains only finitely many points of Λ hence only
finitely many bases for Λ, hence only finitely many fundamental parallelepipeds
for Λ. Thus e.g. the fundamental parallelograms for Z2 in R2 can be put into a
sequence, and as the terms of this sequence increase the parallelograms get longer
(their diameters tend to ∞) and thinner (all their areas are 1

2 ).

The following exercises introduces a version of the Fröhlich invariant for certain
pairs of lattices in RN .

Exercise 6.13. Let Λ1,Λ2 ∈ L(RN ).

a) Show that the following are equivalent:
(i) Λ1 ∩ Λ2 has finite index in both Λ1 and Λ2.
(ii) There is n ∈ Z+ such that nΛ1 ⊆ Λ2 ⊆ 1

nΛ1.

(iii) Λ1 and Λ2 span the same Q-subspace of RN .
When these conditions hold, we say that Λ1 and Λ2 are commensurable.
In this case we define a generalized index [Λ2 : Λ1] as follows: we
chooose n ∈ Z+ such that nΛ1 ⊆ Λ2 and put

[Λ2 : Λ1] := n−N [Λ2 : nΛ1],

where on the right hand side we have the usual group-theoretic index.
b) Show that the generalized index of commensurable lattices is well-defined.
c) Show: if Λ1 ⊆ Λ2, then the generalized index coincides with the index.
d) Show: Covol Λ1 = [Λ2 : Λ1] Covol Λ2.

1.3. Minkowski’s Convex Body Theorem. We define a convex body to
be a subset Ω ⊆ RN that is nonempty, convex, centrally symmetric and bounded.
Some people also require a convex body to have nonempty interior. The following
exercise gives some perspective on this:

Exercise 6.14. Let Ω ⊆ RN be convex. Show that the following are equivalent:

(i) Ω is “flat,” i.e., is contained in some hyperplane H of RN .
(ii) VolΩ = 0.
(iii) Ω has empty interior.
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Thus requiring a convex body to have nonempty interior is the same as requiring
it to have positive volume. We will soon see why we don’t need to require this.

Geometry of Numbers starts when we consider a convex body Ω ⊆ RN and a
lattice Λ ⊆ RN together: consider Ω ∩ Λ. What can we say about this set?

Well, first of all it is nonempty. Indeed, since Ω is nonempty, it contains some
point x; since Ω is centrally symmetric, it also contains −x, and since Ω is convex
it contains 1

2 (x) +
1
2 (−x) = 0.

Let Λ• := Λ \ {0}. Could Λ• ∩ Ω be empty?

Yes, of course. The set Λ• is closed, so the distance from a point of Λ• to 0
assumes a minimum value [GT, Thm. 2.114], which we actually call the mini-
mum m(Λ) of the lattice Λ. So B◦(0,m(Λ)), the open ball centered at the origin
with radius m(Λ), does not meet Λ• (i.e, the intersection is empty). Of course if R
is sufficiently large, then B◦(0, R) does meet Λ•. The key question is: in order for
Ω∩Λ• to be nonempty, is it sufficient for VolΩ to be sufficiently large with respect
to Covol Λ?

As with many problems in the geometry of numbers, there is a useful linear equiv-
ariance. That is, let M ∈ GLN (R). Certainly Ω meets Λ• if and only if M(Ω)
meets M(Λ). Moreover we have nd for all M ∈ GLN (R), we have

Vol(MΩ)

Covol(MΛ)
=

|detM |Vol(Ω)
|detM |Covol(Λ)

=
Vol(Ω)

Covol(Λ)
,

so the ratio Vol(Ω)
Covol(Λ) is invariant under linear changes of variable. Because of this,

if there is some number VN such that for all convex bodies Ω with VolΩ > VN we

have Ω∩(ZN )• ̸= ∅, then for all convex bodies Ω and lattices Λ with Vol(Ω)
Covol(Λ) > VN

we may choose M ∈ GLN (R) such that MΛ = ZN and then

2N <
Vol(Ω)

Covol(Λ)
=

Vol(M(Ω))

Covol(ZN )
= Vol(M(Ω)),

so M(Ω) meets ZN = M(Λ) and thus Ω meets Λ. Since Ω = (−1, 1)N has volume
2N and doesn’t meet (ZN )• we must have VN ≥ 2N . And now we are ready for the
theorem:

Theorem 6.4. (Minkowski’s Convex Body Theorem) Let Ω ⊆ RN be a convex
body, and let Λ ⊆ RN be a lattice.

a) If VolΩ > 2N Covol Λ, then Ω ∩ Λ• ̸= ∅.
b) If Ω is compact and VolΩ = 2N Covol Λ, then Ω ∩ Λ• ̸= ∅.

Proof. a) Step 1: We prove Blichfeldt’s Lemma: if Ω ⊆ RN is packable
— for all x ̸= y ∈ ZN , (x+Ω) ∩ (y +Ω) = ∅ — and measurable, then VolΩ ≤ 1.

To see this: for x = (x1, . . . , xN ) ∈ ZN , put

Ωx := Ω ∩
N∏
i=1

[xi, xi + 1).
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Thus Ω =
∐

x∈ZN Ωx, so Vol(Ω) =
∑

x∈ZN Vol(Ωx). Since Ω is packable, the family
{−x+Ωx}x∈ZN is pairwise disjoint, so

Vol(
∐

x∈ZN

(−x+Ωx)) =
∑
x∈ZN

Vol(−x+Ωx) =
∑
x∈ZN

Vol(Ωx) = Vol(Ω).

On the other hand, for all x ∈ ZN , we have −x+Ωx ⊆ [0, 1)N , so

Vol(Ω) = Vol(
∐

x∈ZN

(−x+Ωx)) ≤ Vol[0, 1)N = 1.

Step 2: As explained above, it suffices to treat the case in which Λ = ZN and that
VolΩ > 2N . In fact, applying the linear transformation x 7→ x

2 , which changes

volumes by a factor of 2−N , it also suffices to treat the case in which Λ = (1/2Z)N
and VolΩ > 1. Thus Blichfeldt’s Lemma tells us that Ω is not packable, which
means there are P1, P2 ∈ Ω and x ̸= y ∈ ZN such that x + P1 = y + P2; thus
P := P1−P2 ∈ (ZN )•. As argued above, since Ω is convex and centrally symmetric,
we also have P2 ∈ Ω and then 1

2P1 − 1
2P2 is a nonzero element of Ω ∩ (1/2Z)N .

b) We leave this as an exercise. □

Exercise 6.15. Prove Theorem 6.4b).
(Suggestion: By part a), for all ϵ > 0, the dilate (1 + ϵ)Ω contains an element of
Λ•. Argue that there must in fact be a fixed element P ∈ (ZN )• that lies in (1+ ϵ)Ω
for all ϵ > 0, and make a limiting argument using the fact that Ω is closed.)

1.4. A Slightly More Abstract Approach. Our discussion of both convex
subsets and of lattices was with respect to subsets of RN . In this section we discuss
the prospect of doing this in a finite-dimensional R-vector space instead.

First of all, in any R-vector space V (even if it is infinte-dimensional) one can
define convex subsets in exactly the same way. The results of §6.1.1 that do not re-
fer to topology ,measure or integration carry over verbatim in this context. We are
however interested in the case where V is a finite-dimensional R-vector space, say of
dimension N ∈ Z+. Such a space is of course isomorphic to RN but not canonically
so: if ι : V → RN is one such isomorphism, then the general such isomorphism is of
the form (M ·) ◦ ι for M ∈ GLN (R). Because M · is a homeomorphism of RN , the
vector space V has a canonical topology obtained from transporting the topology
on RN via any isomorphism ι. Moreover, because M · is a Lipschitz function, the
notions of Lebesgue measurability and of measure zero carry over to V .2 Thus in
fact all of §6.1.1 goes through with RN replaced by an abstract finite-dimensional
R-vector space V .

If V is an N -dimensional R-vector space, then we can still define a lattice in V
as the Z-span of an R-basis. The set GL(V ) of all invertible R-linear maps acts
on the set L(V ) of lattices in V as above, and again the action is transitive. After
choosing one “standard lattice” Λ0, we find that

L(V ) ∼= GL(V )/Aut(Λ0).

2See e.g. https://math.stackexchange.com/questions/1504487/

a-lipschitz-transform-maps-measurable-set-to-measurable
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Again this puts a topology on L(V ). What we do not have in this context is
a notion of volume or covolume. We can get a measure on V by transporting
Lebesgue measure using an isomorphism ι : V → RN : that is, for X ⊆ V ,

µι(X) := Vol(ι(X)).

However, for M ∈ GLN (R), using (28) we find that

µ(M ·)◦ι = |detM |µι.

Let SL±
N (R) be the subgroup of GLN (R) consisting of matrices of determinant ±1.

(The notation is because SLN (R) is an index 2 subgroup of SL±
N (R).) A unimod-

ular structure on V is an SL±
N (R)-orbit of isomorphisms ι : V → RN . Thus a

unimodular structure on V gives us a well-defined volume.

Now let ⟨·, ·⟩ : V × V → R be an inner product, by which we mean an R-bilinear
form that is positive definite:

∀x ∈ V •, ⟨x, x⟩ > 0.

Given an inner product, we can choose an orthonormal basis v1, . . . , vN of V , that
is an R-basis whose Gram matrix is the identity. (Start with any basis, and perform
the Gram-Schmidt process.) This gives us an isomorphism ιv : V → RN determined
by vi 7→ ei that satisfies:

∀x, y ∈ V, ιv(x) · ιv(y) = ⟨x, y⟩.

(Indeed, by bilinearity it is enough to check this when x = vi and y = vj , and this
is immediate.) Now let w1, . . . , wN be any other orthonormal basis of V , and let
P ∈ GL(V ) be the linear map that carries each vi to wi, so

ιv = ιw ◦ P.

Moreover, for the same reason as above, we have

∀x, y ∈ V, ⟨Px, Py⟩ = ⟨x, y⟩.

Thus the map ιv ◦ P ◦ ι−1
v preserves the standard inner product of RN , meaning

that it is represented by an orthogonal matrix, meaning

detP = det(ιv ◦ P ◦ ι−1
v ) ∈ {±1}.

Thus an inner product on V induces a unimodular structure on V and thereby gives
us a well-defined volume.

Now let Λ be a lattice in (V, ⟨·, ·⟩), with Z-basis x = (x1, . . . , xN ). We define
the Gram matrix

Gx(i, j) := ⟨xi, xj⟩.
Let v = (v1, . . . , vN ) be an orthonormal basis for V , and let ιv : V → RN be,
as above, the isomorphism that carries each vi to ei. Because we have ⟨x, y⟩ =
ιv(x) · ιv(y) for all x, y ∈ V , the (i, j)-entry of Gx is equal to ιv(xi) · ιv(xj). Thus
if Mιv(x) is the matrix with columns ιv(x1), . . . , ιv(xN ), we have

Gx =MT
ιv(x)

Mιv(x),

so

detGx = (detMιv(x))
2 = (Covol ιv(Λ))

2.
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The point of our previous discussion is that we can write Covol Λ for Covol ι(Λ),
because our Lebesgue measure Vol on (V, ⟨·, ·⟩) does not depend upon the choice of
v. We conclude:

Proposition 6.5. Let Λ be a lattice in the inner product space (V, ⟨·, ·⟩). Let
G be a Gram matrix for Λ (with respect to some Z-basis of Λ). Then we have:

Covol Λ =
√
detG.

Finally, we comment that notwithstanding the fact that Minkowksi’s Convex Body
Theorem refers to both a volume and a covolume, it holds essentially verbatim in
any finite-dimensional R-vector space V , even witout an inner product. This is be-
cause, as comes out in the proof, the hypothesis is really that the ratio VolΩ

Covol Λ > 2N .

Finally, suppose (V, ⟨·, ·⟩) is a quadratic Q-space: recall that this means that V
is a finite-dimensional Q-vector space and ⟨·, ·⟩ is a nondegenerate symmetric bilin-
ear form. Then ⟨·, ·⟩ uniquely extends to an R-bilinear form on VR := V ⊗Q R and
indeed, if v = (v1, . . . , vN ) is any Q-basis for V , then v ⊗ 1 = (v1 ⊗ 1, . . . , vN ⊗ 1)
is an R-basis for VR and we have an equality of Gram matrices Gv = Gv⊗1. How-
ever, ⟨·, ·⟩ need not be an inner product: that requires the additional condition
that ⟨x, x⟩ > 0 for all nonzero x ∈ VR. Some standard linear algebra / rudiments
of quadratic forms theory shows that positive definiteness is equivalent to all the
eigenvalues o the Gram matrix being positive (recall that being a smmetric real
matrix, Gv has all real eigenvalues) which is in turn equivalent to ⟨x, x⟩ > 0 for
all nonzero x ∈ V , so we can speak of positive definite quadratic Q-spaces as well.
If (V, ⟨·, ·⟩) is a positive definite quadratic Q-space, then we can speak of rational
lattices in VR. In particular, any two rational lattices are commensurable.

2. The Additive Embedding

2.1. Basic Setup.

Let K/Q be a number field of degree N . Because K/Q is separable and C/Q
is algebraically closed, there are preicsely N Q-algebra embeddings σ : K ↪→ C.
We say that such a σ is real if σ(K) ⊂ R; otherwise we say that σ is complex.

For any embedding σ, its complex conjugate σ defined by x 7→ σ(x) is also an
embedding. Clearly σ = σ if and only if σ is real, so complex embeddings come in
conjugate pairs. (When we speak of a conjugate pair of embeddings, we will always
mean complex embeddings: σ = σ does not count as a conjugate pair.)

We also say that α ∈ K is primitive if Q = K[α].

Exercise 6.16. Let K1, . . . ,m and L1, . . . , Ln be fields. Suppose the rings∏m
i=1Ki and

∏n
j=1 Lj are isomorphic. Show: there is a bijection s : {1, . . . ,m} →

{1, . . . , n} such that for all 1 ≤ i ≤ m, Ki
∼= Ls(i).

(Suggestion: if ι : A→ B is an isomorphism of rings, then m 7→ ι(m) is a bijection
from MaxSpecA to MaxSpecB, and for all m ∈ MaxSpecA, ι : A/m ∼= B/ι(m).
What are the maximal ideals and residue fields of

∏m
i=1Ki?)

Proposition 6.6. Let K/Q be a degree N number field. The following are
equivalent:

(i) Every embedding σ : K ↪→ C is real.
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(ii) Let α ∈ K be any primitive element, and let f ∈ Q[t] be the minimal
polynomial of α. Then f splits into linear factors in R[t].

(iii) There is a primitive element α ∈ K whose minimal polynomial f ∈ Q[t]
splits into linear factors in R.

(iv) R is a splitting field for the étale Q-algebra K.

When these equivalent conditions hold, we say that K is totally real.

Proof. (i) =⇒ (ii): We go by contrapositive: suppose that there is a prim-
itive element α ∈ K for which the minimal polynomial f ∈ Q does not split into
linear factors over R. Since f ∈ R[t] is separable, it thus factors as f = gh wth
gcd(g, h) = 1 and h irreducible quadratic. Then there are preicsely two R-algebra
isomorphisms α1, α2 : R[t]/(g) → C, such that α2 = α1. For i = 1, 2, we define
σi : K ↪→ C as the composite

K ↪→ K ⊗Q R
∼→ R[t]/(f) → R[t]/(g) αi→ C.

Then σ1(α) and σ2(α) are the two (distinct!) roots of g in C, which are complex
conjugates of each other, so σ1 and σ2 form a conjugate pair and thus are not real.
(ii) =⇒ (iii) is immediate, from the Primitive Element Theorem.
(iii) =⇒ (iv) =⇒ (ii): Let α ∈ K be any primitive element, with minimal
polynomial f ∈ Q[t], so f is monic, separable and irreducible. In R[t] the polynomial
f factors as l1 · · · lr · q1 · · · qs where the li’s are distinct monic linear polynomials
and the qj ’s are distinct monic irreducible quadratics, so the Chinese Remainder
Theorem gives

K ⊗Q R ∼= R[t]/(f) ∼=
r∏

i=1

R[t]/(li)×
s∏

j=1

R[t]/(qj) ∼= Rr × Cs.

If (iii) holds, then for some f we get r = N and s = 0, so K ⊗Q R ∼= RN and thus
R is a splitting field. If (iv) holds, then let f be the minimal polynomial of any
primitive element of K; if factors in R into r linear polynomials and s irreducible
quadratics, we have RN ∼= K ⊗Q R ∼= Rr × Cs, and by Exercise 6.16 we get r = N
and s = 0, so f splits into linear factors over R.
(iii) =⇒ (i): If the minimal polynomial of some primitive element α of K factors

over R into
∏N

i=1(t−αi) then for all 1 ≤ i ≤ n there is a uniqueQ-algebra embedding
σi : K ↪→ R such that σi(α) = αi. This gives N real embeddings σ : K ↪→ C, which
is all the embeddings, so every embedding is real. □

A number field K is real if it has at least one real embedding; otherwise it is
totally complex.

Exercise 6.17. Let K/Q be a finite Galois extension. Show: K is either totally
real or totally complex.

Our goal is to define, for any number field K of degree N , a Q-algebra embedding

σ : K ↪→ RN

such that σ(I) is a lattice in RN for every fractional ZK-ideal I ⊂ K and such that
δ(K) is closely related to CovolZK . Because every I ∈ FracZK is a Z-lattice in
the Q-vector space K, from the perspective of our previous section, it is natural
to consider V := K ⊗Q R. Then every Z-lattice in K can naturally be viewed as a
“rational” lattice in V , which is not RN but is an N -dimensional R-vector space.
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The perspective of §6.1.4 now becomes pertinent: we do not have a canonical
measure Vol on V but we will get one if we can endow V with an inner product.

The most obvious candiate for an inner product is the trace form ⟨·, ·⟩ on the
R-algebra V . As mentioned in §6.1.4, what needs to be checked is whether ⟨·, ·⟩ is
positive definite. The answer is:

Proposition 6.7. The trace form on K ⊗Q R is positive definite if and only if
K is totally real.

Proof. If K is totally real, then K⊗QR ∼= RN . Isomorphic algebras have iso-
metric trace forms, and for the standard basis e = (e1, . . . , eN ), we have T (eiej) =
T (δ(i, j)ei) = δ(i, j), so the Gram matrix Ge is the identity, i.e., the trace form is
the standard dot product on RN , which is positive definite.
If K is not totally real, then we may write K ⊗Q R as C×A for an étale R-algebra
A, and then the trace form on K ⊗Q R is the orthogonal direct sum of the trace
forms on C and on A in the sense of Exercise 4.11. In particular, for all x ∈ C the
trace of x is the trace of (x, 0) ∈ K ⊗Q R. For x = a+ bi ∈ C, we have T (x) = 2x,
so ⟨i, i⟩ = T (i2) = −2, showing that the trace form on C is not positive definite
hence neither is the trace form on K ⊗Q R. □

Exercise 6.18. Suppose K is a degree N number field with r real embed-
dings and s conjugate pairs of complex embeddings. Show: there is an R-basis
v = (v1, . . . , vN ) for which the Gram matrix Gv of the trace form on K ⊗Q R is the
diagonal matrix with r + s diagonal entries 1 and s diagonal entries −1.

Now let K/Q be a totally real number field of degree N , with embeddings
σ1, . . . , σN : K ↪→ R. We define the additive embedding

σ : K ↪→ RN , x 7→ (σ1(x), . . . , σN (x)).

The map σ has a unique extension to an R-linear map Σ : K ⊗Q R → RN which is
the isomorphism of Proposition 5.7. This any Z-lattice Λ in K is also a Z-lattice
in K ⊗Q R, so σ(Λ) is a lattice in RN . More concretely, let x = (x1, . . . , xN ) be an
ordered Q-basis for K, and let Λx := ⟨x1, . . . , xN ⟩Z be the Z-lattice in K that it
spans. If we define

S(x) ∈ GLN (R) by σi(xj),
then the columns of S(x) are the basis vectors σ(x1), . . . , σ(xN ) of σ(Λx), so

Covol(σ(Λx)) = |detS(x)|.
On the other hand, by (11) the Gram matrix for the trace form on K/Q with
respect to the basis x is

Gx = S(x)TS(x),

so we find:

(29) (Covol Λx)
2 = |detS(x)|2 = detGx =: δΛx .

In fact we don’t need the embedding σ to prove this: since K is totally real, the
trace form ⟨·, ·⟩ on K ⊗Q R makes it an inner product space, and then (29) is just
Proposition 6.5. But the use of σ is entirely reasonable: the additive embedding σ
is the restriction of the R-algebra isomorphism Σ : K⊗QR → RN , and this algebra
isomorphism induces an isomorphism from the inner product space (K ⊗Q R, ⟨·, ·⟩)
to RN endowed with the standard dot product, so all we are doing is adjusting by
a convenient isomorphism.
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Now let K/Q be any degree N number field, with r real embeddings and s
conjugate pairs of complex embeddings. We still wish to define an additive embed-
ding σ : K ↪→ RN . If we let f ∈ Q[t] be the minimal polynomial of a primitive
element α of K, and factor f ∈ R[t] as l1(t) · · · lr(t)q1(t) · · · qs(t) with the li’s monic
lineaer and the qj ’s monic irreducible quadratic, then as above we have a canonical
R-algebra isomorphism

Π : K ⊗Q R ∼→ R[t]/(f) ∼→
r∏

i=1

R[t]/(li)×
s∏

j=1

R[t]/(qj) = Rr ×
s∏

j=1

R[t]/(qj).

For 1 ≤ i ≤ r + s, let πi be Π restricted to K followed by projection onto the ith
factor. Then the maps π1, . . . , πr : K ↪→ R are precisely the real embeddings of K.
Now let r + 1 ≤ i ≤ r + s and consider

πi : K → R[t]/(qi−r).

The R-algebra R[t]/(qi−r) is isomorphic to C but in two different ways, each iso-
morphism being the other followed by complex conjugation. If for each such i
we choose one of these two isomomorphisms ιi : R[t]/(qi−r) → C, then the maps
{ιi ◦ πi : K → C}r+1≤i≤s give s complex embeddings of K that represent precisely
one of each conjguate pair of complex embeddings. Thus we get an R-algebra
isomorphism

Σ := (1Rr × (ι1, . . . , ιs)) ◦Π : K⊗R → Rr × Cs

whose restriction to K takes the form

σ = (σ1, . . . , σr, σr+1, σr+3, . . . , σr+2s−1) : K → Rr × Cs

where σ1, . . . , σr : K ↪→ R are the real embeddings of K and we have ordered the
complex embeddings σr+1, . . . , σ2s so that σr+2 = σr+1, . . . , σr+2s = σr+2s−1.

This is almost the additive embedding we want, except that we want it to land
in RN rather than Rr × Cs. For this there is something obvious to try, although
it is not so obvious how it will work out: namely, we may of course identify C as
an R-vector space with R2 via z 7→ (ℜ(z),ℑ(z)). Doing this, we get our additive
embedding

σ : K ↪→ RN .

The issue of course is that C is not isomorphic to R2 as an R-algebra, so if Λ is
a Z-lattice in K, it is no longer “abstractly clear” that the discriminant δΛ in our
number-theoretic sense (i.e., with respect to the trace form on K/Q) is equal to the
discriminant of σ(Λ) as a lattice in RN . In fact when s ≥ 1 these two discriminants
are not equal...but luckily, they are very closely related, as we will now see.

Example 6.8. Let D < 0 be squarefree such that D ≡ 2, 3 (mod 4), put K :=

Q(
√
D), so ZK = Z[

√
D] and δZK

= 4D. There are two complex embeddings
σ1, σ2 : K ↪→ C; we may view σ1 as being inclusion and σ2 as being complex
conjugation. Once we identify C and R2 in the usual manner, we find that σ(ZK)

is the lattice with basis e1 and
√
|D|e2, so its covolume is

√
D. Its Gram matrix is

G :=

[
1 0
0 |D|

]
, with determinant |D| = −D. Thus in this case we have

(30) δZK
= −4(Covolσ(ZK))2.
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Exercise 6.19. Let D < 0 be squarefree with D ≡ 1 (mod 4). Show: (30)
again holds.

It turns out that some errant factors of −4 are the worst of it. Let Λx be the
Z-lattce in K spanned by the Q-basis x = (x1, . . . , xN ) of K. Again we order the
embeddings σ1, . . . , σN : K ↪→ C so that the first r of them are real and then
complex conjugate pairs are written consecutively. Since C is a splitting field for
K, we can again use (11) to compute δΛx : if S(x) ∈ GLN (C) is the matrix with
(i, j)-entry σi(xj), then

δΛx = (detS(x))2.

On the other hand, Covol Λx is |detT (x)|, were T (x) is the matrix whose jth
column is

(σ1(xj), . . . , σr(xj),ℜ(σr+1(xj)),ℑ(σr+1(xj)), . . . ,ℜ(σr+2s−1(xj)),ℑ(σr+2s−1(xj)).

Then we have:

Lemma 6.9. With notation as above,

detT (x) =

(√
−1

2

)s

detS(x).

Proof. Each of first r rows of T (x) is the same as the corresponding row of
S(x); the remaining rows correspond to conjugate pairs of complex embeddings,

and where in S(x) we have σi(xj) and σi(xj), in T (x) we have ℜ(σi(xj)) and
ℑ(σi(xj)). If we call the two rows of the first matrix R1 and R2 and the two rows
of the second matrix R3 and R4, then we have

R3 =
R1 +R2

2
, R4 =

R1 −R2

2
√
−1

.

Thus we can get from the first two rows the second two rows by row operations,
which changes the determinant by a factor of i

2 . This occurs s times in all, so

detT (x) =

(
i

2

)s

detS(x). □

We deduce:

Theorem 6.10. Let σ : K ↪→ RN be the additive embedding as defined above,
and let Λ be a Z-lattice in K. Then:

δΛ = (−4)s(Covolσ(Λ))2.

Proof. Using Lemma 6.9, we have

δΛ = (detS(x))2 = ((−2i)s detT (x))2 = (−4)s(detT (x))2 = (−4)s Covol(Λ)2. □

As an interesting byproduct of our approach, we deduce a result of Brill. Recall
the signum (or sign) function

sgn : R → R, x 7→


1 x > 0

0 x = 0

−1 x < 0

.

Then immediately from Theorem 6.10 we get:
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Theorem 6.11. Let K be a number field of degree N , with s complex conjugate
pairs of complex embeddings. Then:

sgn(δK) = (−1)s.

If we wanted to, we could set things up so as not to get the factor of 4s. As we
saw, it came from our identification of Rr × Cs with Rr+2s. If intead we took the
Haar measure on each factor C to be twice the standard Lebesgue measure, then
this factor would disappear. This convention is sometimes taken: see e.g. [Clxx].

2.2. A Standard Volume Calculation.

Proposition 6.12. Let r, s ∈ N, n = r + 2s, t ∈ R, and let

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑

i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Then for all t ≥ 0, we have that Bt is a compact, convex body and

VolBt = 2r
(π
2

)s tn
n!
.

Exercise 6.20. Prove Proposition 6.12. (Cf. [S, pp. 66-67].)

2.3. Finiteness of the Ideal Class Monoid.

For a number field K of degree N = r + 2s, we define the Minkowski constant

M(K) =

(
4

π

)s
N !

NN
|δK | 12 .

Theorem 6.13. Let a be a nonzero integral ideal of ZK . Then a contains a
nonzero element x such that

|NK/Q(x)| ≤M(K)N(a).

Proof. Let σ : K → Rr × Cs be the canonical embedding. Let t ∈ R>0, and
as in Proposition 6.12 put

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑

i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Bt is a compact, convex body (Proposition 6.12). Choose t such that

2r
(π
2

)s tN
N !

= VolBt = 2N Covol a = 2N2−s
√
|δK |N(a),

i.e., such that

tN = 2N−rπ−sN !
√
|δK |N(a).

By Minkowski’s Convex Body Theorem, there is x ∈ a• such that σ(x) ∈ Bt, so

|NK/Q(x)| =
r∏

i=1

|σi(x)|
r+s∏

j=r+1

|σj(x)|2 ≤

 1

N

r∑
i=1

|σi(x)|+
2

N

r+s∑
j=r+1

|σj(x)|

N

≤ tN

NN

=

(
4

π

)s
N !

NN

√
|δK |N(a) =M(K)N(a);

the first inequality uses the AGM Inequality and the second the definition of Bt. □
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Lemma 6.14. Let K be a number field of degree N , and let r ∈ Z+. Then

#{a ∈ FracZK | a ⊃ ZK , [a : ZK ] = r} ≤ 2r
N

<∞.

Proof. If a ⊃ ZK and [a : ZK ] = r, then ra ⊆ ZK and thus

ZK ⊆ a ⊆ 1

r
ZK .

Since
1
rZK

ZK

∼= (Z/rZ)n, there are at most as many choices of a as there are subsets

of an rn-element set (of course this is a ridiculously crude upper bound). □

Corollary 6.15. Let K be a number field. Then PicZK is finite.

Proof. By Lemma 6.14 the set of fractional ZK-ideals containing ZK with
index at most M(K) is finite: let us call these fractional ideals I1, . . . , Ic. Let
a ∈ FracZK . By Theorem 6.13, there is α ∈ a• such that

[ZK : αZK ] = |NK/Q(α)| ≤M(K)N(a) =M(K)[ZK : a],

and thus we have[
1

α
a : ZK

]
= [a : αZK ] =

[ZK : αZK ]

[ZK : a]
≤M(K).

It follows that there is some 1 ≤ i ≤ c such that 1
αa = Ii and thus a = αIi. It

follows that #PicZK ≤ c. □

Exercise 6.21. Let K be a number field. Show: PicZK is generated by classes
of I ∈ IntZK such that N(I) ≤MK .

Although we only recorded that PicZK is finite, the proof gives an explicit (though
not very good) upper bound on #PicZK in terms of n, r, s and |δK |.

Next we observe that in the above argument, we never inverted any nonprinci-
pal ideal, so we have not used that we were working in the Dedekind domain ZK

in any crucial way. So in fact we can prove a more general finiteness result: let
O ⊆ ZK be any Z-order in K: i.e., a Z-lattice in K that is a subring.

For any domain R with fraction fieldK, we define the ideal class monoid ICM(R):
we introduce an equivalence relation ∼ on FracR: a ∼ b if there are α, β ∈ K×

such that αa = βb. (The fact that principal fractional ideals are invertible makes
this relation transitive.) Then ICM(R) is the set of equivalence classes. It is easy to
see that if a1 ∼ b1 and a2 ∼ b2 then a1a2 ∼ b1b2, so the multiplication of fractional
ideals descends to a binary operation on equivalence classes that makes ICM(R)
into a commutative monoid. Moreover, by definition of a fractional ideal, every
nonzero fractional ideal is equivalent to a nonzero integral ideal, so ICM(R) may
also be viewed as equivalence classes of nonzero integral ideals. Finally, we have:

ICM(R)× = Pic(R).

That is, the group of invertible elements is precisely the Picard group.

Now let O be a Z-order in K: that is, a Z-lattice in K that is also a subring.
Since O is finitely generated over Z, every element is integral over Z, so O ⊆ ZK ,
with finite index.
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The following exercise is essentially asking you to revisit everything that we have
done in this section and realize that we could have worked a bit more generally, in
particular with ideals of O.

Exercise 6.22. Let O be an order in K, and put f := [ZK : O]. Let a be a
nonzero O-ideal.

a) Show: σ(a) is a lattice in RN of covolume 2−sf
√
|δK |[O : a].

b) Show: there is x ∈ a• such that

|NK/Q(x)| ≤ f [O : a]M(K).

c) Show: ICM(O) is finite. Thus also Pic(O) is finite.

When we study nonmaximal orders more deeply3 we will learn that in fact the nat-
ural map PicO → PicZK given by pushing forward fractional ideals is a surjection,
so #PicZK | #PicO, and moreover there is a nice formula for #PicO

#PicZK
. In other

words, PicO is rather well-understood in terms of PicZK , so proving the finiteness
of PicO is not much of an additional contribution. However we showed that the
set of classes of not necessarily invertible O-ideals is still finite. This is interesting!
In general, ICM(O) is much less well understood than PicO.

3. Discriminant Bounds and Hermite’s Theorem

Theorem 6.16. (Minkowski) Let K be a number field of degree N ≥ 2 with s
complex places.

a) We have

|δK | ≥
(π
4

)2s N2N

(N !)2
≥ π

3

(
3π

4

)N−1

.

b) We have |δK | > 1. That is, at least one prime p ramifies in K.

Proof. a) Applying Theorem 6.13 with a = ZK , we get: there is x ∈ Z•
K such

that
|NK/Q(x)| ≤M(K).

Because |NK/Q(x)| = #ZK/(x), certainly 1 ≤ |NK/Q(x)|, and we deduce

1 ≤M(K) =

(
4

π

)s
N !

NN
|δK | 12 .

Thus

|δK | ≥
(π
4

)2s N2N

(N !)2
≥
(π
4

)N N2N

(N !)2
=: aN .

We have

a2 =
π2

4
,

and the binomial theorem gives

aN+1

aN
=
π

4

(
1 +

1

N

)2N

≥ 3π

4
.

Thus for N ≥ 2,

|δK | ≥ π2

4

(
3π

4

)N−2

=
π

3

(
3π

4

)N−1

.

3Unfortunately this does not take place in the current draft! But see [N, §1.12].
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b) If N ≥ 2, then |δK | ≥ π
3 · 3π

4 = π2

4 > 1. □

Exercise 6.23. Let K be a number field with r real embeddings, s pairs of
complex embeddings and degree N .

a) Use Theorem 6.16a) to show:
(i) If (r, s) = (2, 0), then δK ≥ 4. There is no such K with δK = 4, but

there is with δK = 5.
(ii) If (r, s) = (0, 1), then δK = −3. There is such a K with δK = −3.
(iii) If (r, s) = (3, 0), then δK ≥ 21.
(iv) If (r, s) = (1, 1), then δK ≤ −13.
(v) If N ≥ 4, then |δK | ≥ 44.

b) Show: if d ∈ {±1,±2, 3, 4, 6, 7, 9, 10, 11,−12}, then there is no number
field with discriminant d.

Later we will show that for any number field K we have δK ≡ 0, 1 (mod 4) (Theo-
rem 7.3). In view of this, the most interesting parts of Exercise 6.23b) are that 4,
9 and −12 are not discriminants of number fields.

Exercise 6.24. Show that the cubic field K := Q[t]/(t3 − t2 − 1) has discrimi-
nant −23.

The LMFDB contains the complete list of all cubic number fields K with |δK | ≤
3, 375, 000. For instance there are nine cubic fields with |δK | ≤ 100:

(i) Q[t]/(t3 − t2 − 1), with δK = −23;
(ii) Q[t]/(t3 + t− 1), with δK = −31;
(iii) Q[t]/(t3 − t2 + t+ 1), with δK = −44;
(iv) Q[t]/(t3 − t2 − 2t+ 1), with δK = 49;
(v) Q[t]/(t3 + 2t− 1), with δK = −59;
(vi) Q[t]/(t3 − 2t− 2), with δK = −76;
(vii) Q[t]/(t3 − 3t− 1), with δK = 81;
(viii) Q[t]/(t3 − t2 + t− 2), with δK = 83;
(ix) Q[t]/(t3 − t2 + 2t+ 1), with δK = −87.

Exercise 6.25. The LMFDB contains complete tables of number fields of small
degree and small discriminants: see http: // www. lmfdb. org/ NumberField/ Completeness .
In particular, it contains tables of all number fields K of degree 3 ≤ n ≤ 7 and all
degree 8 number fields that are not totally real with |δK | ≤ 106.

a) Show: if K is a totally real number field of degree 8 then |δK | ≥ 173, 141
and if K is a number field of degree at least 9 then |δK | ≥ 165, 029.

b) Thus the LMFDB tables allow the complete determination of all d ∈ Z
with |d| ≤ 165, 028 such that d is the discriminant of some number field.
What is this list of d?

Our next theorem is of the form: “there are only finitely many number fields such
that...” Since so far for us a number field is just a finite degree field extension of
Q, there is a shallow set-theoretic problem here. For instance, consider the number
fields Q[x]/(x2 + 1) and Q[x]/(x2 − 2x + 2). The first field is isomorphic to Q[i]
and the second field is isomorphic to Q[1 + i]; but Q[1 + i] = Q[i], so the two fields
Q[x]/(x2 + 1) and Q[x]/(x2 − 2x + 2) are isomorphic. But are they equal? The
answer is no, but the question is not so great either. It would be better not to
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distinguish between isomorphic number fields.

However there is another approach that is often better still. Let Q be the alge-
braic closure of Q that lives inside C: that is, the integral closure of Q in C. We
can then think of number fields as being the subfields of Q that have finite degree
over Q. Every abstract number field K can be embedded inside Q: indeed, we know
that the number of such embeddings is N = [K : Q]. The field K/Q is Galois if and
only if for any two embeddings σi, σj : K ↪→ Q we have σi(K) = σj(K). In general,

these isomorphic but possibly distinct subfields of Q are called the conjugates of
σ1(K) over Q. So an abstract number field may have multiple isomorphic copies
inside Q, but at most [K : Q] so certainly finitely many. Therefore any statement
about finiteness of a class of number fields means the same thing if we count iso-
morphism classes as it does if we count subfields of Q. We will always interpret
finiteness statements in these equivalent ways.

Theorem 6.17 (Hermite I). For all d ∈ Z, there are only finitely many number
fields with discriminant d.

Proof. By Theorem 6.16, it suffices to show that for any fixed r, s ∈ N, there
are only finitely many number fields with r real places, s complex places, degree
N = r + 2s and discriminant d. We may, and shall, assume that N ≥ 2. Let K be
such a number field.

Let B ⊆ Rr × Cs be as defined as follows:

• If r > 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ RN such that |y1| ≤ 2N−1
(
π
2

)−s√|d|,
|yi| ≤ 1

2 for 2 ≤ i ≤ r, and |zj | ≤ 1
2 for 1 ≤ j ≤ s.

• if r = 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ RN such that |z1 − z1| ≤ 2N
(
π
2

)1−s√|d|,
|z1 + z1| ≤ 1

2 and |zj | ≤ 1
2 for 2 ≤ j ≤ s.

We leave it as an exercise to show that B is a compact, convex body, and

VolB = 2N−s
√
|d|.

By Theorem 6.10, the lattice σ(ZK) has covolume

2−s
√

|d|,

so – what luck! – we have VolB = 2N Covolσ(ZK). Thus Minkowski’s Convex
Body Theorem applies to give us x ∈ Z•

K such that σ(x) ∈ B.
We claim x is a primitive element of K, i.e., that K = Q[x]. Suppose first that

r > 0, so |σi(x)| ≤ 1
2 for all i ≥ 2. Since

|NK/Q(x)| =
N∏
i=1

|σi(x)| ∈ Z+,

we must have |σ1(x)| > 1. Thus we have σ1(x) ̸= σi(x) for all i ≥ 2, and it fol-
lows that x is a primitive element for K. (Cf. [Cl-FT, Thm. 5.5].) Similarly,

if r = 0, then |σ1(x)| = |σ1(x)| ≥ 1. Moreover one of the defining conditions for
B gives |ℜ(σ1(x))| ≤ 1

4 , so it follows that σ1(x) is not real. Thus again we have
σ1(x) ̸= σi(x) for all ≥ 2, so x is a primitive element for K.

Let f =
∏n

i=1(t−σi(x)) ∈ Z[t] be the minimal polynomial for x. The inequali-
ties defining B show that all the conjugates σi(x) are bounded, hence coefficients of
the minimal polynomial of x, being elementary symmetric functions in the σi(x)’s,
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are also bounded, and this gives finitely many choices for x and thus finitely many
choices for K. □

Exercise 6.26. Let A be a Dedekind domain with fraction field K, let L/K be
a degree N separable field extension, and let B be the integral closure of A in L. Let
p ∈ MaxSpecA and let P ∈ MaxSpecB lying over p. Let e be the ramification index
of P/p. Let vp be the p-adic valuation on K and let vP be the P-adic valuation on
L. Show:

∀x ∈ K×, vP(x) = evp(x).

Lemma 6.18. Let K/Q be a number field of degree N ≥ 2. For each prime
number p, we have

vp(δK) ≤ N⌊logpN⌋+N − 1 ≤ N⌊log2N⌋+N − 1.

Proof. We have

vp(δK) = vp(NK/Q(∆K/Q)) =
∑
P|p

fPvP(∆K).

Since eP ≤ N we have vp(eP) ≤ ⌊logpN⌋, so by Exercise 6.26 we have

vP(eP) ≤ eP⌊logpN⌋.

Using this together with (27), we get

vP(∆K) ≤ eP − 1 + vP(eP) = eP − 1 + ePvp(eP) ≤ eP − 1 + eP⌊logpN⌋,

so

vp(δK) =
∑
P|p

fPvP(∆K) ≤
∑
P|p

fP
(
eP − 1 + eP⌊logpN⌋

)
= N +N⌊logpN⌋ −

∑
P|p

fP ≤ N⌊logpN⌋+N − 1. □.

Theorem 6.19 (Hermite’s Theorem II). Let S be a finite set of prime numbers,
and let N ∈ Z+. Then there are only finitely many number fields K of degree N
that are unramified outside S.

Proof. Let p1 < . . . < pr be the primes of S. If K is a degree N number field
that is unramified outside of S then |δK | = pa1

1 · · · par
r for some a1, . . . , ar ∈ Z≥0.

By Lemma 6.18 the exponents a1, . . . , ar are bounded in terms of N , so there are
only finitely many possibilities for δK , and by Hermite’s Theorem I there are only
finitely many number fields with any given discriminant. □

4. The Dirichlet Unit Theorem

Let K be a number field. For x ∈ K, we will abbreviate NK/Q(x) to N(x).

We wish to study the structure of the unit group Z×
K .

Lemma 6.20. For x ∈ ZK , the following are equivalent:

(i) We have x ∈ Z×
K .

(ii) We have |N(x)| = 1.
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Proof. If x ∈ Z×
K , there is y ∈ Z×

K such that xy = 1, and then

|N(x)||N(y)| = |N(xy)| = |N(1)| = 1.

Since |N(x)|, |N(y)| ∈ Z+, this forces |N(x)| = 1. Conversely, if |N(x)| = 1, the
minimal polynomial of x over Q is xn+an−1x

n−1+. . .+a1x±1 = 0 (cf. Proposition
5.10a)), so x · (xn−1 + an−1x

n−2 + . . .+ a1) = ±1, so x ∈ Z×
K . □

Exercise 6.27. Let K be a number field, and let ζ ∈ K be a root of unity: that
is, ζn = 1 for some n ∈ Z+. Show: ζ ∈ Z×

K .

Theorem 6.21 (Dirichlet Unit Theorem). Let K be a number field of degree
n = r + 2s. Then Z×

K is a finitely generated abelian group, with free rank r + s− 1
and torsion subgroup the group µ(K) of roots of unity in K, which is finite.

Proof. Let σ1, . . . , σr : K ↪→ R be the real embeddings, and let σr+1, . . . , σr+s :
K ↪→ C be complex embeddings, no two of which are complex conjugate. We define
the multiplicative embedding, a homomorphism L : ZK \ {0} → Rr+s, by

L : x 7→ (log |σ1(x)|, . . . , log |σr+s(x)|).

Step 1: We claim that for any compact subset B ⊆ Rr+s, its preimage

B′ := L−1(B)

is finite. Because B is bounded, there is α > 1 such that:

∀x ∈ B′, ∀1 ≤ i ≤ r + s, |σi(x)| ≤ α.

It follows that the coefficients of the characteristic polynomial of an element x ∈ B′

are bounded; since these coefficients lie in Z, there are therefore only finitely many
such polynomials and hence only finitely many elements of B′.
Step 2: It follows from Step 1 that L−1(0) = KerL is finite. In particular, each
element of KerL has finite order, i.e., is a root of unity. Conversely, since L is a
homomorphism of Z-modules, we have

L(Z×
K [tors]) ⊆ Rr+s[tors] = {0}.

So Z×
K [tors] —- i.e., the set of roots of unity in K — lies in L−1(0).

Step 3: It follows from Step 1 that L(Z×
K) is a discrete subgroup of Rr+s, hence

free abelian of rank at most r + s. Moreover, for x ∈ Z×
K , by Lemma 6.20 we have

±1 = N(x) =

n∏
i=1

σi(x) =

r∏
i=1

σi(x)

r+s∏
j=r+1

σj(x)σj(x),

hence L(x) lies in the hyperplane

W :

r∑
i=1

yi + 2

r+s∑
j=r+1

yj = 0.

Thus

L(Z×
K) ⊆W ∼= Rr+s−1,

so in fact L(Z×
K) is free abelian of rank at most r + s− 1.

Step 4: The last, most delicate part of the argument, is to show that L(Z×
K) has

rank r + s − 1. We show this by a duality argument: for any nonzero linear form
f : W → R, we claim there exists u ∈ Z×

K such that f(L(u)) ̸= 0. From this it
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follows that ⟨L(Z×
K)⟩R =W , so L(Z×

K) ∼= Zr+s−1.
Put M := r + s− 1. The map

π :W → RM , (y1, . . . , yr+s) 7→ (y1, . . . , yr+s−1)

is an R-linear isomorphism, so for any y = (y1, . . . , yM+1) ∈W , we may write

f(y) = c1y1 + . . .+ cMyM , ci ∈ R.

Fix a real number α ≥ 2N
(

1
2π

)s√|δK |. For any λ = (λ1, . . . , λM ) with λi > 0 for
all i, choose λM+1 > 0 such that

r∏
i=1

λi

r+s∏
j=r+1

λ2j = α.

In Rr × Cs, the set B of elements (y1, . . . , yr, z1, . . . , zs) with |yi| ≤ λi and |zj | ≤
λr+j is a compact, symmetric convex set of volume

r∏
i=1

2λi

r+s∏
j=r+1

πλ2j = 2rπsα ≥ 2N−s
√
|δK |.

By Minkowski’s Convex Body Theorem and Theorem 6.10 there is xλ ∈ Z•
K such

that σ(xλ) ∈ B. Thus

1 ≤ |N(xλ)| =
N∏
i=1

|σi(xλ)| ≤
r∏

i=1

λi

r+s∏
j=r+1

λ2j = α.

Moreover, for all 1 ≤ i ≤M , we have

|σi(xλ)| = |N(xλ)|
∏
j ̸=i

|σj(xλ)|−1 ≥
∏
j ̸=i

λ−1
j = λiα

−1

so
λiα

−1 ≤ |σi(xλ)| ≤ λi,

hence
0 ≤ log λi − log |σi(xλ)| ≤ logα.

Applying the linear form f we get∣∣∣∣f(L(xλ))− M∑
i=1

ci log λi

∣∣∣∣ ≤
(

M∑
i=1

|ci|

)
logα =: γ,

say. Let β > γ be a constant, and for each h ∈ Z+, choose positive real numbers

λ1,h, . . . , λM,h such that
∑M

i=1 ci log λi,h = 2βh. Put λ(h) = (λ1,h, . . . , λM,h) and
let xh = xλ(h) be the corresponding element of Z•

K . Then |f(L(xh))− 2βh| < β, so

(2h− 1)β < f(L(xh)) < (2h+ 1)β.

It follows that the f(L(xh)) are all distinct. But since |N(xh)| ≤ α, there are only
finitely many principal ideals xhZK , so there exists h ̸= h′ with (xh) = (xh′) and
thus xh = uxh′ with u ∈ Z×

K . Thus f(L(u)) = f(L(xh))− f(L(xh′)) ̸= 0. □

Exercise 6.28. Let K be a number field of degree N ≥ 2. Let µK := K×[tors]
be the group of roots of unity in K. By Theorem 6.21, we know that µK is finite.

a) Show: the group µK is cyclic.
b) Put m := #µK . Show: φ(m) ≤ N .

(Hint: use that the cyclotomic polynomial Φm(t) ∈ Q[t] is irreducible.)
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c) Show: if N = 2, then m ∈ {1, 2, 4, 6} and that all of these possibilities
occur for imaginary quadratic fields.

d) Show: there is an absolute constant C such that for all N ≥ 3 we have
m ≤ C log logN .



CHAPTER 7

Some Classical Number Theory

1. Stickelberger’s Theorem on the Discriminant

Let A be a Dedekind domain with fraction field K, let L/K be a degree n separable
field extension, and choose α ∈ L such that L = K(α). Put O := A[α].

Lemma 7.1. We have

∆(1, α, . . . , αn−1) =
∏

1≤i<j≤n

(αi − αj)
2
.

Exercise 7.1. Prove Lemma 7.1.

The siginificance of this is that if f ∈ K[t] is the minimal polynomial for α, then∏
1≤i<j≤n (αi − αj)

2
= ∆(f) is the discriminant of the polynomial f , say by defi-

nition. It is then a piece of classical algebra that ∆(f) can also be computed as the
resultant Res(f, f ′) of f and f ′. This makes the computation of the discriminant
of a monogenic order A[α] very straightforward (especially for a computer).

Proposition 7.2. Let A be an integrally closed domain with fraction field K,
let f ∈ K[t] be a separable monic polynomial, with splitting field L. Then there is
P ∈ A such that ∆(f) ≡ P 2 (mod 4A).

Proof. Write f =
∏n

i=1(t− αi) with αi ∈ L. Consider the quantity

P :=
∏

1≤i<j≤n

(αi + αj).

Then: P lies in L, is integral over A, and is invariant under Aut(L/K), so P ∈ A.
Now consider the quantity E

E := ∆(f)− P 2.

If K has characteristic 2 then ∆(f) = P 2 is a square in A. Otherwise E
4 is an

element of K that is integral over A, so E ∈ 4A and thus ∆(f) ≡ P 2 (mod 4A). □

Theorem 7.3 (Stickelberger). Let K be a number field, and let O be any Z-
order in K. Then δ(O) ≡ 0, 1 (mod 4).

Proof. Step 0: It is enough to show that δK := ∆(ZK) ≡ 0, 1 (mod 4); then
for any Z-order O in K we have

δ(O) = [ZK : O]2δK ≡ [ZK : O]2δK (mod 4) ≡ 0, 1 (mod 4).

Step 1: Suppose that 2 | δK . Then there is a prime ideal p of ZK such that
e := e(p|(2)) ≥ 2. Then by Theorem 5.54b) we have vp(∆ZK/Z) ≥ e − 1, with
equality if and only if 2 ∤ e, from which it follows that vp(∆ZK

/Z) ≥ 2 and thus

that δK is divisible by ||p2|| = 22f(p|2), hence by 4.

147
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Step 2: Suppose 2 ∤ δK . If δK is a square, then δK is a square modulo 4 and
thus δK ≡ 1 (mod 4), so we may assume that Q(

√
δK) ⊋ Q is a proper quadratic

field extension. If M is the Galois closure of K/Q, then by Exercise 5.23 we have√
δK ∈M . Since δK is odd, the prime 2 is unramified in K, hence also in the Galois

closure L (Corollary 5.71), hence also in Q(
√
δK), so δK ≡ 1 (mod 4). □

Exercise 7.2. Let d ∈ Z \ {0, 1} be such that d ≡ 0, 1 (mod 4).

a) Show: there is an order O in a quadratic number field such that δO = d.
b) Show: if O1 and O2 are two orders in quadratic number fields, then O1

∼=
O2 as rings if and only if δO1

= δO2
.

While we are discussing Stickelberger’s work:

Theorem 7.4 (Pellet-Stickelberger). Let K be a number field of degree n, and
let f ∈ Z[t] be a polynomial such that Q[t]/(f) ∼= K. (Thus f is the minimal
polynomial of an algebraic integer α such that K = Q[α].) Let p be an odd prime
that does not divide δ(f), and let r be the number of maximal ideals of ZK lying
over p. Then (

δK
p

)
= (−1)n+r.

Proof. The hypothesis p ∤ δ(f) means that the order Z[α] is maximal at p
and ZK is unramified at p, so

ZK/pZK = Z[α]/pZ[α] ∼= Z/pZ[t]/(f)

is an étale Z/pZ-algebra, and by Dedekind-Kummer the polynomial f ∈ Z/pZ[t]
has r irreducible factors. By Proposition 5.18, we get that δK (mod p) = δ(f)
(mod p) is a square if and only if n+ r is even, which is the desired result. □

Stickelberger’s work went a bit deeper than Theorem 7.4. First of all, the result
holds verbatim for all odd primes p that do not ramify in K: this generalization
is straightforward from the perspective of Number Theory II, since one can work
over the complete DVR Zp for which unramifiedness implies monogenicity. Second,
the result applies also to p = 2 when p is unramified in K, provided one uses the
Kronecker symbol

(
δK
2

)
– which is 1 if and only if 2 is split in Q(

√
δK), hence (using

that δK ≡ 1 (mod 4) by Stickelberger’s Theorem!) if and only if δK ≡ 1 (mod 8).

2. Coprime Number Fields

The following is a basic piece of multilinear algebra that unfortunately may not be
very familiar:

Exercise 7.3. Let R be a ring, let n1, n2 ∈ Z+, and for i = 1, 2, let Vi be
a free, finitely generated R-module of rank ni. Then V := V1 ⊗R V2 is a free,
finitely generated R-module of rank n1n2. For i = 1, 2, let Ai ∈ EndR Vi, so
A := A1 ⊗A2 ∈ EndR V . Show:

detA = (detA1)
n2(detA2)

n1 .

Suggestion: see https: // math. stackexchange. com/ questions/ 1316594 , where
several answers are sketched. The one I found most immediately appealing first ob-
serves that one can reduce to the case of R = C and then to the case where A1
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is diagonalizable with eigenvalues α1, . . . , αn1
and A2 is diagonalizable with eigen-

values β1, . . . , βn2 , and it is enough to show that A1 ⊗ A2 is diagonalizable with
eigenvalues {α1βj}1≤i≤n1, 1≤j≤n2 ...which is actually easy.

Theorem 7.5. For i = 1, 2, let Ki/Q be a finite Galois extension of degree
ni, let δi be the discriminant of ZKi/Z, le α1, . . . , αn1 be a Z-basis for ZK1 and let
β1, . . . , βn2 be a Z-basis for ZK2 . Put

L := K1K2.

We suppose that:

(i) K1 ∩K2 = Q; and
(ii) gcd(δ1, δ2) = 1.

Then:

a) The set {αiβj}1≤i≤n1,1≤j≤n2
is a Z-basis for ZL.

b) The discriminant of ZL is δn2
1 δn1

2 .

Proof. Step 0: Since K1/Q and K2/Q are both Galois, by [Cl-FT, Prop.
12.11] the hypothesis K1 ∩ K2 = Q is equivalent to the linear disjointness of K1

and K2 over Q: that is, the natural Q-algebra map K1 ⊗Q K2 → K1K2 = L is an
injection, hence a Q-algebra isomorphism, since both sides are Q-vector spaces of
dimension n1n2. It follows that {α1βj}1≤i≤n1,1≤j≤n2

is a Q-basis for L. Moreover
we have

Aut(L/Q) = Aut(L/K1)×Aut(L/K2).

Indeed, if we put G := Aut(L/Q) and for i = 1, 2 put Hi := Aut(L/Ki) then
#G = n1n2, H1 is a normal subgroup of G of order n2, H2 is a normal subgroup of
G of order n1, H1∩H2 consists of elements of G that pointwise fix both L1 and L2,
so H1 ∩H2 = {e}, and L⟨H1,H2⟩ = LH1 ∩ LH2 = K1 ∩K2 = Q, so ⟨H1, H2⟩ = G.
Step 1: Let x ∈ ZL, so we may write

x =
∑
i,j

aijαiβj with aij ∈ Q,

and our task is to show that for all i, j we have aij ∈ Z. For 1 ≤ j ≤ n1, put

bj :=

n1∑
i=1

aijαi ∈ K1.

Write out the elements of H1 as τ1, . . . , τn2 , so for all 1 ≤ k ≤ n2 we have

τk(x) =

n2∑
j=1

τk(bjβj) =

n2∑
j=1

bjτk(βj).

This shows that if A is the matrix with (i, j) entry τi(βj), τ(x) is the column vector
(τ1(x), . . . , τn1

(x))T and b is the column vector (b1, . . . , bn1
)T , then we have the

matrix equation

(31) τ(x) = Ab.

Multiplying both sides of (31) on the left by adj(A), we get

(32) adj(A)τ(x) = det(A)b.
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Both adj(A) and τ(x) have entries in ZL, so (32) implies that we have det(A)bj ∈ ZL

for all 1 ≤ j ≤ n2. By (11) we have that δ2 = det(A)2, so for all 1 ≤ j ≤ n2 we
have

δ2bj ∈ ZL ∩K1 = ZK1
,

and since

δ2bj =

n1∑
i=1

δ2aijαi,

it follows that for all i, j we have δ2aij ∈ Z. The same argument applies with K1

and K2 interchanged, giving δ1aij ∈ Z. Since gcd(δ1, δ2) = 1, we deduce aij ∈ Z
for all i and j, completing the proof of part a).
Step 2: Let δ := δL. By (11) again, we have δ = (detB)2, where B ∈ Mn1n2

(L)
is the matrix with (i, j, k, l) entry σiτj(αkβl). This means B = C ⊗ D is the
Kronecker product of the matrix C ∈ Mn1(L) with (i, k) entry σi(αk) and the
matrix D ∈Mn2(L) with (j, l) entry τj(βl). By Exercise 7.3 we have

δ = (detB)2 = (detC ⊗D)2 = ((detC)n2(detD)n1)2 = δn2
1 δn1

2 . □

Exercise 7.4. Let n1, n2 ∈ Z+ with gcd(n1, n2) = 1.

a) Let K be a field containing for i = 1, 2 a primitive nith root of unity ζni
.

Show: the subgroup of K× generated by ζn1
and ζn2

has order n1n2 and
thus contains a primitive (n1n2)th root of unity ζn1n2 .

b) Let K be a field with characteristic does not divide n1n2. For i = 1, 2, let
ζni

be a primitive (ni)th root of unity in an algebraic closure of K, and
let ζn1n2

be a primitive (n1n2)th root of unity in an algebraic closure of
K. Show:

K(ζn1
)K(ζn2

) = K(ζn1n2
).

Theorem 7.6. Let n ∈ Z+, let ζn := e2πi/n, and put

Kn := Q(ζn),

the nth cyclotomic field.

a) For a prime number p, if p | δ(K), then p | n.
b) We have ZKn

= Z[ζn].

Proof. Recalll that for all n ∈ Z+, the extension Kn/Q is Galois – for any
two roots of Φn in C, one is a power of the other, so Kn is the splitting field of Φn.
Step 1: Let n1, n2 ∈ Z+ be such that gcd(n1, n2) = 1. Suppose that for i = 1, 2
we know that ZKni

= Z[ζni
] and that if a prime p ramifies in ZKi

then p | ni. For
i = 1, 2, let δi := δ(ZKni

), and let δ := δ(ZKn1n2
). Then by our assumptions we

have gcd(δ1, δ2) = 1. Moreover, by Exercise 7.4 we have

Kn1Kn2 = Q(ζn1ζn2) = Q(ζn1n2) = Kn1n2 .

Applying Theorem 7.5 with Ki = Kni
for i = 1, 2, we get that

ZKn1n2
= Z[ζin1

ζjn2
| 0 ≤ i < φ(n1), 0 ≤ j ≤ φ(n2)] = Z[ζn1n2

]

and
δ = δ

φ(n2)
1 δ

φ(n1)
2 .

Step 2: We prove the result by induction on the number r of distinct prime divisors
of n. The base case r = 1 – i.e., n = pa – is Exercise 5.39. Now suppose that
r ≥ 2, that the result holds for all positive integers with fewer than r distinct
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prime divisors, and let n = pa1
1 · · · par

r . Applying Step 1 with n1 = pa1
1 · · · par−1

r−1 and
n2 = par

r gives the result for n. □

Exercise 7.5. Let n ≥ 3. Determine all primes that ramify in Q(ζn).
(In view of Theorem 7.6a), the natural first guess is that p ramifies if and only if
p | n. But since for odd n we have Q(ζn) = Q(ζ2n), this cannot be quite right.)

3. Quadratic Number Fields

3.1. The norm map.

Proposition 7.7. Let K be a number field of signature (r, s). Let N : K → Q
be the norm map. then N(K) ⊆ R≥0 if and only if r = 0.

Proof. Let KR := K ⊗Q R. As we know, there is an R-algebra isomor-
phism ι : KR → Rr × Cs; for y ∈ KR we have N(y) = N(ι(y)), and for x =
(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs we have

N(x) = y1 · · · yr|z1|2 · · · |zs|2.
This shows that N(KR) ⊆ R≥0 if and only if r = 0. So if r = 0, then N(K) ⊆ R≥0.

Now suppose that r ≥ 1. Our expression for the norm map on R× × Cs shows
that it is a continuous function (indeed, with respect to any R-basis for KR, the
norm map is a homogeneous polynomial function of degree n = r+2s). Since K is
dense in KR, if we had N(x) ≥ 0 for all x ∈ K then it would follow that N(y) ≥ 0
for all y ∈ KR, which we just saw is not the case. □

Because every element of K is of the form α
N for α ∈ ZK and N ∈ Z+, it is imme-

diate from Proposition 7.7 that there is α ∈ ZK of negative norm if and only if r ≥ 1.

Suppose now that r ≥ 1, and let σ1, . . . , σr : K ↪→ R be the real embeddings
of K. We define a map

s : K× → {±1}r

by mapping x ∈ K× to (sgn(σ1(x)), . . . , sgn(σr(x)); to be sure, for y ∈ R×, we
put sgn(y) = 1 if y is positive and −1 if y is negative. The proof of Proposition
7.7 shows that the map (σ1, . . . , σr) embeds K× as a dense subgroup of (R×)r,
from which it follows that the map s is surjective. However, a more interesting
invariant comes from restricting s to the unit group Z×

K . This map factors through
a homomorphism

s : Z×
K/Z

×2
K → {±1}r.

The Dirichlet Unit Theorem implies that Z×
K/Z

×2
K is cyclic of order 2r+s. We define

the unit-sign group
uK := s(Z×

K/Z
×2
K ).

Then uK ∼= (Z/2Z)u(K). Clearly s(1) ̸= s(−1): 1 is positive with respect to every
real embedding and −1 is negative with respect to every real embedding, so:

1 ≤ u(K) ≤ r.

We will see later that already for real quadratic fields, we can have either u(K) = 1
or u(K) = 2 and that this is a fundamental dichotomy in their arithmetic.

Now let D ∈ Z• be squarefree and not a square, and let K := Q(
√
D). Let σ be the

nontrivial field automorphism of K. Then for all α ∈ K we have N(α) = ασ(α),
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but we can be even more explicit than this.
First suppose that D ≡ 2, 3 (mod 4), so ZK (resp. K) is the Z-module (resp.

Q-vector space) spanned by 1 and
√
D. Then

∀x, y ∈ K, N(x+ y
√
D) = (x+ y

√
D)(x− y

√
D) = x2 −Dy2.

This certainly confirms Proposition 7.7 in this case: there are elements of ZK of
negative norm if and only if D > 0.

Next suppose that D ≡ 1 (mod 4), so ZK (resp. K) is the Z-module (resp. Q-

vector space) spanned by 1 and 1+
√
D

2 . Then:

∀x, y ∈ K, N(x+y(
1 +

√
D

2
)) = (x+y(

1 +
√
D

2
))((x+y(

1−
√
D

2
)) = x2+xy+

(
1−D

4

)
y2.

This time it is slightly less immediate that the norm takes negative values if and
only if D > 0, but this would follow e.g. from completing the square.

Exercise 7.6. Let K = Q(
√
D) be a quadratic field, with D a squarefree integer

that is not a square. Show: if α ∈ ZK , then N(α) is a square in Z/DZ.

3.2. Imaginary Quadratic Fields. Suppose now that K = Q(
√
D) with

D < 0 squarefree. The Dirichlet Unit Theorem implies that Z×
K is finite...but this

is overkill. By Lemma 6.20 and Proposition 7.7, for α ∈ ZK we have α ∈ Z×
K if

and only if N(α) = 1. Thus to find the units in ZK we need to find all x, y ∈ Z
such that x2 −Dy2 = 1 if D ≡ 2, 3 (mod 4) or such that x2 + xy +

(
1−D
4

)
y2 = 1

if D ≡ 1 (mod 4).

Exercise 7.7. With notation as above, show:
• If D = −3, then Z×

K is cyclic of order 6.

• If D = −4, then Z×
K is cyclic of order 4.

• If D < −4, then Z×
K is cyclic of order 2.

There is however another approach: for any R > 0, the set of x ∈ KR = C such
that N(x) ≤ R is the set of points lying on or inside an ellipse in the complex
plane, hence compact, hence has finite intersection with any Z-lattice in C, so Z×

K

is finite, so is the set of Nth roots of unity for some N ∈ Z+. Indeed, because ±1
are units we must have that N is even. If N ≥ 4, then K contains Q(ζN ), so

2 ≤ φ(N) = [Q(ζN ) : Q] | [K : Q] = 2

and thus φ(N) = 2, which implies N ∈ {4, 6}. If N = 4 then K contains Q(ζ4) then
since the latter number field also has degree 2 we have K = Q(ζ4), i.e., D = −1;
similarly, if N = 6 then K = Q(ζ6); i.e., D = −3.

3.3. Real Quadratic Fields. Let K = Q(
√
D) be a real quadratic field; for

a given K, D is unique if we require it to be positive a positive squarefree integer
that is not a square. We regard K as a subfield of R. Let σ be the nontrivial
element of Aut(K/Q).

In this case the Dirichlet Unit Theorem applies to show that there is an isomorphism

ι : Z×
K → Z× {±1}.

The group K• is equipped with two natural involutions: the first is u 7→ −u and the
second is u 7→ u−1. (So far the same can be said about the unit group of any ring.)
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These two involutions commute with each other – −u−1 = (−u)−1 – so overall we
get an action of U := Z/2Z × Z/2Z on Z×

K . The U -orbit of 1 is {±1}, of size 2;
every other orbit has size 4. Indeed, the U -orbit of any unit u /∈ {±1} consists of
one element in each of the four intervals (−∞,−1), (−1, 0), (0, 1) and (1,∞) on
the real line.

Exercise 7.8. Let α = x + y
√
D ∈ Z×

K (here x, y lie in Q). Show that the
U -orbit of α is

{x+ y
√
D,x− y

√
D,−x+ y

√
D,−x− y

√
D}.

By precomposing the isomorphism ι by multiplication by −1 on Z×
K if necessary,

we may assume that ι−1(0, 1) is positive; and then by postcomposing with the
isomorphism (n, ϵ) 7→ (−n, ϵ) on Z × {±1} if necessary, we may assume that ϵ :=
ι−1(0, 1) is greater than 1. Then every element of Z×

K that is greater than one is
of the form ϵn for a unique n ∈ Z+. We call ϵ the fundamental unit of K. By
Exercise 7.8, we have ϵ = a+ b

√
D with a, b > 0.

Proposition 7.8. The fundamental unit ϵ = a+ b
√
D has the following prop-

erty: for any unit η = c + d
√
D > 1, we have a ≤ c, with equality if and only if

ϵ = η.

Proof. For n ∈ Z+, we may write

ϵn = an + bn
√
D,

and it suffices to show that the sequence {an}∞n=1 of rational numbers is strictly
increasing. We have

ϵn+1 = ϵnϵ = (a+ b
√
D)(an + bn

√
D) = (aan +Dbbn) + (abn + anb)

√
D.

If D ≡ 2, 3 (mod 4) then a, an, b, bn are all positive integers, so it is clear that
aan + Dbbn > an. When D ≡ 1 (mod 4) then a, an, b, bn are all positive integers
or positive half-integers, so the same argument works when a ≥ 1. The remaining
case is a = 1

2 , and then

N(ϵ) =
1

4
−Db2 = ±1,

which implies D = 5 and b = 1
2 . The element

ϵ :=
1 +

√
5

2

is an element of ZK and satisfes N(ϵ) = −1, so is a unit. Since for any unit η > 1

we have c, d ≥ 1
2 , clearly α ≤ η, so α is the fundamental unit of Q(

√
5). Moreover

we check that a2 = 3
2 , so the fundamental unit is the unique entry with minimal

rational part among units greater than 1. This ends the proof...except that above
we claimed that {an}∞n=1 is strictly increasing, which we haven’t shown if D = 5.
Because

σ(ϵ)n = an − bn
√
D,

we find:

∀n ∈ Z+, an =

(
1+

√
5

2

)n
+
(

1−
√
5

2

)n
2

,

from it which it follows that for all n ≥ 2, an is the unique nearest half-integer to
1
2

(
1+

√
5

2

)n
, which is easily seen to be strictly increasing. □
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Example 7.9. We list the fundamental units ϵD for some real quadratic fields
Q(

√
D):

a) We have ϵ2 = 1 +
√
2, with N(ϵ2) = −1.

b) We have ϵ3 = 2 +
√
3, with N(ϵ3) = 1.

c) As seen above, we have ϵ5 = 1+
√
5

2 , with N(ϵ5) = −1.

d) We have ϵ6 = 5 + 2
√
6, with N(ϵ6) = 1.

e) We have ϵ7 = 8 + 3
√
7, with N(ϵ7) = 1.

f) We have ϵ10 = 3 +
√
10, with N(ϵ10) = −1.

g) We have ϵ11 = 10 + 3
√
11, with N(ϵ11) = 1.

Already we see a basic dichotomy: the fundamental unit ϵD could have norm 1 –
in which case every unit of ZK has norm 1 – or the fundamental unit could have
norm −1. Recall we defined for a number field with a real embedding the unit sign
group uK which is the collection of possible “total signs” of units under all the real
embeddings; for a real quadratic field we have r = 2 and thus uK has order 2 or
order 4. Indeed it has order 4 if and only if N(ϵD) = −1: indeed, if this holds, then
ϵD has different signs with respect to the two real embeddings (or, more concretely,

if ϵD = a + b
√
D, then a − b

√
D < 0), whereas if N(ϵD) = 1 then all units have

norm 1 and thus have the same sign with respect to the two real embeddings.

Exercise 7.9. Let D be a positive squarefree integer that is not a square.

a) Show: the fundamental unit of Q(
√
D) has norm −1 if and only if there

is u ∈ Z[
√
D]× with u = 1, as follows:

(i) Suppose D ≡ 1 (mod 8). Show: Z[ 1+
√
D

2 ]× = Z[
√
D]×.

(ii) Suppose D ≡ 5 (mod 8). Show: if u ∈ Z[ 1+
√
D

2 ]×, then u3 ∈
Z[
√
D]×.

b) Deduce: the fundamental unit of Q(
√
D) has norm −1 if and only if the

negative Pell equation x2 −Dy2 = −1 has an integral solution.

The sequence of positive integers D for which the negative Pell equation x2−Dy2 =
−1 has an integral solution has an entry on the Online Encyclopedia of Integer
Sequences: see \https://oeis.org/A031396. In particular, the set of such D in
the interval [1, 300] is

{1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109...

...113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226...

229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298}.
From this data, one can see some apparent patterns: first, every prime p ≡ 1
(mod 4) (in the given range) appears on this list; and second, no integer (in the
given range) that is divisible by a prime p ≡ 3 (mod 4) appears on this list. These
facts are not so hard to prove:

Proposition 7.10. Let D ∈ Z+ be squarefree and not a square, let K = Q(
√
D)

and let ϵD be the fundamental unit of K.

a) Suppose that D = p is a prime number such that p ≡ 1 (mod 4). Then
N(ϵD) = −1.

b) Suppose that is divisible by a prime p ≡ 3 (mod 4). Then N(ϵD) = 1.



3. QUADRATIC NUMBER FIELDS 155

Proof. a) By Exercise 7.9, it is enough to find integers x, y such that x2−py2 =
−1. That exercise also shows that the index of the unit group in the nonmaximal
order Z[

√
D]× in the unit group Z×

K is either 1 or 3, which gives us the classical
result that the Pell equation x2 − py2 = 1 has an integral solution with x, y ∈ Z+.
Since p ≡ 1 (mod 4), any such solution has x odd and y even. We are going to
make a classical descent argument: among such solutions to the Pell equation,
choose one, (x0, y0), such that y0 is minimal. Since

x20 − 1 = (x0 + 1)(x0 − 1) = py2

and gcd(x0 + 1, x0 − 1) = 2, at least one of x0 − 1 and x0 + 1 is divisible by 2p. In
the former case, we have

x0 + 1

2
· x0 − 1

2p
= (

y

2
)2

so we have a product of coprime integers being a square, so both are squares: we
get uv ∈ Z such that

x0 − 1 = 2pu2 and x0 + 1 = 2v2.

Then

v2 − pu2 =
1

2
((x0 + 1)− (x0 − 1)) = 1.

Since

py20 = (x0 − 1)(x0 + 1) = 2pu2(x0 + 1),

we have

2u2(x0 + 1) = y20

and thus |u| < y0, so |v|2 − p|u|2 = 1 is a solution to the Pell equation that is
smaller than the minimal solution, a contradiction. Thus we must be in the latter
case: X0 + 1 is divisible by 2p, so

x0 + 1

2p
· x0 − 1

2
= (

y

2
)2,

which as above implies that there are u, v ∈ Z such that

x0 + 1

2p
= u2 and

x0 − 1

2
= v2,

and then we have

v2 = pu2 =
1

2
((x0 − 1)− (x0 + 1)) = −1,

so we have a solution to the negative Pell equation.
b) By Exercise 7.6, we have that N(ϵ) is a square modulo D, hence also modulo p,
but if p ≡ 3 (mod 4) then −1 is not a square modulo p. □

Proposition 7.10 of course only determines the sign of N(ϵD) in certain cases. For
instance, for a prime p ≡ 1 (mod 4), it is often the case that N(ϵ2p) = −1 but not
always, e.g. not for p = 17. Similarly, if p ≡ q ≡ 1 (mod 4) are primes, then it is
often the case that N(ϵpq) = −1 but not always, e.g. not for p = 5 and q = 41.
Some further results like Proposition 7.10 are known, but in general case the best
we can say is that N(ϵD) = 1 if and only if the period length of the c*nt*n**d

fr*ct**n expansion of
√
d is even. We will not discuss such matters here, but the

reader may see e.g. [D, p. 96] for further details.
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3.4. The 2-torsion subgroup of the class group of a quadratic field.
For a quadratic field K = Q(

√
D), let G = ⟨σ⟩ = Aut(K/Q). We will compute

(ClK)[2], the 2-torsion subgroup of the ideal class group of K. Being a finite group
of exponent 2, we have (ClK)[2] ∼= (Z/2Z)R for some R ∈ N, so it is equivalent to
determine its size. This theorem is due to Gauss, who established it via his theory
of binary quadratic forms. We will give a treatment using the metods of algebraic
number theory that those who are in the know will recognize as employing some
rudiments of group cohomology...but we will neither assume nor explicitly use any
group cohomology whatsoever.

Before beginning our exposition of the proof, we establish the following basic result
that we will use in due course.

Proposition 7.11. Let K = Q(
√
D) be a quadratic number field.

a) For α ∈ K×, the following are equivalent:

(i) There is β ∈ K× such that α = β
σ(β) .

(ii) We have N(α) = 1.
Moreover, when these equivalent conditions hold, β is unique precisely up
to multiplication by an element of Q•.

b) For a ∈ FracZK , the following are equivalent:
(i) There is some b ∈ FracZK such that a = b(σ(b))−1.
(ii) We have N(a) = 1.
Moreover, when these equivalent conditions hold, we may take b ∈ IntZK .

Proof. a) (i) =⇒ (ii): Since N(β) = N(σ(β)), this direction is immediate.

(ii) =⇒ (i): Suppose N(α) = 1. If α = −1, then we may take β :=
√
D. Otherwise

we take β := 1 + α:

β

σ(β)
=

1 + α

1 + σ(α)
=

α(1 + α)

α(1 + σ(α))
=
α(1 + α)

α+ 1
= α.

Having found one β such that α = β
σ(β) , now let γ ∈ K•. Then γβ

σ(γβ) = γ
σ(γ)α,

which is equal to α if and only if σ(γ) = γ if and only if γ ∈ Q•.
b) (i) =⇒ (ii): Since N(a) = N(σ(a)), this direction is again immediate
(ii) =⇒ (i): Suppose N(a) = 1. We may uniquely write a = bc−1 for b, c ∈ IntZK

coprime. Thus N(b) = N(c). Let p be a prime dividing N(b). If p ramifies or
is inert, then there is a unique p ∈ MaxSpecZK lying over (p), so both b and c
must be divisible by p, a contradiction. Therefore every prime p | N(b) is split.
If pZK = p1p2 and ordp(N(b)) = a, then either vp1

(b) = a and vp2
(b) = 0 or

vp1
(b) = 0 and vp2

(b) = a: a is equal to the number of primes over p that divide b,
with multiplicity, and b cannot be divisible by both p1 and p2 because then c must
be divisible by either p1 or p2 and would then not be coprime with p1. Therefore,
after interchanging p1 and p2 if necessary we have

vp1(b) = a, vp2(b) = 0, vp1(c) = 0, vp2(c) = a.

Since p2 = σ(p1), it follows that c = σ(b), completing the proof of part b). □

Our argument beings by noticing that the action of G on K× induces an action on
the group FracZK of fractional ZK-ideals that stabilizes its subgroup PrinZK of
principal fractional ZK-ideals, so therefore also G acts on the quotient ClK. For
any commutative group A on which a group G acts via group automorphisms, we
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have the subgroup AG of G-invariant elements: i.e., the set of a ∈ A such that
ga = a for all g ∈ G.

In our case, for a ∈ FracZK , by (26) we have

aσ(a) = N(a)ZK ,

where N(a) ∈ FracZ is the ideal norm of a. Taking ideal classes, we find that

[a]σ([a]) = 1.

That is, σ acts by inversion on ClK. It follows that

(ClK)G = (ClK)[2].

Thus we will compute (ClK)[2] by computing the group (ClK)G of G-invariant
ideal classes. It turns out to be easy to compute a variant of this group: if a ∈
(FracZK)G – i.e., σ(a) = a – then σ[a] = [σ(a)] = [a], so [a] ∈ (ClK)G. But it is
not clear whether the converse is true: if a ∈ (FracZK)G, then σ(a) lies in the same
class as a, and the question is whether there is some a ∈ K× such that σ(aa) = aa.
The group of classes of G-invariant fracional ideals is the subgroup

(FracZK)G PrinZK/PrinZK
∼= (FracZK)G/((FracZK)G ∩ PrinZK)

= (FracZK)G/(PrinZK)G

of (ClK)G. To ease the notation, let us put

AK := FracZK and BK := PrinZK

so (AK/BK)G is the group of G-invariant ideal classes and AG
K/B

G
K is its subgroup

of classes of G-invariant ideals. If we also put

BZ = PrinZ = FracZ = AZ,

then BZ lies in the kernel of AG
K → AG

K/B
G
K , so we get an exact sequence

1 → BG
K/BZ → AG

K/BZ → AG
K/B

G
K → 1.

In fact we know the group AG
K/BZ: as a special case of Exercise 5.47, if a is a

G-invariant fractional ZK-ideal then there is a ∈ Q• and distinct ramified primes
p1, . . . , ps of ZK such that a = ap1 · · · ps. It follows that every element of AG

K/BZ
is represented by a squarefree product of ramified primes. If a, b ∈ AG

K are such
that a = ab for some a ∈ Q•, then N(a)N((a))N(b) = a2N(b), so N(a) and
N(b) represent the same squareclass in Q, but the norm of a squarefree product of
ramified primes is the squarefree product of the rational primes lying below each
ramified prime, so no two distinct such products lie in the same rational square
class. Finally, for each ramified prime p we have p2 = (p) for a rational prime p, so
AG

K/BZ is a 2-torsion commutative group. We conclude:

Proposition 7.12. Let r be the number of ramified primes in K. Then:

AG
K/BZ ∼= (Z/2Z)r.

Thus also BG
K/BZ is a 2-torsion group; the next step is to compute its order. For

this we need just a little more notation: we put

U := Z×
K ,

U+ := {α ∈ U | N(α) = 1}
and

U1−σ := { α

σ(α)
| α ∈ U}.
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Since for all x ∈ K× we have N(x) = N(α(x)), we have

U1−σ ⊆ U+ ⊆ U .
The following result explains the relevance of these subgroups:

Proposition 7.13. We have an exact sequence

1 → U1−σ → U+ → BG
K/BZ → 1.

Proof. We define a homomorphism

λ : U+ → (PrinZK)G/(PrinZ)

as follows: by Proposition 7.11a), there is β ∈ K× such that α = β
σ(β) , and β

is uniquely determined precisely up to multiplication by an elment of Q•. Since
α ∈ Z×

K we have βZK = σ(β)ZK , so β generates a G-invariant principal fractional
ZK-ideal; and since β is uniquely determined up to multiplication by an element of
Q•, we may define λ(α) to be βZK modulo PrinZ. If α lies in U1−σ, then we may
take β to be a unit in ZK so βZK = (1). Conversely, if λ(α) ∈ PrinZ then β = rα

for r ∈ Q• and γ ∈ U , so α = β
σ(β) =

γ
σ(γ) ∈ U1−σ, so Kerλ = U1−σ.

The surjectivity of λ is immediate: to say that an element bZK of PrinZK is
G-invariant is to say that σ(b)ZK = bZK , so α := b

σ(b) lies in U and thus also in

U+ since N(b) = N(σ(b)). □

Thus we’ve reduced the computation of BG
K/A

G
K to determining the index of U1−σ

in U+, which is quite elementary:

Proposition 7.14. With notation as above, we have

U+/U1−σ ∼=


Z/2Z if D < 0,

(Z/2Z)2 if D > 0 and N(ϵD) = 1,

Z/2Z if D > 0 and N(ϵD) = −1

.

Proof.
• Suppose that D < 0. Because every α ∈ U has norm 1, for all α ∈ U we have
σ(α) = α−1, so for all α ∈ U we have α

σ(α) = α2 and thus U1−σ = Z×2
K . It follows

that
U+/U1−σ ∼= Z×

K/Z
×2
K ,

and since Z×
K is cyclic of even order we have Z×

K/Z
×2
K

∼= Z/2Z.
• Suppose that D > 0 and N(ϵD) = 1. Then every unit in ZK has norm 1, so as
above we get U1−σ = Z×

K so U+/U1−σ ∼= Z×
K/Z

×2
K . Because Z×

K
∼= Z × Z/2Z, this

time its quotient modulo squares is isomorphic to (Z/2Z)2.
• Suppose that D > 0 and N(ϵD) = −1. This time U+ has index 2 in U so is the
subgroup ⟨ϵ2D,−1⟩. For n ∈ Z we compute

±ϵnD
σ(±ϵnD)

=
ϵnD

(−ϵ−1
D )n

= (−1)nϵ2nD .

Thus U1−σ = ⟨−ϵ2D, ϵ4D⟩, which indeed has index 2 in ⟨ϵ2D,−1⟩ since −1 does not lie
in the first group and adjoining it to the first group we get the second group. □

Combining Propositions 7.12, 7.13 and 7.14, we get:

Proposition 7.15. Let r be the number of ramified primes in the quadratic
field Q(

√
D), and let BG

K/A
G
K be the group of classes of G-invariant ideals. Then:
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a) If D < 0, then BG
K/A

G
K

∼= (Z/2Z)r−1.
b) If D > 0 and N(ϵD) = −1, then BG

K/A
G
K

∼= (Z/Z)r−1.
c) If D > 0 and N(ϵD) = 1, then BG

K/A
G
K

∼= (Z/2Z)r−2.

Finally, we address the discrepancy between the group (ClK)[2] = (AK/BK)G of
G-invariant ideal classes and its subgroup AG

K/B
G
K of classes of G-invariant ideals.

First we will show that in the cases addressed in parts a) and b) of Proposition 7.15
these two groups are the same, so Proposition 7.15 computes (ClK)[2]. The case
of part c) turns out be more complicated and more interesting.

Let a ∈ (BK/AK)G, so there is some a ∈ K• such that

aσ(a)−1 = aZK .

Applying σ, we get

σ(a)a−1 = σ(a)ZK .

Multiplying these last two equations gives

ZK = N(a)ZK ,

so N(a) ∈ Q• ∩ Z×
K = Z× = {±1}.

Case 1: Suppose that −1 /∈ N(K×): this certainly occurs when D < 0 and may
or may not occur when D > 0: more on this shortly. Then N(a) = 1, so by
Proposition 7.11a) there is b ∈ K× such that a = b

σ(b) ; replacing b with b
′ := σ(b)

we get a = σ(b′)
b′ , so

aσ(a)−1σ(b
′)

b′
ZK

or

σ(b′a) = b′a,

showing that [a] ∈ AK
K/B

G
K . Henceforth we may assume D > 0.

Case 2: Suppose N(ϵD) = −1. If N(a) = 1, proceeding as above shows [a] ∈
AG

K/B
G
K . If N(a) = −1, then also

aσ(a)−1 = aϵDZK ,

and now N(aϵD) = 1, so replacing a with a′ := aϵD and arguing as above we get
[a] ∈ AG

K/B
G
K .

Case 3: Finally we suppose that −1 is the norm of an element of K but not of an
element of Z×

K . In this case the argument of Case 2 fails in a way that will allow
us to define a homomorphism

η : (AK/BK)G → {±1}

whose kernel is AG
K/B

G
K . Indeed, given [a] ∈ (AK/BK)G, as above there is a ∈ K×,

well-defined up to multiplication by a unit of ZK , such that

aσ(a)−1 = aZK .

Since this time all units have norm 1, it follows that N(a) ∈ {±1} is well-defined.
Indeed this is an invariant of [a] and not just of a, since if we multiply a by x ∈ K×

then a gets replaced by a x
σ(x) , which has the same norm as a. Thus we may define

η([a]) := N(a). This argument shows that if N(a) = −1, then [a] has no G-invariant
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representative, whereas as we saw above, if N(a) = 1, it does. It is immediate that
η is a homomorphism, so we get an exact sequence

1 → AG
K/B

G
K → (AK/BK)G

η→ {±1}.
The remaining question is whether η is surjective. We claim that it always is,
which will complete the computation of (AK/BK)G = (ClK)[2] in this final case.
To see this, we use some undergraduate number theory in a rather surprising way.
The element −1 is a norm from K if and only if there are x, y ∈ Q such that
x2−Dy2 = −1. (This is because 1,

√
D is a Q-basis for K in all cases, even when it

is not a Z-basis for ZK .) Clearly denominators, we get a nonzero integer solution
(X,Y, Z) to

(33) X2 −DY 2 + Z2 = 0.

Conversely, because D is not a square in Q, a nonzero integer solution to (33) must
have Z ̸= 0 and thus yields a rational soluton to x2 − Dy2 = −1. A very old
theorem of Legendre tells when a diagonalized conic aX2 + bY 2 + cZ2 = 0 has
nonzero integer solutions: see e.g. [Cl-NT, Thm. 18.4]. Applied to (33), we get
that −1 is a norm from K if and only if −1 is a square modulo D, which since D
is squarefree is equivalent to −1 being a square modulo every odd prime divisor of
D, which is equivalent (by results referred to and proved in Chapter 1) to D being
divisible by no prime p ≡ 3 (mod 4) which is at last equivalent to D being a sum
of two integer squares: there are a, b ∈ Z+ such that

D = a2 + b2;

since D is squarefree, we may and shall assume that a is odd, which ensures
gcd(a, 2b) = 1. In the dramatic conclusion, we will use this representation to
build an explicit element of c of (AK/BK)G with η(c) = 1. Indeed, we take

a := ⟨a, b+
√
D⟩.

Since
N(b+

√
D)− (b+

√
D)(b−

√
D) = b2 −D = −a2,

we have
a2 = ⟨a2, ab+ a

√
D, b2 +D + 2b

√
D⟩

= ⟨a2, ab+ a
√
D, 2b2 + 2b

√
D⟩ = ⟨a2, a(b+

√
D), 2b(b+

√
D)⟩

= ⟨a2, b+
√
D⟩ = ⟨b+

√
D⟩,

so a2 is principal – and thus [a] ∈ (AK/BK)G of norm a2, so

aσ(a) = N(a) = a

and thus

aσ(a)−1 = a2/N(a) =
b+

√
D

a
ZK .

Since N( b+
√
D

a ) = −1, we find that η([a]) = −1.

Finally, we can state and prove our main result:

Theorem 7.16. Let K = Q(
√
D) be a quadratic field with r ramified primes.

a) If D < 0, then (ClK)[2] ∼= (Z/2Z)r−1.
b) If D > 0 and D is not divisible by any prime p ≡ 3 (mod 4), then

(ClK)[2] ∼= (Z/2Z)r−1.



3. QUADRATIC NUMBER FIELDS 161

c) If D > 0 and D is divisible by some prime p ≡ 3 (mod 4), then (ClK)[2] ∼=
(Z/2Z)r−2.

Proof. a) Suppose D < 0. By our argument above and Proposition 7.15 we
have

(ClK)[2] ∼= AG
K/B

G
K

∼= (Z/2Z)r−1.

b) Suppose that D > 0 and D is not divisible by any prime p ≡ 3 (mod 4). By our
above discussion, −1 is a norm from K×.
• Suppose N(ϵD) = −1. By our argument above and Proposition 7.15 we have

(ClK)[2] ∼= AG
K/B

G
K

∼= (Z/2Z)r−1.

• Suppose N(ϵD) = 1. By our argument above and Proposition 7.15 we have that
AG

K/B
G
K

∼= (Z/2Z)r−2 and #G = 2#(AG
K/B

G
K), so

(ClK)[2] ∼= (Z/2Z)r−1.

c) Suppose D > 0 and D is divisible by some prime p ≡ 3 (mod 4). Then −1 is
not a norm from K, so certainly N(ϵD) = 1, and then by our argument above and
Proposition 7.15 we have

(ClK)[2] ∼= AG
K/B

G
K

∼= (Z/2Z)r−2. □

Theorem 7.16 is more often covered in the easiser imaginary quadratic case: Cox for
instance covers his early on in his lovely book [Co, Prop. 3.11] using the language
of quadratic forms and even gives the generalization to nonmaximal imaginary
quadratic orders. This result is extremely dear to me because of its applications to
complex multiplication of elliptic curves.

In contrast, the real quadratic case of this result is strangely hard to find
in texts: when searching the literature, I found many assertions that “Gauss’s
genus theory allows us one to compute (ClK)[2] for any quadratic field K,” but
the only textbook I know that states and proves this result is a recent one of F.
Lemmermeyer [Le]. My exposition here largely follows [Le, Ch. 9]. Theorem
7.16 is a manifestly equivalent restatement of [Le, Thm. 9.10]: Lemmermeyer’s
description of #(ClK)[2] is 2r−2 makes reference to N(ϵD) and whether D is a
sum of two squares, but this must be a matter of taste.

It is curious that while the proof of Theorem 7.16 in the real quadratic case
makes such critical use of the sign of the norm of the fundamental unit, in the
end the final result does not depend on this. This makes one wonder whether this
division into cases is really necessary. In fact there is a closely related result that
is easier and in some sense more natural: when D > 0, rather than considering the
ideal class group AK/BK , one can consider the narrow class group Cl∞K :=
AK/CK , where CK are principal fractional ideals that can be generated by totally
positive elements: i.e.,elements that are positive in both real embeddings. As above,
one finds that (Cl∞K)[2] = (AK/CK)G are the G-invariant narrow classes. Then
one has the following result:1

Theorem 7.17. Let K be a real qudaratic field with r ramified primes. Then

(Cl∞K)[2] ∼= (Z/2Z)r−1.

1I suspect that it is Theorem 7.17 rather than Theorem 7.16 that appears (in the guise of a
result on binary quadratic forms) in Gauss’s Disquisitiones Arithmeticae, but it would be better

for me to check than to speculate on this.



162 7. SOME CLASSICAL NUMBER THEORY

Exercise 7.10. Modify the proof of Theorem 7.16 to prove Theorem 7.17. Show
in particular that in all cases we have AG

K/C
G
K = (AK/CK)G, so the situation is

actually simpler here.

In lieu of solving Exercise 7.10, the reader may wish to consult the text of Fröhlich
and Taylor: Theorem 7.17 appears therein as [FT, Thm. V.39], and the proof is
along similar (though not identical) lines to the proof we’ve given of Theorem 7.16.

It is easy to see how the narrow class group relates to the class group:

Exercise 7.11. Let K = Q(
√
D) be a real quadratic field. There is a canonical

surjective group homomorphism

q : Cl∞K → ClK.

a) Show: if N(ϵD) = −1, then q is an isomorphism, and deduce Theorem
7.16 from Theorem 7.17 in this case.

b) Show: if N(ϵD) = 1, then Ker q has order 2.

However, the relationship between the 2-torsion subgroups of Cl∞K and ClK is
not as simple. Surprisingly, the text of Fröhlich and Taylor (who are two very
distinguished algebraic number theorists) stumbles on this point: [FT, Cor. 1,
p. 181] asserts that #(Cl∞K)[2] = #(ClK)[2] when N(ϵD) = −1 and that
#(Cl∞K)[2] = 2#(ClK)[2] when N(ϵD) = 1. The first assertion is immediate
from Exercise 7.11, but comparing the statements of Theorems 7.16 and 7.17 shows
that the second assertion is not always true.

Example 7.18. Let D = 205 = 5 · 41, and let K = Q(
√
D), so r = 2. As

reported above via \https: // oeis. org/ A031396 , we have N(ϵD) = 1. Theorems
7.16 and 7.17 give

(ClK)[2] ∼= Z/2Z ∼= (Cl∞K)[2].

MAGMA computes class groups and narrow class groups and gives

(Cl∞K) ∼= Z/4Z and ClK ∼= Z/2Z,
so indeed the class group has half the size of the narrow class group in this case,
but that does not hold on the 2-torsion subgroups.

In [Le], Lemmermeyer also gives an application of Theorem 7.16 to proving qua-
dratic reciprocity. We cannot resist repeating it here: recall that for an odd prime

number p and an integer n that is prime to p, the Legendre symbol
(

n
p

)
is defined

to be 1 is n is a (necessarily nonzero) square modulo p and −1 otherwise. By
Dedekind Kummer, if n is not a square, then p splits in the quadratic field Q(

√
n)

if
(

n
p

)
= 1; otherwise p is inert in Q(

√
n).

Theorem 7.19 (Quadratic Reciprocity). Let p and q be distinct, odd primes.

(a) If at least one of p and q is 1 modulo 4, then
(

q
p

)
=
(

p
q

)
.

b) If p and q are both 3 modulo 4, then
(

q
p

)
= −

(
p
q

)
.

Proof. Case 1: Suppose q ≡ 1 (mod 4) and
(

q
p

)
= 1, so p splits in Q(

√
q) and

thus there is a prime ideal p of norm p. By Theorem 7.16 (and the structure theory
of finite commutative groups), the class number h := #ClQ(

√
q) is odd, and ph is
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principal, so there is an element of α = ZK of norm ±ph. Writing α = 1
2 (x+ y

√
q)

with x, y ∈ Z, this gives us
±4ph = x2 − qy2.

Reducing modulo q and using that (since q ≡ 1 (mod 4)), −1 is a square in Z/qZ
and that h is odd, we get that p is a square in Z/qZ, i.e.,

(
p
q

)
= 1.

Case 2: Suppose p ≡ 1 (mod 4), q ≡ 3 (mod 4) and
(

q
p

)
= 1. Again we get

x, y ∈ Z such that
±4ph = x2 − qy2,

but now, since q ≡ 3 (mod 4), if the minus sign held then reducing modulo q yields(
p
q

)
= −1, which is the negation of what we’re trying to prove...so let’s show that

this cannot happen. Indeed, since q ≡ 3 (mod 4), we have

0 ≡ x2 − qy2 ≡ x2 + y2 (mod 4),

which means that x and y are both even. Writing x = 2X and y = 2Y and
subsituting, we get

±ph = X2 − qY 2.

The left hand side is 1 or −1 mod 4 according to whether we have the plus sign or
the minus sign, while the right hand side is X2+Y 2 (mod 4), which cannot be −1.
So – thank goodness – we must have the plus sign, and reducing modulo q gives(

p
q

)
= 1. This completes the proof of part a).

Case 3: suppose p ≡ q ≡ 3 (mod 4). By Theorem 7.16 the quadratic field K =
Q(

√
pq) has no elements of order 2 The unique prime p lying over p has p2 = p,

so [p] is a 2-torsion element of ClK, so p is principal: thus there is an element of
norm ±p, which leads to x, y ∈ Z such that

±4p = x2 − pqy2.

Thus p divides x; writing x = pX and substituting, we get:

±4 = pX2 − qy2.

Suppose that the plus sign holds. Reducing modulo q shows that
(

p
q

)
= 1, while

reducing modulo p shows (since −1 is not a square modulo p) that
(

q
p

)
= −1. Now

suppose that the minus sign holds. Reducing modulo q shows that
(

p
q

)
= −1 while

reducing modulo p shows that
(

q
p

)
= 1. Thus exactly one of

(
p
q

)
and

(
q
p

)
is 1,

completing the proof of part b). □
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