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1. What is an arithmetic Fuchsian group?

The class of Fuchsian groups that we are (by far) most interested in are the arith-
metic groups. The easiest way to describe arithmetic Fuchsian groups is that
class of groups containing all groups commensurable with PSL2(Z) and also all
groups which uniformize compact Shimura curves. This is however, not a very well-
motivated definition: structurally, what do classical modular curves and Shimura
curves have in common that elevates them above the rank and file of the common
Fuchsian group?

The goal of this section is to try to answer this question. We will not give complete
proofs.

Definition: For a Fuchsian group (of the first kind) Γ, the trace ring R is the
subring of R generated by the traces of elements of Γ. (Note that the trace of an
element of PSL2(R) is well-defined only up to ±1, but this is good enough for the
definition to make sense.) Similarly, the trace field is defined to be the subfield
of R generated by the traces of the elements of Γ. Define B = R[Γ] to be the
R-algebra generated by the matrix entries, and similarly for k0[Γ].

For instance, if Γ = PSL2(Z), k0 = Q and k0[Γ] = M2(Q).

Consider the following properties of a Fuchsian group Γ (of the first kind):

(WA1) k0 is a number field and R is an order in k0.
(WA2) There exists σ ∈ PSL2(R) and a number field K ⊂ R such that σ−1Γσ ⊂
PSL2(OK).
(WA3) The trace field is a number field k0, and k0[Γ] is a quaternion algebra B/k0,
and R[Γ] is an order of B.

Theorem 1. The properties (W1), (W2) and (W3) are all equivalent.

We shall call a Fuchsian group satisfying the equivalent conditions of the theorem
weakly arithmetic.

Problem 4.1: Show that being weakly arithmetic is a commensurability invari-
ant.

Problem 4.2: a) Show that the triangle groups ∆(a, b, c) are weakly arithmetic,
and indeed that the trace ring R is Z[2 cos(π

a ), 2 cos(π
b ), 2 cos(π

c )].
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b)** Compute the quaternion algebra k[Γ] in terms of a, b, c.1

Problem 4.3: a) Give a cardinality argument to show that most Fuchsian groups
are not weakly arithmetic.
b) Give an explicit example of such a Fuchsian group (of the first kind!).

Now consider the following properties of a Fuchsian group of the first kind.

(A1) Γ has infinite index in its commensurator Comm(Γ).
(A2) Γ is commensurable with a group derived from a quaternion algebra.
(A2′) Γ2 = {γ2 | γ ∈ Γ} is derived from a quaternion algebra.
(A2′′) The trace ring R is an order in the trace field, a totally real number field,
and for every nonidentity real embedding ι : k0 ↪→ R, ι(Tr(Γ)) is a bounded subset
of R.
(A3) There exists G/Q a connected, noncommutative, almost Q-simple algebraic
group, a Q-embedding ι : G ↪→ GLn, and a homomorphism τ : G(R) → PSL2(R)
of real Lie groups, surjective and with compact kernel, such that the group
τ(G(Q) ∩GLn(Z)) ⊂ PSL2(R) is commensurable with Γ.

Theorem 2. a) The three conditions (A1), (A2) and (A3) are equivalent, and a
Fuchsian group satisfying them is said to be arithmetic.
b) Arithmetic groups are weakly arithmetic.
c) The converse does not hold: e.g., there exist only finitely many triples (a, b, c)
such that ∆(a, b, c) is arithmetic. The complete list is due to Takeuchi.

The equivalences(A2) ⇐⇒ (A2′) ⇐⇒ (A2′′) are due to Takeuchi. It is a nice
result – e.g., using it, it is easily seen which Hecke grups ∆(2, q,∞) are arithmetic –
but is probably of lesser importance in the grand scheme of things. Condition (A3)
generalizes well to “arithmetic lattices” inside semisimple Lie groups, an important
area of mathematics with work done by (e.g.) Borel, Serre and Margulis. The
equivalence of (A2) and (A3) is one of those annoying facts for which it had been
hard to find a reference, but now there is a paper by Mochizuki in which he gives
the complete proof. The equivalence of (A1) and (A3) is a result of Margulis. It
is very enlightening to keep in mind the (A3) characterization of arithmetic Fuch-
sian groups: it should be viewed as saying that for algebraic curves uniformized by
arithmetic Fuchsian groups (and only those curves) there is a substantial supply of
Hecke operators.

Remark: The terminology “weakly arithmetic” has been made up on the spot
to distinguish between the weaker and the stronger sets of equivalent conditions.
However, this notion turns out to be almost equivalent to a notion introduced in a
recent (2000) paper of Schaller and Wolfart: they define a semi-arithmetic Fuch-
sian group to be one satisfying the equivalent axioms (WA1) through (WA3) with
the additional assumption that the trace field is totally real. It seems too soon
to say what size of a role this class of groups plays in mathematics – in a certain
technical sense, it is an open question to find “interesting” semi-arithmetic groups
apart from the triangle groups.

1E.g., write a computer program that will compute the invariants of the quaternion algebra
k0[Γ].
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2. Construction of a Fuchsian group from an order in a quaternion
algebra

Let F be a totally real field, and let B/F be a quaternion algebra. If [F : Q] = g,
enumerate the real places of F by∞1, . . . ,∞g. In case O is an order in a quaternion
algebra over F which is ramified at g−1 of the infinite places of F , we can associate
to O an arithmetic Fuchsian group, which is cocompact unless B is the split quater-
nion algebra. By definition, a Shimura curve is the quotient ofH by such a Fuchsian
group (equivalently, by any cocompact arithmetic group). Notice that the situation
is much cleaner when F = Q: any order in any indefinite quaternion algebra will do.

It seems reasonable then to take a down-to-earth approach to the construction
when F = Q and an adeles / algebraic groups approach in the general case.

2.1. Background on quaternion algebras. Let F be any field of characteristic
different from 2. Then any quaternion algebra over F can be given in the form
〈a, b〉, where a, b ∈ F×, that is, as the F -algebra generated by two elements i and
j satisfying the relations, i2 = a, j2 = b, ij = −ji (and it follows that (ij)2 = −ab.

Especially, as F -vector space we have

〈a, b〉 = F · 1⊕ F · i⊕ F · j ⊕ F · ij.
For an arbitrary element

x = x0 · 1 + x1 · i + x2 · j + x3 · k,

we define the reduced trace T (x) = 2x0, the canonical involution x = T (x)−x, and
the reduced norm

N(x) = x · x = x2
0 − ax2

1 − bx2
2 − abx2

3 ∈ F.

Exercise 4.X: Let ρ be the left-regular representation of B = 〈a, b〉, i.e., the map
which views x· as an endomorphism of the underlying 4-dimensional F -vector space
of B.
a) Show that the trace of ρ(x·) is 2T (x).
b) Show that the norm of ρ(x·) is N(x)2.
Conclude that T , x 7→ x and N are well-defined independent of the choice of the
presentation B = 〈a, b〉.
Proposition 3. Fix a ∈ F×. A quaternion algebra B/F is isomorphic to 〈a, b〉
for some b if and only if there exists a subfield of B isomorphic to F (

√
a).

Proof: The “only if” direction is clear, since the subfield F [i] is of the required
form. Conversely, suppose that there exists an embedding F (

√
a) ↪→ B. Let σ

be the nontrivial Galois automorphism of E = F (
√

a)/F . By the Skolem-Noether
theorem, σ extends to an inner automorphism on all of B: there exists uσ ∈ B×

such that for all e ∈ E, Eσ = u−1
σ euσ. Since e = σ2(e) = u−2

σ eu2
σ, u2

σ lies in the
centralizer of E, which is easily seen to be E itself. Clearly uσ is not in E, so

F ⊂ F [u2
σ] ∩ E ⊂ F [uσ] ∩ E = F.

Thus u2
σ ∈ F , say u2

σ = b. Let i be one of the two elements
√

a in E. By
construction, u−1

σ iuσ = −i, so B ∼= 〈a, b〉.
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Proposition 4. Let B/F be a quaternion algebra, and E = F (
√

a) a quadratic
subfield of B. Then B ⊗F E ∼= M2(E).

Proof: Define

I =
[ √

a 0
0 −√a

]
, J =

[
0 b
1 0

]
.

It is easy to check that the E-algebra generated by these two matrices is on the one
hand B ⊗F E and on the other hand M2(E).

2.2. The down-to-earth approach. Let B/Q be an indefinite rational quater-
nion algebra. Let O be an order in B. For example, one can write B ∼= 〈a, b〉 with
a, b ∈ Z and take

O = {x = x0 + x1 · i + x2 · j + x3 · ij | xi ∈ Z.}
Let O1 be the elements of O of reduced norm 1.

To say that B is indefinite is to say that there exists an isomorphism ι : B ⊗Q R ∼=
M2(R); we choose such an isomorphism, which allows us in particular to regard O
as being embedded in M2(R), O× in GL2(R) and O1 in SL2(R).

Define Γ = Γ(B,O) = O1/±1 to be the image of O1 in PSL2(R).

Exercise 4.X: Show that the groups Γ associated to different orders O are com-
mensurable.

Theorem 5. Γ is a discrete subgroup of PSL2(R). It is cocompact if (and only if)
B is a division algebra.

Proof: Note that for two commensurable subgroups Γ1, Γ2 ⊂ PSL2(R), the dis-
creteness (resp. cocompactness) of Γ1 implies the discreteness (resp. cocompact-
ness) of Γ2. So we will assume that O is the order constructed from B ∼= 〈a, b〉
above. By Proposition 4, we have an explicit embedding of O into M2(R), namely

x = x0 + x1 · i + x2 · j + x3 · ij 7→
[

x0 + x1
√

a x2 + x3
√

a
b(x2 − x3

√
a) x0 − x1

√
a

]
.

It is easy to see that there exists an open neighborhood U of the identity matrix
such that O1 ∩ U = 1. Choosing U such that |g11 − 1|, |g22 − 1| < 1, we have
|(x0 + x1

√
a) + (x0 − x1

√
a) − 2| < 1, or |2x0 − 2| < 1, which implies that x0 = 1

and x1 = 0. Then choosing g12 and g21 to be sufficiently closer to zero we get that
x2 = x3 = 0.

Compactness:

2.3. The adelic approach. Let G/Q be any reductive algebraic group, and let
G′ = [G,G] be its (semisimple) derived subgroup. Recall that the adelic points of
G, G

Å
= G(Å) is topologized as the restricted direct product of the locally compact

topological groups {G(Qp)}p≤∞ with respect to the family of compact subgroups
G(Zp). (For this to make sense, we choose some extension of G to a group scheme
over Z. Any two such extensions differ only in finitely many primes, so give the
same topology. Perhaps it is psychologically easier to think of G as actually being
a group over Z, as will be the case in our applications.)
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Theorem 6. a) G(Q) is discrete in G
Å
.

b) G(Q)\G
Å

is compact if and only if G/Q is anisotropic, i.e., does not admit Gm

as a subgroup.

Now take F a totally real number field and B/F a quaternion algebra. If [F : Q] =
g, let ∞1, . . . ,∞g denote the real places of F . Let G/Q be the algebraic group
whose points in a field K of characteristic zero are G(K) = B× ⊗Q K. Let Its
derived subgroup G′ is such that for all K, G′(K) consists of elements of G(K) of
reduced norm 1. Note that G′ is anisotropic over Q if and only if B is a division
algebra.

For an adelic group, we use a subscripted 0 to denote the projection to the non-
Archimedean components and a subscripted∞ for projection onto the infinite place.
Let T0 be any compact open subgroup of G′0, and put T = T0G

′
∞, ΓT = T ∩G′(Q).

Finally, let Γ denote the projection of ΓT onto G∞.

Theorem 7. Γ is a discrete subgroup of G′∞, and Γ\G′∞ is compact if B is a
division algebra.

Proof: . . ..

We are now ready to decode all this: label the infinite places so that B is split
at the first r of them for some 0 ≤ r ≤ g. Let H denote the unique division quater-
nion algebra over R, and let H1 denote the elements of reduced norm 1 in H: note
that this is the unit sphere in H and is therefore compact. We have

G∞ ∼= GL2(R)r × (H×)g−r.

G′∞ ∼= SL2(R)r × (H1)g−r.

We shall assume that r > 0, i.e., that the quaternion algebra is split at at least
one real place (otherwise the aforementioned group Γ would be finite). Let us also
continue to write Γ for the projection of Γ to the factor SL2(R)r. The key result
is:

Theorem 8. Γ ⊂ SL2(R)r is discrete, and compact if B is a division algebra.

Proof: This follows immediately from the preceding results and from the following
general fact about groups to be found as Prop. 1.10 in Shimura’s book:

Proposition 9. Let G1, G2 be locally compact groups, Γ ⊂ G1 × G2 a closed
subgroup, and Γ1 the projection of Γ to G1. Suppose that G2 is compact. Then: Γ1

is closed in G1, Γ\(G1 ×G2) is compact if and only if Γ1\G1 is compact, and if Γ
is discrete in G1 ×G2, then Γ1 is discrete in G1.

In particular, let O be an order in B. We take Γ to consist of those elements in O
with reduced norm 1. This is “the Γ” corresponding to an adelic group T0 = Ô×.
Then what the proceeding theory is telling us is that Γ is a discrete subgroup of
SL2(R)r, hence that it acts as a discrete group of transformations on r copies of the
upper halfplane Hr. Thus, if we want to maintain our current setting of discrete
subgroups acting on H, we need to enforce the condition that r = 1, i.e., that B
is ramified at all but 1 infinite place. In other words, we get a family of compact,
arithmetic Riemann surfaces Γ\H, the Shimura curves.
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On the other hand, it suggests a possible broadening of perspective: taking e.g.
O = M2(OF ) (so that B is the split quaternion algebra over F ), we get a nice
action of O on Hg, the quotient space being a Hilbert modular variety. In
general one gets a mixture of the two cases, or what is usually referred to as a
higher-dimensional quaternionic Shimura variety.


