SHIMURA CURVES LECTURE NOTES 11: INTEGRAL
STRUCTURES, GENERA AND CLASS NUMBERS

PETE L. CLARK

1. FORMULAE FOR GENERA, VOLUMES, CLASS NUMBERS

Throughout these notes, we shall use D to denote the product of an even number
(possibly zero) of distinct primes, and D’ the product of an odd number of distinct
primes. Thus D (resp. D’) is the discriminant of a unique indefinite (resp. definite)
rational quaternion algebra B/Q of discriminant D (resp. D’). Recall that the dis-
criminant map induces a bijection from the set of isomorphism classes of rational
quaternion algebras over QQ to the set of squarefree positive integers.

We let N denote a squarefree positive integer which is prime to D.

We shall be concerned with the Shimura curves X#(N), defined, at present, as
nonsingular, complete geometrically connected algebraic curves over Q. (We are
taking X} (N) = Xo(IN) to be the usual — compactified — elliptic modular curve.)

In this lecture, we will define integral models on X (N) and use these integral
structures to prove some basic formulae on genera, volumes and class numbers.

Definition: For a squarefree positive integer m, let d(—m) be the discriminant
of Q(v/—m), i.e., —m if m =3 (mod 4) and —4m otherwise.

Definition: For coprime squarefree positive integers A and N and a squarefree
positive integer m, define

(1) em(A,N) =[] 1- (“1@) II 1+ (_dém)>

plA q| N

Exercise 1:

a) Show that e;(D, N) is the number of Z[y/—1]-CM points on X (N), and also
the number of order 2 elliptic points on X&(N).!

b) Show that e3(D, N) is the number of Z[Hzﬁ}—CM points on XP(N), and also
the number of elliptic points of order 3.

Since T'Y(N) is an arithmetic Fuchsian group with trace field Q, the only pos-
sible orders of elliptic points are 2 and 3.

11t is thus unfortunate that we cannot denote this quantity by e2. We appear to have painted
ourselves into a corner notationwise.
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We write eq (D, N) for the number of cusps on X (N); recall that this is 2#9V if
D=1and0if D > 1.

Theorem 1. The genus of XP (N) is

g(D,N)=1+% [Te-vJ]w@+y- el(li,N) _ 63(1;,1\7) B eoo(l;,N).
pl| D q| N

Theorem 2. (Shimizu) The volume of a fundamental region for XP(N) is
T
"Toe-n e+
p|D al N

Remark: For the reader’s convenience, we record also a more general volume for-
mula for a Shimura curve corresponding to a quaternion algebra B of type (1,g—1)
and discriminant D over a totally real field F' (and no level structure), namely

VoI(TP (1)) = —¢p(2)0% (4n2)1 =19 T (Wo — 1),
T v |D
Here (r is the Dedekind zeta function and ¢ is the discriminant of F/Q. (See
Vignéras’ book for a proof.) As we discuss briefly at the end, our method allows us
to derive these formulas for certain other totally real fields F', but not in general;
however, the method fails for very interesting reasons.

For any Fuchsian group I' of the first kind, write V(T') = %VO](F). Then we
have the basic formula

® 2= 2930 = VD + ¥ (2 e

n

where e,, is the number of elliptic points of order n and e, is the number of cusps.?
Thus, in light of our formulas (1) and (2) for the ramification indices, Theorems 1
and 2 are equivalent. We shall prove Theorem 1 and deduce Theorem 2; note that
this is the reverse of the usual state of affairs.

Let us denote by h(D’,N) the class number of a level N Eichler order in the
definite rational quaternion algebra of discriminant D’.3

Theorem 3. (Eichler)

WD’ N) = 112 T w0 [0+

e2(D’,N) n es(D',N)
4 3 '

Note the striking similarity between the formulas for g(D, N) and h(D’, N)!

As one might imagine, Theorem 3 admits a purely algebraic proof (Eichler’s proof
is purely algebraic) and Theorem 2 admits an analytic proof. Of course, working in
such different contexts one does not gain insight into why the formulas of Theorems
1 and 3 have such a similar form, a phenomenon which is just as interesting (and

2We again apologize for the notational dissonance concerning elliptic points of order 2.
30ur convention here is to write D for the discriminant of an indefinite rational quaternion
algebra and D’ for the discriminant of a definite rational quaternion algebra.
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perhaps more interesting) than the formulae themselves.

The method we present here proves Theorems 1 and 3 simultaneously. Indeed
we induct on the number of primes dividing the quaternionic discriminant, hence
prove cases of Theorem 3 and Theorem 1 in alternate steps.

I would hesitate to call the proof presented here “new,” although I doubt that it
has been written down before. At least the spirit of the proof is very well-known:
it is an exploitation of what we shall call the Jacquet-Langlands phenome-
non.* This is a many-faceted thing: an adequate discussion would involve deep
ideas in the following areas: (i) theory of automorphic forms on B* (for all rational
quaternion algebras B/Q); (ii) classical modular forms on X (N) and Xo(DN);
(iii) morphisms between the Jacobians of these modular curves; and (iv) relations
between the bad reductions (at distinct primes!) of the integral models of these
curves; and (v) monodromy pairings.

The importance of the Jacquet-Langlands phenomenon in modern arithmetic geom-
etry cannot be overestimated. Among other spectacular applications, it lies at the
heart of Ribet’s level-lowering theorem (and hence, of the proof of Fermat’s Last
Theorem). One may also say that it ensures the relevance of the arithmetic of
Shimura curves to the arithmetic of elliptic curves. Nowadays, if E/q is an elliptic
curve of conductor ND (in the above notation), then we know to consider not only
the modular parameterization Xo(ND) — E but also the Shimura curve parame-
terization XP(N) — E.

Sadly, we are at the end of our course and will not get to describe these weighty
matters in any detail. Thus we offer up our simultaneous proof of Theorems 1 and
3 (and the entailing theory of good and bad reduction of Shimura curves) as a tasty
morsel of the Jacquet-Langlands phenomenon. We hope the reader will be inspired
to take a bigger bite.

Exercise 2: (Shimura curves of low genus): Let D and N be squarefree corprime
positive integers, with D > 1.
a) Show that the Shimura curves XP(N) (with N squarefree!) are precisely the
following:
(N,D) = (6,1), (6,7), (10,1), (22,1).
b) Show that X (V) has genus one precisely for
(N, D) = (6,13), (10,7), (14,1), (15,1),(21,1), (33,1), (34,1), (46,1).

¢) All of the above Shimura curves have points rational over Q(v/—1) or Q(+/—3).
Why?

2. INTRODUCING THE INTEGRAL CANONICAL MODEL

Consider the functor F(D, N) on the category of all schemes, which associates to
any scheme S the set of isomorphism classes of structures (4, ¢, Qn), where A /g is
an abelian scheme of relative dimension 2, ¢ : Op — Endg(A) is a QM structure
(here Op is a maximal order), and Qn C A[N] is a rank N? subgroup scheme

4But it would be best to attach at least the following other names: Shimizu, Eichler, Shimura,
Ribet, Faltings, Helm.
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which is, fppf locally on S, cyclic as an Op-module. Moreover, we require the QM
structure to satisfy the following condition (which is automatic in characteristic 0):
for all b € Op, the trace of ((m) acting on the Lie algebra of A coincides with the
reduced trace tr(m).

Note that upon restriction of Q-schemes, this precisely the functor which was
coarsely represented by X (V) /Q-

Theorem 4. (Morita) The functor F(D,N) is coarsely represented by a Z-scheme
which is flat, quasi-projective and of relative dimension one. It is proper iff D > 1.

In other words, the solution of the moduli problem can be viewed as a curve over
Z (or, an “arithmetic surface”) whose generic fiber is canonically isomorphic to the
canonical model X (N),g. We will denote the scheme by X (N)z, the integral
canonical model.

As usual, although demonstrating the representability of the functor is nontriv-
ial, much more interesting is an explicit description of the corresponding scheme,
or at least of its special fibers X{& (V) /F,- Rather unsurprisingly, we get quali-
tatively different behavior depending upon whether p is prime to N D, whether p
divides N or whether p divides D.

3. SPECIAL FIBERS I: SMOOTH REDUCTION
Theorem 5. Let p be prime to ND. Then X (N) g, is smooth.

In this (best) case, one can develop a theory which looks quite similar to the
D =1 case of good reduction of Xo(N). In particular, one can describe the locus
XP(N)(F,) of F-rational points and can compute the zeta function. Here we will
concentrate on the dichotomy between ordinary points and supersingular points.

Recall that a g-dimensional abelian variety over an algebraically closed field k of
characteristic p > 0 is ordinary if #A(k)[p] = pY (the largest possible value, in
view of the self-Cartier duality of A[p]). There are various equivalent definitions
for an abelian variety to be supersingular, the most elementary being that it is
isogenous to FY, where FE is a supersingular elliptic curve. When g < 2, it is
equivalent to require #A(k)[p] = 1, but — beware — this is no longer the case when
g > 3. (The “correct” definition is in terms of the slopes of the Dieudonné module
of the p-divisible group of A, which we do not rehearse here.) Note well that in
dimension g > 2 an abelian variety need not be either ordinary or supersingular;
e.g. consider the product of an ordinary elliptic curve with a supersingular elliptic
curve. (This is not the only counterexample in dimension 2.)

For the initiates, we also recall the definition of superspecial, namely an abelian

variety which is isomorphic to the product of supersingular elliptic curves. Clearly

there is no distinction between supersingular and superspecial in dimension 1; how-

ever, in all dimensions g, there are only finitely many principally polarized super-

special abelian varieties — indeed, each has field of moduli in F,> — whereas the
g2

supersingular locus is a closed subvariety of dimension |%-].

Put F =TF,.
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Note that in the next result we do not need to make any assumptions about p.

Proposition 6. Let (A,1) be a QM surface defined over F. Then A ~ E? for some
elliptic curve Ep.

In particular, any QM surface defined over I is either ordinary or supersingular.
This is one of many analogies between QM surfaces and elliptic curves.

Proof: This follows from the classification of endomorphism algebras of abelian
surfaces over finite fields (Honda-Tate theory), which has a quite different char-
acter from the characteristic zero endomorphism algebra. Indeed, whereas the
maximal endomorphism algebras in characteristic zero are those of CM type, over
F CM is the minimal endomorphism algebra. (Moreover, an abelian variety over F
is ordinary if and only if its endomorphism algebra is of CM type). We give only
the following (easy) consequence of the classification: namely, the only possible
division algebras are a quartic CM field and a quaternion algebra D with center
an imaginary quadratic field K, such that pox = pips, such that D is ramified
precisely at p; and po. Obviously a number field does not admit B as a subalgebra.
To rule out the second algebra, we consider two cases.

Case 1: p does not divide D. Then there does not exist a Q-algebra embedding
B — D, for if so, we tensor up to Qp, getting M»(Qp) — D,, @ D,,. Since the for-
mer algebra has nilpotent elements and the latter does not, this is a contradiction.
Case 2: p | D. We claim that every QM surface (A,¢) is supersingular in this
case. Indeed, an abelian surface, if not supersingular, has a nonzero (naive, aka
étale) p-adic Tate module: Tp,(A) = ZI with 0 < i < 2. Then we get an action
of B®Q, = B, on V,(A) which (as usual!) takes 1 to 1 so is injective, giving an
embedding B, — M;(Q,). Since ¢ < 2, this is a contradiction.

Remark: This result does not hold for fields of positive transcendence degree. In-
deed, fix D and let k be the algebraic closure of F,,(X?). Let A/ be the generic
QM surface, i.e., the one corresponding to the generic point of the moduli space.
Then it is not hard to see that End"(A4) = B.

Proposition 7. Suppose (p, D) = 1. Then every supersingular QM abelian surface
(A, 1) is superspecial.

Proof: It is known that a g-dimensional abelian variety is superspecial if and only
if Oort’s invariant a(A) = dimy Hom(a,, A) is equal to g, and also that any super-
singular abelian variety has a(A) > 1. Thus we need to show that a(p) # 1 for a
supersingular QM surface. But Hom(«,, A) is naturally a right Op @ F-module, i.e.,
a M (F)-module. But as we have seen before (“Morita equivalence”), this implies
that the underlying F-module has even dimension.

3.1. A description of the ordinary locus via the Eichler-Selberg trace
formula. Omitted for now. All that we would have liked to say can be found in
the papers Descent on certain Shimura curves, by Skorobogatov and Yafaev; and
Points on Shimura varieties modulo p by Milne.

3.2. A description of the supersingular locus. We assume that (p, ND) =

1. We say that a point on X (N)(F) is supersingular if its image in XP(F) is
supersingular.
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Lemma 8. There erists a supersingular point P € XP(F).

Proof: We saw this at the beginning of the course when D = 1; a very similar ar-
gument applies here. Namely, choose an imaginary quadratic field K such that (i)
K splits D and (ii) p is nonsplit in K: for instance we could take K = Q(1/—Dp).
Then there exists at least one point P € XP(K) with CM by (any preassigned
order in) K. If D = 1, we use the fact that CM elliptic curves have potentially
good reduction; for D > 1, the curve X P is complete, so there is a reduction map
XP(Q,) = XP(Z,) — XP(F,). The mod p reduction of P is supersingular since p
is inert in K.

Clearly then there are supersingular points on X (N)(F).

Theorem 9. Fiz a supersingular point Py € XP (N)(F). Then there are canonical
bijections between the following sets:

(a) The set of supersingular points on XP (N)(F).

(b) The set of classes of (left or right) ideals for an Fichler order O of level N in
the definite rational quaternion algebra B’ of discriminant Dp.

(¢) The adelic double coset space B'* (Q)\B'*(A)/O(A)*.

In particular all three sets have cardinality h(Dp, N).

Sktech proof: A key point is that if (A4,¢) is a supersingular QM abelian surface,
then Endgas(A) is an order in the commutant of B in M»(B), ). It is a general fact
that if Ay C B is an inclusion of central simple algebras over a field K, and As is the
commutant of A; (i.e., the subalgebra of elements commuting with every element of
Ay) then dim B = dim A; dim Ay and [B] = [A1] + [As], where [A] denotes the class
of a central simple algebra in the Brauer group of K. Applying this in the current
case, we get that the QM-equivariant endomorphism algebra is B’, the definite ra-
tional quaternion algebra of discriminant D’ = Dp. The setup is now identical to
the D = 1 case: an “enhanced” (i.e., endowed with a QM I'g(N)-level structure Q)
supersingular QM surface (A, ¢, Cy) has QM endomorphism ring a level N Eichler
order @’ in B’. Then any other supersingular point is QM-equivariantly isogenous
to (4,¢), and the set of QM-equivariant isogenies (A4, ¢, Cn) — (4',/,Cl) is a left
O'-module, in fact locally free of rank 1. This defines the map from (a) to (b). To
see that it is a bijection, recall that our adelic theory gave a natural equivalence
between (b) and (c¢). What is needed, then, is to interpret the supersingular locus
on XJ (N)r, via the same double coset construction. One finds in Milne’s paper
Points on Shimura varieties modulo p an adelic description of every isogeny class
of QM surfaces mod p, including the supersingular class. As the construction uses
the Dieudonné module attached to a p-divisible group, we do not give it here. Note
however that the double coset space is exactly what we would have gotten had we
tried to associate a Shimura variety to the definite quaternion algebra B’: since
SLy(B)(R) is compact, we get a complex manifold of dimension 0.

The following result is FYT; it is not used in the proofs of Theorems 1 and 3.
Proposition 10. a) Every supersingular point on Xéj (N)/Fp is rational over IF.
b) There exists an Fp-rational supersingular point on X (N) iff e,(Dp, N) > 0.
Proof: a) This follows from the identification of the action of Frobenius on each

isogeny class in terms of the above adelic construction. See Milne’s paper for de-
tails.
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b) Under the categorical isomorphism between supersingular QM surfaces and ideal
clases, the Frobenius map corresponds to the Atkin-Lehner involution w,. Thus
are reduced to information about the traces of Eichler-Brandt matrices, which can
be found in Vignéras’ book.?

For n > 1, let Q,» denote the unique degree n unramified extension of Q, and
let Z,» denote its ring of integers.

Corollary 11. Assume (p, DN) = 1. Then XP(N)(Q,r) # 0 if:
a) r is even.

b) ep(Dp,N) > 0.

¢) r is sufficiently large with respect to D, N, p.

Proof: By Hensel’s Lemma, we reduce to the corresponding statements about non-
emptiness of the set of Fy--rational points. By the previous result, there are al-
ways Fp2-rational points, namely the supersingular points; a fortiori there are .-
rational points for every even r. Similarly part b) follows from the condition for
there to be an F)-rational supersingular point. Finally, if X r, is any smooth alge-
braic curve, then #X (F,r) — oo with r (and in particular is positive for sufficiently
large r), as follows from the Weil bounds for rational points on algebraic curves.

Exercise 3: Using the fact that an algebraic curve of genus g over F, has at least
q +1—2g,/q F,-rational points, use Theorem 1 to give an explicit bound for r in
part c).

Remark: Note that we have omitted the discussion of how to calculate how many
F,-rational ordinary points there are on XP(N). In any given case, this number
can readily be calculated by the Eichler-Selberg trace formula; however, the term
“formula” here is somewhat misleading. It is not a closed-form expression and it is
far from clear (at least to me, and I have never seen anyone else do better) how to
extract qualitative information from the formula: e.g., there is no known explicit
criterion on D, N and ¢ for there to exist an Fg-rational ordinary point on XP(N).

Problem 1: Fix a positive integer M. Prove (or disprove) that there exist D,
N and p such that the least r such that X (N) has F,--rational ordinary points
is at least M.

Exercise 4:

a) Suppose that X’ (N) has genus 0 or 1 (compare Exercise 2). Show that for all
p prime to ND, XP(N)(Q,) # 0. (Hint: This is really a statement about smooth
curves of genus 0 or 1 over finite fields.)

b) Recall that there is a canonical (and functorial) bijection between smooth genus
zero curves over a field K (say, of characteristic not equal to 2) and quaternion
algebras over K, (Try to prove this, if you haven’t seen it before.) under which P*
corresponds to My (K). Deduce that if K is a number field, a genus zero curve Vi
has K-rational points if and only if it has points rational over every completion
of K. Moreover, the number of places of K for which V fails to have K-rational

5From our perspective, this is cheating: in a later draft, I will explain how to prove this
geometrically.
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points is even.

¢) Consider now X? with D =6, 10, 22 (so of genus 0). What can be said about
XP(Q,) based upon parts a) and b) and the fact that XP(R) = (#? Show that
there exists exactly one prime p | D such that XP() # 0.

d) Use part c¢) to show that Q(X ) does not split B when X has genus zero.

Remark: By Jordan’s Theorem, this implies that the generic point on the Shimura
curve X P is an abelian surface which cannot be defined over its field of moduli,
at least when D is 6, 10 or 22. The work of Jordan and Livne shows that there
exist infinitely many discriminants for which X2 (Q,) # 0 for some p | D, hence
infinitely many more examples of this. However, this can only happen when D is
even. As far as I know, whether or not there exists a discriminant D > 1 such that
Q(XP) splits B (equivalently, whether or not there exists some D such that every
QM abelian surface can be defined over its field of moduli) is an open question.®

Final remark: We did not use the hypothesis that N is squarefree in this section.

4. SPECIAL FIBERS II: DELIGNE-RAPOPORT REDUCTION

let k be an algebraically closed field. We say that a curve X, is semistable if it
is reduced, connected but possibly reducible, and the only singularities are ordinary
double points (aka nodes, aka points of transverse intersection). A bit more infor-
mally, all semistable curves can be constructed as follows: we start with a curve C'
which is the disjoint union of a finite set C1,...,Cy of smooth curves defined over
k. Then we iterate the following construction: choose any 1 <, j < N (i = j is
allowed), pick a point P; € C;(k) and a point Q; € C;(k) and glue P; to Q; so as to
make a transverse intersection (in other words, so that the completed local ring at
the intersection point is isomorphic to k[[z,y]]/(xy)). We repeat this process any
finite number of times, the only proviso being that once we have glued two points
together we don’t glue either of them to any other point. We will say that a curve
is degenerate semistable if each C; = P!,

If now k is an arbitrary (say perfect) field, then a curve C);, is semistable (resp.

degenerate semistable) if its basechange to k is. We will call a curve k-split if all
the singular points are k-rational.

We are now ready to describe the special fiber of X (N)r,, where p | N.

Theorem 12. Suppose p | N. Then XOD(N)/ZP has the following structure:

a) The special fiber XP (N)E, has two irreducible components, each isomorphic to
the smooth curve X(?(%)/Fp.

b) The two irreducible components intersect transversely at the supersingular points,
a corresponding point on the first copy of X(?(%)/Fp being glued to its image under
the quadratic Frobenius map.

¢) At each supersingular point z € X (N)/sz, the complete local ring is isomorphic

to Zy2 ([ X, Y]]/ (XY — p®=) for some positive integer a..

6Hovvever7 this is very much in the spirit of work of Shimura, who showed, e.g., that the generic
principally polarized abelian variety of dimension g can be defined over its field of moduli if and
only if g is odd. Perhaps the answer to this question appears in one of his papers.
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Remark: The hypotheses “N squarefree, p | N” can be weakened to p || N.

Proof: The analogous statement for D = 1 (i.e., classical modular curves) is due
to Deligne and Rapoport. In that same work it was pointed out that their result
would continue to hold in the quaternionic context. Apparently the first careful
treatment of the quaternionic case is due to Buzzard , who worked however under
the assumption of some additional rigidifying level structure. The case of X (N)
(which is not a fine moduli scheme) was worked out (independently) in the theses
of the author and of David Helm.

Proposition 13. For any prime p | N, m,(XP(N)) < 4.

Proof: Consider MP (N )Fzﬂ' Let z be any point on this curve coming from a su-
persingular point of MP (%)(sz). The completed local ring at z is isomorphic to
L2 [z, y]]/(xy — p*) for some integer a > 1.

Suppose first that a > 1. Then in order to get the minimal regular model, one
must blow up the point z (a — 1) times, getting a chain of a — 1 rational curves
defined over F,.. Each of these curves has p? + 1 — 2 smooth [F2-rational points,
which lift to give points on X (N) rational over Qp2, the unramified quadratic
extension.

For a possibly singular projective curve Cy, let x(C) = 1 — g be its Euler charac-
teristic, where g is its arithmetic genus.

If Cy, is a semistable curve, then there is a simple recipe to compute its Euler
characteristic (hence its arithmetic genus) from the Euler characteristics of its ir-
reducible components. Namely, x(C) = >, x(Cs) — #C; N Cj, ie., we add the
individual Euler characteristics and then subtract the number of intersection points.

Thus we get:

Corollary 14. Let N be a positive integer and p prime to DN. Then
X(Xg (Np)) = 2x(Xg’ (N)) — h(Dp, N).
Unpacking this, we get:
(3) h(Dp,N) = g(D,Np) —29(D,N) + 1.
In the special case D = N = 1, this says that the class number of B, ., — i.e.,
the number of supersingular elliptic curves in characteristic p, is equal to one more

than the genus of Xo(p). This was shown in G. Tornaria’s lecture by other (but
closely related!) methods.

Note that we could now prove Theorems 1 and 3 in the D = 1 case; however,
we shall press on to give the last piece of the puzzle.

5. SPECIAL FIBERS III: CEREDNIK-DRINFELD REDUCTION

In this section all notation is as above, and we work with a prime p | D. The fiber
XP(N) /F, again has semistable bad reduction, but this time it is totally degenerate
and F2-split. This is a corollary of the fact that X{’(N),z, is the Z, /Z,-twist of
a Mumford curve C(D, N)/z . These are the curves which are uniformized by
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cocompact discrete subgroups of automorphisms of the p-adic upper halfplane H,,.
The theory of p-adically uniformized curves is rich enough so that we will attempt
to give it on the fly.” Let us record the following properties of any Mumford curve
X/Z .

P

(MC1) The special fiber X, is semistable, totally degenerate and F,-split.

Thus we may attach the dual graph, whose vertices are the irreducible compo-
nents C; (all isomorphic to P!) and whose edges are the distinct intersection points
of Cl and Cj. 8

(MC2) The degree of each vertex in the dual graph is at most p + 1.°

We can nicely package all this data by saying that X (N) /¥ is a totally degen-
erate semistable curve, whose dual graph is endowed with an action of Gal(F 2 /FF,).

Thus, the heart of the matter is to discuss the structure of this graph — what
is the vertex set, what is the edge set, and what is the Galois action? — but even
before we get into this we can make the following observation.

Proposition 15. For any p | D, X (N)(Q,2) # 0.

Proof: All that is needed here is that, over Z,2, XP(N) is equal to the base ex-
tension to Z,> of a Mumford curve M (D, N)z,. Indeed, by Hensel’s Lemma, any
smooth Fp2-valued point on M (D, N) will lift to a Zy2-valued point. Now look at
any component C of M (D, N)/]Fp2: it is isomorphic to P%pz, thus it has p? + 1 F -
rational points. Some of these points may be singular; indeed, the singular points
correspond to the edges in the dual graph with vertex corresponding to C. But
since the degree is at most p + 1, there are at most p + 1 singular points, hence at
least p* 4+ 1 — (p+ 1) = p*> — p > 0 smooth F,2-rational points. This completes the
proof.

Now, for the structure of the dual graph:

Theorem 16. (Ribet) Let G = (V,E) be the dual graph of the special fiber of
XP(N). Let On (resp. Onyp) be a level N (resp. level Np) Eichler order in the
rational quaternion algebra of discriminant D /p.

a) There exists a bijection from G to the disjoint union of two copies of Pic,(O).
b) There exists a bijection form & to Pic,(Onyp).

c) The Fp2 /F,-Frobenius element acts on € by the Atkin-Lehner involution w,.

See Ribet’s 1990 Inventiones paper for the proof. Let us at least note that there
is a natural map from Pic,(Onp) — {1,2} x Pic,(On): we may choose Oy, =
On Nw,Onw, ! to be the intersection of two conjugate level N Eichler orders,

1 regret the lack of time to discuss this important topic. Were I to teach such a course again,
I would omit some other topic — perhaps part of the discussion of arithmetic Fuchsian groups —
in order to make room. Sorry!

8The dual graph is, roughly speaking, the quotient of the Bruhat-Tits tree — i.e., the homo-
geneous tree of degree p + 1 whose vertex set can be viewed as PGL2(Qp)/PGL2(Zy) — by the
corresponding uniformizing subgroup I'.

9This follows from the previous footnote.
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and these two inclusions define two “pushforward” maps Pic,(Opp) — Pic,.(On).
Moreover, w,, is obtained by conjugating the Opp-structure by the element w,, that
is, by an integral element of B’ of norm p.

Exercise 5: Let X, be a totally degenerate semistable curve. show that the Euler
characteristic x(X) in the sense of algebraic geometry coincides with the Euler
characteristic of the dual graph of X in the sense of algebraic topology, so in par-
ticular with #V — #¢&.

We conclude:

Corollary 17.

X(XP(N)) = 2h<§,N> - h<§,Np>.

Thus:
(4) g(D,N):h(%,Np)—?h(%,N)—&-l.

For complete results on when X (N) has points over a p-adic field, where p | D,
see Local Diophantine properties of Shimura curves by B. Jordan and R. Livne and
Mawvaise réduction des courbes de Shimura by A. Ogg.

6. PROOF OF THEOREMS 1 AND 3

We now have all the information necessary to prove Theorems 1 and 3. Before
doing this, note the remarkable similarity between Equations 3 and 4. In fact,
we can consolidate them into a single formula, by introducing the formal notation
suggested above:

g(D',N)=h(D',N) — 1.
Thus for any coprime squarefree integers A and N, we have attached a meaning to
g(A, N), and we have the following formula:

(5) g(Ap, N) = g(A, Np) — 2g(A, N).

We also have a (less pretty) formula relating g(D, Np) to g(D, N) using, essentially,
the Riemann-Hurwitz formula. More precisely, if we write down Equation (1) for
the groups 'Y (Np) and I'P and use the fact that

V(D,Np) = (p+1)V(D,N),

then we get
(6) 2—2g9(D,Np) =
(p+1) (2—29(D,p) . el(gap) _ 263(3D»p) o 600(2Dvp)>+61(D27Np)+263(g7Np)+eoo(D27Np).

This completes the proof of Theorems 1 and 3, or at least reduces it to a routine
calculation: for instance, it is clear that (5) and (6) have a unique solution with
g(1,1) = 0, so we can verify that our claimed formula for g(A, N) satisfies both
equations.

Exercise 6: We derived (6) in the case of an indefinite quaternionic discriminant D.
Show that it holds for D’ a definite discriminant as well.
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Let us close with some remarks about possible generalizations of the above ma-
terial.

I. As indicated above, some of the argument generalizes to the non-squarefree case.
Rather, the argument succeeds “at p” for any prime p which divides N exactly.
However, if N is not squarefree, our inductive argument does not yield genus /
class number formulas in this case, because we cannot lower the level all the way
downto D =N = 1.

II. One can ask what goes wrong with the geometry in case, say, p> | N. The
answer is that in this case the curve X (N) does not have semistable reduction.
(Although we have not explained why, this is essentially the same phenomenon as
an abelian variety A,g having semistable reduction at p if and only if p divides
exactly the conductor of A.) Obviously the geometry of non-semistable curves can
be considerably more intricate. From the Diophantine perspective, the advantage
of semistable reduction is that it is easy to obtain the minimal regular model of
XP(N) over from its integral canonical model: as we saw above, one needs only
to blow up the singularities. In contrast, computing the minimal regular model
(or the stable model, which is easily obtained in terms of the minimal model
and conversely) of Xo(p™) is a very difficult problem: the case of Xy (p?) is due to
Edixhoven circa 1990, and the case of Xo(p?) is due to Coleman and McMurdy (as
yet unpublished).!® Similarly, the special fiber of X{(N) modulo a prime dividing
N (even p || N) is nonreduced, again reflecting the fact that J2(NN) does not have
semistable reduction.

IT. For more information on the bad reduction of the curves X (N) and X¥(N)
in the D = 1 case, consult Katz and Mazur, Arithmetic moduli of modular curves.
Note that this only treats the case D = 1! However, if one restricts attention
to primes dividing N, then it has long been known that one can, essentially, go
through the book adding a superscripted D to each instance of X¢(/N) (and ignor-
ing all discussions of cusps when D > 1).

III. In a very influential 1987 paper, Gross defines a curve XP'(N), i.e., meant
to be the analogue to X (N) when D’ is the discriminant of a definite rational
quaternion algebra. The motives behind this definition our in accord with our mo-
tives here: i.e., to give a geometric meaning to the arithmetic of definite quaternion
algebras. It must be said that, from a purely geometric standpoint, Gross’ defin-
ition is not completely satisfying. Namely he defines XODI(N ) as a curve over Q
which is a disjoint union of h(D’, N) curves of genus 0 (which are not in general
isomorphic to P!). The arithmetic genus of this curve is then 1 — h(D’, N), i.e., a
nonpositive integer. Thus we find, curiously, that the genera of Gross’ curves and
our “formal” genera are equal in absolute value but opposite in sign.

IV. Here is another argument to establish the base case of the theorem, i.e., that

the genus of X (1) equals zero. Namely, note that X (1),q is a projective curve with
everywhere smooth reduction (or, if you like, it has a smooth Z-model). Take now

1OAccording to Ken McMurdy’s web page, he is now working on X (81).



SHIMURA CURVES LECTURE NOTES 11: INTEGRAL STRUCTURES, GENERA AND CLASS NUMBERS

J(1) g, the Jacobian of X (1). This is now an abelian variety over Q with every-
where good reduction (equivalently, with conductor 1). By a famous (and quite
deep) theorem of Fontaine, there are no abelian varieties over Q with everywhere
good reduction, except of course for A = 0. Since the dimension of the Jacobian is
the genus of the curve, we conclude that X (1) genus zero, and then (by the Weil
estimates and the Hasse principle for quadrics) that it is isomorphic to P!,

V. It is natural to ask whether the argument can be extended to the case of quater-
nion algebras over a totally real field F'. The answer is yes, as far as it goes: let D
and N be coprime squarefree integral ideals of F, such that the number of primes
dividing D has the opposite parity to [F' : Q], so there exists a unique quaternion
algebra B/F ramified at all but one infinite place of F', at the primes dividing
D, and nowhere else. For simplicity, let us also assume that F' has narrow class
number one, so that the canonical model of X = XPoW) is defined over F itself,
and not merely some extension of I’ unramified at every finite place. Then there
exists a canonical model for X over o F[ITll}’ which has smooth reduction at finite
places v of F' not divididing DN. Moreover one can define a notion of super-
singular points on the special fiber modulo v, which are finite in number and in
bijection with Pic, (O, where Oy is a level N Eichler order in the totally definite
quaternion algebra over F' of discriminant D - v. Moreover the Deligne-Rapoport
and Cerednik-Drinfeld reduction theories still go through. Thus one gets formulas
relating all genera of Shimura curves of type (1,9 — 1) over F, all class numbers
of Eichler orders in totally definite quaternion algebras over F', and all volumes of
fundamental domains of Shimura curves over F. However, (especially when g is
even) we may not have a “base case,” i.e., a Shimura curve in this family which ev-
idently has genus zero. When [F : Q] is odd, the simplest looking Shimura curve is
the one with D = op, i.e., unramified at every finite prime. Thus this construction
gives algebraic curves X/1 r (or, in general, over the Hilbert class field of F') which
have smooth reduction at every prime of F. These curves will, in general, have
positive genus (e.g., I believe it is true that in the (countable) family of Shimura
curves attached to totally real fields of given degree g, there are only finitely many
of genus less than or equal to any given positive integer), so are a priori interesting
arithmetic-geometric objects.

Problem: Let p = —1 (mod 4) be a prime number, and F, := Q((, + ¢, '), a

totally real number field of odd degree p—;l. Let X/IF be the Shimura curve as

described above. Explore the arithmetic of this family of curves.

Exercise 7: Take F = Q(¢7;)t = Q(¢7 + ¢ ). Let B/F be the quaternion al-
gebra over F' of type (1, g — 1) and unramified at every finite prime. Show that the
corresponding Fuchsian group I'! is the triangle group A(2,3,7), hence this “base”
Shimura curve has genus zero. Derive genus formulas and class number formulas
for all quaternion algebras over F'.
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7. SHIMURA CURVES VIOLATING THE HASSE PRINCIPLE

We will end by applying some of the earlier results on the structure of local points
on XP(N) to prove the following result.'!

Theorem 18. (Clark) There exists an absolute constant C such that if D-N > C,
there exists a number field K such that X(?(N)/K has points rational over every
completion of K but not over K itself. Moreover:

a) If N =1, K can be taken to be quadratic imaginary.

b) In general, K can be taken to be a quartic field.

Remarks:

a) The constant C' can be effectively computed, although I have not done so in the
general case. When N = 1, then (using some results of V. Rotger) one can take
any D > 546.

b) The theorem also holds for X{(IV), although in this case it can be shown that
the degree of the number field required goes to infinity with N (uniformly in D).

Definition: For an algebraic variety V defined over a field K, let m(V) be the
least degree of a field extension L/K such that V(L) # (). If K is a number field,
we define mioc (V) to be the least common multiple of m(V)k, ) as v ranges over all
places of K. (It is easy to see that V has K,-rational points for almost every v.)

Exercise 8: Show that if m = mj,., then there exist infinitely many number fields
L/K with [L : K] = m and such that V' has points over every completion of L.
(Hint: use Krasner’s Lemma and the standard (weak) approximation theorem for
a finite set of valuations on a field.)

The considerations of the previous sections give us the following result:

Proposition 19. We have mioc(X{ (N)q) is 2 or 4. When D = 1, it is always
2.

Proof: Since X§’(N) /g = 0, the m-invariant at the real place is 2, so My is even.
For p not dividing DN, we have m,, < 2 by Corollary 11. For p | N, we have m,, | 4
by Proposition 13. For p | D, we have m, < 2 by Proposition 15.

Remark: I believe that there should in fact be examples where mjo.(XP(N)) = 4,
but I have not done the computations.

Definition: For an algebraic curve X defined over a field K, we define the K-
gonality to be the least degree of a K-morphism ¢ : X — P!. For instance, only
P! has K-gonality 1, and the curves with K-gonality 2 are hyperelliptic over K.

Proposition 20. (Ogg) The Q-gonality of X (N) approaches oo with min(D, N).

Sketch Proof: We may suppose that the genus of X’(IV) is positive (because from
our genus formulas there are only finitely many curves of genus zero). Then it is
known that if ¢ : X — C is a finite morphism of curves defined over Q,, and X

HThis section is an exposition of some of the results in my paper On the Hasse principle for
Shimura curves, which can be found online at www.arxiv.org. Our presentation here is shorter
and less formal; on the other hand, the reader might prefer to see more of the details spelled out.
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has smooth reduction, then so does C' and the morphism ¢ can itself be reduced to
give a map of smooth curves over F,. Suppose that this morphism has degree M.
Then for all r > 1, #X(F,r) < M(p" + 1). Let us apply this with X = XP(N),
any prime p with (p, DN) =1 and r = 2, we get that if this curve has Q-gonality
at most M, then #XP (N)(F,2) < M(p? + 1). On the other hand, because all the
supersingular points are defined over I, we know that the number of IFj2-rational
points is at least h(Dp, N). We leave it to the reader to use the class number
formulas to check that for any fixed M, the set of all pairs (D, N) such that for all
primes p not dividing DN, h(Dp, N) < M(p? + 1) is finite.

Remark: A different argument appears in my paper. Namely, Abramovich has
shown that if I' € T'P(1) is any congruence subgroup, then the C-gonality of the
Shimura curve XP(T) is at least 2 (g(XP(T')) — 1). This is a stronger result for
three reasons: (i) the C-gonality is evidently less than or equal to the Q-gonality
(because any map to P! which is defined over Q can be defined over C, but not
conversely); (ii) the bound it gives is better than what can be obtained using Ogg’s
method (Ogg’s method would give a bound of order square root of the genus, rather
than linear in the genus), and (iii) it applies also to curves like X{?(V), for which I
prove a similar Hasse principle violation result. On the other hand, Ogg’s method
is beautifully thematic and quite influential: it shows again how the supersingular
points influence the geometry of the curves, and has been used in many different
contexts.'?

Why do we care about the Q-gonality of XP(N)? Well, if pg : X — P! is a
degree M map, then clearly X has infinitely many points of degree at most M.
The following result is a sort of converse.

Theorem 21. Let X,k be a curve defined over a number field, and for n € 7+,

let S§,,(X) be the set of points P € X(K) of degree dividing n. If S,,(X) is infinite,
then the K -gonality of X is at most 2n.

We will not discuss this result here, except to say that it is by far the deepest result
that goes into the proof. This theorem appears for the first time in my paper.
However, it is a very small variation of a theorem of Frey, which proves the same
reuslt for points of degree at most n rather than dividing n under the additional
assumption that X (K) # 0 (which we certainly do not want to make here). Frey’s
argument is clever but still quite elementary. It uses, however, Faltings’ proof of
the Mordell-Lang Conjecture, which is probably the single deepest general result
concerning rational points algebraic varieties.

Proof of Theorem 18: We need only put together the pieces: for min(D, N) suffi-
ciently large, the Q-gonality of XP (V) is greater than 8, so that by the preceding
theorem, there are only finitely many points of X’(N)(Q) which are rational over
fields of degree 1, 2 or 4. Thus, letting M be the field which is generated by the
coordinates of all the points rational over fields of degree dividing 4, we know that
M is a number field. On the other hand, there are no Q-rational points at all (since
there are no R-rational points), and it follows that if L/Q is a field extension of

12A1s0 Abramovich’s argument uses some deep results of differential geometry that I do not
pretend to understand.
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degree 4 which is linearly disjoint from M, then X& (L) = (. But it is easy to pro-
duce a number field L of degree 4 with the following local behavior: (i) it is totally
imaginary; (ii) at every finite place p such that X (N)(Q,) = 0, the completion
M, is a quartic extension of Q, such that XP(N)(L,) # 0, and (iii) L is totally
ramified at some prime p which is unramified in in M, so that M and L are linearly
disjoint over Q. We conclude that X (N) /1 Violates the Hasse principle. In fact
infinitely many such L exist of degree 4, and L can be taken to be of degree 2 when
N =1.

Final remark: Obviously Theorem 18 is false if we do not exclude the pairs (D, N)
for which X (V) has genus zero. If instead of Theorem 20 we use a theorem of Har-
ris and Silverman, we get that X violates the Hasse principle over some quadratic
field if it is neither hyperelliptic nor bielliptic (i.e., admits a degree 2 morphism
to an elliptic curve). It is an exercise to apply Ogg’s method to show that this
condition excludes only finitely many discriminants. More precise work of Rotger
shows that the condition holds for all D > 546 (whereas D = 546 is bielliptic). On
the other hand, the theorem may well be true for all D’s for which XP(N) has
positive genus. In the same paper, I made the following (rather ambitious)

Conjecture 22. Let K be a number field, and C)x a (smooth, projective, geomet-
rically irreducible) algebraic curve without K -rational points, and of positive genus.
Then there exists a finite field extension L/K such that C,p wviolates the Hasse
principle.

In other words, we claim that Theorem 18 is not a special property of Shimura
curves; rather, it is just that we know enough about the arithmetic of Shimura
curves to prove the conjecture for almost all of them. In the same paper I mention
that the conjecture can in fact be established for curves with everywhere semistable
reduction satifying some modest technical assumptions. The general case seems
quite forbidding — let me know if you have any ideas!



