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Provenance

These are lecture notes from my Fall 2017 Math 4150/6150 Complex Variables course. This is
a one semester course at the advanced undergraduate level. The main prerequisite is some very
elementary real analysis at the level of the Math 3100 (sequences and series) course that is taught
at UGA. In places we also use a bit of linear algebra.

I am not myself an expert in complex analysis, so I want to make clear that in writing these
notes I am almost exclusively following other sources. The main text for the course was [BMPS],
and overall we follow this rather closely, in particular in the ordering of topics. Perhaps it will be
helpful to list the main differences between these notes and [BMPS]:

• We introduce the complex logarithm rather late in the day, in §4.9.
• We give a proof of the equivalence of connectedness and path-connectedness for open subsets of
C, following a slick argument of [FB].
• Our discussion of contour integration is largely motivated by analogies to line integrals in mul-
tivariable calculus.
• We do not make use of the notion of homotopy of paths. (We certainly have nothing against it!
But we think these ideas are better developed in either a second course on complex analysis or a
first course in algebraic topology.) Our notion of simple connectedness is therefore in terms of
simple closed curves being the boundaries of subdomains. We assume the Jordan-Schoenflies The-
orem that every simple closed curve has a well-defined interior and exterior and that the interior
is simply connected. Other than this, our discussion is self-contained and complete.
• We include a proof of the Cauchy-Goursat Theorem, largely following [SS].
• We include a proof of Cauchy’s Integral Theorem for Derivatives before our discussion of se-
ries methods. On the other hand, we develop the basic theory of series a bit differently so that
Cauchy’s Integral Theorem for Derivatives also follows independently from this theory, whereas
the development in [BMPS] uses Cauchy’s Integral Theorem for the First Derivative.
• We prove the Maximum Modulus Theorem more directly, without using harmonic functions.
• Our discussion of computing Laurent series expansions is more detailed.
• Our discussion on summation of series using residues is more detailed. Most of the additional
details are taken from [MH, §4.4].

1. The complex numbers

1.1. Vista: The shadow of the real. A complex number z is something of the form z = x+ iy
where x, y ∈ R and i2 = −1. We notice that this is not quite a definition in a way that was deeply
problematic for hundreds of years. Not to brag, but the very first thing we will actually do is
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totally resolve that problem. Just for a few minutes though, let’s go with it.

Complex numbers naturally arise while solving polynomial equations. The beginnings of this
are taught in high school: the solution to the general quadratic equation ax2 + bx + c = 0 – for
a, b, c real numbers with a 6= 0 – is

x =
−b±

√
b2 − 4ac

2a
.

The quantity ∆ = b2 − 4ac is called the discriminant of the quadratic equation. Since the image
of the squaring function R → R, x 7→ x2 is [0,∞), a real number has a real square root iff it is
non-negative. So if ∆ > 0 the quadratic equation has two distinct roots. If ∆ = 0 the quadratic
equation has just one root, r = −b

2a , but it occurs with multiplicity 2: that is,

ax2 + bx+ c = a(x− r)2.
However, if ∆ < 0 then the formula does not make sense in the real numbers. However, it does
make sense in the complex numbers:

√
∆ = i

√
|∆|. Thus complex numbers are “born to give roots

to all real quadratic equations.”
It turns out that the “equation solving ability” of the complex numbers is much more powerful

than that. Soon enough we will see that for every nonzero complex number z and any positive
integer n, there are exactly n complex numbers w such that wn = z. In particular, every nonzero
complex number z has exactly two complex square roots, which are negatives of each other. From
this and the same quadratic formula it follows that every quadratic equation az2 + bz+ c = 0 with
a, b, c ∈ C and a 6= 0 has a root in z. Later on in the course we will see that much more is true:
any nonconstant polynomial with complex coefficient has a complex root: this is the celebrated
Fundamental Theorem of Algebra, first proved by Gauss.

In many ways, the R world you have already met is just a shadow of the C world into which
you’re about to be thrust.

Example 1.1. In the R-world, trigonometric functions cosx and sinx are very different from expo-
nential functions ex: the former are periodic, hence bounded, whereas the latter grows exponentially
fast. And yet there are some glimpses of a deeper relationship.

For instance, consider one of the simplest differential equations: y′′ = αy for α ∈ R. What are the
solutions? If α > 0, then they are exponential functions. If α < 0 they are trigonometric functions.

Also consider:

ex =

∞∑
n=0

xn

n!
,

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

It looks like cosx and sinx are each “half of” ex – but something screwy is going on with the signs.

But if we allow ourselves a complex variable, something amazing happens: first observe that

1 = i0 = i4 = i8 = . . . ,

i = i1 = i5 = i9 = . . . ,

−1 = i2 = i6 = i10 = . . . ,

−i = i3 = i7 = i11 = . . . .
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Then:

eix =

∞∑
n=0

(ix)n

n!
= 1 + ix+ i2x2/2! + i3x3/3! + i4x4/4! + . . .

= (1 + i2x2/2! + i4x4/4! + i6x6/6! + . . .) + i(x+ i2x3/3! + i4x5/5! + i6x7/7! + . . .)

= (1− x2/2! + x4/4!− x6/6! + . . .) + i(x− x3/3! + x5/5!− x7/7! + . . .) = cosx+ i sinx.

Thus, in the C-world the exponential function is periodic (its period is 2πi) and the trigonometric
functions are unbounded. Later we will see that in the C-world every nonconstant “entire function”
is unbounded! This relationship is not only true but profoundly useful. We give one example.

Theorem 1.2. (Fresnel1 Integrals) We have∫ ∞
0

cos(x2)dx =

∫ ∞
0

sin(x2)dx =

√
π

8
.

Complex analysis will reduce this integral to one familiar from multivariable calculus:∫ ∞
−∞

e−x
2

dx =
√
π.

1.2. Introducing C: something old and something new. In this section we introduce the
complex field C. Recall that the real numbers R come endowed with binary operations of addition
and multiplication

+ : R× R→ R, · : R× R→ R
that satisfy the following properties:

(P1) (Commutativity of +): For all x, y ∈ R, we have x+ y = y + x.
(P2) (Associativity of +): For all x, y, z ∈ R, we have (x+ y) + z = x+ (y + z).
(P3) (Identity for +): There is 0 ∈ R such that for all x ∈ R, we have x+ 0 = x.
(P4) (Inverses for +): For all x ∈ R, there is y ∈ R with x+ y = 0.
(P5) (Commutativity of ·): For all x, y ∈ R, we have x · y = y · x.
(P6) (Associativity of ·): For all x, y, z ∈ R, we have (x · y) · z = x · (y · z).
(P7) (Identity for ·): There is 1 ∈ R such that for all x ∈ R, we have 1 · x = x.
(P8) (Inverses for ·): For all x ∈ R, if x 6= 0, then there is y ∈ R with x · y = 1.
(P9) (Distributivity of · over +): For all x, y, z ∈ R, we have x · (y + z) = (x · y) + (x · z).
(P10) We have 1 6= 0.

The complex numbers C will also be endowed with two binary operations of addition and multi-
plication and will satisfy the same field axioms. As a set, we take

C := R2 = { ordered pairs (x, y) with x, y ∈ R}.

We tend to denote complex numbers by letters z and w, rather than using vector notation.
The addition operation on complex numbers is something old: it’s just the usual coordinate-

wise addition of vectors in the plane:

∀z1 = (x1, y1), z2 = (x2, y2) ∈ C, z1 + z2 := (x1 + x2, y1 + y2).

In particular, we have the complex number 0 := (0, 0), which serves as the additive identity. As
you well know, R2 together with the coordinatewise addition operation satisfies properties (P1)

1Augustin-Jean Fresnel: 1788-1827, a French engineer and physicist who pioneered the theory of optics.
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through (P4). (R2 is a vector space over R, and these properties hold for any vector space over R.)
However the multiplication operation is something new:

(1) ∀z1 = (x1, y1), z2 = (x2, y2) ∈ C, z1 · z2 := (x1x2 − y1y2, x1y2 + y1x2).

Quick question: why? One good answer is that it turns out (as we will soon see) that this opera-
tion satisfies properties (P5) through (P10) and thus makes C into a field. This is actually rather
exciting, as we will now try to indicate.

Indeed, it is quite rare to be able to find a multiplication operation on vectors in Rn that makes
it into a field. It turns out that this is only possible for n = 1 (i.e., the usual real numbers) and
n = 2) (the case we’re in now). There is also an interesting “near-miss”: there is a multiplication
operation on R4 that gives it all properties except for (P5), commutativity of multiplication. In
order to property appreciate the “magic” of our multiplication in R2, we should explain why other
“product” operations on vectors you’ve seen do not fit the bill.

First, for any n ≥ 1 we have the scalar product of vectors: if x = (x1, . . . , xn) and y =
(y1, . . . , yn), then

x · y = x1y1 + . . .+ xnyn.

But – as the name makes clear – this operation takes as input two vectors in Rn but gives as
output a scalar – i.e., a real number. Thus the inner product is not a binary operation on Rn. So
it is not even the kind of beast we’re looking for.

Second, in R3 we do have a binary “multiplication” operation on vectors, the cross product

(a, b, c)× (x, y, z) := (bz − cy,−(az − cx), ay − bx).

However, R3 endowed with coordinatewise addition and the scalar product is far from a field.

Exercise 1.1. a) Show that R3 endowed with coordinatewise addition and the cross product is not
a field. (Suggestion: show that multiplication is not commutative.)
b) Determine which of the axioms (P5) through (P10) are satisfied by R3 with coordinatewise
addition and the cross product.

Now we return to R2 with the multiplication defined by (1). In order to cut down on the tedium
of checking (P5) through (P10) – and also to gain further insight into the situation – we will give
an alternate representation of C. Namely, to the complex number z = (x, y) we assign the 2 × 2
real matrix

Mz =

[
x −y
y x

]
.

Exercise 1.2. Let C :=

{[
x −y
y x

] ∣∣∣∣ x, y ∈ R
}

.

a) Show: C is a subspace of the vector space of 2× 2 real matrices.
b) Show:

e1 =

[
1 0
0 1

]
, e2 =

[
0 −1
1 0

]
is a basis for C.
c) Show that the map C→ C given by z 7→Mz is an isomorphism of vector spaces.

Part c) of the preceding exercise is hardly surprising: every two-dimensional vector space is iso-
morphic to R2. The following observation is more exciting: if z1 = (x1, y1) and z2 = (x2, y2),
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then

Mz1 ·Mz2 =

[
x1 −y1
y1 x1

] [
x2 −y2
y2 x2

]
=

[
x1x2 − y1y2 −(x1y2 + x2y1)
x1y2 + x2y1 x1x2 − y1y2

]
= Mz1·z2 .

In other words, under the isomorphism from C to C given by z 7→Mz, the “new” product operation
we’ve defined corresponds to the multiplication of matrices.

This observation immediately gives us some of the desired properties: (P6) holds for C (and thus
also for C) because matrix multiplication is associative. Similarly, because matrix multiplication
distributes over addition, (P9) holds. On the other hand, we do not get (P5) for free in this way,
because matrix multiplication is in general not commutative. However, if we interchange x1 and
x2 and also interchange y1 and y2 then x1x2 − y1y2 and x1y2 + x2y1 remain unchanged, and thus
z1 ·z2 = z2 ·z1. Thus these matrices all commute with each other. As for (P7): the identity matrix[

1 0
0 1

]
is M(1,0), so the multiplicative identity in C is

1 := (1, 0) 6= (0, 0) = 0.

This also shows (P10). We are left to show that every nonzero element has a multiplicative
inverse. This is the only property which requires anything other than direct calculation to establish.
Namely, given z = (x, y) ∈ C with x and y not both zero, we must find z−1 = (X,Y ) such that
zz−1 = 1. How do we do that?

Again matrices show us the way. Recall that a two by two matrix

M =

[
a b
c d

]
is invertible iff its determinant ad− bc is nonzero, in which case the inverse is

(2) M−1 =

[
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
.

(This is a special case of the adjugate equation: for any n× n matrix A, we have A · adj(A) =
detA · In.) So if z = (x, y) ∈ C with x, y not both zero, then

detMz = det

[
x −y
y x

]
= x2 + y2 6= 0,

so

M−1z =

[
x

x2+y2
−(−y)
x2+y2

−y
x2+y2

x
x2+y2

]
.

From this we see that

z−1 =

(
x

x2 + y2
,
−y

x2 + y2

)
.

We have shown that C, endowed with its usual vector addition and “new” multiplication, is a field.

Above we saw that (1, 0) is the multiplicative identity, so we denote it 1. We now denote the
second standard basis vector (0, 1) by i. Thus an arbirary complex number can be written as

z = (x, y) = x · 1 + y · i = x+ yi.

Finally, we observe that

i2 = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1(1, 0) = −1.

This recovers the standard description of complex numbers, as being the sum of a real number x
and a real number y multiplied by an “imaginary number” i satisfying i2 = −1. We could have
started here, of course, but our longer route has several advantages. For one, we have made clear
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“what i is.” It seems a little quaint from a modern perspective, but in fact for hundreds of years
complex numbers were used by mathematicians but distrusted by them. That i is “imaginary”
was something that they worried deeply about: for any magnitude (i.e., real number) x we have
x2 ≥ 0, so what kind of number can have square −1? The kind of number that does not exist?!?
The representation complex numbers as points in the plane was introduced by Wessel in 1797 and
by Argand in 1806, but mathematicians at that time did not view this as an acceptable definition
of C: this definition was given by William Rowan Hamilton in 1833. (Hamilton spent a lot of time
looking for a product operation on R3 that makes it into a field. Eventually he realized this is
impossible, but he found a multiplication operation on R4 that satisfies all the field axioms except
for the commutativity of multiplication. These are the quaternions, and the cross product in R3

is related to them.)

1.3. Real part, imaginary part, norm, complex conjugation. Let

z = x+ yi ∈ C.
We define the real part

<(z) = <(x+ yi) = x

and the imaginary part
=(z) = =(x+ yi) = y.

As usual for vectors in the plane, we define the norm or magnitude

|z| = |x+ yi| =
√
x2 + y2.

Proposition 1.3. For all z ∈ C, we have

|<(z)| ≤ |z|, |=(z)| ≤ |z|.

Proof. If z = x+ yi, then
|<(z)|2 = x2 ≤ x2 + y2 = |z|2

and
|=(z)|2 = y2 ≤ x2 + y2 = |z|2.

Since the function x 7→ x2 is increasing on [0,∞), for non-negative real numbers a, b, we have a ≤ b
iff a2 ≤ b2. So it follows that

|<(z)| ≤ |z| and |=(z)| ≤ |z|.
�

We also define the complex conjugate

z = x+ yi = x− yi.
We also view complex conjugation as a function from C to C,

x+ yi 7→ x− yi.
Geometrically, complex conjugation is reflection through the x-axis. In particular it is a linear
transformation: for all α, β ∈ R and z, w ∈ C, we have

αz + βw = αz + βw.

Exercise 1.3. Let z, w ∈ C and α ∈ R.
a) Show: |αz| = |α||z|.
b) Show: z = z.
c) Show: |z|2 = zz.
d) Show: |z| = |z|.
e) Show: zw = z w.
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f) Show: |zw| = |z||w|.
g) Show: if w 6= 0, then z

w = z
w .

h) Show: <(z) = z+z
2 and =(z) = z−z

2i .

We’ve seen complex conjugation already – did you miss it? For nonzero z = x+ yi, we have

z−1 =
x

x2 + y2
− y

x2 + y2
i =

x− yi
x2 + y2

.

We can now rewrite this as

(3) z−1 =
z

|z|2
.

Clearing denominators, we recover Exercise 1.3c). This is a very useful formula: let us give several
perspectives. First, it gives another way of finding the inverse of a nonzero complex number: to
compute 1

z , multiply the numerator and the denominator by z, getting z
|z|2 .

Example 1.4. We have
1

3 + 4i
=

3− 4i

32 + 42
=

3

5
− 4

5
i.

It also gives a nice geometric interpretation of z−1: since z · z−1 = 1, we have

1 = |1| = |zz−1| = |z||z−1|,

so

|z−1| = 1

|z|
.

Thus z−1 is obtained from z by reflecting through the origin and then rescaling so that the mag-
nitude is the inverse of the magnitude of z.

Exercise 1.4. Let z ∈ C. a) Show by induction that for all positive integers n we have

(4) |zn| = |z|n.

b) Explain how to interpret 4 for n = 0 and for negative integers n, and show that it still holds.

As an application of complex conjugation, we give a snappy proof of the triangle inequality in R2.

Proposition 1.5. For all z, w ∈ C, we have

(5) |z + w| ≤ |z|+ |w|.

Proof. The first idea is that |z|2 is often easier to work with than |z|. Again we have an inequality
among non-negative real numbers, so it is enough to prove it after squaring both sides. Now:

|z + w|2 = (z + w)(z + w) = zz + ww + zw + zw

= |z|2 + |w|2 + 2<(zw) ≤ |z|2 + |w|2 + 2|zw|

= |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2.
Taking square roots, we get

|z + w| ≤ |z|+ |w|. �

Corollary 1.6. (Reverse Triangle Inequality) For all z, w ∈ C, we have

||z| − |w|| ≤ |z − w|.
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Proof. By the usual Triangle Inequality we have

|z| = |(z − w) + w| ≤ |z − w|+ |w|,

so

|z| − |w| ≤ |z − w|.
Interchanging the roles of z and w gives

|w| − |z| ≤ |w − z| = |z − w|.

Since ||z| − |w|| is equal to one of |z| − |w| or |w| − |z|, we’re done. �

1.4. Geometry of multiplication, polar form and nth roots. It is important to understand
complex numbers not just algebraically but also geometrically (and soon, topologically and ana-
lytically: this is a rich subject). So let us begin by geometrically interpreting the field operations.

Again, when it comes to addition this is “something old.” The geometric interpretation of ad-
dition in C is as for vectors in Rn for any n: z + w is understood by taking the tail of w and
placing it at the head of w. The relationship between lengths is given by the triangle inequality,
whose geometric interpretation is almost what it says on the label: the vectors z, w and z + w
form three sides of a triangle, and thus the length of z + w does not exceed the lengths of z and
w. However, in classical geometry we learn that in fact we have strict inequality when we have an
actual triangle: i.e., unless z and w are collinear.

Exercise 1.5. When does equality hold in |z + w| ≤ |z|+ |w|?
a) By examining the proof of Proposition 1.5, show that if equality holds, then <(zw) = |z||w|.
b) Show that for complex numbers z, w, we have <(zw) = |z||w| iff zw = 0 (a trivial case) or there
is α ∈ R>0 such that w = αz.

Part b) of Exercise 1.5 is rather challenging at the moment. If you don’t see how to do it, try it
again after learning the very next thing we will discuss!

On to that next thing, namely the “new” geometric interpretation of the product zw of two
complex numbers. Again, a good foothold for this is the matrix representation of z = x+ yi as

Mz =

[
x −y
y x

]
.

Geometrically then, multiplication by z gives a linear transformation of R2: w 7→ zw. We should
(ideally) have some practice in geometrically interpreting linear transformations of the plane. A
good first step is to recall that the columns of the matrix say where the two standard basis e1 = 1,
e2 = i go. The first column is (x1, y1), corresponding to the fact that 1 · z1 = z1. The second
column is (−y1, x1), corresponding to the fact that

zi = (x+ yi)i = −y + xi.

But now we’re close enough to the action to notice something: the inner product of the two column
vectors (x, y) and (y, x) is zero, meaning that the two vectors are orthogonal (“perpendicular”)
to each other. Moreover they have the same length, and moreover still (−y1, x1) is obtained from
(x1, y1) via counterclockwise rotation through an angle of π

2 degrees. Another way to say this is
that the matrix corresponding to i is a rotation matrix through an angle of π

2 :

Mi =

[
0 −1
1 0

]
=

[
cos(π2 ) − sin(π2 )
sin(π2 ) cos(π2 ).

]
.
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Coming back to the general case, since the columns of Mz are orthogonal to each other, Mz is
almost an orthogonal matrix. Recall that a matrix is orthogonal iff its columns form an orthonormal
basis: they are orthogonal to each other and all have unit length. It is the second condition that
is satisfies for z = i – since i lies on the unit circle – but not in general. But okay, we can correct
for this just by rescaling: for any 0 6= z ∈ C, we have

Mz = |z|M z
|z|

= |z| ·

[
x

x2+y2
−y

x2+y2
y

x2+y2
x

x2+y2

]
.

The matrix M z
|z|

is an orthogonal matrix with determinant 1, hence a rotation matrix: there is

θ ∈ R such that [
x

x2+y2
−y

x2+y2
y

x2+y2
x

x2+y2

]
=

[
cos θ − sin θ
sin θ cos θ.

]
.

This gives the following polar form of a complex number: every z ∈ C can be written as

r(cos θ + i sin θ)

for r ∈ R≥0 and θ ∈ R. Here r = |z| so is uniquely determined by z. The θ is called the argument
of z and (use of the definite article “the” notwithstanding!) is not uniquely determined: if z = 0
then θ can be anything (this is a trivial case). If z 6= 0, then – since sine and cosine are periodic
with period 2π – if θ is an argument, so is θ + 2πn for any integer n.

Exercise 1.6. Let z = x + iy be a nonzero complex number. Recall that arctan : R → (−π2 ,
π
2 )

denotes the principal branch of the arctangent function.
a) Suppose x > 0. Show: arctan( yx ) is an argument for z.
b) Suppose x < 0. Show: arctan( yx ) + π is an argument for z.
c) What happens when x = 0?

Of course if we rotate through an angle of θ1 and follow by rotating through an angle of θ2, the
net effect should be that of rotating through an angle of θ1 + θ2. The following exercise asks you
to confirm this algebraically.

Exercise 1.7. Let θ1 and θ2 be real numbers. Show:[
cos θ1 − sin θ1
sin θ1 cos θ1

] [
cos θ2 − sin θ2
sin θ2 cos θ2

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
.

Suggestion: first multiply out the matrices, then use the identities

(6) cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2),

(7) sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2).

Using this exercise, we get a pleasant formula for multiplying complex numbers in polar form: if

z = α(cos θ1 + i sin θ1), w = β(cos θ2 + i sin θ2),

then
zw = αβ(cos(θ1 + θ2) + i sin(θ1 + θ2)).

In other words, to multiply two complex numbers, we multiply their magnitudes and add their
arguments. (Earlier you were asked to show that |zw| = |z||w| for all z, w ∈ C. We now have a
more insightful explanation for this.)

We now introduce “an alternate notation” for cos θ + i sin θ, namely

eiθ = cos θ + i sin θ.
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In other words, eiθ is the complex number lying on the unit circle with angle θ (well-determined
up to an integer multiple of 2π). Let me be honest: this is not just notation! In fact later we will
give an independent definition of ez and show the identity

eiz = cos z + i sin z

for all z ∈ C. The following exercise asks you to verify this formally, i.e., using power series
expansions as in calculus but without (for now!) worrying about convergence.

Exercise 1.8. Recall the Taylor series expansions

ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

valid for all x ∈ R.
a) Show “formally” – i.e., without worrying about convergence – that

eix = cosx+ i sinx.

More precisely, starting with eix =
∑∞
n=0

(ix)n

n! , collect terms with even powers of i to get the
expansion for cosx and collect terms with odd powers of i to get the expansion for i sinx.
b) Show “formally” that for all x, y ∈ R we have

eixeiy = ei(x+y).

Do not show this by using trigonometric identities.
c) Use a) and b) to get a new proof of the trigonometric identities (6) and (7).

Example 1.7. We will show that for all θ ∈ R and α ∈ R>0 we have

αeiθ = αe−iθ.

Indeed, we have

αeiθ = αcos θ + i sin θ = α(cos θ − i sin θ) = αei(−θ).

Thus complex conjugation preserves the magnitude and negates the argument.

Let n ∈ Z+. A complex number z is an nth root of unity if zn = 1. A root of unity is a
complex number that is an nth root of unity for some n ∈ Z+. For instance, 1 is an nth root of
unity for all n ∈ Z+, and it is (clearly!) the only 1st root of unity. Also −1 is an 2nd root of unity.
Using (4) we find that if zn = 1 then

|z|n = |zn| = |1| = 1.

Since the only non-negative real number x such that xn = 1 is x = 1 (if 0 < x < 1, then the same
holds for xn for all n; if x > 1, then the same holds for xn for all n), this implies that |z| = 1.
In other words, every root of unity lies on the unit circle in C. In particular the only real num-
bers that are roots of unity are ±1. The number i is a 4th root of unity since i4 = (i2)2 = (−1)2 = 1.

We claim that for any n ∈ Z+, there are exactly n complex numbers that are nth roots of unity,

namely the numbers e
2πim
n for 0 ≤ m < n. To absorb the statement it is well to picture it geomet-

rically: one nth root of unity is given by 1 (take m = 0). To get the next nth root of unity, we
increment the argument by 2π

n , and then we keep doing this. After we increment the argument n

times we get e
2πin
n = e2πi = cos(2π) + i sin(2π) = 1, so we are back where we started. Thus the

nth roots of unity form the vertices of a regular n-gon inscribed in the unit circle.
Now that we understand the statement, let’s see why it is true. One direction is easy: for any

0 ≤ m < n, we have

(e
2πim
n )n = e

2πimn
n = e2πmi = cos(2πm) + i sin(2πm) = 1.
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For the other direction: we saw that an nth root of unity must be of the form eiθ for some θ ∈ R.
Moreover, if 1 = (eiθ)n = einθ, then nθ is an argument for 1. A more obvious argument for 1 is 0,
and any two arguments differ by an integer multiple of 2π, so there is M ∈ Z such that

nθ − 0 = nθ = 2πM,

so θ = 2πM
n for some M ∈ Z. Moreover, by division with remainder we can write M = qn + m

with 0 ≤ r < n and then

eiθ = e
2πiM
n = e

2πiqn
n · e 2πim

n = e2πiq · e 2πim
n = e

2πim
n .

Using nth roots of unity, we can find the nth roots of any complex number. First one observation:
suppose z, w are complex numbers such that zn = w. Then if ζ is any nth root of unity, we also
have (ζz)n = ζnzn = 1 ·w = w. So as soon as we find one nth roots of a nonzero complex number
w, we have found n of them. Now if w is a nonzero complex number, we write it in polar form:

w = αeiθ.

It is then not hard to find one complex number z such that zn = w, namely

z = α
1
n e

iθ
n .

Note that here we are using that any positive real number has a unique positive nth root: this
follows from the Intermediate Value Theorem and that the function x 7→ xn is increasing on (0,∞).
Putting together these observations we find that for any 0 ≤ m < n then

z = α
1
n e

i(θ+2πm)
n

satisfies zn = w. Thus for every nonzero w ∈ C we have found n different nth roots. When w = 1
we gave an argument to show that these are all the complex numbers such that zn = 1. It is
not hard to modify this argument to work for arbitrary w. We leave that to the reader. A more
algebraic approach is suggested below.

Exercise 1.9. Let F be any field, let n ∈ Z+, and let f(t) = ant
n + . . .+ a1t+ a0 be a polynomial

with a0, . . . , an ∈ F and an 6= 0 (so f has degree n).
a) Show: if α ∈ F is such that f(α) = 0, then there is a polynomial g(t) with coefficients in F
such that

f(t) = (t− α)g(t).

(Suggestion: make use of division with remainder for polynomials. In particular, divide f by t−α
and observe that the remainder must have degree smaller than the degree of t − α and thus be
constant. Now evaluate at α.
b) Use induction to show that there are at most n distinct elements α ∈ F such that f(α) = 0. In
other words: a polynomial over any field of degree n ≥ 1 has no more than n distinct roots.
c) Use part b) to show that for any w ∈ F , there are at most n distinct elements z ∈ F such that
zn = w.

1.5. Topology of C. For a complex number a and r > 0, we define the open disk

Ba(r) = {z ∈ C | |z − a| < r}
and the closed disk

Ba(R) = {z ∈ C | |z − a| ≤ r}.
Notoice that {z ∈ C | |z − a| = r} is precsiely the set of points of the plane at distance r from the
fixed point a and thus it is a circle of radius r centered at a. The open disk consists of all points
on the interior of this circle and the closed disk consists of all points on the interior of this circle
and the circle itself.
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Using these concepts we can define larger classes of subsets of C, as follows. Let S be a sub-
set of C. We say that z ∈ S lies in the interior of S if for some r > 0 we have Bz(r) ⊂ S.
That is, not only does S contain the point z but it contains some open disk centered at z. We
define the interior S◦ of S to be the set of all points lying in the interior of S: this is a subset of S.

We define the boundary ∂S of a subset S ⊂ C to be the set of all points z ∈ C such that
for all r > 0, the open disk Bz(r) contains points of S and also of its complement C \ S.

For any subset S, the interior S◦ and the boundary ∂S are disjoint. The set C \ (S◦ ∪ ∂S) is
sometimes called the exterior of S.

Example 1.8. Let S = B0(1) be the open unit disk. I claim that S is equal to its own interior.
Indeed, if z ∈ S then |z| < 1 and by the triangle inequality we have Bz(1 − |z|) ⊂ B0(1). I claim
that the boundary of S is the unit circle. First, let z be any point with |z| = 1. Let r > 0; we may
assume that r < 1. Then the point (1 − r

2 )z has distance r
2 < r from z and lies in S, while the

point (1 + r
2 )z has distance r

2 < r from z and does not lie in S, so z ∈ ∂S. Finally, if |z| > 1, then
Bz(|z| − 1) is an open disk centered at z lying entirely in the complement of S.

Let S = B0(1) be the closed unit disk. The interior and boundary are the same as above: please
check! But this time, S◦ is a proper subset of S whereas S ⊃ ∂S.

Finally, suppose that we have a subset S such that B0(1) ( S ( B0(1): that is, S contains the
open unit disk, is contained in the closed unit disk, and contains some but not all points of the
boundary circle. Then the interior is still the open unit disk, a proper subset, and the boundary is
still the unit circle, which S does not contain.

The preceding example serves to motivate the following definition. We say that a subset S ⊂ C is
open if S = S◦: equivalently, this means that whenever S contains a point, it contains an open disk
about that point. We say that a subset S ⊂ C is closed if S ⊃ ∂S: that is, it contains its boundary.

Thus we see that open disks are open sets and closed disks are closed sets. (Good!) Note well: a
set need not be either open or closed. Indeed, as above if we take something strictly between an
open disk and the corresponding closed disk then it is neither open nor closed.

Proposition 1.9. For a subset S ⊂ C, the following are equivalent.
(i) The set S is closed.
(ii) The set C \ S is open.

Proof. (i) =⇒ (ii): Suppose S is closed, and let z ∈ C \ S. We want to show that z lies in the
interior of C \S. Suppose not: that means that for all r > 0, the open disk Bz(r) is not contained
in C \ S. In turn this means that for all r > 0, the open disk Bz(r) intersects S. By definition
then z ∈ ∂S. Since S is closed, we get z ∈ S, contradicting the fact that z ∈ C \ S.
(ii) =⇒ (i): It is very similar: suppose C \ S is open, and let z ∈ ∂S. If z were not in S then z
would lie in the open set C \ S and thus Bz(r) ⊂ C \ S for some r > 0 – but this contradicts the
fact that z ∈ ∂S. �

Let z ∈ C. A subset S ⊂ C is a neighborhood of z if z ∈ S◦. To spell this out, it means
that there is R > 0 such that the open disk Bz(R) is contained in S. A set is open iff it is a
neighborhood of its points.

Let S ⊂ C. A point z ∈ S is isolated if for some r > 0 we have Bz(r) ∩ S = {z}: that is,
there is some open disk around z which contains no points other than z than z itself. A point
z ∈ C is an accumulation point of S if for all r > 0, the disk Bz(r) contains a point of S \ {z}.
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Example 1.10. a) If S is finite, then ∂S = S and every point of S is isolated.
c) Let S be an open disk. Then every point of S is an accumulation point and no point of S is a
boundary point.

The previous example shows that a boundary point need not be an accumulation point and an
accumulation point need not be a boundary point. However:

Proposition 1.11.
a) Let S ⊂ C, and let z ∈ C \ S. Then z ∈ ∂S iff z is an accumulation point of S.
b) Thus a subset S ⊂ C is closed iff it contains all of its accumulation points.

Proof. a) Suppose z ∈ C \ S. If z were not an accumulation point then there is some r > 0 such
that Br(z)∩ (S \{z}) = ∅. But since z /∈ S, this means that Br(z)∩S = ∅, so z is not a boundary
point. Conversely, if z is an accumulation point then every open disk around z contains points of
S and – since z /∈ S – also points outside of S.
b) Indeed, S is closed iff there is no z ∈ C that lies in ∂S but not in S. By part a), this holds
iff there is no z ∈ C that is an accumulation point of S but does not lie in S – in other words, S
contains all its accumulation points. �

An open subset S of C is connected if it is nonempty and is not the disjoint union of two nonempty
open subsets. In complex analysis, a domain is a connected open subset U ⊂ C. The name is
chosen because whereas in calculus we study functions f : I → R for an interval in R, in complex
analysis we study functions f : U → C.

Paths: Let γ : [a, b]→ R2 be a function. Then we can write

γ(t) = (x(t), y(t))

where x : [a, b]→ R and y : [a, b]→ R are functions. Equivalently, a function γ : [a, b]→ C can be
written in the form

γ(t) = x(t) + iy(t),

i.e., both its real part and imaginary part are functions. This gives us an easy way to discuss
continuity and diffrentiability of such functions. We say that γ is continuous iff both x(t) and y(t)
are continuous. We say that γ is differentiable if both x(t) and y(t) are differentiable, and we
say that γ is smooth if both x(t) and y(t) are differentiable and for all t ∈ [a, b] either x′(t) 6= 0
or y′(t) 6= 0. Equivalently, we have a well-defined, nonzero velocity vector at every point. A path
is piecewise smooth if it is smooth except for finitely many points. A path is polygonal if it
consists of straight line segments. A polygonal path is piecewise smooth and is not smooth pre-
cisely at the points where we change from one line segment to another line segment of different slope.

A path γ is called closed if γ(a) = γ(b). A path γ is simple if for all c, d ∈ [a, b), we have
γ(c) 6= γ(d). In other words, a simple path does not cross itself except that the initial point and
the terminal point are allowed to be the same.

A subset S ⊂ C is path connected if for all z, w ∈ C there is a path γ : [0, 1] → S such
that γ(0) = z and γ(1) = w. For instance, open and closed disks are path connected. In fact, they
are convex: we can get from any point to any other point by a single line segment.

Theorem 1.12. For a nonempty open subset U ⊂ C, the following are equivalent:
(i) U is connected.
(ii) U is path connected.
(iii) U is xy-connected: any two points of U can be connected by a polygonal path each segment
of which is either horizontal or vertical.
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Proof. (i) =⇒ (iii): Fix z ∈ U , and let V1 be the set of all w ∈ U such that there is an xy-path
– i.e., a path obtained by concatenating horizontal and vertical line segments – γ : [a, b]→ U that
starts at z and ends at w. Let V2 := U \ V1, so V1 and V2 are disjoint subsets of U with union U .
We claim that V1 and V2 are both open subsets of C. If so, because we have assumed that U is
connected and we know that V1 is nonempty – indeed, taking a constant path at z shows z ∈ V1 –
we must have V2 = ∅. This means precisely that U is path connected.

Before establishing that V1 and V2 are open we make two simple observations:
• If γ1 is an xy-path from a to b and γ2 is an xy-path from b to c, then the concatenation γ2γ1 is
an xy-path from a to c.
• If B is an open disk in the plane, then any two points a, b ∈ D can be connected by an xy-path
lying entirely in B. Indeed, clearly the center of the disk can be connected to any other point by
an xy-path with two line segments, which by the previous observation means that any two points
in the disk can be connected by an xy-path with four line segments.2

To see that V1 is open: suppose w ∈ V1. Since U itself is open, there is some open disk Bw(ε)
contained in U . Any point v ∈ Bw(ε) can be connected to w by an xy-path γ2. Since w ∈ V1,
there is an xy-path γ1 from z to w. Concatenating γ1 and γ2 gives a path from z to v. This shows
that Bw(ε) ⊂ V1 and thus that V1 is open. Now suppose w ∈ V2. The argument is in fact very
similar: let Bw(ε) be an open disk centered at w that is contained in U . As above, every point v
of this disk can be connected to w via an xy-path γ2. In fact this implies that there is no xy-path
γ1 from z to v, because then concatenating γ1 and γ2 would give an xy-path from z to w, but by
definition of V2 there is no such path. It follows that Bw(ε) ⊂ V2, so V2 is open.
(iii) =⇒ (ii): Since an xy-path is a kind of path, this is immediate.
(ii) =⇒ (i): (Following [FB]) We say a function f : U → C is locally constant if for all z ∈ U ,
there is ε > 0 such that Bz(ε) ⊂ U and the function F is constant on Bz(ε). Every constant
function is locally constant. We observe that U is connected if and only if every locally contant
function is constant. Indeed, if U is not connected, then it can be partitioned into two open
subsets V1 and V2. Defining f to be 1 on V1 and 0 on V2 gives a locally constant function that is
not constant. Conversely, if f : U → C is a locally constant function that is not constant, choose
z ∈ U , and put

V1 := f−1({f(v)}), V2 := f−1(C \ {f(v)}).
In other words, V1 is the set of w ∈ U such that f(w) = f(z) and V2 is its complement. Because f
is locally constant, V1 and V2 are both open sets. The set V1 is not empty because it contains z.
The set V2 is nonempty because f is not constant. Thus V1 and V2 give a partition of U into open
sets, so U is disconnected.

Now we assume that U is path connected, and let f : U → C be a locally constant function.
It suffices to show that f is constant: in other words, given z1, z2 ∈ U , we must show that
f(z1) = f(z2). Let γ : [a, b] → U be a path with γ(a) = z1 and γ(b) = z2. Consider the function
g : [a, b] → C given by g = f ◦ γ. Let t ∈ [a, b]. There is ε > 0 such that f is constant on
Bγ(t)(ε); since γ is continuous, there is δ > 0 such that for all s ∈ [a, b] with |s − t| < δ, we have
|γ(s) − γ(t)| < ε: in other words, γ maps (t − δ, t + δ) into Bγ(t)(ε). Thus g = f ◦ γ is constant
on (t − δ, t + δ). In other words, g is also locally constant, meaning that its real and imaginary
parts are each locally contant functions form [a, b] to R. Such a function must have identically zero
derivative and thus (by the Mean Value Theorem) be constant. In particular we have

f(z1) = f(γ(a)) = g(a) = g(b) = f(γ(b)) = f(z2).

So f is constant. �

2In fact any two points can be connected by an xy-path with four line segments. Prove this if you want!
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Remark 1.13. a) The definitions of connected and path connected apply in any topological space.
In any topological space we have that path connectedness implies connectednesss. The standard
proof of this uses the facts that an interval on the real line is connected and that the image of a
connected space under a continuous function is again connected. The argument given here is a bit
different and less general.
b) From this more general perspective it is quite “lucky” that connected open subsets of C are path
connected. This does not even hold for closed, bounded subsets of C. If you are interested, look up
the topologist’s sine curve.

Exercise 1.10. Let I be an interval on the real line. Use the Mean Value Theorem to show that
every locally constant function f : I → R is constant, and deduce that I is connected.

1.6. Sequences and convergence. Next we study sequences in C. All of these concepts stem
from the notion of distance between points. We define the distance between points w, z ∈ C as
|z − w|. This is a special case of the notion of distance between vectors in RN , namely

d(x, y) := ||x− y||.

We note in passing that all of the concepts that we define in this section makes sense in RN and
in fact much more generally.

A metric space is a set X together with a metric function

d : X ×X → R≥0

satisfying the following properties:
(MS1) For all x, y ∈ X, we have d(x, y) = 0 ⇐⇒ x = y.
(MS2) For all x, y ∈ X, we have d(x, y) = d(y, x).
(MS3) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

The idea is that given these axioms, it is reasonable to interpret d(x, y) as the distance between
x and y. In Rn we take the (standard Euclidean) metric function to be

d(x,y) = ||x− y||.

(MS1) and (MS2) are immediate, and (MS3) follows from the triangle inequality:

d(x, z) = ||x− z|| = ||(x− y) + (y − z)|| ≤ ||x− y||+ ||y − z|| = d(x, y) + d(y, z).

The following concepts from Math 3100 make sense in the context of any metric space: sequences,
subsequences, boundedness, convergent sequences and Cauchy3 sequences. Let us briefly make
these definitions in this level of generality, although we will soon restrict to the case of C. Namely:

• A sequence in a metric space (X, d) is just a function x• : Z+ → X. As usual we write it
{xn}∞n=1.
• A subsequence of a sequence is obtained by selecting an infinite subset of Z+ and restricting to
those terms, or more formally, by composing x• with a strictly increasing function Z+ → Z+.
• In any metric space (X, d), for x ∈ X and r > 0 we define the open disk

B◦(x, r) = {y ∈ X | d(x, y) < r}.

3Augustin-Louis Cauchy, 1789-1857 was a French mathematician. A really excellent French mathematician:
more theorems and concepts bear his name than anyone else. The field of complex analysis is due to him – not

quite single-handedly, but close.
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That is, it is the set of all points of X whose distance from x is less than r. For r ≥ 0 we define
the closed disk

B•(x, r) = {y ∈ X | d(x, y) ≤ r}.
That is, it is the set of all points of X whose distance form x is at most r.

Notice that in R itself, an open disk is just an open interval centered at x and a closed disk is
just a closed interval centered at x. However, in R2, an open disk is the set of points lying inside a
circle centered at x of radius r – i.e., a legitimate disk – and an open disk is the set of points lying
on or inside a circle centered at x of radius r.
• A subset S ⊂ X is bounded if it is contained in some closed disk.
• Let {xn}∞n=1 be a sequence in the metric space (X, d) and let x ∈ X. We say that the sequence
converges to x if for all ε > 0, there is N ∈ Z+ such that for all n > N we have d(xn, x) < ε. We
write this symbolically as

xn → x.

A sequence is convergent if it converges to some x ∈ X. Notice that this directly generalizes the
definition of convergence in R, in which the distance between xn and x is given by |xn − x|.

Here is one familiar and easy (but important) result.

Proposition 1.14. Let {xn} be a sequence in a metric space X. If L,M ∈ X are such that
xn → L and xn →M , then L = M .

Proof. Suppose L 6= M , and let ε := d(L,M)
2 . Then there is N1 ∈ Z+ such that for all n > N we

have d(xn, L) < ε: equivalently, we have xn ∈ BL(ε). Similarly there is N2 ∈ Z+ such that for all
n > N we have d(xn,M) < ε: equivalently, we have xn ∈ BM (ε). Let N = max(N1, N2). Then for
all n > N we have xn ∈ BL(ε) ∩BM (ε). But our choice of ε makes

BL(ε) ∩BM (ε) = ∅,

a contradiction! So we must have L = M . �

Using sequences we get another characterization of closed sets.

Proposition 1.15. For a subset S of a metric space (X, d), the following are equivalent:
(i) S is closed.
(ii) Suppose {xn} is a sequence in S that converges to some x ∈ X. Then x ∈ S.

Proof. (i) =⇒ (ii): Suppose X is closed, and let {xn} be a sequence in S converging to some
x ∈ X. Seeking a contradiction we suppose that x does not lie in S. For all ε > 0, Bx(ε) contains
xn for all but finitely many n ∈ Z+, so in particular it contains a point of S different from x. Thus
x is an accumulation point of S. Since S is closed, this means x ∈ S.
(ii) =⇒ (i): We will prove the contrapositive: if S is not closed, then there is some x ∈ X \ S
that is an accumulation point of S. For all n ∈ Z+, let xn be a point of S such that d(xn, x) < 1

n .
Then xn → x. �

• A sequence {xn} in the metric space (X, d) is Cauchy if for all ε > 0, there is N ∈ Z+ such that
for all m,n > N we have d(xm, xn) < ε.

Theorem 1.16. Let {xn}∞n=1 be a sequence in RN (with the standard Euclidean metric), and let
x ∈ Rn. The following are equivalent:
(i) We have xn → x.
(ii) For 1 ≤ i ≤ N , the sequence {xn,i} of ith components converges to the ith component xi of x.
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Proof. The main idea is just that for y = (y1, . . . , yN ) ∈ RN , we have that ||y|| is small iff |yi| is
small for all i. A bit more formally: for any 1 ≤ i ≤ N , we have

|yi| ≤
√
y21 + . . .+ y2N = ||y||.

(After squaring both sides, this becomes y2i ≤ y21 + . . . + y2N .) Conversely, if |yi| ≤ ε for all
1 ≤ i ≤ N , then |yi|2 ≤ ε2 for all i, so

|y1|2 + . . .+ |yN |2 ≤ Nε2

and thus
||y|| =

√
|y1|2 + . . .+ |yN |2 ≤

√
Nε.

Since here N is fixed, this is good enough for us. Now to the formal proof.
(i) =⇒ (ii): Suppose xn → x, fix 1 ≤ i ≤ N , and let ε > 0. Then there is M ∈ Z+ such that for
all n > M we have ||xn − x|| < ε, and thus

|xn,i − xi| ≤ ||xn − x|| < ε.

It follows that xn,i → xi.
(ii) =⇒ (i): Suppose that xn,i → xi for all 1 ≤ i ≤ N . Thus for all 1 ≤ i ≤ N there is Mi ∈ Z+

such that for all n > Mi we have |xn,i − xi| < ε√
N

. Take M = max(M1, . . . ,MN ). Then for all

n > M we have

||xn − x|| ≤
√
N

(
ε√
N

)
= ε. �

Exercise 1.11. Let {xn}∞n=1 be a sequence in RN . Show that the following are equivalent:
(i) The squence {xn} is bounded.
(ii) For all 1 ≤ i ≤ qN , the sequence {xn,i} of ith components is bounded.

Proposition 1.17. Let (X, d) be a metric space, and let {xn} be a convergent sequence in X.
Then {xn} is a Cauchy sequence.

Proof. We know this result when X is the real numbers with the standard Euclidean metric, and
the proof carries over easily. Namely, suppose that xn → x, fix ε > 0, and choose M ∈ Z+ such
that for all n > M we have d(xn, x) < ε

2 . Then if m,n > N we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) = d(xm, x) + d(xn, x) <
ε

2
+
ε

2
= ε. �

Proposition 1.18. Let (X, d) be a metric space, and let {xn} be a Cauchy sequence in X. Then
{xn} is bounded.

Proof. LetM ∈ Z+ be such that ifm,n ≥M we have d(xm, xn) < 1. LetD = max1≤n≤M d(x1, xn).
We claim that for all n ∈ Z+ we have d(x1, xn) ≤ D + 1 and thus the entire sequence lies in the
closed disk of radius D+1 centered at x1. So let n ∈ Z+. If n ≤M this is clear from the definition
of D. If n > M , then we have

d(x1, xn) ≤ d(x1, xM ) + d(xM , xn) ≤ D + 1. �

Proposition 1.19. Let {xn} be a Cauchy sequence in a metric space (X, d). If {xn} admits a
convergent subsequence, then it is itself convergent.

Proof. Suppose the subsequence {xnk}∞k=1 converges to x. Fix ε > 0. Let M ∈ Z+ be such that if
max(m,n) > M , then d(xm, xn) < ε

2 . Let K ∈ Z+ be such that nK ≥ M and d(xnK , x) < ε
2 . If

n > M , then we have

d(xn, x) ≤ d(xn, xnK ) + d(xnK , x) <
ε

2
+
ε

2
= ε. �
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Theorem 1.20. (Bolzano4-Weierstrass5 in RN )
Every bounded sequence in RN admits a convergent subsequence.

Proof. The idea is to exploit the Bolzano-Weierstrass Theorem in R (which we take as known; it
is one of the cornerstones of Math 3100) by repeatedly passing to subsequences. Namely, let x be
a bounded sequence in RN . By Exericse 1.11, this means that for all 1 ≤ i ≤ N , the sequence
xn,i of ith components is also bounded. So, by Bolzano-Weierstrass in R, there is a subsequence
– let’s call it yn – of xn such that the sequence yn,1 of first components converges, say to L1.
Now we move on to to the second component, using yn instead of xn: the sequence yn,2 of second
components is bounded, so by Bolzano-Weierstrass in R, there is a subsequence – let’s call it zn –
of yn such that yn,2 converges, say to L2. Since a subsequence of a convergent sequence remains
convergent, also yn,1 → L1. And now we move on to the third component and extract another
subseuqence...and so forth. At the end, after passing to a subsequence N times we get a sequence
– let’s call it ωn – such that ωn,i → Li for all 1 ≤ i ≤ N , and thus ωn → (L1, . . . , LN ). The
sequence ωn is still a subsequence of the original sequence x, so we’re done. �

Recall that one version of the fundamental completeness property of R is that every Cauchy
sequence in R is convergent. This is not true in an arbitrary metric space: e.g. it is not true in the
rational numbers with the same distance function d(x, y) = |x − y| inherited from Rn. A metric
space (X, d) is complete if every Cauchy sequence converges.

Theorem 1.21. The space Rn endowed with the standard Euclidean metric, d(x,y) = ||x − y||,
is a complete metric space.

Proof. Let {xn}∞n=1 be a Cauchy sequence in RN . By Proposition 1.18, {xn} is bounded. By
Bolzano-Weierstrass, the sequence {xn} admits a convergent subsequence. So {xn}∞n=1 is conver-
gent by Proposition 1.19. �

1.7. Continuity and limits. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is continuous at x ∈ X if: for all ε > 0, there is δ > 0 such that for all x′ ∈ X, if d(x, x′) < δ
then d(f(x), f(x′)) < ε. A function f : X → Y is continuous if it is continuous at every x ∈ X.

Example 1.22. Let f : C→ C by f(z) = z2. We will show – from scratch – that f is continuous.
Let c ∈ C, and let ε > 0. We must find δ > 0 such that if |z − c| < δ then |z2 − c2| < ε. Well, we
have |z2 − c2| = |z + c||z − c|. Let us first agree to take δ ≤ 1, i.e., |z − c| ≤ 1. Then (e.g. by the
Reverse Triangle Inequality) we have

|z| ≤ |c|+ 1.

So
|z + c| ≤ |z|+ |c| ≤ 2|c|+ 1,

and thus
|z2 − c| = |z + c||z − c| ≤ (2|c|+ 1)|z − c| < ε

iff |z − c| < ε
2|c|+1 . Thus if we take

δ := min

(
1,

ε

2|c|+ 1

)
,

4Bernardus Placidus Johann Nepomuk Bolzano, 1781-1848, was an Italian-Bohemian mathematician, logician,
philosopher, theologian and Catholic priest. He had critical early contributions to the field of mathematical analysis,

which unfortunately were largely overlooked in his lifetime.
5Karl Theodor Wilhelm Weierstrass, 1815-1896, was a German mathematician. He is “the father of modern

analysis” – all the fundamental definitions of convergence involving ε’s are due to him. In the area of complex
analysis, he is second only to Cauchy. Whereas Cauchy based his theory around contour integrals, Weierstrass

emphasized power series expansions. In this course we will recapitulate history: first Cauchy, then Weierstrass.
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then |z − c| < δ =⇒ |z2 − c2| < ε.

Proposition 1.23. Let f : (X, dX) → (Y, dY ) be a continuous function between metric spaces.
Let x be a sequence in X. If x converges to L ∈ X, then f(x) converges to f(L) ∈ Y .

Proof. Let ε > 0. Then there is δ > 0 such that for x ∈ X, if d(x, L) < δ then d(f(x), f(L)) < ε.
Moreover there is N ∈ Z+ such that for n > N we have d(xn, L) < δ. So, for n > N we have
d(f(xn), f(L)) < ε. �

Now let (X, dX) and (Y, dY ) be metric spaces, and let x ∈ X. We want to define the notion of a
function f : X \ {x} → Y having a limit at x. We will define this concept in terms of continuity,
which is a little simpler and more intuitive. First we need the following observation.

Lemma 1.24. Let (X, dX) and (Y, dY ) be metric spaces, and let x ∈ X. Let f : X \ {x} → Y be
a function.
a) If x is an isolated point of X, then f is continuous at x no matter how we define f at x.
b) If x is an accumulation point of X, then there is at most one y ∈ Y such that defining f(x) := y
makes f continuous at x.

Proof. a) Let y ∈ Y and put f(x) := y. Since x is isolated in X, there is δ > 0 such that Bx(δ) =
{x}. But this δworks for all ε, since if d(x, x′) < δ we must have x′ = x and d(f(x), f(x′)) = 0 < ε.
b) Suppose that y ∈ Y is such that putting f(x) := y makes f continuous at x. Since x is an
accumulation point of X, there is a sequence xn ∈ X \ {x} such that xn → x. By Proposition 1.23
it follows that

y = f(x) = lim
n→∞

f(xn).

But now we’ve won: clearly if we changed y to any other y′ ∈ Y , the above would not be true.
This completes the proof. �

Now we can give the desired definition of a limit of a function at an accumulation point x ∈ X.
Namely, if f : X \ {c} → Y is a function, we say that limx→c f(x) = L if defining f(x) := L makes
f continuous at x. By Lemma 1.24 there is at most one such L, so the definition works. (Of course
there need not be any such L, i.e., the limit need not exist. But this should be familiar even from
freshman calculus.)

Okay, we can certainly reformulate this in the usual terms: if f : X \ {c} → Y is a function,
we say limx→c f(x) = L if: for all ε > 0, there is a δ > 0 such that for all x ∈ X \ {c}, if d(x, c) < δ
then d(f(x), f(c)) < ε.

Proposition 1.25. Let a be an accumulation point of the metric space X and let f : X \{a} → Y
be a function. Suppose limx→a f(x) = L. Then if {xn} is any sequence in X \ {a} such that
xn → a, then f(xn)→ f(L).

Proof. Definining f(a) := L, we get a function f : X → Y that is continuous at a. The result now
follows from Proposition 1.23. �

Theorem 1.26. Let X, Y and Z be metric spaces. Let f : X → Y and g : Y → Z be functions.
Suppose f is continuous at a ∈ X and g is continuous at f(a) ∈ Y . Then g ◦ f is continuous at a.

Proof. Let ε > 0. Since g is continuous at f(x), there is η > 0 such for all y ∈ Y , if d(y, f(a)) < η
then f(g(y), g(f(a)) < ε. Since f is continuous at a, there is δ > 0 such that for all x ∈ X, if
d(x, a) < δ then d(f(x), f(a)) < η. It follows then that if d(x, a) < δ then d(g(f(x)), g(f(a))) < ε.
So g ◦ f is continuous at a. �

Here is an analogous statement in which we only assume that limx→a f(x) exists.
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Theorem 1.27. Let X, Y and Z be metric spaces, and let a ∈ X be an accumulation point. Let
f : X \ {a} → Y and g : Y → Z be functions. Suppose that limxraa f(x) = L ∈ Y and that g is
continuous at L. Then

lim
x→a

g(f(x)) = g(L) = g( lim
x→a

f(x)).

Proof. If we define f(a) := L then we can apply the previous result! �

1.8. The Extreme Value Theorem.

Theorem 1.28. Let A ⊂ RN be closed and bounded, and let f : A → R be continuous. Then f
has minimum and maximum values. That is:
a) There is xm ∈ A such that f(xm) ≤ f(x) for all x ∈ A.
b) There is xM ∈ A such that f(xm) ≥ f(x) for all x ∈ A.

Proof. Step 1: We show that f is bounded. Seeking a contradiction, we assume not. Then it is
either unbounded above, in which case there is a sequence {xn} in A such that f(xn)→∞ or it is
unbounded below, in which case there is a sequence {xn} in A such that f(xn)→ −∞ (or both).
We may as well assume that f is unbounded above; the other case can be handled very similarly.
Since A is bounded, by the Bolzano-Weierstrass Theorem the sequence {xn} admits a convergent
subsequence {xnk}, say xnk → x. Since A is closed, we have x ∈ A by Proposition 1.15. But since
a subsequence of a sequence that diverges to ∞ also diverges to ∞, we have on the one hand that

f(xnk)→∞,
while on the other hand, since xnk → x and f is continuous, we have

f(xnk)→ f(x),

a contradiction. So indeed f is bounded.
Step 2: Since f is bounded, the supremum of the set f(A) is finite; call it M . We want to show
that there is xM ∈ A such that f(xM ) = M . Again, suppose not; then we can define g : A→ R by
g(x) := 1

M−f(x) . Since f is continuous, so is g. However, because f(x) takes values arbitrarily close

to M , M − f(x) takes values arbitrarily close to zero and thus g : A→ R is a continuous function
that is unbounded above, contradicting Step 1. So there is xM ∈ A such that f(xM ) = M , and
thus f(xM ) ≥ f(x) for all x ∈ A. Again a very similar argument shows the existence of xm ∈ A
such that f(xm) ≤ f(x) for all x ∈ A. �

A metric space is called sequentially compact if every sequence admits a convergent subsequence.
The above proof works to show that if X is sequentially compact and f : X → R is continuous,
then f has minimum and maximum values.

Exercise 1.12. Let A ⊂ RN be a subset that is not both closed and bounded. Show that there is a
continuous function f : A → R that is unbounded above. (Suggestion: consider the case in which
A is not bounded and A is not closed separately.)

2. Complex derivatives

2.1. Limits and continuity of functions f : A ⊂ C→ C. Like R, C is both a metric space and
a field. And like R, these operations play well with each other, which gets calculus off the ground.
Here are some familiar facts from calculus with R replaced by C. The proofs are virtually identical
to their real counterparts.

Lemma 2.1. (Upper and Lower Bounds for Continuous Functions) Let c ∈ A ⊂ C and f : A→ C
be a function that is continuous at c.
a) For any ε > 0, there is a δ > 0 such that for all z ∈ A, if |z − c| < δ then |f(z)| ≤ |f(c)|+ ε.
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b) Suppose f(c) 6= 0. Then for any α ∈ (0, 1), there is a δ > 0 such that for all z ∈ A, if |z−c| < δ,
then |f(z)| ≥ α|f(c)|.

Proof. a) For any ε > 0, there is δ > 0 such that for all z ∈ A, if |z− c| < δ then |f(z)− f(c)| < ε.
By the Reverse Triangle Inequality, we have

|f(z)| − |f(c)| ≤ |f(z)− f(c)| < ε,

so
|f(z)| ≤ |f(c)|+ ε.

b) There is δ > 0 such that |z − c| < δ implies |f(z)− f(c)| < (1− δ)|f(c)|. The Reverse Triangle
Inequality yields

|f(z)| − |f(c)| ≤ |f(z)− f(c)| < (1− δ)|f(c)|,
so

|f(z)| > |f(c)| − (1− δ)|f(c)| = δ|f(c)|. �

Theorem 2.2. Let A ⊂ C, let f, g : A→ C, and suppose that f and g are continuous at c ∈ A.
a) For all α ∈ C, αf is continuous at c.
b) f + g is continuous at c.
c) fg is continuous at c.

d) If g(c) 6= 0, then f
g is continuous at c.

Proof. a) If α = 0 then αf is the constant function, which is continuous at all points: take δ = 1
for all ε! So suppose α 6= 0. Let ε > 0. Since f is continuous at c, there is δ > 0 such that for all
z ∈ A, if |z − c| < δ then |f(z)− f(c)| < ε

|α| . Thus |αf(z)− αf(c)| < ε.

b) Choose δ1 > 0 such that |z − c| < δ1 implies |f(z) − f(c)| < ε
2 . Choose δ2 > 0 such that

|z − c| < δ2 implies |g(z) − g(c)| < ε
2 . Let δ = min(δ1, δ2). Then |z − c| < δ implies |z − c| < δ1

and |z − c| < δ2, so

|f(z) + g(z)− (f(c) + g(c))| ≤ |f(z)− f(c)|+ |g(z)− g(c)| < ε

2
+
ε

2
= ε.

c) There is δ1 > 0 such that

|z − c| < δ1 =⇒ |f(z)| − |f(c)| ≤ |f(z)− f(c)| < 1

and thus |f(z)| ≤ |f(c)|+ 1. There is δ2 > 0 such that

|z − c| < δ2 =⇒ |g(z)− g(c)| < ε

2(|f(c)|+ 1)
.

Finally, there exists δ3 > 0 such that

|z − c| < δ3 =⇒ |f(z)− f(c)| < ε

2|g(c)|
.

(Here we are assuming that g(c) 6= 0. If g(c) = 0 then we simply don’t have the second term in
our expression and the argument is similar but easier.) Taking δ = min δ1, δ2, δ3, for |z − c| < δ
then |z − c| is less than δ1, δ2 and δ3 so

|f(z)g(z)− f(c)g(c)| ≤ |f(z)||g(z)− g(c)|+ |g(c)||f(z)− f(c)|

< (|f(c)|+ 1) · ε

2(|f(c)|+ 1)
+ |g(c)| ε

2|g(c)|
=
ε

2
+
ε

2
= ε.

d) We apply Lemma 2.1b) with α = 1
2 : there is δ1 > 0 such that |z− c| < δ1 implies |g(z)| ≥ |g(c)|2

and thus also
1

|g(z)||g(c)|
≤ 2

|g(c)|2
.
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Also there exists δ2 > 0 such that |z−c| < δ2 implies |g(z)−g(c)| <
(
|g(c)|2

2

)
ε. Take δ = min(δ1, δ2).

Then |z − c| < δ implies

| 1

g(z)
− 1

g(c)
| =

(
1

|g(z)||g(c)|

)
|g(z)− g(c)| < 2

|g(c)|2

(
|g(c)|2

2

)
ε = ε. �

Theorem 2.3. Let f, g : A→ C, let c ∈ A be an accumulation point, and suppose that limz→c f(z) =
L and limz→c g(z) = M .
a) For all α ∈ C, we have limz→c αf(z) = αL.
b) We have limz→c f(z) + g(z) = L+M .
c) We have limz→c f(z)g(z) = LM .

d) If M 6= 0, then limz→c
f(z)
g(z) = L

M .

Proof. This follows from the corresponding statements of Theorem 2.2 upon defining f(c) := L
and g(c) := M . �

Corollary 2.4. a) Let P (z) = anz
n + . . .+ a1z+ a0 with a0, . . . , an ∈ C be any polynomial. Then

P defines a continuous function from C to C.

b) Let R(z) = P (z)
Q(z) be a rational function – i.e., a quotient of two polynomials with Q not the zero

polynomial. Let Z := {z ∈ C | Q(z) = 0} – a finite set. Then R defines a continuous function
from C \ Z to C.

Proof. Certainly the function f(z) = z is continuous on C: take δ = ε. The result now follows
immediately from Theorem 2.3 �

Ho hum. No, but actually WAKE UP!! Notwithstanding these banal formalities, in many ways
limits in C are more interesting than limits in R. The following example serves to illustrate this.

Example 2.5.
a) Let f(z) = z, viewed as a function from C to C. Then f is continuous. In fact it is distance
preserving (a.k.a.: an isometry) and all such maps are continuous with ε = δ: if |z − c| < ε then

|z − c| = |z − c| = |z − c| < ε.

b) Consider the function f : C \ {0} → C given by f(z) = z
z . It follows from part a) and Theorem

2.2 that f is continuous. However, what about limz→0 f(z)? We observe that for all z ∈ C \ {0}
we have |f(z)| = | zz | =

|z|
|z| = 1, so f does not “blow up” as we approach 0. Nevertheless the limit

does not exist. To see this, first suppose that z is real. Then f(z) = 1. In particular, consider
the sequence xn = 1

n . Then xn → 0 and each xn is real, so f(xn) = 1 → 1. Now suppose that

z = ix for x real. Then z = ix = −ix = −z, so f(z) = −1. So consider the sequence yn = i
n .

Then yn → 0 and f(yn) = −1 → −1. This shows that limz→0 f(z) does not exist: if it did, then
by Proposition 1.25, for any two sequences xn and yn converging to zero, f(xn) and f(yn) would
converge to the same limit.

There is a deeper moral to be extracted from the above example. In calculus one decomposes the
notion of a limit into “left hand limits” and “right hand limits”: this gives a sense in which there
are “two ways for x to approach c in R”. In the complex plane there are infinitely many ways to
approach c, because there are infinitely many slopes of lines in the plane.

(Actually, even this is not enough.

Exercise 2.1. Let f : C \ {0} → C be given by f(x+ iy) = x2y
x4+y2 .

a) Show that along any line through 0, f approaches 0.
b) Show that along the parabola y = x2, f approaches 1

2 .
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But for differentiable functions, this moral will hold true, as we will soon see.)

2.2. Complex derivatives. Let A ⊂ C, and let c ∈ A◦. Let f : A → C. We say that f is
differentiable at c if

lim
z→c

f(z)− f(c)

z − c
exists. If so, we denote the value by f ′(z) and call it the derivative of f .

Example 2.6. (Quelle surprise)
a) The function f : C→ C by f(z) = z is differentiable at all points, and f ′(z) = 1. We have

f ′(c) = lim
z→c

z − c
z − c

= lim
z→c

1 = 1.

b) The function f : C → C given by f(z) = z2 is differentiable at all points, and f ′(z) = 2z.
Indeed, we have

f ′(c) = lim
z→c

z2 − c2

z − c
= lim
z→c

(z + c)(z − c)
z − c

= lim
z→c

z + c = 2c.

Notice that in each case we have used the following (easiest?) method for evaluating a derivative:
namely, simplify the difference quotient until it is clear how to extend it to a continuous function
at z = c. Then the limit is obtained by evaluating at c.
c) Let n ∈ Z+. The function f : C → C given by f(z) = zn is differentiable at all points, and
f ′(z) = nzn−1. Indeed, we have

f ′(c) = lim
z→c

zn − cn

z − c
= lim
z→c

(z − c)(zn−1 + zn−2c+ . . .+ zcn−2 + cn−1)

z − c
= lim
z→c

zn−1 + zn−2c+ . . .+ zcn−2 + cn−1 = cn−1 + . . .+ cn−1 = ncn−1.

Example 2.7. Consider f : C→ C by f(z) = z. We claim f is not differentiable at 0. Indeed,

f ′(0) = lim
z→0

z − 0

z − 0
= lim
z→0

z

z
,

and this is the limit that we showed did not exist in Example 2.5b).

Exercise 2.2. Adapt the method of Examples 2.5b) and 2.7 to show that f(z) = z is not differen-
tiable at any a ∈ C.

Now again we have a rather expected result.

Theorem 2.8. Suppose that f : A→ C and g : A→ C be functions. Let c ∈ A◦, and suppose that
f and g are differentiable at c. Also let h : B → C be a function with g(c) ∈ B◦, and suppose that
h is differentiable at g(c). Then:
a) For all α ∈ C, αf is differentiable at c and (αf)′(c) = αf ′(c).
b) The function f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).
c) (Product Rule) The function fg is differentiable at c and

(fg)′(c) = f ′(c)g(c) + f(c)g′(c).

d) (Quotient Rule) If g(c) 6= 0, then f
g is differentiable at c and(

f

g

)′
=
g(c)f ′(c)− f(c)g′(c)

g(c)2
.

e) (Chain Rule) The function h ◦ g is differentiable at c and

(h ◦ g)′(c) = h′(g(c))g′(c).
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Proof. The proofs are virtually identical to the real variable case: cf. e.g. [C-HC, §5.2].
�

We will also want the following variant of the Chain Rule for paths in C.

Theorem 2.9. (Chain Rule for Paths) Let h : B → C be a function, and let γ : [a, b] → B be a
smooth path. If for t0 ∈ [a, b] we have that h is differentiable at γ(t0), then the composite function
h ◦ γ : [a, b]→ C is differentiable at t0 and

(h ◦ γ)′(t0) = h′(γ(t0))γ′(t0).

Exercise 2.3. Prove Theorem 2.9.
(Suggestion: check that the proof of Theorem 2.8e) carries over essentially verbatim.)

If f is differentiable at all points on some open disk Bc(ε), then we say that f is holomorphic at c.

These notions are technically not the same.

Exercise 2.4. Let f : C→ C by f(z) = z2.
a) Show: f is differentiable at 0.
b) Show: f is not differentiable at any other point of C.
c) Conclude: f is not holomorphic at 0.

In practice it will be the holomorphic functions that we care about (and examples like the above
will not really arise for us).

A function f : C → C is entire if it is holomorphic at every point of C (equivalently, differ-
entiable at every point of C).

Exercise 2.5. a) Show that every polynomial P (z) = anz
n + . . .+ a1z + a0 is an entire function.

b) Show that every rational function R(z) = P (z)
Q(z) (where P and Q are polynomial functions of z)

is holomorphic on C \ Z, where Z = {z ∈ C | Q(z) = 0}.
c) Must every entire holomorphic function be a polynomial?

Theorem 2.10. (Inverse Function Theorem) Let U, V ⊂ C be open sets, and let f : U → V be a
bijection with inverse function g. Let d ∈ V . If f is differentiable at g(d), f ′(g(d)) 6= 0 and g is
continuous at d, then g is differentiable at d with

g′(d) =
1

f ′(g(d))
.

Proof. Put c := g(d) and

ϕ(w) :=

{
f(w)−f(c)

w−c w 6= c

f ′(c) f = c
.

Then ϕ is continuous at c. Using the identity f(g(z)) = z for all z ∈ V , we get

g′(d) = lim
z→d

g(z)− g(d)

z − d
= lim
z→d

g(z)− g(d)

f(g(z))− f(g(d))
= lim
z→d

1
f(g(z))−f(g(d))

g(z)−g(d)

= lim
z→d

1

ϕ(g(z))
=

1

ϕ(limz→d g(z))
=

1

f ′(c)
=

1

f ′(g(d))
. �

Remark 2.11. In fact, if U ⊂ C is open and f : U → C is continuous and injective, then
V := f(U) is necessarily open and the inverse function g : V → U is necessarily continuous. But
this is a deep theorem of L.E.J. Brouwer called Invariance of Domain. (Brouwer’s Theorem is
valid for RN in place of C.)
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Here is an interesting geometric property of holomorphic mappings.

Proposition 2.12. Let f : U → C be holomorphic at a ∈ C with f ′(a) 6= 0. Let γ1, γ2 be two
smooth paths in C passing through a, such that the tangent vectors make an angle of θ at a. Then
f ◦γ1 and f ◦γ2 are smooth paths passing through f(a) such that the tangent vectors make an angle
of θ at a.

Proof. Although we could go ahead with the proof, let’s work up to it by first considering the
case that f(z) = αz + b is a linear map. Then certainly f is holomorphic and the derivative is
f ′(z) ≡ α, so the hypothesis is that α 6= 0. Moreover, the map w 7→ w + b is just a translation
in the plane, hence certainly preserves angles so the basic case is f(z) = αz, and it comes down
to the geometry of multiplication...which we already know. Writing α = reiθ we express f as the
composition of the rotation z 7→ eiz and the dilation z 7→ rz. Both of these maps preserve angles.
The idea behind the general case is that the derivative is the linear approximation to the map f ,
and this should be enough to imply that since a linea map preserves angles, so does f .

Now we pursue the general case. Suppose γ1, γ2 : [0, 1] → C are smooth paths with γi(0) = a
for i = 1, 2. So the tangent vectors in question are γ′1(0) and γ′2(0); suppose they make an angle
of θ. Now Theorem 2.9 gives that for i = 1, 2 we have

d

dt
f(γi(t))|t=0 = f ′(γi(0))γ′i(0) = f ′(a)γ′i(0).

In other words, the two tangent vectors after applying f are precisely f ′(a) times the two tangent
vectors before applying f . So we have reduced the fact that multiplication by a nonzero complex
number preserves angles. �

A differentiable function f : R2 → R2 that preserves angles between tangent vectors is called
conformal or a conformal mapping. Thus Proposition 2.12 can be succinctly restated by
stating that a holomorphic function with nonvanishing derivative is conformal.

2.3. The Cauchy-Riemann Equations I. Recall that for a function f : R2 → R we have defined
partial derivatives

∂f

∂x
(x0, y0) := lim

x→x0

f(x, y0)− f(x0, y0)

x− x0
,
∂

∂y
(x0, y0) := lim

y→y0

f(x0, y)− f(x0, y0)

y − y0
.

That is: to define ∂f
∂x , we fix y = y0 and take the derivative as a function of x alone, whereas to

define ∂f
∂y we fix x = x0 and take the derivative of a function of y alone.

Now let f : C → C. Since C = R2 with some extra structure, we can regard f : R2 → C
and thereby define partial derivatives in exactly the same way, with the sole difference being that
we now get a complex number rather than a real number:

∂f

∂x
(x0, y0) := lim

x→x0

f(x, y0)− f(x0, y0)

x− x0
,
∂

∂y
(x0, y0) := lim

y→y0

f(x0, y)− f(x0, y0)

y − y0
.

But it may be helpful to spell it out: writing f(z) = u(z) + iv(z), this amounts to

∂f

∂x
(x0, y0) :=

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0),

∂f

∂y
(x0, y0) :=

∂u

∂y
(x0, y0) + i

∂v

∂y
(x0, y0).

The main question that launches this section is: if f : C → C, what is the relationship between
f being differentiable in the complex sense and the existence of the partial derivatives df

dx and df
dy
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– equivalently, of du
dx , du

dy , dv
dx , dv

dy ? There is a beautiful and useful answer given by the Cauchy-

Riemann6 equations. It comes in two parts, so first things first.

Theorem 2.13. (Cauchy-Riemann Equations, Part I) Let A ⊂ C, let z0 = x0 + iy0 ∈ A be an

accumulation point, and let f : A → C be a function. If f is differentiable at a, then df
dx and df

dy

both exist and we have

(8)
df

dx
(z0) = −i df

dy
(z0).

Proof. What we are assuming is that f ′(z0) = limz→z0
f(z)−f(z0)

z−z0 exists. The sole idea of the proof
is to take advantage of the fact that we are allowed to approach z0 in both the x and y directions.
Namely, first take z of the special form

z = x+ iy0.

Then

f ′(z) = lim
x+iy0→z0

f(x+ iy0)− f(z0)

(x+ iy0)− (x0 + iy0)
= lim
x→x0

f(x, y0)− f(x0, y0)

x− x0
=
∂f

∂x
(z0).

(In the penultimate inequality we have identified x + iy with (x, y)...as of course we did at the
beginning of the course.) Now we take z of the special form z = x0 + iy0. Then

f ′(z) = lim
x0+iy→z0

f(x0 + iy)− f(z0)

(x0 + iy)− (x0 + iy0)
= lim
y→y0

f(x0, y)− f(x0, y0)

i(y − y0)

=
1

i

df

dy
(z0) = −i df

dy
(z0).

So
df

dx
(z0) = f ′(z0) = −i df

dy
(z0). �

The Cauchy-Riemann equations can be rewritten in several convenient forms. First we rewrite
them in the form that is most traditional: taking f(z) = u(z)+ iv(z) as above, then we can replace
the one complex equation to two real equations:

du

dx
+ i

dv

dx
=
df

dx
= −i df

dy
= −i(du

dy
+ i

dv

dy
) =

dv

dy
− idu

dy
.

Equating real and imaginary parts we get that if f is differentiable at z0 then

(9)
du

dx
(z0) =

dv

dy
(z0),

dv

dx
(z0) = −du

dy
(z0).

Now we give yet another way to write partial derivatives, which it is perhaps best to think of as
simply being a different coordinate system from x and y. Namely, we define

∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

6Georg Friedrich Bernhard Riemann, 1826-1866, was a visionary German mathematician. After Cauchy and

Weierstrass he is the third founder of complex analysis. From a contemporary perspective, his geometric approach

– associating topological spaces to multivalued analytic functions – is perhaps the most important. Unfortunately
his ideas are hard to convey at the undergraduate level, and the geometric aspects of our course will be intermittent

and incomplete, though perhaps still suggestive.
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(You can “derive” these from the chain rule if you assume that ∂z
∂z = ∂z

∂z = 0.) In this notation,
Theorem 2.13 says that if f is complex differentiable at z0 then

∂f

∂z
(z0) = 0,

∂f

∂z
= f ′(z).

Exercise 2.6. Show that expressed in polar coordinates, the Cauchy-Riemann equations for f(z) =
u(z) + iv(z) read as follows:

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
.

Recall the “Zero Velocity Theorem”: that if I ⊂ R is an interval and f : I → R is differentiable
with f ′ ≡ 0, then f is constant. (In other words: if your instantaneous velocity is zero at any
point, then you are not moving.) Here the fact that the domain is an interval is needed for the
result to be true. For instance, let A = (−∞, 0) ∪ (0,∞). Then the function

f : D → R, x 7→

{
1 x > 0

−1 x < 0

is differentiable on D and has f ′(x) = 0 for all x ∈ D, but is not constant. Rather it is only
“locally constant” – i.e., it is constant in an open set around each point. It is a fact of topology
that a locally constant function on a connected space is actually constant. We will use a form of
this idea to prove the following complex analogue.

Theorem 2.14. (Complex Zero Velocity Theorem) Let D ⊂ C be a connected open set, and let
f : D → C. Suppose f is differentiable and that f ′(z) = 0 for all z ∈ D. Then f is constant.

Proof. Write f(z) = u(z) + iv(z) as usual. Then for all z ∈ D we have

0 = f ′(z) =
df

dx
=
du

dx
+ i

dv

dv
,

meaning that du
dx (z) = dv

dx (z) = 0. By the Cauchy-Riemann equations, this also implies that
dv
dy (z) = du

dx (z) = 0. We are therefore reduced to the following real variable statement: if D ⊂ R2

is a connected open set and g : D → R is a function such that dg
dx and dg

dy both exist and are

identically zero, then g is constant.
Indeed, fixing y and letting x vary, the real variable Zero Velocity Theorem shows that since

dg
dx ≡ 0, g is constant along each horizontal line. Similarly, fixing x and letting y vary, since dg

dy ≡ 0,

g is constant along each vertical line. By Theorem 1.12, any two points in D can be connected by
a path consisting of horizontal and vertical line segments, so it follows that g is constant. �

Exercise 2.7. Let U ⊂ C be a connected open set, and let f : U → C. Suppose that for some
n ∈ Z+, the function f is n times differentaible and f (n) = 0 for all z ∈ D. Show that f is given
by a polynomial of degree at most n.

Proposition 2.15. Let U ⊂ C be a domain, and let f : U → C be holomorphic. If f(z) ∈ R for
all z ∈ U , then f is constant.

Proof. Writing f(z) = u(z) + iv(z), our hypothesis on f is precisely that v = 0 on U . It follows of
course that ∂v

∂x = ∂v
∂y = 0, and thus by the Cauchy-Riemann equations we have

∂u

∂x
=
∂v

∂y
= 0,

∂u

∂y
= −∂v

∂x
= −0 = 0.

As in the proof of Theorem 2.14, this implies that u is constant. �
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Exercise 2.8. Let ` ⊂ C be a line, let U ⊂ C be a domain, and let f : U → C be a holomorphic
function such that f(U) ⊂ `. Show: f is constant. (Hint: there is α ∈ C× and β ∈ C such that
putting g(z) := αz + β, we have that {g(z) | z ∈ `} = R. Apply Proposition 2.15 to g ◦ f .)

2.4. Harmonic functions. Let U ⊂ C be a domain. A function f : U → R is harmonic if it has
continuous second order partial derivatives and satisfies the Laplace equation on U :

∆(f) :=
∂2f

∂x2
+
∂2f

∂y2
≡ 0.

Let us introduce an abbreviated notation for higher partial derivatives, e.g.

fxx :=
∂2f

∂x2
, fxy =

∂2f

∂x∂y

and so forth. So

∆(f) := fxx+ fyy.

The Laplace equation is probably the single most important example of a partial differential
equation (PDE), and harmonic functions are ubiquitous throughout pure and applied mathe-
matics. Well, another one of the most famous examples of PDEs is the Cauchy-Riemann equations,
and in fact the two are related. Suppose f(z) = u(z) + iv(z) : C → C is entire. (We could also
work with functions defined on a domain U ⊂ C, but for now we just want to hit the most basic
point.) Then at all points z ∈ C, we have du

dx = dv
dy and dv

dx = −dudy . Then since continuity of the

second partial derivatives ensures that fxy = fyx, we have

uxx = (ux)x = (vy)x = vyx = vxy = (vx)y = (−uy)y = −uyy
and thus

∆(u) = uxx + uyy ≡ 0.

That is, the real part of an entire function (with continuous second partials) is a harmonic function.
Similarly,

vxx = (vx)x = (−uy)x = −uyx = −uxy = −(ux)y = −(vy)y = −vyy,
so

∆(v) = vxx + vyy ≡ 0

and the imaginary part v of an entire function is also harmonic. Later we will see that for every
gunction u : R2 → R there is another harmonic function v : R2 → R – uniquely determined up to a
constant – such that f := u+iv is entire. (This is related to the multivariable calculus phenomenon
of a conversative vector field F : R2 → R2 being the gradient of a function – both cases are proved
via line integration.) We say that u and v are harmonic conjugates.

For domains D other than C itself, harmonic conjugates need not exist: this turns out to be
related to the topology of D. (Very roughly speaking, harmonic conjugates exist if D “has no
holes.”) On the other hand, the essential uniqueness of harmonic conjugates is much easier and
will be established now.

Theorem 2.16. Let D ⊂ C be an open connected set, and let u, v1, v2 : D → C be harmonic
functions, and put

f1(z) := u(z) + iv1(z), f2(z) := u(z) + iv2(z).

If f1 and f2 are both analytic on D, then v2 − v1 is constant.

Proof. Since f1 and f2 are both analytic, so is f1−f2
i = v1 − v2. But v1 − v2 is real-valued, so

Proposition 2.15 applies. �
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In other words, if a harmonic function u : D → C has any harmonic conjugate at all, then any two
harmonic conjugates differ by a constant. (Conversely, if v : D → C is any harmonic conjugate of
u then so is v + α for any α ∈ C.)

2.5. The Cauchy-Riemann Equations II. It turns out that there is an essential converse to
Theorem 2.13, as follows.

Theorem 2.17. Let A ⊂ C, let a ∈ A◦, and let f : A→ C. Suppose there is ε > 0 such that for all
z ∈ Ba(ε) the partial derivatives df

dx and df
dy exist, are continuous and satisfy the Cauchy-Riemann

equations: df
dx = −i dfdy . Then f is differentiable at a.

Proof. First Proof: See [BMPS, §2.3].
Second Proof: We will make use of the following definition of the total derivative of a function
F : Rn → Rm at a point x0 ∈ Rn: it is the (unique, if it exists) m× n matrix D(F )(x0) such that:
for all ε > 0, there is δ > 0 such that 0 < ||x− x0|| < δ implies

||f(x)− f(x0)−D(F )(x0)(x− x0)|| < ε||x− x0||.

If a function is differentiable in this sense, then the (i, j)th entry of the matrix D(F )(x0) must be
the corresponding partial derivative ∂Fi

∂xj
so that D(F )(x0) is the usual Jacobian matrix of partial

derivatives. Moreover, if each partial derivative exists and is continuous, then the Jacobian matrix
serves as the total derivative at x0. For more on this, see e.g. [Ma, Thm. 6.4].

Thus in the context of our f = u + iv : A → C, our hypotheses on continuity of the partial

derivatives imply that the total derivative of F is the Jacobian matrix

[
du
dx

du
dy

dv
dx

dv
dy

]
. If moreover

the Cauchy-Riemann equations apply, then this Jacobian matrix takes the form

[
du
dx − dv

dx
dv
dx

du
dx

]
.

We notice that this is precisely a matrix of the form

[
a −b
b a

]
that corresponds to multiplication

by the complex number a + ib. Thus the condition of the existence of the total derivative can be
rewritten in complex notation as: for all ε > 0, there is δ > 0 such that 0 < |z − z0| < δ implies∣∣f(z)− f(z0)−

(
du

dx
(z0) + i

dv

dx
(z0)(z − z0)

) ∣∣ < ε|z − z0|,

or

|f(z)− f(z0)− (z − z0)( dfdx )(z0))|
|z − z0|

< ε.

This means that

lim
z→z0

f(z)− f(z0)

z − z0
− df

dx
(z0) = 0,

or equivalently,

lim
z→z0

f(z)− f(z0)

z − z0
=
df

dx
(z0).

That is, f is differentiable at z0 and its derivative is df
dx (z0). �

In other words, a function f : R2 → R2 that is sufficiently differentiable in the real sense is
differentiable in the complex sense iff f satisfies the Cauchy-Riemann equations. Thus we can
construct holomorphic functions by solving PDEs.
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3. Some complex functions

3.1. Exponentials, trigonometric and hyperbolic functions. We begin with a somewhat
unusual application of Theorem 2.17. We define the exponential function

z 7→ ez : C→ C
as follows: if z = x+ iy we put

ez := ex(cos y + i sin y).

This is very unlikely looking: a bit of this and a bit of that. Nevertheless:

Theorem 3.1. The exponential function z 7→ ez is an entire function.

Proof. Well, we have
∂f

∂x
= ex(cos y + i sin y),

∂f

∂y
= ex(− sin y + i cosx) = i(ex(cosx+ i sinx)) = i

∂f

∂x
.

Thus ∂f
∂x and ∂f

∂y both exist, are continuous, and ∂f
∂x = −i∂f∂y . So f is entire by Theorem 2.17! �

But is this a reasonable definition of ez? To be honest, in the fullnesss of time we will check that
this agrees with the expected power series definition. But for now we mention a different approach:
first, if z = x ∈ R then certainly ez = ex is the usual exponential function. Now here is a truly
remarkable fact that we will prove towards the end of the course.

Theorem 3.2. (Identity Theorem) Let f, g : C→ C be two entire functions. Let

S = {z ∈ C | f(z) = g(z)}
be the set on which f and g agree. If S has an accumulation point, then S = C: that is, f = g.

So suppose that we have two entire functions f, g : C→ C such that for all x ∈ R, we have

f(x) = ex = g(x).

Then the set on which f and g agree contains the real axis R, which has accumulation points
(every point is an accumulation point). By the Identity Theorem, we conclude f = g. In other
words, there is at most one entire function that restricts to the usual exponential function on the
real axis. Therefore the weird definition we gave must be the correct one!

Proposition 3.3. Let z, z1, z2 ∈ C. Then:
a) ez1ez2 = ez1+z2 .
b) 1

ez = e−z.

c) ez+2πi = ez.
d) |ez| = e<(z).

e) dez

dz = ez.

Proof. a) If z1 = x1 + iy1 and z2 = x2 + iy2 then

ez1ez2 = ex1eiy1ex2eiy2 = ex1+x2ei(y1+y2) = ez1+z2 .

b) If z = x+ iy, then
1

z
=

1

ex
1

eiy
= e−xe−iy = e−z.

c) Let z = x+ iy. Then

ez+2πi = exe(y+2π)i = ex(cos(y + 2π) + i sin(y + 2π)) = ex(cosx+ i sin y) = ez.

d) Let z = x+ iy. Then |ez| = |exeiy| = |ex||eiy| = ex · 1 = ex.
e) In fact we did precisely this computation above. �
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3.2. The extended complex plane. In calculus one extends the notion of limit in several ways:
(i) By defining limx→a f(x) =∞, limx→a f(x) = −∞.
(ii) By defining limx→∞ f(x) = L, limx→−∞ f(x) = M .

There are analogues of both of these concepts in complex analysis. However, whereas in R we
distinguish between ∞ and −∞, in C we just have one ∞. Here is a way to think about this:
consider removing from R a large disk – i.e., closed interval. The complement is disconnected: it
consists of a “positive” interval and a “negative” interval. However, if we remove a disk from C
we still get a connected set.

Let A ⊂ C, and let a ∈ A be an accumulation point, and let f : A \ {a} → C be a function.
Then we write

lim
z→a

f(z) =∞

if: for all M > 0, there is δ > 0 such that for all z ∈ A \ {a}, if |z − a| < δ then |f(z)| > M .

In other words, the limit is ∞ is we can make f(z) arbitrarily large in magnitude by taking z
close enough to a.

Example 3.4. We have

lim
z→0

1

z
=∞.

Indeed, if M > 0, take δ = 1
M . Then if 0 < |z − 0| = |z| < δ = 1

M we have

|f(z)| = |1
z
| > 1

δ
= M.

Similarly, for any n ∈ Z+ we have

lim
z→0

1

zn
=∞.

Exercise 3.1. Let P (z), Q(z) be polynomials with Q(z) 6= 0. Let a ∈ C be such that Q(a) = 0 and
P (a) 6= 0. Show:

lim
z→a

P (z)

Q(z)
=∞.

Let A ⊂ C be unbounded, and let f : A→ C be a function.
• For L ∈ C, we say that

lim
z→∞

f(z) = L

if: for all ε > 0, there is M > 0 such that for all z ∈ A, if |z| ≥M , then |f(z)− L| < ε.

In other words, this means that we can make f(z) arbitarily close to L by taking z to have
large enough magnitude.

• We say that

lim
z→∞

f(z) =∞

if for all N > 0 there is M > 0 such that for all z ∈ A, if |z| ≥M , then |f(z)| ≥ N .

In other words, this means that we can make f(z) arbitrarily large (in magnitude) by taking
z arbitrarily large (in magnitude).
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Exercise 3.2. Let m,n ∈ Z+ and let

P (z) = amz
n + . . .+ a1z + a0, Q(z) = bnz

n + . . .+ b1z + b0

be polynomials with am, bn 6= 0. Let f(z) = P (z)
Q(z) .

a) Suppose m > n. Show: limz→∞ P (z) =∞.
b) Supose m = n. Show: limz→∞ P (z) = am

bn
.

c) Suppose m < n. Show: limz→∞ P (z) = 0.

We define the extended complex plane Ĉ to be C ∪ ∞. Soon enough we will understand Ĉ
geometrically and explain why it can be viewed as the Riemann sphere. But for now we observe
that every rational function can be viewed as a function from Ĉ to Ĉ. We single out two examples:

• Suppose R(z) = P (z) is a polynomial of positive degree. Then P is already an entire func-
tion C → C. By the above exercise, we have limz→∞ P (z) = ∞, so it makes sense to define
P (∞) =∞.

• Suppose R(z) = 1
z . Then f : C \ {0} → C \ {0}. In our previous sense f was not defined

at 0, but since limz→0R(z) = ∞, in our extended sense we have R(0) = ∞. Moreover, we have
limz→∞R(z) = 0, so in our extended sense we have R(∞) = 0. In this case, R(z) gives a bijection

from Ĉ to Ĉ.

3.3. Möbius transformations. For a, b, c, d ∈ C with ad− bc 6= 0, we define the Möbius7 trans-
formation f(z) = az+b

cz+d . If c = 0 this function is a polynomial and hence already well understood,

so in our calculations we will often assume that c 6= 0. This function is holomorphic on C \ {−dc }.
Moreover, the condition ad− bc ensures that the numerator is not zero at −dc :

a(
−d
c

) + b =
−ad+ bc

c
6= 0.

By Exercise 3.2, this means that

lim
z→−dc

f(z) =∞.

We claim that f gives a bijection from Ĉ to Ĉ. Indeed, we can compute the inverse function
explicitly: for w ∈ Ĉ, let

az + b

cz + d
= w.

Then

(cz + d)w = az + b,

so

(10) (a− cw)z = dw − b, z =
dw − b
−cw + a

=: g(w)

This computes the inverse explicitly and shows that it is another Möbius transformation. Moreover,
in the inverse transformation the denominator is 0 precisely when w = a

c which is precisely f(∞) =
limz→∞ f(z), whereas

g(∞) = lim
w→∞

g(w) =
−d
c
,

so f and g are mutually inverse bijections from Ĉ to Ĉ.

7August Ferdinand Möbius, 1790-1868, was a German mathematician and astronomer.
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Exercise 3.3. Let a, b, c, d ∈ C. Show: the following are equivalent:
(i) The function f(z)az+bcz+d is constant.

b) We have ad− bc = 0.

Is you matrix sense tingling? It should be. The condition ad − bc 6= 0 is clearly the condition

that the matrix

[
a b
c d

]
be nonsingular. Moreover, the formula obtained for the inverse Möbius

transformation to az+b
cz+d is very similar to that of the inverse matrix to the matrix

M =

[
a b
c d

]
.

In fact, looking back at (10) we see that we have precisely the formula for the inverse matrix
provided that ad − bc = 1. But in fact we can reduce to this case! First observe that if we scale
the matrix M by λ ∈ C then the corresponding Möbius transformation is

λaz + λb

λcz + λd
=
λ

λ

az + b

cz + d
= f(z),

so scaling a matrix does not change the Möbious transformation. On the other hand, if we scale
by λ then the determinant becomes (λa)(λd)− (λb)(λc) = λ2(ad− bc), thus the determinant scales
by λ2. But now we can make use of the fact that every nonzero complex number has a square
root, so there is λ ∈ C (in fact there are two – either will do!) such that λ2 = 1

ad−bc . Then if we
scale by λ we get a matrix with determinant 1.

Notationally, we denote the set of all 2 × 2 matrices in C with nonzero determinant as GL2(C)
and the set of all 2× 2 matrices in C with determinant 1 as SL2(C). These are both groups under
matrix multiplication, and SL2(C) ⊂ GL2(C).

Proposition 3.5. For any A ∈ GL2(C), let fA(z) be the corresponding Möbius transformation.
a) We have fA−1(z) = fA(z)−1.
b) For A,B ∈ GL2(C), we have fA(z)fB(z) = fAB(z).
c) For A ∈ GL2(C), show that the following are equivalent:

(i) We have fA(z) = z for all z ∈ Ĉ.
(ii) We have that A is a scalar matrix.

Exercise 3.4. Prove it!

The next thing to observe is that for any Möbius transformation f(z) = az+b
cz+d , we have

f ′(z) =
(cz + d)a− (az + b)(c)

(cz + d)2
=

ad− bc
(cz + d)2

6= 0.

Therefore the Möbius transformations give conformal maps.

To further understand Möbius transformations it is helpful to write them as compositions of sim-
pler Möbius transformations. Here are three especially simple types:
• Translation f(z) = z + b
• Dilation f(z) = az
• Inversion f(z) = 1

z .

Proposition 3.6. Let f(z) = az+b
cz+d be a Möbius transformation.

a) If c = 0, then f(z) = a
dz + b

d is a dilation followed by a translation.
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b) If c 6= 0, then

f(z) =
bc− ad
c2

1

z + d
c

+
a

c

is a translation followed by an inversion followed by a dilation followed by a translation.

Exercise 3.5. Prove it!

We want to use this to study a mapping property of Möbius transformations. We claim that if
A ⊂ C is either a circle or a line and f(z) is a Möbius transformation, then f(A) is again either a
circle or a line. By Proposition 3.6 it is enough to show this for translations, dilations and inversion
separately. Clearly, if we translate a line then we get a line and if we translate a circle then we get
a circle. Since a dilation is the composition of a rotation and a scaling, again if we dilate a line
then we get a line and if we dilate a circle then we get a circle.

Inversions are more interesting.
• Since inversion acts geometrically as conjugating and then rescaling the length as the reciprocal,
if ` = {y = mx} is any line through the origin, then inversion carries ` to another line, namely
{y = −mx}.
• Inversion takes the unit circle to itself.
• However, let ` be the line y = 1. Since every point of ` lies on or outside the unit circle, its
distance from the origin is at least one. Therefore, after inversion, the distance of every point from
the origin is at most one. So it cannot be that inversion takes ` to another line! A picture suggests
that inversion takes ` to the circle of radius 1

2 centered at −i2 . So we calculate:

|f(x+ i)− −i
2
|2 = | 1

x+ i
+
i

2
|2 = |2 + (x+ i)i

2x+ 2i
|2 = | 1 + xi

2x+ 2i
|2 =

x2 + 1

4x2 + 4
=

1

4
.

Correct! Notice that inversion does not take any point in C to 0 but it takes ∞ to 0.
• Because inversion is its own inverse, inversion takes the circle of radius 1

2 centered at −i2 to the
line y = 1. Moreover, if C is any circle passing through 0, then C contains points arbitrarily close
to 0, so after inversion contains points arbitrarily far away from 0, so f(C) cannot be a circle.

Theorem 3.7. Let A ⊂ C be either a line or a circle, and let f(z) be a Möbius transformation.
Then f(A) is contained in a line or contained in a circle.

Proof. See [BMPS, p. 35]. �

It is a basic fact of plane geometry that through any three noncollinear points there is a unique
circle. (The center of the circle will be equidistant from the three points. So to find it we consider
the three lines that are the perpendicular bisectors of the three pairs of points. These three points
intersect in a unique point, as one can show e.g. by elementary vector calculations.) If we have
three collinear points then there is no circle passing through them. However, given two points
P1 6= P2 ∈ C, consider the line ` passing through them. Since ` contains points that are arbitrarily
far from the origin, it makes some sense to say that ` passes arbitrarily close to the point ∞. We
regard the line ` together with the point at∞ as a circle in the extended complex plane Ĉ. (When
we introduce stereographic projection later, we can make more honest geometric sense out of this.)

In this sense then, for any three points P1, P2, P3 in Ĉ there is a unique circle passing through
them. This circle contains ∞ iff either one of the points is ∞ or the three points are collinear.

Theorem 3.8. Given any two triples (z1, z2, z3) and (w1, w2, w3) of distinct points in Ĉ, there is
a unique Möbius transformation f(z) such that

f(z1) = w1, f(z2) = w2, f(z3) = w3.
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Proof. Step 1: Suppose that for any z1, z2, z3 there is a Möbius transformation f(z1,z2,z3) such
that

f(z1) = 0, f(z2) = 1, f(z3) =∞.
Then

f := f−1(w1,w2,w3)
◦ f(z1,z2,z3)

is a Möbius transformation that maps z1 7→ w1, z2 7→ w2, z3 7→ w3: e.g. we have

f(z1) = f−1(w1,w2,w3)
(f(z1,z2,z3)(0)) = f−1(w1,w2,w3)

(0) = w1,

and similarly for z2 and z3.
Step 2: We define

f(z1,z2,z3) :=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

This works: f(z1) = 0, f(z2) = 1 and f(z3) =∞. (When one of z1, z2, z3 is ∞, this results in an
instance of ∞ in both the numerator and the denominator, and our convention is to cancel these,
e.g. f(z1,z2,∞) = z−z1

z2−z1 .)

Step 3: Suppose that f(z) = az+b
cz+d is a Möbius transformation such that

f(0) = 0, f(1) = 1, f(∞) =∞.

Then f is the identity function – i.e., b = c = 0 and a = d.
Indeed, we calculate

0 = f(0) =
b

d
, so b = 0.

∞ = f(∞) =
a

c
, so c = 0.

1 = f(1) =
a(1) + b

c(1) + d
=
a

d
, so a = d.

Step 4: Let f be a Möbius transformation, and let z1, z2, z3 ∈ Ĉ be distinct points. If f(zi) = zi
for i ∈ {1, 2, 3}, then f is the identity function.

Indeed, by Step 2 there is a Möbius transformation γ such that γ(z1) = 0, γ(z2) = 1, γ(z3) =∞.
Then the Möbius transformation γfγ−1 maps 0 to 0, 1 to 1 and ∞ to ∞, so by Step 3 we have

γfγ−1 = 1.

Multiplying on the left by γ−1 and on the right by γ, we get

f = γ−1γ = 1.

Step 5: Let f, g be Möbius transformations, and let z1, z2, z3 ∈ Ĉ be three distinct points such
that f(zi) = g(zi) for all i ∈ {1, 2, 3}. Then f = g.

Indeed, g−1 ◦ f fixes z1, z2 and z3, so by Step 5 we have g−1 ◦ f = 1, hence f = g. �

In the course of the above proof we introduced a quantity that has further importance. Namely,
let z, z1, z2, z3 be distinct points of Ĉ. We define their cross ratio

[z, z1, z2, z3] := f(z1,z2,z3)(z) :=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
∈ C.

Proposition 3.9. Möbius transformations preserve cross-ratios. That is, for distinct points
z, z1, z2, z3 ∈ Ĉ and a Möbius transformation f , we have

[f(z), f(z1), f(z2), f(z3)] = [z, z1, z2, z3].
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Proof. Let us first regard z as a variable. [z, z1, z2, z3] and [f(z), f(z1), f(z2), f(z3)] are, as functions
of z, Möbius transformations (the latter is a composition of two Möbius tranformations, hence a
Möbius transformation), say S and T . We calculate:

T (z1) =
(f(z1)− f(z1))(f(z2)− f(z3))

(f(z1)− f(z3))(f(z2)− f(z1))
= 0 = S(z1),

T (z2) =
(f(z2)− f(z1))(f(z2)− f(z3))

(f(z2)− f(z3))(f(z2)− f(z1))
= 1 = S(z2),

T (z3) =
(f(z3)− f(z1))(f(z2)− f(z3))

(f(z3)− f(z3))(f(z2)− f(z1)
=∞ = S(z3).

By Theorem 3.8 we conclude S = T . Now “evaluating the variable z at z ∈ Ĉ” gives the result. �

Theorem 3.10. For z, z1, z2, z3 ∈ Ĉ, the following are equivalent:
(i) All four points z, z1, z2, z3 lie on a circle in Ĉ.
(ii) The cross-ratio [z, z1, z3, z3] lies in R.

Proof. See [Co, Prop. 3.10]. �

3.4. The Riemann sphere.

Unfortunately this section is currently blank.

4. Contour integration

We will now pursue the theory of integration in the complex plane. It is a close analogue of the
line integral of multi-variable calculus, but with some particular features of its own.

We will begin by reviewing the notion of a line integral in the plane. Let U ⊂ C be an open
subset, let γ : [a, b] → U be a smooth path, and let F : U → R2 be a smooth function. In other
words, F (x, y) = (P (x, y), Q(x, y)) is a vector field defined on U , and the line integral

∫
γ
F cap-

tures the work done as a particle moves through the vector field F along the path γ. This comes
down to integrating the inner product of the vector field with the tangent vector as we move along
the path: ∫

γ

F =

∫ b

a

F (γ(t)) · γ′(t)dt ∈ R.

Let us briefly recall some aspects of line integration:

• A parameterized curve determines an oriented path in the plane. The line integral depends
only on the oriented path, not the particular parameterization. This comes down to a chain rule
calculation. However, if we traverse the path with the opposite orientation, then the effect on the
line integral is multiplication by −1.
•We can define the line integral along a piecewise smooth path simply as the sum of line integrals
along the smooth paths that comprise the piecewise smooth path.
• A vector field F : U → R2 is called conservative if it satisfies any of the following equivalent
properties:
(i) Given two points P,Q ∈ U , for all oriented paths γ1 and γ2 from P to Q, we have∫

γ1

F =

∫
γ2

F.
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(ii) For all closed paths γ – i.e., γ(a) = γ(b) – we have
∫
γ
F = 0.

(ii′) For all simple closed paths γ we have
∫
γ
F = 0.

(iii) There is a function f : U → R such that F = grad(f): that is,

∂f

∂x
= P,

∂f

∂y
= Q.

Also consider condition (iv) A vector field F = (P,Q) is irrotational if ∂Q
∂x −

∂P
∂Y ≡ 0 on U .

Then it turns out that all conservative vector fields are irrotational. This is easy to see: if P = ∂f
∂x

and Q = ∂f
∂y , then

∂Q

∂x
=

∂2f

∂x∂y
=

∂2f

∂y∂x
=
∂P

∂Y
.

Depending upon U it may or may not be the case that all irrotational vector fields are conservative.

Example 4.1. Let D = R2 \ {0}, and let F : D → R2 by

F (x, y) = (P (x, y), Q(x, y)) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

Then F is irrotational:
∂Q

∂x
=

y2 − x2

(x2 + y2)2
=
∂P

∂y
.

On the other hand, let γ : [0, 2π]→ R2 by t 7→ (cos t, sin t) parameterize the unit circle. Then∫
γ

F =

∫ 2π

0

(
− sin t

cos2 t+ sin2 t
,

cos t

cos2 t+ sin2 t

)
·(− sin t, cos t)dt =

∫ 2π

0

sin2 t+cos2 tdt =

∫ 2π

0

1dt = 2π.

It follows that there is no function f : D → R such that F = grad(f). However there almost is
such a function. Namely, let us take the gradient of θ. If we write θ = arctan(y/x), then formally
we have

grad(θ) =

(
∂ arctan(y/x)

∂x
,
∂ arctan(y/x)

∂y

)
=

(
−y/x2

1 + (y/x)2
,

1/x

1 + (y/x)2

)
=

(
−y

x2 + y2
,

x

x2 + y2

)
= F.

The problem is that θ = arctan(y/x) is only valid when x > 0. In fact this shows something
startling: the argument cannot be extended to a single-valued differentiable function on all of D.
In fact, not even a continuous function: the idea is that as we wind around a unit circle the
argument continuously increments so that when we get back where we started the angle is larger by
a value of 2π. Notice that the integral that we evaluated was 2π – not a concidence!

Let us say that a vector field F = (P,Q) defined on D ⊂ C is smooth if all the partial derivatives
∂P
∂x , ∂P

∂Y , ∂Q
∂x , ∂Q

∂y exist and are continuous.

Theorem 4.2. (Green8’s Theorem) Let D ⊂ C be a bounded domain with boundary C, and let
F = (P,Q) be a smooth vector field defined on D. Then we have

(11)

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
C

F.

8George Green, 1793-1841, was an English mathematical physicist. Many of the basic concepts of vector analysis
and their applications to electro-magnetism are due to him.
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We call a domain D ⊂ C simply connected if every simple closed curve in D is the boundary of
a simple closed curve γ with image lying in D.

Examples of simply connected domains include: C itself, any open disk in C, and any domain
that is convex – for any two points P,Q ∈ D, the line segment joining P to Q lies entirely in D.
A more interesting example is the interior of any simple closed curve in the plane. (To be honest,
this is actually a theorem of topology: the Jordan-Schoenflies Theorem.)

An example of a domain that is not simply connected is C \ {0}. The unit circle is not the
boundary of any domain that excludes 0.

Theorem 4.3. Let D ⊂ C be a simply connected domain. Then every irrotational vector field
F : U → R2 is conservative.

Proof. Let γ be a simple closed path with image curve C. Since D is simply connected, C is the
boundary of a subregion D′ ⊂ D. By Green’s Theorem, we have∫

C

F =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy = 0. �

Now we turn to the notion of a complex contour integral. Interestingly, the data is essentially
identical: in place of a vector field F : D → R2 we give ourselves a function f : D → C and a path
γ : [a, b] → D. Notice that C is just R2 but with an extra multiplication structure. So whereas
before we integrated the scalar product F (γ(t)) with γ′(t), now F (γ(t)) and γ′(t) are both complex
numbers, so we multiply them: ∫

γ

f(z)dz :=

∫ b

a

f(γ(z))γ′(z)dz.

We do need one word about the the final integral: we are integrating a C-valued function. But
as usual, we should view a C-valued function in terms of its real and imaginary parts, and we
integrate each separately.

Example 4.4. Let f : C→ C be given by f(z) = z2. (Note: not a holomorphic function!) We will
compute the line integral of f over several different paths each starting at 0 and ending at 1 + i.
a) Let γ be the straight line segment from 0 to 1 + i. One parameterization of this path is γ :
[0, 1]→ C, γ(t) = (1 + i)t. Then γ′(t) = 1 + i, and we have∫

γ

f =

∫ 1

0

f(γ(t))γ′(t)dt =

∫ 1

0

((1 + i)t)2(1 + i)dt

= (1 + i)2(1 + i)

∫ 1

0

t2dt =
1

3
(1− i)2(1 + i) =

1

3
|1 + i|2(1− i) =

2

3
(1− i).

b) Let γ be the arc of the parabola y = x2 from 0 to 1 + i. So the natural paramterization is
t 7→ (t, t2) = t+ it2 for t ∈ [0, 1], i.e., γ(t) = t+ it2. Then∫

γ

f =

∫ 1

0

γ(t)γ′(t)dt =

∫ 1

0

(t+ it2)2(1 + 2it)dt

=

∫ 1

0

(t− it2)2(1 + 2it)dt =

∫ 1

0

(t2 + 3t4 − 2it5)dt =
1

3
+

3

5
− 2i

6
=

14

15
− i

3
.

One cannot help but notice that we did not get the same answer both times. It appears that the –
ahem, nonholomorphic!! – function f(z) = z2 fails to satisfy the contour integral analogue of being
a conservative vector field.
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One difference between calculus and analysis is that in calculus we try to compute things exactly
(if possible, which by the way it most often is not!) and in analysis we come up with useful
estimates. Despite what you learn in freshman calculus, if f : [a, b]→ R is continuous (or infinitely

differentiable, or whatever) then it is very unlikely that we can evaluate
∫ b
a
f exactly. Both in

theory and in applications, methods of approximation of
∫ b
a
f can be more useful. The simplest

possible approximation is the following: if ||f || denotes the maximum of |f(x)| on [a, b], then

|
∫ b

a

f | ≤ ||f ||(b− a).

The following is the analogous (and closely related) result for contour integrals.

Proposition 4.5. (“ML Inequality”) Let f : D → C be a continuous function and let γ : [a, b]→ D
be a piecewise smooth path. Let M be the maximum value of |f(γ(t))| for t ∈ [a, b] and let L be the
length of the path γ – that is,

L :=

∫ b

a

|γ′(t)|dt.

Then

|
∫
γ

f | ≤ML.

Proof. We may write
∫
γ
f = Reiθ, so R = |

∫
γ
f |. Then

R = e−iθ
∫
γ

f = <(e−iθ
∫ b

a

f(γ(t))γ′(t)dt) =

∫ b

a

<(f(γ(t))e−iθγ′(t)dt) ≤
∫ b

a

|f(γ(t))e−iθγ′(t)dt|

=

∫ b

a

|f(γ(t))||γ′(t)|dt ≤M
∫ b

a

|γ′(t)|dt = ML. �

In one variable calculus our best tool for evaluating integrals exactly is by the Fundamental The-
orem of Calculus, one half of which states that if F is an antiderivative of f , then∫ b

a

f = F (b)− F (a).

There is an analogue for complex contour integrals; in fact it is quite straightforward but just
as useful. If D ⊂ C is a region and f : D → C is a function, we say that F : D → C is an
antiderivative of f on D if (what else?!?) F ′(z) = f(z) for all z ∈ D. Because we have the
Zero Velocity Theorem for complex functions, it is still true that any two antiderivatives of a given
function differ by a constant. (It is much less clear which functions f : D → C have antiderivatives.
In fact it is not true that every continuous function has an antiderivative...which sounds bad but
is actually good. Wait a while to see how the story plays out.)

Theorem 4.6. Let D ⊂ C be a domain. Suppose f : D → C is continuous and that F : D → C is
an antiderivative of F .
a) If γ : [a, b]→ D is any piecewise smooth path, then we have∫

γ

f = F (γ(b))− F (γ(a)).

b) In particular, if γ is any closed path – i.e., γ(b) = γ(a), then
∫
γ
f = 0.
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Proof. a) Since by the Chain Rule for paths, we have d
dtF (γ(t)) = f(γ(t))γ′(t), this is immediate

from the Fundamental Theorem of Calculus that we just recalled:∫
γ

f =

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

d

dt
F (γ(t)) = F (γ(b))− F (γ(a)).

b) This follows immediately. �

Notice that Theorem 4.6 is the analogoue for complex contour integrals of the aforementioned fact
for line integrals that a gradient vector field is conservative (and the proof is closely related).

Example 4.7. Let n ∈ Z, and let fn : C \ {0} → C given by f(z) = zn, and let γ : [0, 2π] → C
given by γ(t) = eiz. First suppose that n 6= −1. Then F (z) = zn+1

n+1 is an antiderivative of f , so∫
γ

f = F (γ(2π))− F (γ(0)) = F (1)− F (1) = 0.

On the other hand, if n = −1, then∫
γ

f =

∫ 2π

0

(e−iz)
deiz

dz
dz =

∫ 2π

0

e−izieizdz = i

∫ 2π

0

1dz = 2πi.

Note that this proves that f(z) = 1
z does not have an antiderivative on C\{0}. It follows easily that

there is no function L : C \ {0} → C such that eL(z) = z for all z ∈ C \ {0}. Indeed, differentiating
both sides gives

1 = eL(z)L′(z),

so

L′(z) =
1

eL(z)
=

1

z
.

Thus – as in calculus – an inverse function to the exponential function is necessarily an antideriv-
ative of 1

z . This shows that logarithms really don’t work as we may naively want to. However, later
we will show that if D is simply connected, then every holomorphic function f : D → C has an
antiderivative, meaning that we can define a logarithm by suitably restricting the domain.

Now we give the converse to Theorem 4.6, which is the contour integral analogue of the fact that
conservative vector fields are gradient fields.

Theorem 4.8. Let D ⊂ C be a domain, let z0 ∈ D, and let f : D → C be a continuous function.
Suppose that

∫
γ
f = 0 for any simple closed polygonal path γ : [a, b] → D. For any z ∈ D, let γz

be any polygonal path connecting z0 to z. Then

F (z) :=

∫
γz

f

is an antiderivative for f on D.

Proof.
Step 0: Because D is a domain it is xy-connected, so there is a polygonal path from z0 to z.
Step 1: Our first order of business is to show that F (z) is well-defined independent of the choice
of polygonal path. But this is easy: suppose we had two such paths γ1 and γ2. Then the path γ3
obtained by doing γ1 followed by γ2 with the orientation reversed is a polygonal path going from
z0 to z and back, i.e., is a closed polygonal path in D. It follows that∫

γ3

f =

∫
γ1

f −
∫
γ2

f,
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so it is enough to show that
∫
γ3
f = 0. For this we can almost apply our hypothesis, with one

minor technicality: the closed path γ in the statement is assumed to be simple, i.e., not have any
self-intersections. But fortunately we are dealing with polygonal paths. Given a closed polygonal
path, we first remove instances of “backtracking” – i.e., if we traverse a line segment in one direction
and the same line segment in the opposite direction, the contributions to the integral cancel out,
and if we remove this pair of line segments we still have a closed path. After having done that, we
get a closed polygonal path that is a finite union of simple closed polygonal paths. (Here you must
draw a picture. Sorry for not including one in these notes.) And then we can apply our hypothesis
to each of the simple closed paths to get that the integral is zero on each, hence the overall integral
is 0. So indeed F (z) is well-defined.
Step 2: Let z ∈ D and let h ∈ C be small enough such that z + h and the line segment from z to
z + h are both in D. (Since by definition of domain, D contains a small open disk centered at z,
this is certainly permissible.) Then

F (z + h)− F (z) =

∫
γz+h

f −
∫
γz

f =

∫
γ

f

where γ is any polygonal path from z to z + h. The constant function 1 has antiderivative z, so
applying Theorem 4.6 we know that

∫
γ

1 = h. So

F (z + h)− F (z)

h
− f(z) =

1

h

∫
γ

f(w)dw − f(z)

h

∫
γ

dw =
1

h

∫
γ

(f(w)− f(z))dw.

Now let λ be the straight line path from z to z+h, which as above, we have arranged to be entirely
contained in D. Using the argument of Step 1, we get

1

h

∫
γ

(f(w)− f(z))dz =
1

h

∫
λ

(f(w)− f(z))dw.

Finally we are in a position to show that the last expression approaches 0 as h → 0, which
will complete the proof. Since f is continuous at z, for each ε > 0 there is δ > 0 such that
|w − z| < δ =⇒ |f(w) − f(z)| < ε. Thus if h is sufficiently small as above and also |h| < δ, the
ML Inequality gives

| 1
h

∫
λ

f(w)− f(z))dw| ≤ 1

|h|
max
w∈λ
|f(w)− f(z)| length(λ)| = max

w∈λ
|f(w)− f(z)| < ε.

(Here we have used that the length of the straight line path from z to z + h is |h|!) �

To sum up: for a continuous function f : D → C, the following are equivalent:
(i) f has an antiderivative F on D.
(ii) For a, b ∈ D and any two piecewise smooth paths γ1, γ2 from a to b, we have

∫
γ1
f =

∫
γ2
f .

(iii) For any closed piecewise smooth path γ : [a, b]→ C, we have
∫
γ
f = 0.

(iv) For any simple closed polygonal path γ : [a, b]→ C, we have
∫
γ
f = 0.

Indeed, Theorem 4.6 gave us (i) =⇒ (ii). (ii) and (iii) are equivalent using the trick of writ-
ing a closed path as a path from a to b followed by a path from b to a and conversely. (iii) =⇒
(iv) is immediate, since polygonal paths are piecewise smooth, and (iv) =⇒ (i) is Theorem 4.8.
Notice that our use of polygonal paths is because it was easy to reduce a closed polygonal path to
a simple closed polygonal path. In general if we take two smooth curves γ1 and γ2 then γ1 followed
by γ2 in the opposite direction could have much more complicated self-intersection – imagine for
instance γ1 to be a portion of the x-axis and γ2 to be the graph of sin(1/x). So this was the easy
way around. Finally, note of course that this is a perfect analogue of our equivalent conditions for
conservative vector fields.



COMPLEX ANALYSIS: SUPPLEMENTARY NOTES 43

Our next order of business is to show that if D is simply connected, then any holomorphic function
satisfies all of these equivalent conditions. Consulting what we said above, we suspect that Green’s
Theorem should be helpful here. And indeed it is. The following theorem and proof is one of the
highlights of the course.

Theorem 4.9. (Cauchy’s Integral Theorem, v.1)
Let D ⊂ C be a simply connected domain, and let f : D → C be a holomorphic function such that
f ′ : D → C is continuous. Then f for any piecewise smooth closed path γ in D, we have

∫
γ
f = 0.

Proof. By the above discussion it is sufficient to show that
∫
γ
f = 0 for any simple piecewise

smooth closed path γ : [a, b] → D. (We could also assume that the path is polygonal, but there
is no need to do so.) Write f(z) = u(z) + iv(z) as usual and γ(t) = x(t) + iy(t). We define two
vector fields F1, F2 : D → R2 by

F1(x, y) = (u(x, y),−v(x, y)), F2(x, y) = (v(x, y), u(x, y)).

Then we have ∫
γ

f =

∫ b

a

(u(γ(t)) + iv(γ(t))(x′(t) + iy′(t)dt)

=

∫ b

a

u(γ(t))x′(t)− v(γ(t))y′(t)dt+ i

∫ b

a

(v(γ(t))x′(t) + u(γ(t))y′(t))dt

=

∫ b

a

F1(γ(t)) · γ′(t)dt+ i

∫ b

a

F2(γ(t)) · γ′(t)dt =

∫
γ

F1 + i

∫
γ

F2.

Thus it transpires that our complex contour integral is not just analogous to a line integral; we
can actually evaluate it in terms of a pair of line integrals. Since f is holomorphic, u and v satisfy
the Cauchy-Riemann equations:

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= −i∂f

∂y
=
∂v

∂y
− i∂u

∂y
.

A complex valued function is continuous iff its real and imaginary parts are both continuous, so
because we’ve assumed that f ′ is continuous, this implies that ∂u

∂x and ∂v
∂x are continuous. Since

∂v
∂y = ∂u

∂x and ∂u
∂y = − ∂v

∂x , we conclude that F1 and F2 are smooth vector fields. Moreover, since D

is simply connected, the simple closed curve γ is the boundary of a subregion D′ ⊂ D, so we may
apply Green’s Theorem: ∫

γ

F1 =

∫ ∫
D′

(
d(−v)

dx
− du

dy

)
dxdy = 0,∫

γ

F2 =

∫ ∫
D′

(
du

dx
− dv

dy

)
dxdy = 0,

so ∫
γ

f =

∫
γ

F1 + i

∫
γ

F2 = 0 + i · 0 = 0. �

In particular, if γ is a simple closed path in C and f is holomorphic with a continuous derivative
on an open set containing γ and its interior, then

∫
γ
f = 0. In this latter form the result was stated

by A.-L. Cauchy in 1825. (A rudimentary version was presented by him to the French Academy
of Sciences in 1814, when Cauchy was 24.) The proof that we have given here was not Cauchy’s
original proof but is a simplification dating from 1846...also by Cauchy.
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4.1. Cauchy-Goursat. From a theoretical perspective there is a small fly in the ointment: do we
really need the hypothesis that f ′ is continuous on D? The answer is that we needed it in order to
apply Green’s Theorem: in fact there are counterexamples to Green’s Theorem if we only assume
that our vector field F = (P,Q) has all four partial derivatives. But this is a counterexample
to this particular proof of Cauchy’s Theorem, not the theorem itself. In fact Edouard Goursat9

showed in 1884 that this hypothesis could be removed.

Theorem 4.10. (Cauchy-Goursat Theorem) Let D ⊂ C be a simply connected domain, and let
f : D → C be a holomorphic function. Then f for any piecewise smooth closed path γ in D, we
have

∫
γ
f = 0.

Notice that in light of Theorems 4.6 and 4.8, it follows from Theorem 4.10 that every holomor-
phic function on a simply connected domain has an antidervative. (Again, recall that we know
that “simply connected” cannot be omitted here, because of the holomorphic function 1

z on C\{0}.

We will prove Theorem 4.10 in two steps. First:

Theorem 4.11. (Goursat’s Lemma) Let f : U → C be holomorphic, and let T be a triangle such
that T and its interior are contained in U . Then

∫
T
f = 0.

Proof. We give T the positive orientation. We shall repeatedly “bisect” T into four congruent
triangles. We do this by drawing the three line segments between the pairs of midpoints of the
three sides of T . It is easy to see that this gives four triangles each congruent to each other and
similar to T , but with sides half as long. We call these triangles T 1

1 , T
1
2 , T

1
3 , T

1
4 . Next note that

there is exactly one way to give positive orientations to all four smaller triangles that is consistent
with the given positive orientation on T . When we do this, each of the three interior sides belongs
to two of the smaller triangles, but the two orientations of the sides are in opposite directions. It
follows that when we do line integrals around each of the four smaller triangles, the interior sides
cancel out and we are left with the line integral around T :∫

T

f =

∫
T 1
1

f +

∫
T 1
2

f +

∫
T 1
3

f +

∫
T 1
4

f.

Now comes a simple but key observation: for at least one 1 ≤ j ≤ 4, we must have

|
∫
T 1
j

f | ≥ 1

4
|
∫
T

f |.

Indeed, if not, then |
∫
T 1
j
f | < 1

4 |
∫
T
f | for all 1 ≤ j ≤ 4, and then summing gives

|
∫
T

f | = |
∫
T 1
1

f +

∫
T 1
2

f +

∫
T 1
3

f +

∫
T 1
4

f | ≤
4∑
j=1

|
∫
T 1
j

f | < 4
1

4
|
∫
T

f | = |
∫
T

f |,

which is absurd. We choose such a triangle and rename it T 1. Now we repeat the entire argument
with T 1 in place of T , getting a subriangle T 2 with half the side lengths of T 1 and such that∫

T 2

f | ≥ 1

4
|
∫
T 1

f | ≥ 4−2|
∫
T

f |.

Proceeding in this way, we get a nested sequence of triangles

T ⊃ T 1 ⊃ T2 ⊃ . . . ⊃ Tn

9Édouard Jean-Baptiste Goursat, 1858-1936, was a French mathematician. He worked primarily on firming up
the “rigor” in mathematical analysis, and his Cours d’analyse mathématique was one of the first analysis textbooks

that holds up to modern scrutiny.
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each of twice the side length of the next and such that

|
∫
Tnf | ≥ 4−n|

∫
T

f |.

Let An denote Tn together with its interior. Choose a point zn ∈ An. Let d0 be the diameter
of T , so the diameter dn of An is 2−nd0. Also the perimeter pn of Tn is 2−np0, where p0 is the
perimeter of T . Since dn → 0 it follows that {zn} is a Cauchy sequence, and thus converges to a
point a. For each fixed n we have zm ∈ An for all m ≥ n and thus a is the limit of a sequence of
points lying inside the closed set An, so also a ∈ An. Since f is holomorphic at a, we may write

f(z) = f(a) + f ′(a)(z − a) + ψ(z)(z − a)

for a function ψ(z) with limz→a ψ(z) = 0. (Thus by defining ψ(a) = 0, ψ becomes a continuous
function on a small disk around a with ψ(0) = 0.) Clearly linear functions have antiderivatives so
integrate to 0 around closed paths, and thus we get∫

Tn
f(z) =

∫
Tn
ψ(z)(z − a).

Let εn be the maximum of |ψ(z)| on Tn, so limn→∞ εn = 0. Since for z ∈ Tn, |z−a| ≤ dn = 2−nd0,
Then by the ML-Inequality we have

|
∫
T

f(z)| ≤ 4n|
∫
Tn
f(z)| = 4n|

∫
Tn
ψ(z)(z − a)| ≤ 4n

d0p0
4n

εn = d0p0εn.

Since εn → 0, this shows that
∫
T
f(z) = 0, completing the proof. �

The second step is the following:

Lemma 4.12. Every simple closed polygon P can be triangulated.

Proof. Let D be the closed, bounded planar set consisting of P together with its interior. We
go by induction on the number of vertices n of P . The base case, n = 3, is that of a triangle:
OK! So assume n ≥ 4 and that every simple closed polygon with 3 ≤ m ≤ n − 1 vertices can be
triangulated.

Certainly we can rotate the polygon if necessary without affecting the conclusion. After rotating
the polygon, we may assume that it has a unique leftmost vertex, say v. (The only other possibility
is that the polygon contains a vertical segment, but since there are only finitely many slopes of line
segments of the sides of the polygon, a small rotation fixes this.) Let u and w be the two vertices
adjacent to v, and consider the line segment uw. If this line segment lies inside P , then we’re good.
More precisely, D is the union of the triangle uvw and a region D′ whose boundary is the polygon
P ′ obtained by P by replacing the sides uv and vw with the side uw. So P ′ has n − 1 ≥ 3 sides
and thus by induction can be triangulated. So the nontrivial case is when the interior of the line
segment uw meets P . We claim that there is at least one vertex of P other than u, v, w either lying
on uw or lying inside the triangle uvw. Indeed, starting from u and moving along uw, consider the
first intersection point (after u) of uw with P . If this point is a vertex of P , the claim has been
established. Otherwise, this point is an interior point of a side s of P that is not parallel to uw,
so proceeding on s in one direction takes us inside the triangle uvw. This establishes the claim.
Of all such vertices, choose t to maximize the distance from uw. We claim that the line segment
tv lies entirely inside D, i.e., is a diagonal. Assuming the claim for the moment, the argument
finishes above, using the triangle tuv in place of uvw.

The argument for the claim is similar to what we’ve already done: if tv is not a diagonal, then
travel along the line segment tv from t until we reach a side s′ of P . If this intersection point is a
vertex, then it is farther away from uw then t, giving a contradiction. If not, then if s′ is parallel
to uv, then travelling in either direction along s′ we reach a vertex that is farther away from uv
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than t, giving a contradiction. Finally, if s′ is not parallel to uv, then travelling along s′ “away
from uv′” we reach a vertex that is farther away from uv than t. �

Combining Theorem 4.11 and Lemma 4.12, we see that if U is simply connected and f : U → C is
holomorphic and γ : [a, b]→ U is a simple closed polygonal path, then we can write

∫
γ
f as a sum∑n

i=1

∫
Ti
f where each Ti is a triangle in U which, since U is simply connected, means that the

interior of T also lies in U . By Goursat’s Lemma this gives
∫
γ
f = 0. By Theorems 4.6 and 4.8 it

follows that for any closed path γ : [a, b]→ U we have
∫
γ
f = 0.

4.2. The Cauchy Integral Formula.

Theorem 4.13. Let U ⊂ C be a domain, and let f : U → C be a holomorphic function. Let
a ∈ U , and let r > 0 be such that the closed disk Ba(r) is contained in U . Let Cr : [0, 2π]→ C by
Cr(t) = a+ reit. Then we have

f(a) =
1

2πi

∫
γr

f(z)

z − a
dz.

Proof. Step 1: In particular the conclusion implies that
∫
Cr

f(z)
z−adz is independent of r so long as r

is small enough so that Ba(r) is contained in U . (This is already interesting!) First we will prove
this independence of r and then we will exploit it to prove the result.

So let 0 < r1 < r2 be such that Ba(r) ⊂ U . We consider the following two contours: γ1 begins
with the straight line segment from a+r2 (i.e., the rightmost point on the outer circle Cr2) to a+r1
(the rightmost point on the inner circle Cr1), then takes the upper semicircular arc on the inner
circle to a−r1, then takes the straight line segment from a−r1 to a−r2, and then finally takes the
upper semicircular arc on the outer circle back to a+r2. Thus γ1 is a simple closed curve that does

not have a in its interior, so f(z)
z−a is holomorphic on γ1 and its interior, so by Cauchy-Goursat we

have
∫
γ1

f(z)
z−a = 0. The contour γ2 begins at a+ r2 as well but first takes the bottom semicircular

arc to a − r2, then takes the straight line segment from a − r2 to a − r1, then takes the bottom
semicircular arc to a + r1, then finally takes the straight line segment from a + r1 to a + r2. For

exactly the same reasons as above we have
∫
γ2

f(z)
z−adz = 0. So if γ is the path obtained by doing

γ1 followed by γ2, certainly
∫
γ
f(z)
z−adz = 0. But now examine what γ is overall: the two horizontal

line segments are each traversed twice, once in each direction, so their contributions cancel out.
Then the inner circle is traversed in the positive (counterclockwise) direction and the outer circle
is traversed in the negative (clockwise) direction. So we get that

0 =

∫
γ

f(z)

z − a
dz =

∫
Cr1

f(z)

z − a
dz −

∫
Cr2

f(z)

z − a
dz,

completing the proof of Step 1.
Step 2: We exploit the fact that no matter how small r is, we will get the same answer. Why

does this help? Well, imagine that r is very, very tiny. Then in
∫
Cr

f(z)
z−adz the numerator f(z) is

a continuous function evaluated on the boundary of a very tiny disk, so therefore all of its values
will be very close to the central point f(a) of the disk. So the idea is as r → 0 we should be able
to replace the function f(z) by the constant f(a). It is a very easy calculation that∫

Cr

A

z − a
dz = 2πiA

In fact, our very first line integral was the case a = 0, r = 1, A = 1 of this, and the general case is
no harder. Try it!



COMPLEX ANALYSIS: SUPPLEMENTARY NOTES 47

To get a formal proof out of this, we write∫
Cr

f(z)

z − a
dz =

∫
Cr

f(z)− f(a)

z − a
dz +

∫
Cr

f(a)

z − a
dz =

∫
Cr

f(z)− f(a)

z − a
dz + 2πif(a).

Thus it is enough to show that
∫
Cr

f(z)−f(a)
z−a dz = 0; again, by Step 1 we know that this quantity

is independent of r, so it is enough to show that

lim
r→0

∫
Cr

f(z)− f(a)

z − a
dz = 0.

But this is not so bad: fix ε > 0. Because f is differentiable at a, it is continuous at a, and thus
for small enough r, z ranges over points that have distance r from a, so |f(z) − f(a)| < ε. Also
|z − a| = r, so the ML Inequality gives∣∣∣∣ ∫

Cr

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤ ε

r
· (2πr) = 2πε.

Thus the integral can be made arbitrarily small, and we’re done! �

The following is an easy but striking consequence of Cauchy’s Integral Formula.

Corollary 4.14. (Mean Value Theorem) Let U ⊂ C be a domain, and let f : U → C be a
holomorphic function. Let a ∈ U , and let R > 0 be such that Ba(R) ⊂ U . Then

f(a) =
1

2π

∫ 2π

0

f(a+Reit)dt.

Proof. If γ : [0, 2π]→ C by γ(t) = a+Reit, then Cauchy’s Integral Formula says

f(a) =
1

2πi

∫
γ

f(z)dz

z − a
.

We will get the result just by simplifying this expression. Indeed, we have γ′(t) = iReit, so

f(a) =
1

2πi

∫ 2i

0

f(a+Reit)

(a+Reit − a)
(iReitdt) =

1

2π

∫ 2π

0

f(a+Reit)dt. �

It is now time to begin the task of learning to appreciate Cauchy’s Integral Formula. It is surprising,
beautiful and useful, all wrapped into one. Let us first of all call attention to the fact that it says
that the value of f at a point is determined by its values on any circle around that point. In
particular, suppose f is entire – i.e., U = C. Then f(0) for instance is determined by the values of
f on the circle of radius r for any r: in other words, knowing the values of f at points arbitrarily
far away from 0 determine f at 0! So for instance, we immediately get the following:

Corollary 4.15. Suppose f : C → C is an entire function. If there is R > 0 such that f(z) = 0
for all |z| ≥ R, then f is identically 0.

The point is that nothing like this is true for real functions. There are many many functions
f : R→ R that are infinitely differentiable, are strictly positive on [−1, 1], but are identically 0 on
(−∞,−2] ∪ [2,∞]. Such functions are sometimes called “bump functions” and they are actually
useful in certain parts of analysis and geometry.

The next thing to observe is that the proof did not make much use of the fact that the path
of integration Cr was a circle. Suppose rather that we have a simple closed curve γ with image in
U , such that a lies in the interior of γ, and such that γ is oriented in the positive direction – i.e.,
so that the interior of γ lies always to our left as we traverse γ. Then the proof works to show
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that f(a) = 1
2πi

∫
γ
f(z)
z−adz = 0 so long as, for all sufficiently small r, we can decompose the region

between the inner circle Cr and the outer simple closed curve γ into a finite union of simple closed
curves by adding in auxiliary piecewise smooth arcs. Though we do not want to prove it, it turns
out that the conclusion is valid in general.

Theorem 4.16. (Cauchy Integral Formula, v. 2) Let U ⊂ C be a domain, and let f : U → C be
a holomorphic function. Let a ∈ U , and let γ : [a, b]→ U be a simple closed curve such that a lies
in the interior of γ and the interior of γ is contained in U . Then

f(a) =
1

2πi

∫
γ

f(z)dz

z − a
.

Here is another variant of the above reasoning: suppose we have simple closed curves γ1 and γ2,
both positively oriented, with γ1 lying inside the interior of γ2. Again, so long as we can decompose
the region lying between γ1 and γ2 into a finite union of simple closed curves by adding in auxiliary
piecewise smooth arcs, then we get the following conclusion, which turns out to be valid in general.

Theorem 4.17. (Cauchy Integral Theorem, v.2) Let γ1 and γ2 be positively oriented simple closed
curves, iwth γ1 lying inside the interior of γ2. Let U be the domain of all z lying between γ1 and
γ2 (i.e., exterior to γ1 and interior to γ2), and let U be U together with its boundary γ1 ∪ γ2. If
f : U → C is holomorphic, then we have ∫

γ1

f =

∫
γ2

f.

Example 4.18. Let f : C→ C be entire, and let γ be the looped limacon given by r = 1
2 + cos θ,

oriented positively. Let a = 1
4 , which lies inside the inner loop. What is

∫
γ
f(z)
z−adz? The point

of course is that this is not a simple closed curve. However, it is obtained by concatenating two
simple closed curves γ1 and γ2, each positively oriented and with a in the interior. So by Cauchy’s
Integral Formula we have∫

γ

f(z)dz

z − a
=

∫
γ1

f(z)dz

z − a
+

∫
γ2

f(z)dz

z − a
= 2πif(a) + 2πif(a) = 2(2πif(a).

In the above example the outer “2” is there because the limacon “winds twice around a.” More
generally, if we draw a curve that spirals n times around a and then at the end comes back in to
connect itself up, then similar arguments show that the integral will be n(2πif(a)). If we change
the orientation on the spiral curve, we get a negative integer n, and of course by going around a
small disk disjoint from a we can get the integral to be 0. Is anything else possible?!? In fact not.
We state the following result without proof.

Theorem 4.19. Let U be a simply connected domain, let f : U → C be a holomorphic function,

and let γ : [a, b]→ U be any piecewise smooth curve. Then 1
2πi

∫
γ
f(z)dz
z−a is an integer. It is called

the winding number of γ about a.

This result lies at the border of complex analysis and the important field of mathematics known
as algebraic topology.

4.3. The Local Maximum Modulus Principle.

Exercise 4.1. Let g : [a, b]→ R be continuous and non-negative, with maximum value M . Suppose∫ b
a
g = (b− a)M . Show: g(x) = M for all x ∈ [a, b].

Theorem 4.20. (Local Maximum Modulus Principle) Let a ∈ C, R > 0, and let f : Ba(R) → C
be holomorphic. Suppose that for all z ∈ Ba(R) we have |f(z)| ≤ |f(a)|. Then f is constant.
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Proof. Step 1: Let 0 < r < R. By Corollary 4.14 we have

f(a) =
1

2π

∫ 2π

0

f(a+ reit)dt.

Since |f | attains its maximum at a, we have

2π|f(a)| = |
∫ 2π

0

f(a+ reit)dt| ≤
∫ 2π

0

|f(a+ reit)|dt ≤ 2π|f(a)|.

Thus ∫ 2π

0

|f(a+ reit)|dt = 2π|f(a)|.

The preceding exercise gives: |f(z)| = |f(a)| for all z = a+ reit and thus |f | is constant on Ba(R).
Step 2: We claim that for any domain U ⊂ C and holomorphic f : U → C, if |f | is constant then
f is constant. Write f(z) = u(z) + iv(z), as usual. Thus our assumption is that there is c ≥ 0 such
that for all z ∈ U we have

u2(z) + v2(z) = c.

Taking partial derivatives of the above equation we get

2u
∂u

∂x
+ 2v

∂v

∂x
= 0,

2u
∂u

∂y
+ 2v

∂v

∂y
= 0.

Using the Cauchy-Riemann equations, the above equations imply

u
∂u

∂x
− v ∂u

∂y
= 0

and

u
∂u

∂y
+ v

∂u

∂x
= 0.

In other words, we have the matrix equation

0 =

[
∂u
∂x −∂u∂y
∂u
∂y

∂u
∂x

] [
u
v

]
.

But this matrix has the familiar form

[
A −B
B A

]
, so: if there is some z ∈ U such that ∂u

∂x and

∂u
∂y are not both zero, the matrix is invertible and thus u(z) = v(z) = 0, which implies that

u2 + v2 = c = 0, so u and v are identically zero and f is constant. Otherwise ∂u
∂x and ∂u

∂y are

identically zero on U , so u is constant. The Cauchy-Riemann equations imply that ∂v
∂x and ∂v

∂y are

also identically zero on U , so v is constant. �

Why is the above the “local” Maximum Modulus Principle? Well, suppose U ⊂ C is any domain,
and let f : U → C be holomorphic. Suppose that f assumes a maximum value at a ∈ U . Then
in particular it assumes a maximum value in an open disk Ba(R) for sufficiently small R > 0,
and thus by Theorem f is constant on Ba(R). Once we have proven the Identity Theorem – that
says that it two holomorphic functions agree on a subset of U that has an accumulation point in
U , they must be equal – we will be able to deduce that f is constant on U . Thus a nonconstant
analytic function on a domain does not assume a maximum value.
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Exercise 4.2. (Local Minimum Modulus Principle) Let a ∈ C, R > 0 and let f : Ba(R) → C be
holomorphic. Suppose that for all z ∈ Ba(R) we have

0 < |f(a)| ≤ |f(z)|.

Show: f is constant.

4.4. Cauchy’s Integral Formula For Derivatives. One remarkable consequence of Cauchy’s
Integral Formula is that it implies similar integral formulas for all the derivatives of a holomorphic
function f : in particular it implies that any holomorphic function is infinitely differentiable!

Throughout this section, U ⊂ C is a domain, f : U → C is a holomorphic function, z is a
point of U , r > 0 is such that Bz(r) centered at r is contained in U , and Cr(t) = z + reit.

We begin with the following lemma, an instance of “differentiation under the integral sign” that
is possible to establish by relatively direct calculation.

Lemma 4.21. For all n ∈ Z+, we have

d

dz

∫
γ

f(w)dw

(w − z)n
= n

∫
Cr

f(w)dw

(w − z)n+1
.

Proof. We want to show that

d

dz

∫
Cr

f(w)dw

(w − z)n
− n

∫
Cr

f(w)dw

(w − z)n+1
= 0,

so let

L :=
d

dz

∫
Cr

f(w)dw

(w − z)n
− n

∫
Cr

f(w)dw

(w − z)n+1
.

Then

L = lim
h→0

1

h

∫
Cr

f(w)

(w − z − h)n
− f(w)

(w − z)n
dw − n

∫
Cr

f(w)dw

(w − z)n+1

= lim
h→0

∫
Cr

f(w)

(
(w − z)n − (w − z − h)n

(w − z − h)n(w − z)nh
− n

(w − z)n+1

)
dw.

Put s := w − z. Then

L = lim
h→0

∫
Cr

f(w)

(
(s)n − (s− h)n

(s− h)nsnh
− n

sn+1

)
dw = lim

h→0

∫
Cr

f(w)

(
sn+1 − s(s− h)n − nh(s− h)n

h(s− h)nsn+1

)
dw.

We claim that the numerator is of the form h2Q(s, h), where Q(s, h) is a polynomial in s and h.
To see this, we expand out the binomials and write O(h2) for expressions that are sums each term
of which is divisible by h2. We get:

sn+1−s(s−h)n−nh(s−h)n = sn+1−s
(
sn −

(
n

1

)
sn−1h+O(h2)

)
−nh

(
sn −

(
n

1

)
sn−1h+O(h2)

)
= sn+1−sn+1 +nhsn+O(h2)−nhsn−+n2sn−1h2 +O(h2) = n2sn−1h2 +O(h2)+O(h2) = O(h2).

Thus L = 0 iff

lim
h→0

h

∣∣∣∣ ∫
Cr

f(w)Q(s, h)dw

(s− h)nsn+1

∣∣∣∣ = 0.

Thus it is enough to show that

∣∣∣∣ ∫Cr f(w)Q(s,h)dw
(s−h)nsn+1

∣∣∣∣ stays bounded as h→ 0, since then its product

with h approaches 0. Fix one r0 > 0 such that Bz(r0) ⊂ U . Then the function fQ(s, h) is
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continuous on C hence is bounded on Cr. Moreover we have |s| = |w − z| = r, and for sufficiently
small h we have |s− h| ≥ r

2 . Therefore the ML-Inequality gives∣∣∣∣ ∫
Cr

f(w)Q(s, h)dw

(s− h)nsn+1

∣∣∣∣ ≤ 2πr
M

(r/2)nrn+1
,

which is indeed bounded independently of h as h→ 0. So L = 0, completing the proof. �

Theorem 4.22. (Cauchy Integral Formula for Derivatives) For all n ∈ N, f (n)(z) exists and is
given by the following equation:

(12) f (n)(z) =
n!

2πi

∫
Cr

f(w)dw

(w − z)n+1
.

Proof. We go by induction on n. The base case n = 0 is Cauchy’s Integral Formula. Now let
n ∈ N, and suppose that (12) holds for n. Then using Lemma 4.21 we get

f (n+1)(z) =
d

dz
f (n)|z =

n!

2πi

d

dz

∫
Cr

f(w)dw

(w − z)n+1
=

(n+ 1)!

2πi

∫
Cr

f(w)dw

(w − z)n+2
,

completing the induction step. �

We have the following remarkable consequence.

Corollary 4.23. If f is holomorphic on U then it is infinitely differentiable, and every derivative
is again holomorphic on U .

Exercise 4.3. Let f(z) = u(z) + iv(z) be a holomorphic function on U . Show that u : U → R and
v : U → R are smooth functions: that is, partial derivatives of all orders exist.

Exercise 4.4. Consider the function f : R → R given by f(x) =

{
x2018 x ≥ 0

−x2018 x < 0
. Show that

f (2017) exists but f (2018) does not.

4.5. Morera’s Theorem.

Theorem 4.24. (Morera10’s Theorem) Let U ⊂ C be a domain, and let f : U → C be a function.
The following are equivalent:
(i) f is holomorphic on U .
(ii) For every simple closed curve γ such that γ and its interior lie in U , we have

∫
γ
f = 0.

(iii) For every triangle T that is contained, along with its interior, in U , we have
∫
T
f = 0.

Proof. (i) =⇒ (ii) by the Cauchy-Goursat Theorem.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (i): By Lemma 4.12, every simple polygonal closed curve can be triangulated, and thus
the hypothesis implies that

∫
γ
f = 0 for every simple polygonal closed path. By Theorem Y.Y this

implies that there is F : U → C such that F ′ = f . Clearly F is holomorphic, and it follows from
Theorem 4.22 that the derivative of every holomorphic function is holomorphic, hence also f is
holomorphic. �

One should think of Morera’s Theorem as saying that holomorphic functions are precisely the
analogue of irrotational vector fields. Another way to say it is that they are precisely the “locally
conservative” functions. Being holomorphic is a local property of a function – i.e., it depends only
on the values of a function in an arbitrarily small open disk centered at the point. Similarly, being
an irrotational vector field is a local property, and Green’s Theorem implies that an irrotational
vector field is conservative in any open disk around each point, hence locally conservative.

10Giacinto Morera, 1856-1909, was an Italian engineer and mathematician.
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4.6. Cauchy’s Estimate.

Theorem 4.25. (Cauchy’s Estimate) Let f : Ba(R) → C be holomorphic, and let M be the
supremum of |f(z)| on the circle CR of radius R centered at a. Then for all n ∈ N, we have

|f (n)(a)| ≤ n!M

Rn
.

Proof. Let CR be the boundary circle of Ba(R). We use Cauchy’s Integral Formula for Derivatives
and the ML-Inequality:

|f (n)(a)| = | n!

2πi

∫
CR

f(w)dw

(w − a)n+1
| ≤ n!

2π

M

Rn+1
(2πR) =

n!M

Rn
. �

4.7. Liouville’s Theorem.

Theorem 4.26. (Liouville11’s Theorem) Let f : C→ C be entire and bounded. Then f is constant.

Proof. Suppose |f(z)| ≤M for all z ∈ C. Then Cauchy’s Estimate with n = 1 gives

|f ′(a)| ≤ M

R
.

But we are allowed to take R as large as we want, so this implies |f ′(a)| = 0. Since a was arbitrary,
this means that f ′ is identically 0. By Theorem 2.14, this implies that f is constant. �

Again this is a striking difference from the real variable case, where for instance the infinitely
differentiable functions sinx and cosx are bounded by 1 on R.

Exercise 4.5. a) Let R > 0. Find an explicit complex number zR (in terms of R, of course) such
that | cos zR| ≥ R.
b) Let R > 0. Find an explicit complex number zR (in terms of R, of course) such that | sin zR| ≥ R.
c) Let R > 0. Is there a complex number z such that | cos z| ≥ R and | sin z| ≥ R?

The technique of proof of Liouville’s Theorem also works to establish several generalizations.

Theorem 4.27. Let f : C→ C be an entire function.
a) (Generalized Liouville) Suppose there are α ∈ [0, 1) and C > 0 such that |f(z)| ≤ C|z|α for all
z ∈ C. Then f is constant.
b) (Polynomial Liouville) Let g(z) be a polynomial of degree d ≥ 0. Suppose that |f(z)| ≤ |g(z)|
for all z ∈ C. Then f(z) is itself a polynomial of degree at most d.

Proof. a) Let a ∈ C, let R > 0 and let M(R, a) be the maximum value of f on the circle C(R, a)
of radius R centered at a. Cauchy’s Estimate with n = 1 gives

|f ′(a)| ≤ M(R, a)

R
.

If z ∈ C(R, a), then |z| ≤ R+ |a|, so M(R, a) ≤ C(R+ |a|)α, so for sufficiently large R we have

|f ′(a)| ≤ C(R+ |a|)α

R
≤ C(2R)α

R
.

Letting R→∞ shows f ′(a) = 0, so f is constant by the Zero Velocity Theorem.
b) Let a ∈ C, let R > 0, and again let M(R, a) be the supremum of f on the circle C(R, a) of
radius R centered at a. Cauchy’s Estimate with n = d+ 1 gives

|f (d+1)(a)| ≤ (d+ 1)!M(R, a)

Rd+1
.

11Joseph Liouville, 1809-1882, was a versatile French mathematician, working in analysis, geometry, mathemat-
ical physics and number theory, among other areas. Why this theorem is named after him since it follows in a few

lines from a result of Cauchy is mysterious to me.
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If g(z) = adz
d + . . .+ . . .+ a1z + a0, then for sufficiently large |z| we have

|g(z)| ≤ |2ad||z|d.
If z ∈ C(R, a), then again |z| ≤ R+ |a|, so

|f(z)| ≤ |g(z)| ≤ |2ad|(R+ |a|)d.
Thus for sufficiently large R we have

M(R, a) ≤ |2ad|(R+ |a|d) ≤ 2d+1|ad|Rd,
so

|f (d+1)(a)| ≤ (d+ 1)!2d+1|ad|Rd

Rd+1
=

(d+ 1)!2d+1|ad|
R

.

The right hand side approaches 0 as R→∞, so f (d+1) is identically 0. By Exercise 2.7 it follows
that f is a polynomial of degree at most d. �

4.8. The Fundamental Theorem of Algebra.

Lemma 4.28. Let f : C → C be a continuous function such that limz→∞ f(z) = L ∈ C. Then f
is bounded.

Proof. Let R ≥ 0 be such that for |z| ≥ R we have |f(z)−L| < 1; for such z we have |f(z)| ≤ |L|+1.
Since f is continuous and B0(R) is closed and bounded, by Theorem 1.28 there is M > 0 such
that |f(z)| ≤M for all z with |z| ≤ R. It follows that f is bounded on C by max(L+ 1,M). �

Theorem 4.29. (Fundamental Theorem of Algebra) Let f(z) be a polynomial of degree n ≥ 1 with
complex coefficients. There are r1, . . . , rn ∈ C and α ∈ C \ {0} such that

f(z) = α(z − r1) · · · (z − rn).

Proof. Step 1: We show that there is z ∈ C such that f(z) = 0. Seeking a contradiction, we
assume not: then g(z) := 1

f(z) is an entire function. Moreover, since f has positive degree, we have

limz→∞ g(z) = 0. By Lemma 4.28 we have that g is bounded, and then g is constant by Liouville’s
Theorem, contradicting the fact that g is nonzero and limz→∞ g(z) = 0.
Step 2: Thus there is r1 ∈ C such that f(r1) = 0. By the Root-Factor Theorem from high school
algebra, we may write f(z) = (z−r1)f2(z) for a polynomial f2(z) of degree n−1. Applying Step 1
to f2 we continue in this manner, eventually getting f(z) = (z − r1) · · · (z − r−n)fn(z) with fn(z)
of degree 0. That is, fn(z) is a nonzero constant α and f(z) = α(z − r1) · · · (z − rn). �

4.9. Logarithms.

Theorem 4.30. Let U ⊂ C be a simply connected domain. Let g : U → C \ {0} be a holomorphic
function. Then there is a holomorphic function f : U → C such that g = ef .

Proof. Fix a ∈ U . Since ez = exeiy and ex : R → (0,∞) is surjective, there is c ∈ C such that
ec = f(a). We define

g(z) := c+

∫ z

a

f ′(w)dw

f(w)
.

Here the notation means that we integrate along any path from a to z: because f ′/f is holomorphic
and U is simply connected, by Cauchy-Goursat the integral is independent of the choice of path,

and by Theorem 4.8 we have g′(z) = f ′(z)
f(z) for all z ∈ U .

We claim that g is the desired function. We show that g = ef in a slightly sneaky way: let

G : U → C, z 7→ f(z)e−g(z).
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Then

G′(z) =
f ′(z)

eg(z)
+
f(z)

eg(z)
(−g′(z)) =

f ′(z)

eg(z)
− f(z)

eg(z)
f ′(z)

f(z)
= 0.

Since U is connected, by Theorem 2.14 the function G is constant. Evaluating at z = a we get
that

∀z ∈ U, f(z)

eg(z)
=
f(a)

eg(a)
=
f(a)

ec
= 1.

That is, for all z ∈ U we have f(z) = eg(z). �

If U ⊂ C is a domain, then a branch of the logarithm is a continuous function L : U → C such
that eL(z) = z for all z ∈ C. Above we saw that there is no branch of the logarithm defined on
C\{0}. On the other hand, if U is a simply connected domain with 0 /∈ U , then applying Theorem
4.30 with g(z) = z, we get that there is a branch of the logarithm defined on U .

Now we consider the following function: for z ∈ C \ {0}, let Arg(z) to be the argument of z
taken to lie in the interval (−π, π], sometimes called the principal argument. We define

Log(z) := log |z|+ iArg(z).

The reason for this definition is that for all z ∈ C \ {0} we have

eLog(z) = elog |z|eiArg(z) = |z|eiArg(z) = z.

However:

Exercise 4.6. Show that Log is continuous at z iff z is not a real number x ≤ 0. (Suggestion: the
function log |z| is continuous on C \ {0}, so it comes down to Arg(z).)

It follows from this exercise that Log is a branch of the logarithm on the smaller domain U =
C \ {x ∈ R | x ≤ 0}: notice that this smaller domain is simply connected.

Exercise 4.7. a) Show: for z = x+ iy, we have

Log(ez) = x+ iArg(eiy).

b) Deduce that Log(ez) = z iff =(z) ∈ (−π, π].
c) Let V = {z ∈ C | =(z) ∈ (−π, π)} and let U = C \ {x ∈ R | x ≤ 0}. Show that exp : V → U and
Log : U → V are mutually inverse bijections.

Using these exercises, we deduce:

Theorem 4.31. The function LogC \ {x ∈ R | x ≤ 0} → C is holomorphic.

Proof. We apply the Inverse Function Theorem (Theorem 2.10) with U = {z ∈ C | =(z) ∈ (−π, π)},
V = C \ (−∞, 0], f(z) = ez and g(z) = Log z. By the preceding exercise, f is bijective and g is its
inverse function, so the Inverse Function Theorem tells us that g is holomorphic. �

Exercise 4.8. Show that if U ⊂ C is a domain and L : U → C is a branch of the logarithm, then
L is holomorphic on U .
(Suggestion: Adapt the above argument. You will need to shrink U so that the exponential function
is injective on L(U).)

For a ∈ C \ {0} and b ∈ C, we define the principal value

ab := ebLog a.

For now we just warn that these principal values must be interpreted carefully; we do not claim
that it satisfies all the usual laws of exponents.



COMPLEX ANALYSIS: SUPPLEMENTARY NOTES 55

4.10. Harmonic functions II. The next result asserts that every harmonic function u : U → R
on a simply connected domain has a harmonic conjugate, i.e., a harmonic function v : U → R such
that f = u+ iv is holomorphic on U . Recall in fact that the Cauchy-Riemann equations show that
the real and imaginary parts of any holomorphic function are harmonic, so it is enough to show
that u = <f for some holomorphic f .

Theorem 4.32. Let U ⊂ C be a simply connected domain, and let u : U → R be harmonic. Then
there is a holomorphic function f : U → C such that u = <(f).

Proof. Step 1: g : U → C by g(z) = ∂u
∂x − i

∂u
∂y . We will show that g satisfies the Cauchy-Riemann

equations. Since u is harmonic, g has continuous first partial derivatives, so by Theorem 2.17, g is
holomorphic on U . Indeed, we have <(g) = ∂u

∂x and =(g) = −∂u∂y , so

∂<(g)

∂x
=
∂2u

∂x2
= −∂

2u

∂y2
=
∂=(g)

∂y
,

the second equality holding because u is harmonic; and

∂<(g)

∂y
=

∂2u

∂x∂y
=

∂2u

∂y∂x
= −∂=(g)

∂x
.

Step 2: Because g : U → C is holomorphic and U is simply connected, there is a function G : U → C
with G′ = g. Let us write G(z) = a(z) + ib(z). Then

∂u

∂x
− i∂u

∂y
= g(z) = h′(z) =

∂h

∂x
=
∂a

∂x
+ i

∂b

∂x
=
∂a

∂x
− i∂a

∂y
,

so we have

(13)
∂a

∂x
=
∂u

∂x
and

(14)
∂u

∂y
=
∂a

∂y
.

Equation (13) implies that ∂
∂x (u− a) = 0, and thus there is a function c(y) such that

c(y) = u(x, y)− a(x, y).

Differentiating both sides of this equation with respect to y and using (14) we get

c′(y) =
∂u

∂y
− ∂a

∂y
= 0.

Thus in fact c(y) = c is a constant, so G(z) + c is holomorphic and

u(z) = a(z) + c = <(G(z) + c),

completing the proof. �

If we can explicitly write down the antiderivative G of g, then we can explicitly find the harmonic
conjugate v. The following is a simple example.

Example 4.33. The function u : R2 → R given by u(x, y) = xy is harmonic. Let

g(z) :=
∂u

∂x
− i∂u

∂y
= y − ix.

We recognize g(z) = −i(x+ iy) = −iz, so an antiderivative is

G(z) =
−i
2
z2 =

−i
2

(x+ iy)2 =
−i
2

(x2 − y2 + 2xyi) = xy + i
y2 − x2

2
,
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so the harmonic conjugate of u is v(x, y) = y2−x2

2 .

Corollary 4.34. Let U ⊂ R2 be a domain. Then every harmonic function u : U → R is infinitely
differentiable.

Proof. The partial derivatives of u at a point depend only on the values of u in a small disk around
the point, so we reduce to the case in which U is an open disk, which is simply connected. Then u
is the real part of a holomorphic function, so the mixed partial derivatives of all orders exist. �

From the perspective of real analysis, Corollary 4.34 is a very striking result. By definition harmonic
functions are C2 – i.e., all second partial derivatives exist and are continuous. Of course a real
function that is C2 need not be C3, let alone infinitely differentiable. However satisfying the
differential equation ∆u = 0 forces the additional smoothness. Results of this kind that assert
that a weak smoothness property together with solving a differential equation satisfies a stronger
smoothness property are called regularity theorems. The result about harmonic functions is in
fact a case of a more general theorem: there is a class of PDEs called elliptic and an Elliptic
Regularity Theorem concerning solutions of elliptic PDEs.

Theorem 4.35. (Mean Value Theorem for Harmonic Functions) Let U ⊂ R2 be a domain and
h : U → R be a harmonic function. Let a ∈ U and let r > 0 be such that Ba(r) ⊂ U . Then:

(15) h(a) =
1

2π

∫ 2π

0

u(a+ reit)dt.

Proof. The idea of the proof is to combine Theorems 4.14 and 4.32. There is one minor technicality:
we to apply Theorem 4.32 we need a simply connected domain, i.e., an open set. In fact there
is R > r such that Ba(r) ⊂ Ba(R). On first pass the reader may just want to add the existence
of such an R as a hypothesis to the theorem. Anyway, here is a proof: if U = R2 then this is
clear. Otherwise, for every z ∈ Ba(r) we let d(z) be the distance from z to the boundary of U .
In any metric space, the distance from a varying point to a fixed closed set A is well-defined and
continuous, and when restricted to points lying outside A is strictly positive. Applying this with
A as the boundary of U we get a continuous function d : Ba(r) → (0,∞). Since Ba(r) is closed
and bounded, this function attains its minimum value, i.e., there is δ > 0 such that d(z) ≥ δ for
all z ∈ Ba(r). Taking R := r + δ, it follows that Ba(R) ⊂ U .

Having established this, we apply Theorem 4.32 to h on Ba(r + δ): there is a holomorphic
f : Ba(R)→ U with <(f) = h. By Theorem 4.14 we have

f(a) =
1

2π

∫ 2π

0

f(a+ reit)dt.

Taking the real part of both sides gives (15). �

Corollary 4.36. A harmonic function h : U → R cannot have a strict local extremum at any
point of U .

Proof. It is enough to show that h cannot have a strict local maximum at any a ∈ U ; if so,
applying this to −h in place of h shows that h cannot have a strict local minimum. To say that h
has a strict local maximum at a means that there is some r > 0 such that Br(a) ⊂ U and for all
z ∈ BR(a) \ {a} we have h(a) > h(z). Because h is continuous and the boundary circle Cr(a) is
closed and bounded, h assumes a maximum value M on Cr(a) and thus M < h(a). But then

h(a) =
1

2π

∫ 2π

0

u(a+ reit)dt ≤ 1

2π

∫ 2π

0

Mdt =
2πM

2π
= M < h(a),

a contradiction. �
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Corollary 4.37. If f : U → C \ {0} is holomorphic, then h = log |f | is harmonic.

Proof. Because being harmonic is a local property of f , we may assume that U is an open disk
and thus simply connected. We may thus write f = eg, and then for all z ∈ U we have

log |f(z)| = log |eg(z)| = log e<(g(z)) = <(g(z)).

Being the real part of a holomorphic function, log |f(z)| is harmonic. �

5. Some integrals

Example 5.1. Let a > 1. We evaluate I =
∫ 2π

0
dt

a+cos t . We have

I =

∫ 2π

0

dx

a+ eix+e−ix

2

= 2

∫ 2π

0

eixdx

e2ix + 2aeix + 1
.

Put z = eix, so dz = ieixdx. Thus

I =
2

i

∫
C0(1)

dz

z2 + 2az + 1
.

The roots of z2 + 2az + 1 are r1 = −a −
√
a2 − 1 and r2 = −a +

√
a2 − 1. Since r1 < −a < −1,

we have |r1| > 1. On the other hand, we have

r1r2 = (−a)2 − (
√
a2 − 1)2 = 1,

so |r2| < 1. So by Cauchy’s Integral Formula, we have

I =
2

i

∫
C0(1)

dz
z−r1
z − r2

=
2

i
2πi

1

r2 − r1
=

4π

2
√
a2 − 1

=
2π√
a2 − 1

.

This solution is taken from https: // math. stackexchange. com/ questions/ 134577/ how-do-you-integrate-int-frac1a-cos-x-dx .
In fact that question asks for the antiderivative instead, and several answers there explain how this
can be done using the (in)famous Weierstrass substitution.

Example 5.2. We evaluate

I =

∫ ∞
−∞

dx

x2 + 1
.

Let R > 0. Let γR be the contour which begins with a straight line segment from −R to R and then
follows with the semicircular arc in the upper half plane from R to −R. First we claim that

lim
R→∞

∫
γR

dz

z2 + 1
=

∫ ∞
−∞

dx

x2 + 1
.

The integral along the line segment from −R to R is just
∫ R
R

dx
x2+1 , so the limit of this as R

approaches infinity is
∫∞
−∞

dx
x2+1 . (This improper integral is absolutely convergent so coincides with

its principal value.) Let CR : [0, π] → C, t 7→ Reit parameterize the semicircular arc. So to
establish the claim we need to show that

lim
R→∞

∫
CR

dz

z2 + 1
= 0.

For this the ML-Inequality suffices: for sufficiently large R, Q(z) = z2 + 1 is at least 1
2R

2 in

absolute value, so | 1
z2+1 | ≤

2
R2 . Since the length of the semicircular arc is πR, we get∣∣∣∣ ∫

CR

dz

z2 + 1

∣∣∣∣ ≤ 2πR

2R2
=
π

R
→ 0.
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Since 1
z2+1 = 1

(z+i)(z−i) , we put g(z) = 1
z+i . Then g(z) is holomorphic except at i, hence on γR

and its interior. Applying Cauchy’s Integral formula, we get

I = 2πig(i) = 2πi

(
1

2i

)
= π.

Comments: a) that we can also do this via real variable methods. Indeed

I = lim
R→∞

∫ R

−R

dx

x2 + 1
= lim
R→∞

arctanx|R
R

= arctan(∞)− arctan(−∞) =
π

2
− −π

2
= π.

b) The first part of the argument works when integrating anything of the form f(z)
Q(z) where f is

holomorphic and bounded for all z with <(z) ≥ 0 and the denominator is a polynomial Q(z) of
degree at least 2.

We pause to develop the partial fractions decomposition of a proper rational function over C. (This
is similar to but easier than the corresponding theory over R owing to the absence of irreducible

quadratic polynomials over C.) Let P (z)
Q(z) be a proper rational function: that is, P (z) and Q(z) are

polynomials and the degree of P is less than the degree of Q. By the Fundamental Theorem of
Algebra we may write

Q(z) = (z − r1)a1 · · · (z − rk)ak

for distinct complex numbers r1, . . . , rk and positive integers a1, . . . , ak. Then the degree of Q is
a1 + . . .+ ak = n, say. We claim that there are unique complex numbers C1, . . . , Cn such that

P (z)

Q(z)
=

C1

z − r1
+

C2

(z − r1)2
+ . . .+

Ca1
(z − r1)a1

+ . . .+
Ca1+...+ak−1+1

z − rk
+ . . .+

Cn
(z − rk)ak

.

We will prove this by linear algebra. First, we observe that the set of proper rational functions that

can be written in the form P (z)
Q(z) is a vector space over C. Since one basis is given by { zi

Q(z)}0≤i≤n−1,

the space has dimension n. The partial fractions decomposition is precisely the assertion that
1

z−r1 , . . . ,
1

(z−r1)a1 , . . . ,
1

(z−rk)ak is also a basis for the same vector space (by putting all these terms

over a common denominator we see that they are indeed proper rational functions of the form
P (z)
Q(z) ). Because the number of elements is again n, it is enough to show that these elements are

linearly independent over C, i.e., if

(16)
C1

z − r1
+

C2

(z − r1)2
+ . . .+

Ca1
(z − r1)a1

+ . . .+
Ca1+...+ak−1+1

z − rk
+ . . .+

Cn
(z − rk)ak

= 0,

then Ci = 0 for all 1 ≤ i ≤ n. To see this, multiply (16) through by (z − r1)a1 . Having done that,
every term but the term with coefficient Ca1 has (z − r1) as a factor, and that latter term is just
Ca1 , so evaluating at z = r1 we get Ca1 = 0. Having learned this we can now repeat the same
argument by multiplying through by (z− r1)a1−1 to get Ca1−1 = 0, and continuing in this way we
get C1 = . . . = Ca1 = 0. Repeating this argument for the roots r2 through rk eventually gives that
all coefficients are 0.

Example 5.3. We evaluate

I =

∫ ∞
−∞

dx

x4 + 1
.

By Remark b) of the above example, if γR is the upper semicircular contour from −R to R followed
by the straight line segment from −R to R, we have

I = lim
R→∞

∫
γR

dz

z4 + 1
.
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The roots of z4 + 1 are the fourth roots of −1, namely

r1 = eiπ/4, r2 = e3πi/4, r3 = e5πi/4, r4 = e7πi/4.

We can do a partial fractions decomposition

1

z4 + 1
=

A

z − r1
+

B

z − r2
+

C

z − r3
+

D

z − r4
.

Because r3 and r4 lie in the lower half plane so outside of γR, we have
∫
γR

C
z−r3 +

∫
γR

D
z−r3 = 0,

and thus

I = lim
R→∞

∫
γR

A

z − r1
+

∫
γR

B

z − r2
= 2πi(A+B).

Now we find A and B: clearing denominators and evaluating at z = r1 gives

1 = A(r1 − r2)(r1 − r3)(r1 − r4), so A =
1

(r1 − r2)(r1 − r3)(r1 − r4)
,

while clearing denominators and evaluating at z = r2 gives similarly

B =
1

(r2 − r1)(r2 − r3)(r2 − r4)
.

Example 5.4. We evaluate I =
∫∞
−∞

cos xdx
x2+1 . First we observe that I is the real part of J =∫∞

−∞
eix

x2+1 . Now here is a key observation: for all z = x+ iy ∈ C, if y ≥ 0, then

|eiz| = |ei(x+iy)| = e−y|eix| = e−y ≤ 1.

In other words, the function eiz is holomorphic and bounded on the upper half plane. As noted
above, this implies that

J = lim
R→∞

∫
CR

eiz

z2 + 1
,

where CR is the semicircular contour as above. Writing eiz

z2+1 = eiz/(z+i)
z−i and applying the Cauchy

Integral Formula with g(z) = eiz/(z + i), we get

J = 2πig(i) = (2πi)ei·i/(i+ i) =
π

e
.

Thus

I =

∫ ∞
−∞

cosxdx

x2 + 1
= <(

π

e
) =

π

e
.

a) It also follows that
∫∞
−∞

sin x
x2+1 = 0. However, we should have known this already: weT are

integrating an odd function from −∞ to ∞, so of course we get zero!

Using the methods we have developed, if γ is any simple closed curve, f is a function that is defined

and holomorphic on γ and its interior and Q(z) is any polynomial, then we can compute
∫
γ
f(z)dz
Q(z) .

We give one (relatively simple) example.

Example 5.5. Let γ : [0, 2π] → C by γ(t) = 3eit be the circle of radius three centered at 0,
positively oriented. Let f : C→ C be any entire function. We will compute

I =

∫
γ

f(z)dz

(z − 1)2(z − 2)
.

First we do a partial fractions decomposition:

1

(z − 1)2(z − 2)
=

A

z − 1
+

B

(z − 1)2
+

C

z − 2
.
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Clearing denominators we get

(17) 1 = (z − 1)(z − 2)A+ (z − 2)B + (z − 1)2C.

Evaluating at z = 1 gives B = −1. Evaluating at z = 2 gives C = 1. Finally, we compare
coefficients of z2 on both sides of (17): the coefficient on the left hand side is 0, while the coefficient
on the right hand side is A+ C. Thus A+ C = 0, so A = −C = −1. Thus∫

γ

f(z)dz

(z − 1)2(z − 2)
= −

∫
γ

f(z)dz

z − 1
−
∫
γ

f(z)dz

(z − 1)2
+

∫
γ

f(z)dz

z − 2
.

Noting that both 1 and 2 lie in the interior of γ and using Cauchy’s Integral Formula for the first
and last term and Cauchy’s Integral Formula for the first derivative for the middle term, we get∫

γ

f(z)dz

(z − 1)2(z − 2)
= 2πi(−f(1)− (1!)f ′(1) + f(2)) = 2πi(f(2)− f(1)− f ′(1)).

This gives a good idea of the sort of integrals that we can compute using the present tools. For
an integral that we’d like to compute but can’t yet, consider

∫
γ
ezdz
sin z for a simple closed curve γ.

The roots of sin z are at nπ for n ∈ Z, so if we are so fortunate that none of these points lie on
the interior of γ, the integral is 0. In general, if the roots enclosed are r1, . . . , rn, then the sort
of dissection argument we’ve seen before shows that the integral is equal to the sum of integrals
around small circles enclosing each of the roots r1. So for instance taking γ to be the circle of
radius 1 centered at π is representative of the general case. A little thought suggests writing the

integrand as
ez/ sin z

z−π
z−π . Now the function sin z

z−π does not look holomorphic at π: strictly speaking, it
is not even defined there. However, we have

lim
z→π

sin z

z − π
= lim
z→π

sin z − sinπ

z − π
=

d

dz
sin z|z=π = cosπ = −1.

In other words, if we extend sin z
z−π to take the value −1 at π then at least it is continuous there.

If we assume that the function is holomorphic, then Cauchy’s Integral Formula applies to give an
integral of 2πi(−eπ). How do we justify this? Thinking back to the real variable case, we remember
that the sine function is given by a convergent power series expansion around every point, so in
particular about π:

sinx = sin(π) + sin′(π)(x− π) + sin′′(π)/2(x− π)2 + . . . .

Since sin(π) = 0, every term in this expansion is divisible by (x − π). So therefore we can divide
by (x− π) and still get a power series that converges for all real x:

sinx

x− π
= sin′(π) + sin′′(π)/2(x− π) + sin′′′(π)/6!(x− π)2 + . . . .

Any such function is infinitely differentiable. So in other words, if we can extend the theory of
power series from a real variable to a complex variable, we can justify the above calculation. We
proceed to do this shortly.

6. Series methods

6.1. Convergence, absolute convergence and uniform convergence. For a sequence {an}∞n=1

of complex numbers, we say that the infinite series
∑∞
n=1 an converges to S ∈ C if the sequence of

partial sums Sn = a1 + . . . + an converges to S. As usual for convergence of complex series, this
means precisely that the real part of Sn converges to the real part of S and the imaginary part of
Sn converges to the imaginary part of S. Since Cauchy sequences in C converge, we get the usual
Cauchy criterion for convergence of

∑∞
n=1 an: namely, that this series converges iff for all ε > 0

there is N ∈ N such that for all k ≥ N and m ≥ 0 we have |
∑k+m
n=k an| < ε.
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A series
∑∞
n=1 an is absolutely convergent if the associated sequence

∑∞
n=1 |an| of non-negative

real numbers converges; recall that the latter holds iff the sequence of partial sums |a1|+ . . .+ |an|
is bounded.

Proposition 6.1. An absolutely convergent complex series is convergent.

Proof. There are two standard proofs of the corresponding fact for real numbers, and one of them
carries over verbatim to complex series. Namely, we apply the Cauchy criterion twice: if

∑
n an is

absolutely convergent, then for all ε > 0 there is N ∈ N such that for k ≥ N and m ≥ 0 we have∑k+m
n=k |an| < ε, but then

|
k+n∑
n=k

an| ≤
k+n∑
n=k

|an| < ε,

so by the Cauchy criterion, the series
∑
n an converges. �

Example 6.2. For s ∈ C, we define ζ(s) =
∑∞
n=1

1
ns . Writing s = σ + it, we have ns = nσ+it =

nσnit = nσ(elogn)it = nσei lognt, so

|ns| = nσ.

Since for real s > 1 the series
∑∞
n=1

1
ns converges, we get that for <(s) > 1 the series defining ζ(s)

is absolutely convergent. This function is – no kidding! – the most important function in all of
mathematics. It is called the Riemann zeta function.

Let A ⊂ C, and let {fn : A → C}∞n=1 be a sequence of functions. We say that fn converges
pointwise to f : A → C if for all a ∈ A we have fn(a) → f(a). We say that fn converges
uniformly on A to f : A → C if for all ε < 0, there is N ∈ N such that for all n > N and all
a ∈ A we have |fn(a)− f(a)| < ε. Now we have all of the folllowing C analogues of results over R,
with identical proofs.

Theorem 6.3. Let {fn : A → C} and let f : A → C. If fn converges uniformly to f on A and
each fn is continuous, then so is f .

Theorem 6.4. (Weierstrass M-Test)
Let {fn : A→ C}∞n=1 be a sequence of functions. For each n, let

||fn|| = sup{|fn(a)| | a ∈ A} ∈ [0,∞].

If
∑∞
n=1 ||fn|| <∞, then the series

∑∞
n=1 fn converges uniformly on A.

The following is a very close analogue of the fact that uniform convergence allows us to interchange
limits with integrals.

Theorem 6.5. Let A ⊂ C, and let {fn : A → C}∞n=1 be a sequence of continuous functions that
converge to f : A→ C uniformly on C. Let γ : [a, b]→ A be any path. Then

lim
n→∞

∫
γ

fn =

∫
γ

f.

Proof. It is equivalent to show that limn→∞
∫
γ
(fn − f)→ 0. But this follows almost immediately

from the ML-Inequality: let L be the length of path. For ε > 0, there is N ∈ N such that for all
n > N we have |fn(z)− f(z)| < ε

L for all z ∈ A, and thus

|
∫
γ

fn − f | ≤
ε

L
L = ε. �
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Theorem 6.6. Let U ⊂ C be a domain, and let {fn : U → C}∞n=1 be a sequence. We assume:
(i) Each fn is holomorphic on U ,
(ii) There is f : U → C such that fn converges to f pointwise on U ,
(iii) The sequence f ′n converges uniformly on U to some holomorphic function g : U → C.
Then f is holomorphic on U and f ′ = g. In other words, (limn→∞ fn)′ = limn→∞ f ′n.

Proof. Since the conclusions are “local” on U it is no loss of generality to assume that U is an
open disk, hence simply connected. Fix a ∈ U , and define G : U → C by

G(z) :=

∫ z

a

g.

The integral is independent of path because g is holomorphic and U is simply connected. Then

G(z) =

∫ z

a

g =

∫ z

a

lim
n→∞

f ′n = lim
n→∞

∫ z

a

f ′n = lim
n→∞

fn(z)− fn(a) = f(z)− f(a).

As we know, G(z) is an antiderivative of g, so

G′(z) = g(z) = f ′(z). �

Theorem 6.7. Let U ⊂ C be a domain, and let {fn : U → C}∞n=1 be a sequence of holomorphic
functions.
a) If fn → f uniformly on U , then f is holomorphic.
b) In fact the conclusion follows under the weaker assumption of “local uniform convergence”: for
all a ∈ U there is R > 0 such that Ba(R) ⊂ U and fn → f uniformly on Ba(R).

Proof. Since part b) implies part a), we will just prove part b). Let γ : [a, b] → Ba(R) be any
simple closed curve. Since Ba(R) is simply connected, by Cauchy’s Integral Theorem we have∫
γ
fn = 0 for all n ∈ Z+. Since fn converges to f uniformly on Ba(R), by Theorem 6.5 we have∫

γ

f = lim
n→∞

∫
γ

fn = lim
n→∞

0 = 0.

By Morera’s Theorem, f is holomorphic on U . �

Example 6.8. Let ζ(s) =
∑∞
n=1

1
ns . Earlier we showed that this series is absolutely convergent for

all σ = <(s) > 1. In fact, for any fixed p > 1, the convergence is uniform on {s ∈ C | σ = <(s) ≥ p}
by the Weierstrass M -test:

∞∑
n=1

| 1

ns
| =

∞∑
n=1

1

nσ
≤
∞∑
n=1

1

np
<∞.

This condition implies that for each fixed s with σ = <(s) > 1, the convergence is uniform on
some open disk centered at s, so by the previous result the Riemann zeta function is holomorphic
on <(s) > 1.

6.2. Complex power series. Let c ∈ C. A power series centered at a is a series
∑∞
n=0 an(z−

c)n, where {an}∞n=0 is a sequence of complex numbers. As for real power series, we are interested
in the set of values on which the power series converges.

Example 6.9. Consider the geometric series
∑∞
n=0 z

n. The discussion is very similar to the real

case. At z = 1 we get
∑∞
n=0 1, which diverges. For z 6= 1 we have

∑∞
n=0 z

n = limN→∞
∑N
n=0 z

n =

limN→∞
1−zN+1

1−z . When |z| < 1, we have zN+1 → 0, hence the series converges to 1
1−z . For |z| > 1

we have zN+1 → ∞, so the series diverges. The only tricky case is what happens when |z| = 1. I
will you the answer, though it is more complicated than we need: if z is a root of unity (not equal
to 1), then zN+1 cycles through finitely many (but more than one) different values, so the series
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diverges. Otherwise the sequence {zN+1} is dense in the unit circle: this means that given any
0 ≤ θ1 < θ2 ≤ 2π, there are infinitely many N ∈ Z+ such that the argument of zN+1 lies in [θ1, θ2].
Again this means that the series diverges.

So the answer is that the geometric series converges precisely when |z| < 1, so the set of con-
vergence is the open unit disk. In a very reasonable sense the radius of convergence ifs R = 1.
We also get the hint though that trying to figure out what happens on the boundary circle R = 1
is more complicated than in the real case. That is a good moral.

Theorem 6.10. Let
∑∞
n=0 an(z − a)n be a complex power series.

a) There is R ∈ [0,∞], called the radius of convergence, such that:
(i) If R = 0 then the series converges only at z = a.
(ii) If R =∞ then the series converges for all z ∈ C.
(iii) The series converges absolutely for all z with |z− a| < R and the series diverges for all z with
|z − a| > R.
b) If R > 0, then for all 0 < r < R, the series converges uniformly on the closed disk Ba(r).

c) If the Ratio Test limit ρ = limn→∞
|an+1|
|an| exists in [0,∞], then R = 1

ρ .

d) (Cauchy-Hadamard) Let θ = lim supn |an|
1
n .12 Then R = 1

θ .

Proof. First observe that just by making the change of variables w = z − a we may assume that
a = 0. Let

S := {r ∈ [0,∞) |
∞∑
n=0

anz
n converges for some z with |z| = r},

and let R = supS ∈ [0,∞]. We will show that this is the R in the statement of the theorem. Here
is the key claim: let z1, z2 ∈ C with |z2| < |z1|. If

∑
n anz

n
1 converges, then

∑
n anz

n
2 is absolutely

convergent. Indeed, since
∑
n anz

n
1 converges, the sequence of terms converges to 0 and thus is

bounded: there is M > 0 such that |anzn1 | ≤M for all n. Then

r := |z2
z1
| < 1,

and we have
|anzn2 | = |

z2
z1
|n(|anzn1 |) ≤ |

z2
z1
|nM ≤Mrn,

so by comparison to a convergent geometric series we get∑
n

|anzn2 | ≤
∑
n

Mrn <∞,

establishing the claim.
a) If R = 0, then the series only converges at z = 0, while if R = ∞ then for all N ∈ Z+ there
is some z ∈ C with |z| ≥ N such that

∑
n anz

n converges, and then the claim implies that the
series converges absolutely for all z with |z| ≤ N . Since N was arbitrary, this means that the series
converges absolutely for all z ∈ C. Finally, suppose R ∈ (0,∞). If |z| > R, then

∑
n anz

n must
diverge: otherwise |z| ∈ S so |z| ≤ supS = R. If |z| < R then |z| is smaller than the least upper
bound for S so is not an upper bound for S: there is r ∈ S with |z| < r. This means that there is
w ∈ C with |w| = r and such that

∑
n anw

n converges, and then by the claim the series
∑
n anz

n

is absolutely convergent.
b) If 0 < r < R, then by part a) we know that for all z with |z| = r the series

∑
n anz

n is absolutely
convergent. So if |w| ≤ r then∑

n

|anwn| =
∑
n

|an||w|n ≤
∑
n

|an|rn <∞,

12This is the largest limit of a subsequence of |an|
1
n .
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so the convergence is uniform on B0(r) by the Weierstrass M-Test.
c) This follows from the Ratio Test for absolute convergence of complex series in the usual manner.
d) . . . �

Note that the only weak point in the above theorem is that we do not say anything about the
convergence on the boundary circle Ca(R). As alluded to above, the behavior here can be quite
complicated, but these complications will not trouble us. Motivated by this, when R > 0 we define
the domain of convergence of a power series to be the open disk Da(R) (which is C when
R = ∞). As above, this is a minor lie in the sense that the series may converge at some of the
points on the boundary circle, but it as the advantage that it makes the domain of convergence an
actual domain, i.e., a connected open subset.

Theorem 6.11. Let
∑∞
n=0 an(z − a)n be a power series with radius of convergence R ∈ (0,∞].

Consider the function

f : Ba(R)→ C, z 7→ f(z) =

∞∑
n=0

an(z − a)n.

a) The power series
∑∞
n=1 nan(z − a)n−1 also has radius convergence R, and for all z ∈ Ba(R).

b) The function f is holomorphic on Ba(R) and for all z ∈ Ba(R) we have

f ′(z) =

∞∑
n=1

nan(z − a)n−1.

c) It follows – without using Cauchy’s Integral Formula for Derivatives! – that f is infinitely
differentiable, and for all n ∈ N, we have

an =
f (n)(a)

n!
.

Proof. The argument is the same as its real variable analogue: see e.g. [C-HC, Thm. 13.10]. �

Example 6.12. Consider the series E(z) =
∑∞
n=0

zn

n! . The Ratio Test limit is

ρ = lim
n→∞

1/(n+ 1)!

1/n!
= lim
n→∞

1

n+ 1
= 0,

so R = 1
ρ = ∞. That is, the series converges converges for all z ∈ C. By Theorem 6.11, E(z) is

an entire function. Moreover, we are allowed to differentiate termwise, so

E′(z) =

∞∑
n=1

n

n!
zn−1 =

∞∑
n=0

zn

n!
= E(z).

Moreover, we have E(0) = 1. Well, I won’t slow roll you – of course we want to say that E(z)
is just the exponential function ez. Morally this comes from a uniqueness theorem for differential
equations, but we can use the same sneaky trick from the proof of Theorem 4.30: put g(z) =
E(z)e−z. We have

g′(z) = E′(z)e−z + E(z)(−e−z) = E(z)e−z − E(z)e−z = 0.

So g′ ≡ 0 on C and g is constantly equal to g(0) = 1
1 = 1. Thus E(z) = ez for all z ∈ C.

Example 6.13. Let {an} be any real sequence and a ∈ R. We can then consider the real power
series

∞∑
n=0

an(x− a)n
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alongside the complex power series
∞∑
n=0

an(z − a)n.

Both power series have a radius of convergence, and it is not hard to see that the radii are the
same. (E.g. the Cauchy-Hadamard formula is valid, with exactly the same proof, for real power
series.) In particular, any real power series with an infinite radius of convergence defines an entire
function on C. Excepting only the previous example, our two favorite ones are

C(z) =

∞∑
n=0

(−1)nz2n

(2n)!

and

S(z) =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
.

Again, from a differential equations perspective, the facts

C ′′ = −C, C(0) = 1, C ′(0) = 0

and
S′′ = −S, S(0) = 0, S′(0) = 1

strongly suggest that C(z) = cos z and S(z) = sin z for all z ∈ C. We can prove this by series
manipulatons:

eiz = E(iz) = . . . = C(z) + iS(z),

so
e−iz = C(−z) + iS(−z) = C(z)− iS(z),

and thus we can solve for C and S:

C(z) =
eiz + e−iz

2
, S(z) =

eiz − e−iz

2
.

6.3. Analytic functions. Let U ⊂ C be a domain, and let f : U → C. We say that f is analytic
if for each a ∈ U there is r > 0 with Ba(r) ⊂ U and a power series

∑∞
n=0 an(z − a)n with radius

of convergence R ≥ r such that

∀z ∈ Ba(r), f(z) =

∞∑
n=0

an(z − a)n.

In fewer words, a function is analytic if in a small disk around every point in its domain it is given
by a convergent power series. It follows from Theorem 6.11 that f is then infinitely differentiable

and for all n ∈ N we have an = f(n)(a)
n! (z − a)n and thus

f(z) =

∞∑
n=0

f (n)(a)

n!
(z − a)n,

i.e., f is equal to its Taylor13 series expansion in (at least) some small open disk centered at a.

In particular an analytic function is holomorphic. This appears to be saying very little. No-
tice that the definition of an analytic function carries over verbatim to real functions f : R → R,
and the real analogue would be the statement that a function that is given by a convergent power
series must be once differentiable. But that’s an almost silly thing to say, since an analytic func-
tion is infinitely differentiable and has a convergent power series and is given by that power series,

13Brook Taylor, 1685-1731, was a British mathematician, known for the series and theorem that bear his name.
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whereas a once differentiable real function need not even be twice differentiable. As we saw though,
in the realm of complex variables, a holomorphic function must be infinitely differentiable. This
perhaps gives us some hope that the following startling result might be true.

Theorem 6.14. Let U ⊂ C be a domain, and let f : U → C be holomorphic. Then f is analytic.
More precisely: if f : Ba(R)→ C is holomorphic, for all n ∈ N let

an :=
1

2πi

∫
Ca(R)

f(w)dw

(w − a)n+1
.

Then the power series

P (z) :=

∞∑
n=0

an(z − z)n

has radius of convergence at least R, and for all z ∈ Ba(R) we have

f(z) = P (z).

Proof. Step 1: We treat the special case a = 0. For z ∈ B0(R), let r := |z|+R
2 , so |z| < r < R. By

Cauchy’s Integral Formula we have

f(z) =
1

2πi

∫
C0(r)

g(w)dw

w − z
.

Now we have
1

w − z
=

1

w

1

1− z
w

=
1

w

∞∑
n=0

( z
w

)n
.

For w ∈ C0(r) we have | zw | =
|z|
r < 1, so

| 1
w
|
∞∑
n=0

(
| z
w
|
)n

=
1

r

∞∑
n=0

(
|z|
r

)n <∞,

so the convergence is uniform for w ∈ C0(r) by the Weierstrass M -Test. It follows that

f(z) =
1

2πi

∫
C0(r)

f(w)dw

w − z
=

1

2πi

∫
C0(r)

f(w)
1

w

∞∑
n=0

(z/w)ndw =

∞∑
n=0

(
1

2πi

∫
C0(r)

f(w)dw

wk+1

)
zn

=

∞∑
n=0

(
1

2πi

∫
C0(R)

f(w)dw

wk+1

)
zn,

where in the last step we used the fact in Cauchy’s Integral Theorem we can integrate around any
simple closed curve, positively oriented, that encloses 0.
Step 2: In general, we apply Step 1 to g(z) := f(z + a). �

Exercise 6.1. Use Theorem 6.14 to (re)prove Cauchy’s Integral Formula for Derivatives.
(Hint: every power series with a positive radius of convergence is its own Taylor series.)

The fact that every holomorphic function is analytic is truly remarkable, and is the third of the
four main results in our course. Actually thought what we proved is even stronger than that in the
following way: a priori a function is analytic if it is given in some small disk around every point in
the domain by a convergent power series. But the above result shows that the radius of convergene
is not so small: if we know a priori that f is holomorphic on a set U , then for a ∈ U the radius of
convergene is at least as large as the supremum of all R > 0 such that the disk Ba(R) is contained
in U . (It may in fact be larger; this is related to the important topic of analytic continuation
that we will unfortunately not touch upon much here.) For instance:
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Corollary 6.15. If f : C→ C is entire, then for all a ∈ C, the Taylor series expansion converges
for all z ∈ C.

Example 6.16. Let f : R → R by f(x) = 1
1+x2 . It can be shown that f is real analytic – for

every a ∈ R, the Taylor series expansion at a has positive radius of convergence and is equal to f .
As we saw above, for a function f : C → C this would force the radius of convergence to be ∞ at
every point. But that is not the case here. We have

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n

and the Ratio Test shows that the radius convergence is 1. But at x = ±1, there is nothing so
terribly wrong going on: in fact the power series are still (nonabsolutely) convergent at these points
by the Alternating Series Test. And yet it is undeniably true tha the series diverges for all x with
|x| > 1: indeed, the nth term approaches infinity in absolute value. Why?!?

Well, consider the complex function f(z) = 1
1+z2 . It is not entire: it is not defined at the roots

of 1 + z2, i.e., at ±1. Thus f : C \ {i,−i} → C is holomorphic. Applying Theorem 6.14 we find
that for any a ∈ C, the radius of convergence of the Taylor series at a is at least as large as

min(|a− i|, |a+ i|).

(It turns out that this is exactly the radius of convergence: if it were any larger, then f would
extend to a holomorphic function defined at either i or −i, but in fact f does not even extend
continuously to these points. But this discussion will make much more sense once we establish the
Identity Theorem.) Taking a = 0 we find that the radius of convergence is at least 1 and is not
any larger because of the singularities at ±i, which are each one unit away from 0. The behavior
of real power series is completely governed by complex analysis!

6.4. The Identity Theorem. Let P (z) be a nonzero polynomial, and let a ∈ C be such that
P (a) = 0. We have the notion of the multiplicity of P at a. It can be expressed in several ways.

Exercise 6.2. Let P (z) be a nonzero polynomial, and let a ∈ C.
a) Show: there is a unique m1 ∈ N such that (z − a)m1 divides P (z) but (z − a)m1+1 does not.
b) Show: there is a unique m2 ∈ N such that P (k)(a) = 0 for all 0 ≤ k ≤ m2 but P (m2+1)(a) 6= 0.
c) Show: m1 = m2.

If f(z) =
∑
n an(z−a)n is a convergent power series that is not identically 0, then one has a similar

notion of the multiplicity of f at a: it is the largest n ∈ N such that an = 0. Recall that an = f(n)

n! ,
so this is the same as the second definition of multiplicity above. As in the above exercise, one can
check that it is also the largest n such that one can factor f(z) as (z−a)n times some other power
series in z − a.

Using “holomorphic = analytic”, we easily deduce the following result.

Proposition 6.17. Let U ⊂ C be a domain, let f : U → C be holomorphic, and let a ∈ C. Then
exactly one of the following holds:
(i) There is R > 0 such that Ba(R) ⊂ U and f ≡ 0 on Ba(R).
(ii) There is m ∈ N and a holomorphic function g : U → C such that f(z) = (z − a)mg(z) and
g(a) 6= 0. In this latter case, f has an isolated zero at a: namely, there is 0 < r ≤ R such that
if 0 < |z| < r we have f(z) 6= 0.

Proof. Choose R > 0 such that Ba(R) ⊂ U . Then f(z) =
∑
n an(z−a)n is given by a power series

with radius of convergence at least R. If an = 0 for all n, then clearly f ≡ 0 on Ba(R) and the
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first option holds. Otherwise there is a least natural number m such that am 6= 0, and thus

f(z) =

∞∑
n=m

an(z − a)n = (z − a)m
∞∑
n=0

an(z − a)n−m.

If we put g(z) =
∑∞
n=0 an(z− a)n−m, then g is a power series with the same radius of convergence

as the Taylor series of f at a, hence g is also holomorphic on Ba(R) and g(a) = am 6= 0. This
proves everything except that the zero is isolated, and that follows from continuity of g: since

g(a) 6= 0, for z sufficiently close to a we have |g(z)− g(a)| ≤ |g(a)|2 and thus g is nonzero on Ba(r)
for some r > 0. �

Theorem 6.18. (Identity Theorem) Let U ⊂ C be a domain, and let A ⊂ U be a subset such that
A has an accumulation point a ∈ U . Let f : U → C and g : U → C be two holomorphic functions.
If f(a) = g(a) for all a ∈ A, then f(z) = g(z) for all z ∈ U .

Proof. Step 0: By taking h := f − g, we immediately reduce to showing: if a holomorphic function
h is identically zero on A, then h is identically zero on U .
Step 1: Let V be the set of a ∈ U such that there is R > 0 with Ba(R) ⊂ U and such that h is
identically zero on Ba(R). Let W be the set of a ∈ U such that there is R > 0 with Ba(R) ⊂ U
and such that h(z) 6= 0 for all 0 < |z| < R. Certainly V ∩W = ∅; we claim that V ∪W = U .
Indeed, if a ∈ U \ V then either f(a) 6= 0, in which case as in the proof of Proposition 6.17 f is
nonzero on some small open disk centered at a, or f(a) = 0 and Proposition 6.17 tells us that
the zero is isolated. We claim that U and V are each open. As for U , this holds for the same
reason that an open disk is an open set: around any point in an open disk there is a smaller open
disk centered at that point contained in the original open disk. The argument for V is similar: a
continuous function that is nonzero at a point is nonzero in some small open disk centered at that
point. Because U is connected, we must have either (V = U and W = ∅) or (W = U and V = ∅).
Step 2: We argue that a ∈ V . If so, then W 6= U , so we must have W = ∅ and W = V , which
in particular implies that h is identically 0 on U . To see this, we first observe that since a is an
accumulation point of A, there is a sequence {an} in A converging to a Since h is holomorphic, it
is continuous, and thus

h(a) = h( lim
n→∞

an) = lim
n→∞

h(an) = lim
n→∞

0 = 0.

But a being an accumulation point of A means precisely that the zero at a is not isolated, so by
Proposition 6.17 the function h must be identically zero in some open disk Ba(R): that is, a ∈ V ,
completing the proof. �

Just to appreciate the power of this result, we isolate two important special cases.

Corollary 6.19. Let U ⊂ C be a domain, and let f, g : U → C be two holomorphic functions. If
f and g agree on either
(i) a line segment (not a point!) inside U , or
(ii) any nonempty open subset V ⊂ U ,
then f = g.

Proof. Neither a line segment nor an open subset has any isolated points. �

Corollary 6.20. (Maximum Modulus Principle) Let U ⊂ C be a domain, and let f : U → C be
holomorphic. If |f | attains a local maximum value on U , then f is constant.

Proof. By Theorem 4.3, if f attains a local maximum at a ∈ U then f is constant on Ba(R) for
some R > 0 such that Ba(R) ⊂ U : that is, f agrees with the constant function g ≡ C on the
nonempty open subset Ba(R). By the previous corollary, f = g, i.e., f ≡ C on U . �
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6.5. Laurent series. We need a mild extension of the concept of a complex infinite series; given
a “doubly infinite sequence” a• : Z→ C, we want to associate the “doubly infinite series”∑

n∈Z
an.

We define a doubly infinite series
∑
n∈Z an to be convergent if the infinite series

∑∞
n=0 an converges

and the infinite series
∑∞
n=1 a−n converges, in which case we take the sum to be∑

n∈Z
an =

∞∑
n=0

an +

∞∑
n=1

a−n.

Similarly, if both
∑∞
n=0 an and

∑∞
n=1 a−n diverge to∞ we say that

∑
n∈Z an diverges to∞. We say

that a doubly infinite series is absolutely convergent if both
∑∞
n=0 |an| and

∑∞
n=1 |a−n| converge.

Exercise 6.3.
a) For a doubly infinite sequence a• : Z→ [0,∞), show that the following are equivalent:
(i) The series

∑
n∈Z an is convergent.

(ii) There is M ∈ [0,∞) such that for all finite subsets S ⊂ Z we have
∑
n∈S an ≤M .

b) Under the equivalent conditions of part a), show that the sum of the series is the least upper
bound of the set of all M ∈ [0,∞) such that

∑
n∈S an ≤M .

c) Adapt the result of part a) to give a criterion for absolute convergence of a doubly infinite series.

For {an}∞n=−∞ a double sequence and a ∈ C we associate the Laurent14 series

∞∑
n=−∞

an(z − a)n.

Thus a Laurent series is a direct generalization of a power series; otherwise put, a power series is
a Laurent series in which an = 0 for all n < 0.

Example 6.21. a) Consider the function e1/z =
∑∞
n=0(1/z)n/n! =

∑0
n=−∞

zn

|n|! . Since the power

series for ez converges for all z ∈ C, the given series converges for all z 6= 0. It does not make
sense to plug in z = 0 directly, but we can ask if the limit exists as z → 0. Taking w = 1

z , this
is the same as asking whether limw→∞ ew exists, and we know that it doesn’t. So the domain of
convergence is C \ {0}.
b) In general if we start with a power series f(z) =

∑∞
n=0 an(z − a)n with radius of convergence

R > 0 and consider the Laurent series

g(z) := f(1/(z − a) + a) =

∞∑
n=0

an(z − a)−n,

then the series will converge for all z with | 1
z−a | < R, or for all z with |z − a| > 1

R .

In general, given a Laurent series

∞∑
n=0

an(z − a)n +

∞∑
n=1

a−n(z − a)−n

convergence means that both series converge. The first series is an ordinary power series, say with
radius of convergence R1. As for the second series, as we saw above, if the radius of convergence of

14Pierre Alphonse Laurent, 1813-1854, was a French mathematician and military officer. Like Taylor, he is best
known for the series that bears his name.
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n=1 an(z−a)n is R2, then the second series converges if |z−a| > 1

R2
and diverges if |z−a| < 1

R2
.

Thus we define the domain of convergence of the Laurent series to be

U = {z ∈ C | 1

R2
< |z − a| < R1}.

Here we require R1 > 0, since otherwise the series does not converge anywhere, except at z = a
when an = 0 for all n < 0. Similarly we require R2 > 0. We do allow R2 = ∞, in which case we
interpret 1

R2
as 0.

For 0 ≤ R1 < R2 ≤ ∞ and a ∈ C we put

A◦(a,R1, R2) := {z ∈ C | R1 < |z − a| < R2,

A•(a,R1, R2) := {Z ∈ C | R1 ≤ |z − a| ≤ R2.

The set U is called an open annulus: it is open and connected but not simply connected. As
with power series it may or may not be the case that the Laurent series converges on the boundary
of U , and as with power series we do not concern ourselves with this.

Exercise 6.4. Let
∑
n∈Z an(z − a)n be a Laurent series convering in the annulus A(a,R1, R2).

Show: for any r1, r2 with R1 < r1 < r2 < R2, the convergence is uniform on A•(a, r1, r2).

It follows immediately from the holomorphicity of power series that every Laurent series deter-
mines a holomorphic function on its domain of convergence U . And the converse is also true, a
generalization of Theorem 6.14.

Theorem 6.22. Let f : A(a,R1, R2)→ C be holomorphic. Fix r such that R1 < r < R2. For all
n ∈ Z, put

an =
1

2πi

∫
C(a,r)

f(w)dw

(w − a)n+1
.

Then for all z ∈ A(a,R1, R2), the Laurent series
∑∞
n=−∞ an(z − a)n converges to f(z).

Proof. This is a generalization of Theorem 6.14, and the proof is rather similar.
Step 1: We treat the special case a = 0. Fix r1 and r2 with

R1 < r1 < r2 < R2,

and let z ∈ A(a1, r1, r2). Now we use essentially the same contours as in the proof of Cauchy’s
Integral Formiula: let γ2 begin with the straight line segment from r2 to r1, followed by the upper
semicircular arc on the inner circle to −r1, then the straight line segment from −r1 to −r2 and
finally the upper semicircular arc to r2. Let γ1 be the contour beginning at r2, taking the bottom
semicircular arc to −r2, then the straight line segment from −r2 to −r1 and finally the straight
line segment from r1 to r2. Now consider∫

γ2

f(w)dw

w − z
−
∫
γ1

f(w)dw

w − z
.

Then on the one hand, integrating over γ2 − γ1 is the same as integrating over C(0, r2)−C(0, r1),
since the contributions over the two segments cancel out. On the other hand, if =(z) > 0 then
f(w)
w−z is holomorphic on and inside γ1, so

∫
γ1

f(w)dw
w−z = 0 by Cauchy’s Integral Theorem, whereas∫

γ2

f(w)dw
w−z = 2πif(z) by Cauchy’s Integral Formula. If =(z) < 0, then f(w)

w−z the same holds with

the roles of γ1 and γ2 reversed:
∫
γ2

f(w)dw
w−z = 0 and −

∫
γ1

f(w)dw
w−z = 2πif(z) (the minus sign is

because γ1 is negatively oriented). Thus either way we find

g(z) =
1

2πi

∫
γ2−γ1

g(w)dw

w − z
=

1

2πi

∫
C(0,r2)

g(w)dw

w − z
−
∫
C(0,r1)

g(w)dw

w − z
.
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Now we use the geometric series expansions

1

w − z
=

1

w

1

1− z/w
=

1

w

∞∑
n=0

( z
w

)n
,

1

w − z
=
−1

z

1

1− w/z
=
−1

z

∞∑
n=0

(w
z

)n
.

We leave to the reader the task of using uniform convergence to justify the following interchange
of sums and integrals (it is much as in the proof of Theorem 6.14): we get

g(z) =
1

2πi

∫
C(0,r2)

g(w)
1

w

∞∑
n=0

(z/w)n −

(
−
∫
C(0,r1)

g(w)
1

z

∞∑
n=0

(w/z)ndw

)

=
1

2πi

∞∑
n=0

(∫
C(0,r2)

g(w)dw

wn+1

)
zn +

1

2πi

∞∑
n=0

(∫
C(0,r1

g(w)wndw

)
z−n−1

=
1

2πi

 ∞∑
n=0

(∫
C(0,r2)

f(w)

wn+1
dw

)
zn +

∑
n≤−1

(∫
C(0,r1)

f(w)

wn+1
dw

)
zn


=

1

2πi

∞∑
n=−∞

(∫
C(0,r)

f(w)dw

wn+1

)
zn,

the last equality by Theorem 4.17. This gives part a).
Step 2: In general, we apply Step 1 to g(z) := f(z + a). �

Corollary 6.23. Given two Laurent series
∑
n∈Z an(z − a)n and

∑
n∈Z bn(z − a)n, if for some

0 < R1 < R2 ≤ ∞ we have that
∑
n∈Z an(z−a)n =

∑
n∈Z bn(z−a)n for all z ∈ A(a,R1, R2), then

an = bn for all n ∈ Z.

Corollary 6.24. Let U be a domain, let a ∈ U , and suppose f : U \ {a} → C is holomorphic. Let
R be the distance from a to the boundary of U . Then f is given by a Laurent series expansion on
the annulus A(a, 0, R).

The following result is simply the n = −1 case of Theorem 6.22. At the same time it leads to one
of the most important results in complex analysis!

Corollary 6.25. Let f : A(a,R1, R2)→ C be holomorphic with Laurent series
∑
n∈Z an(z − a)n.

Let γ be any simple closed curve in A(a,R1, R2) that encloses a. Then we have∫
γ

f = 2πia−1.

7. Isolated singularities

Let U ⊂ C be a domain, and let f : U → C be a holomorphic function. For a ∈ C, we say that f
has an isolated singularity at a if
(IS1) a /∈ U and
(IS2) There is R > 0 such that Ba(R) \ {a} ⊂ U .

In other words, if f has an isolated singularity at a then it is not defined at a but is defined
and holomorphic at all other points of some open disk centered at a.

Exercise 7.1. Suppose the holomorphic function f : U → C has an isolated singularity at a ∈ C.
Show that U ∪ {a} is open.
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In particular then a is an accumulation point of U , so we can study the limiting behavior of f as
we approach a. In fact, that is exactly what we want to do.

Notice that our definition does not imply that there is “anything bad” happening at a in any
sense. Indeed, if f : U → C is holomorphic and a ∈ U , we can define g : U \ {a} → C just by
restricting f to U \ {a}, and by definition g has an isolated singularity at a. This seems a bit silly
– why did we take a out of the domain?!? – but it is not immediately clear when we are in this
“silly situation.” Our first order of business is to nail this down.

Proposition 7.1. Let g : U → C be holomorphic and have an isolated singularity at a ∈ C \ U .
The following are equivalent:
(i) There is a holomorphic function f : U ∪ {a} → C such that f |U = g.
(ii) The limit limz→a g(z) exists in C.
(iii) We have limz→a(z − a)g(z) = 0.

Proof. (i) =⇒ (ii) follows immediately from the fact that differentiable functions are continuous.
(ii) =⇒ (iii) If limz→a g(z) = L ∈ C, then

lim
z→a

(z − a)g(z) = ( lim
z→a

(z − a))( lim
z→a

g(z)) = 0 · L = 0.

(iii) =⇒ (i): Consider the function h : U ∪ {a} → C defined by

h(z) =

{
(z − a)2g(z) z 6= a

0 z = a
.

Our hypothesis (iii) is precisely what we need to get that h is differentiable at a and has derivative
0: indeed

h′(a) = lim
z→a

h(z)− h(a)

z − a
= lim
z→a

(z − a)2g(z)

z − a
= lim
z→a

(z − a)g(z) = 0.

Thus h is analytic, and its Taylor series expansion at a begins

h(z) = h(a)+h′(a)(z−a)+

∞∑
n=2

an(z−a)n = 0+0(z−a)+

∞∑
n=2

an(z−a)n = (z−a)2
∞∑
n=0

an+2(z−a)n.

This shows that h(z) is equal to (z − a)2 times a function f that is holomorphic at a, namely

f(z) =
∑∞
n=0 an+2(z − a)n. Since for all z 6= a we have f(z) = h(z)

(z−a)2 = g(z), this shows that f is

the desired function, namely it restricts to g on U and is holomorphic at a. �

A function that satisfies the equivalent conditions of Proposition 7.1 is said to have a removable
singularity at a. (Recall that a function is said to have a removable discontinuity at a point
if the limit exists at that point.) This is precisely the case where there is “nothing wrong as f
approaches a.” In every other case limz→a f(z) fails to exist. A little thought shows that the “next
level of pathology” ought to be that limz→a f(z) = ∞. This turns out to be correct, although
a different definition is more immediately useful to work with. Namely, let f : U → C have an
isolated singularity at a. We say that f has a pole at a if limz→a f(z) does not exist in C but
there is m ∈ Z+ such that

lim
z→a

(z − a)mf(z) ∈ C.

An argument very similar to that of the proof (ii) =⇒ (iii) in Proposition 7.1 shows that if

lim
z→a

(z − a)mf(z) ∈ C

then for all integers M > m we have

lim
z→a

(z − a)mf(z) = 0.
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Thus if f has a pole at a then it is natural to consider the least m such that limz→a(z−a)mf(z) ∈ C;
this is called the order of the pole of f at a. If the order is 1 we say that f has a simple pole
at a. Here is a simple but important exercise.

Exercise 7.2. Let f(z) = P (z)
Q(z) be a rational function such that P (z) and Q(z) have no common

roots. (Any rational function can be put in this form just by cancelling any common roots of the
numerator and denominator; this is the analogue of putting a fraction in lowest terms.) Show: the
isolated singularities of f are precisely the roots of Q(z), these isolated singularities are all poles,
and the order of the pole at a is the multiplicity of a as a root of Q(z).

Exercise 7.3. Let f, g : U → C be holomorphic functions having isolated singularities at a ∈ C\U .
a) Show: f + g : U → C and fg : U → C also have isolated singularities at a.
b) Suppose g is not identically zero. Show that there is R > 0 such that 1

g : Ba(R) \ {a} → C is

defined and holomorphic, with an isolated singularity at a.
c) Show: if the singularity at both f and g is removable, then so is the singularity of f + g and fg.
d) Show: if f has a pole of order mf at a and g has a pole of order mg at a then fg has a pole of
order mf +mg at a.
e) Show: if f has a pole of order mf at a, then 1/f has a removable singularity at a and the
holomorphic extension of f to a has a zero of order mf at a.
f) Suppose f has a pole of order mf at a and g has a pole of order mg at a. Put M = max(mf ,mg).
Show:

lim
z→a

(z − a)M ((f(z) + g(z)) ∈ C.

Deduce that f + g has either a pole or a removable singularity at a and give examples to show that
both are possible.

If a holomorphic function f : U → C has an isolated singularity at a, let R > 0 be such that
Ba(R) \ {a} ⊂ U . Then f has a Laurent series expansion on Ba(R) \ {a}:

f(z) =

∞∑
n=−∞

an(z − a)n.

Now we observe:
• The singularity at a is removable iff an = 0 for all n < 0. Indeed, if an = 0 for all n < 0 then the
Laurent series expansion is actually a power series expansion and shows that f is holomorphic at
a. Conversely, if the singularity is removable then f extended to a admits a power series expansion
at a which is then a Laurent series expansion in Ba(R) \ {a} with no negative terms. By the
uniqueness of Laurent series expansions, this means that the original Laurent series expansion
must not have any negative terms.
• The singularity at a is a pole if {n | an 6= 0} has a smallest element N < 0. In this case, |N | is
the order of the pole at a. Indeed, if the Laurent series expansion is of the form

∞∑
n=N

an(z − a)n =
aN

(z − a)|N |
+

an+1

(z − a)|N |−1
+ . . .

and multiplying by (z− a)|N | we get a power series, so we have a pole of order at most N . On the
other hand, for any Laurent series of the form

∑∞
n=N an(z − a)n with N < 0 we have

lim
z→a

∞∑
n=N

an(z − a)n =∞,

and thus if we multiplied by (z − a)m with 1 ≤ m < |N |, then we still have a Laurent series of
the above form and thus the multiplicity of the pole must be exactly |N |. Conversely, if f has a
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pole order m at a, then limz→a(z− a)mf(z) exists, so (z− a)mf(z) has a removable singularity at
a and is thus given by a power series expansion

∑∞
n=0 an(z − a)n, and then dividing through by

(z − a)m gives
∞∑
n=0

an(z − a)n−m,

which is a Laurent series expansion with a smallest element that is at least −m. If the smallest
element were non-negative then we would have a power series expansion and thus not a pole at a.

Proposition 7.2. Let f : U → C be a holomorphic function with an isolated singularity at a.
Then the following are equivalent:
(i) f has a pole at a.
(ii) We have limz→a f(z) =∞.

Proof. (i) =⇒ (ii): For R > 0 such that Ba(R) \ {a} ⊂ U , if the order of the pole at f is m, then
f has a Laurent series expansion

f(z) =

∞∑
n=−m

an(z − a)n.

Let g =
∑−1
n=−m an(z − a)n and h =

∑∞
n=0 an(z − a)n. Then g is a rational function whose

denominator has a root at a and h is holomorphic at a, so

lim
z→a

f(z) = lim
z→a

g(z) + lim
z→a

h(z) =∞+ a0 =∞.

(ii) =⇒ (i): If limz→a f(z) = ∞ then limz→∞
1

f(z) = 0, so 1
f extends to a holomorphic function

at a with an isolated zero at a. Thus we may write

1

f(z)
= (z − a)mg(z)

with g holomorphic at g(a) 6= 0, and so we can write

f =
1

(z − a)m
1

g(z)
.

Since g(a) 6= 0, 1
g(z) is holomorphic and nonvanishing at a, and it is now clear that f has a pole of

order m at a. �

Proposition 7.3. Suppose the holomorphic function f : U → C has an isolated singularity at a
and Ba(R) \ {a} ⊂ U . Then the following are equivalent:
(i) For no m ∈ Z+ does limz→a(z − a)mf(z) exist.
(ii) In the Laurent series expansion

∑
n∈Z an(z−a)n of f on Ba(R)\{a}, there are infinitely many

negative n such that an 6= 0.
When these equivalent conditions are satisfied, we say that f has an essential singularity at a.

Proof. It follows from the previous discussion that if we have either a removable singularity or a
pole that neither (i) nor (ii) holds and that if have neither a removable singularity nor a pole then
both (i) and (ii) hold. �

Example 7.4. One way of producing essential singularities is just to start with an entire function
f : C → C that is not a polynomial. Then in the power series expansion

∑∞
n=0 anz

n we have
an 6= 0 for infinitely many n. Now consider

g(z) := f(1/z) =

∞∑
n=0

an
zn

=

0∑
n=−∞

a−nz
n.
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Then g has an essential singularity at 0. Moreover, we have

lim
z→0

f(1/z) = lim
z→∞

f(z),

so the limiting behavior of the essential singularity in this case is equivalent to the limiting behavior
of the entire function f at infinity. One’s first guess might be that limz→0 g(z) =∞ as with a pole,
but this is not borne out by examples. For instance, take f(z) = ez. Then if we approach∞ through
positive real numbers then we get ∞; if we aproach infinity through negative real numbers, then we
get zero; if we approach infinity along the positive imaginary axis, then we get a function that is
bounded but not convergent. So in this case the limit does not exist in rather dramatic fashion.

Exercise 7.4. Let α ∈ C \ {0}.
a) Show that for all R > 0 there is z ∈ C such that |z| > R and ez = α.
(Suggestion: use the fact that ez = ez+2πi for all z ∈ C.
b) Deduce: for all r > 0 there is z ∈ B0(r) \ {0} such that e1/z = α.

The above exercise gives an example of an essential singularity at a such that in any deleted disk
about a every value except 0 is assumed. Remarkably, this is not particular to the exponential
function at all.

Theorem 7.5. (Picard15, 1879) Let f : U → C have an essential singularity at a, and let R > 0
be such that Ba(R) \ {a} ⊂ U . Then f(Ba(R) \ {a}) is either all of C or consists of all but one
point of C.

Corollary 7.6. Let f : C→ C be an entire function that is not a polynomial. Then there is at most
one α ∈ C such that f−1({α}) = {z ∈ C | f(z) = α} is finite. In other words, a transcendental
entire function takes on every complex value infinitely many times, with one possible exception.

Proof. As above, we apply Picard’s Theorem to g(z) := f(1/z). �

The proof of Theorem 7.5 is beyond the scope of this course. Well beyond – it is not usually
proved in a first graduate course on complex analysis. However, a weaker statement is much easier
to prove. First, we say that a subset A ⊂ C is dense in C if every point of C is an accumulation
point of A. Equivalently, given any w ∈ C and R > 0, the disk Bw(R) intersects A. (If you
were expecting to hear (Bw(R) \ {w} ∩ A) 6= ∅, then this stronger condition is equivalent here:
Bz(R) \ {z} contains an open disk around some other point w, so if A does not meet the deleted
disk then it does not meet some other nondeleted disk.)

Theorem 7.7. (Casorati16-Weierstrass) Let f : U → C be holomorphic with an essential singu-
larity at a ∈ C. For any R > 0 such that Ba(R) \ {a} ⊂ U , the set f(Ba(R) \ {a}) is dense in
C.

Proof. It is enough to show: if there is w ∈ C and ε > 0 such that for all z ∈ Ba(R) \ {a} we have

|f(z)− w| ≥ ε,

then f does not have an essential singularity at a. Since our assumption implies that f(z) 6= w for
any z ∈ Ba(R) \ {a}, we may define

g : Ba(R) \ {a} → C, z 7→ 1

f(z)− w
.

15Charles Émile Picard, 1856-1941, was a French mathematician, whose work played an important role in the

unification of large portions of algebra, geometry and complex analysis.
16Felice Casorati, 1835-1890, was a (male!) Italian mathematician.
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Moreover, our assumption gives that g is bounded on Ba(R) \ {a}. Thus

0 = lim
z→a

(z − a)g(z) = lim
z→a

z − a
f(z)− w

.

Taking reciprocals, we get

lim
z→a

f(z)− w
z − a

=∞,

so the function f(z)−w
z−a has a pole at a by Proposition 7.2, so only finitely many negative terms

appear in its Laurent series expansion. This is not changed by multiplying by z − a and adding
w, so also f(z) has only finitely many negative terms in its Laurent series expansion. Thus f does
not have an essential singularity at a, completing the proof. �

8. The residue calculus

8.1. The Residue Theorem. Let f : U → C be holomorphic with an isolated singularity at a.
As above, we have a Laurent series expansion

f(z) =
∑
n∈Z

an(z − a)n.

We define the residue of f at a to be the coefficient a−1 of the Laurent series expansion. We
denote it by Res(f ; a).

Why so much ado about a single coefficient in the Laurent series expansion? In fact it is not
hard to see that the a−1 coefficient is special. Namely, let γ be a simple closed curve, positively
oriented, such that f is holomorphic on the interior of γ except possibly at a. For n ∈ Z, consider∫

γ

an(z − a)ndz.

If n 6= −1, then the integrand f(z) = an(z − a)n has a holomorphic antiderivative on U , namely

F (z) =
an
n+ 1

(z − a)n+1,

and thus the integral around the closed path γ is 0. This breaks down when n = −1; rather, in
this case we get – by Cauchy’s Integral Formula, but really by the direct calculation we used to
establish it – ∫

γ

a−1
z − a

= 2πia−1.

In fact one can show that the image of γ lies in a closed, bounded subannulus on which the
convergence of the Laurent series is uniform, and this implies that we can interchange the series
with the integral: ∫

γ

f =

∫
γ

∑
n∈Z

an(z − a)n =
∑
n∈Z

∫
γ

an(z − a)n = 2πia−1.

We do not need to supply the details because we have seen this result before: Corollary 6.25.
(This result was an immediate consequence of Theorem 6.22. The difficult part of this theorem
was to show that any holomorphic function on an annulus is given by a Laurent series. Above we
assumed that we had a convergent Laurent series expansion, and that makes things much easier.)
As we have mentioned earlier in the course, this shows that 1

z−a has no holomorphic antiderivative
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on U , and the problem is again that of an absence of logarithms on a domain that is not simply
connected (as U is not). Anyway, rewriting this result with our new terminology we get∫

γ

f = 2πiRes(f ; a).

In the above result we considered an integral that has only one isolated singularity on the interior
of the curve. But using a familiar “dissection” argument we can quickly extend this result.

Well, first we want a preliminary result of a mostly topological nature.

Lemma 8.1. Let γ be a simple closed curve in C, and let C be the closed, bounded set consisting
of γ and its interior. Let U be a domain containing C. Let A ⊂ C be a subset without any
accumulation points. Let f : U \A→ C be holomorphic. Then:
a) For all a ∈ A, the function f has an isolated singularity at A.
b) The set A is finite.

Proof. a) Let a ∈ A. Since A has no accumulation points, there is R > 0 such that Ba(R) ⊂ U
and Ba(R) ∩A = {a}. So f has an isolated singularity at a.
b) Seeking a contradiction, we suppose that A is infnite, and let {an}∞n=1 is a sequence of distinct
elements of A. Since C is closed and bounded, by Bolzano- Weierstrass there is a subsequence
{ank} converges to some a ∈ C. Now we must have a ∈ A: otherwise, f is holomorphic at a and
thus is defined in some open disk around a, but f is not defined at ank for any k and thus at points
arbitrarily close to a. So a ∈ A, but then a is an accumulation point of A: contradiction. �

Theorem 8.2. (Residue Theorem) Let γ be a simple closed curve in C, positively oriented. LEt
C be the closed, bounded set consisting of γ and its interior. Let U be a domain that contains γ
and its interior. Let A ⊂ C be a subset without any accumulation points, and let f : U \A→ C be
holomorphic. We suppose that no point of A lies on the image of γ. Then:
a) By Lemma 8.1, A is finite, so we may write A = {a1, . . . , an}.
b) We have ∫

γ

f = 2πi

n∑
k=1

Res(f ; ak).

Proof. Step 1: Observe: when A consists of a single point, this is precisely Corollary 6.25.
Step 2: In the general case, for 1 ≤ k ≤ n, let γk be a small circle centered at ak and positively
oriented. How small? Small enough to be contained in the interior of γ and small enough that
none of the circles intersect each other. Then by Step 1 we have

n∑
k=1

∫
γk

f = 2πi

n∑
k=1

Res(f ; ak).

Now, using auxiliary simple arcs we can subdivide the region lying interior to γ and exterior to all
of the γk’s into a finite union of simply connected domains Di on which f is holomorphic, so by
the Cauchy Integral Theorem the integral around each boundary ∂Di is 0. However as we trace
along all these boundaries in the positive direction we find that each auxiliary arc gets traversed
once with each orientation, so these contributions to the integral cancel out. We also get γ and
the circles γ1, . . . , γn traversed with negative orientation. It follows that∫

γ

f +

∫
−γ1

f + . . .+

∫
−γn

f = 0,
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or ∫
γ

f =

n∑
k=1

∫
γk

f = 2πi

n∑
k=1

Res(f ; ak) �.

8.2. How to compute residues. The Residue Theorem is our single best weapon for computing
integrals – both complex contour integrals and integrals along the real line that we evaluate using
them. However, in order to properly wield it we need some further technique in computing residues.
One would think that to compute Res(f ; a) we should just compute the Laurent series expansion
of f at a. However, this is asking us to compute an for all n ∈ Z only to throw away everything
but n = −1. In practice this is way too much work: there must be a better way! Here are some:

Theorem 8.3. a) Suppose the function f has a pole of order N ≥ 1 at a then

(18) Res(f ; a) =
1

(N − 1)!
((z − a)Nf(z))(N−1)|z=a.

b) Suppose f and g are holomorphic at a and g has a zero of multiplicity 1 at a. Then

(19) Res(f/g; a) =
f(a)

g′(a)
.

c) Suppose f and g are holomorphic at a and g has a zero of multiplicity 2 at a. Then

(20) Res(f/g; a) =
2f ′(a)

g′′(a)2
− 2

3

f(a)g′′′(a)

g′′(a)2
.

Proof. a) By assumption, we have

f(z) =
∑
n≥−N

an(z − a)n,

so

(z − a)Nf(z) =
∑
n≥0

an−N (z − a)n

is a power series expansion, so (z − a)Nf(z) is holomorphic at a. (More fastidiously, it has a
removable singularity at a. Okay: we remove it!) The coefficient a−1 that we want to compute
corresponds to n = N − 1, so by the usual Taylor series formula we take the (N − 1)st derivative
at a and divide by (N − 1)!

b) If f(a) = 0, then f/g is holomorphic at a, so Res(f/g; a) = 0 = f(a)
g′(a) . So suppose f(a) 6= 0.

Then f/g has a simple pole at a. Applying part a) with N = 1 we get

Res(f/g; a) =
(z − a)f(z)

g(z)
|z=a.

Since g has multiplicity 1 at a, write g(z) = (z − a)h(z) with h holomorphic and h(a) 6= 0. Then

(z − a)f(z)

g(z)
=

(z − a)f(z)

(z − a)h(z)
=
f(z)

h(z)
,

and evaluating at a we get

Res(f/g; a) =
f(a)

h(a)
.

Finally, we have

g(z) =

∞∑
n=1

bn(z − a)n = (z − a)(b1 + b2(z − a) + . . .+ bn(z − a)n−1 + . . .) = (z − a)h(z),
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so h(z) = b1 + b2(za) + . . . and h(a) = b1 = g′(a). Thus

Res(f/g; a) =
f(a)

g′(a)
.

c) We may write

f(z) =

∞∑
n=0

an(z − a)n, g(z) =

∞∑
n=2

bn(z − a)n,

with b2 6= 0.
So

f(z)

g(z)
=

1

(z − a)2
a0 + a1(z − a) + a2(z − a)2 + . . .

b2 + b3(z − a) + b4(z − a)2 + . . .
.

Since we want the “−1 coefficient” in the Laurent series expansion of f/g, after factoring out
1

(z−a)2 we want the coefficient c1 of

a0 + a1(z − a) + a2(z − a)2 + . . .

b2 + b3(z − a) + b4(z − a)2 + . . .
= c0 + c1(z − a) + c2(z − a)2 + . . . .

(Notice that this is essentially the method of part a).) Clearing denominators, we get

(c0 + c1(z − a) + . . .) (b2 + b3(z − a) + . . .) = a0 + a1(z − a) + . . . .

Multiplying out gives

a0 = c0b2,

so

c0 =
a0
b2
,

a1 = c0b3 + c1b2,

so

c1 =
a1 − c0b3

b2
=
a1
b2
− a0b3

b22

=
f ′(a)

g′′(a)/2
− f(a)g′′′(a)/6

(g′′(a)/2)2
= 2

f ′(a)

g′′(a)2
− 2

3

f(a)g′′′(a)

g′′(a)2
. �

Example 8.4. Let G(z) = π cot(πz). This function is analytic on all of C except for isolated
singularities at the zeros of sin(πz). Since the zeros of sin z are all real and occur at nπ for n ∈ Z,
the zeros of sin(πz) are all real and occur at n for n ∈ Z. Since the derivative of sin(πz) is π cos(πz)
which has zeros at 1/2 + n for n ∈ Z, all the zeros of the denominator are simple and thus all the
poles of G are simple. Applying Theorem 8.3 with f = π cos(πz) and g = sin(πz), we find that for
n ∈ Z,

Res(π cot(πz);n) =
f(n)

g′(n)
=
π cos(πn)

π cos(πn)
= 1.

This example will be of striking use to us later on.
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8.3. Applications to integrals.

Example 8.5. Earlier we computed

I =

∫ ∞
−∞

dx

x4 + 1
,

albeit using rather tedious partial fractions computations. We will now redo this example more
simply using the Residue Theorem. Much of the strategy is the same: for R > 1, let γR =
γ1,R + γ2,R, where γ1,R is the straight line path from −R to R and γ2,R is the upper semicircular

arc from R to −R. The singularities of f(z) = dz
z4+1 are at the 4th roots of −1, namely eπi/4,

e3πi/4, e5πi/4, e7πi/4. Of these, precisely the first two lie in the interior of γR, so by the Residue
Theorem we have ∫

R

f(z)dz = 2πi
(

Res(f ; eπi/4) + Res(f ; e3πi/4)
)
.

Since the zeros of z4 + 1 are all simple, by Theorem 8.3 we get that

Res(f ; eπi/4) =
1

4e3πi/4
=

1

4
e5πi/4 =

1

4
eπieπi/4 =

−1

4
eπi/4

and similarly

Res(f ; e3πi/4) =
−1

4
e3πi/4.

So ∫
γR

f(z)dz =
2πi

−4
(eπi/4 + e3πi/4) =

−πi
2
eπi/4(1 + i) =

−πi
2

1 + i√
2

(1 + i)

=
−πi
2
√

2
(2i) =

π√
2
.

The argument that I = limR→∞
∫
γR
f(z)dz is the same as before, so we recall it briefly:

I = lim
R→∞

∫
γ1,R

f(z)dz

while

lim
R→∞

∫
γ2,R

f(z)dz = 0.

Thus

I =
π√
2
.

Example 8.6. Let n ∈ Z+. We will compute

I =

∫ ∞
−∞

dx

x2n + 1
.

Let us put J =
∫∞
0

dx
x2n+1 ; then evidently

I = 2J.

The integral can computed using the method of the above example, but because the function f(z) =
1

z2n+1 has n singularities in the upper half plane, we have to sum over all these residues. So we
present the following alternate approach, which is interesting in a somewhat sneaky way. It is
taken from [MH, p. 318]. The motivating idea is to indeed take only 1

n th of the upper semicircle.
So let R > 1, and consider the contour γR that consists of three pieces: γ1,R is the straight line
segment from 0 to R, γ2,R travels counterclockwise along the circle of radius R centered at 0 from

R to e
2πi
2n = eπi/n, and γ3,r is the straight line segment from eπi/n to 0. For future use, let −γ3,r
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denote this line segment with the reverse orientation, i.e., from 0 to eπi/n. Now the singularities

of f lie at e
2πi
4n +

k(2πi)
2n for 0 ≤ k < 2n. Exactly one lies inside γR, namely eπi/2n. We have

Res(f ; eπi/2n) =
1

d
dz z

2n + 1

∣∣∣∣
z=eπi/2n

=
1

2neπi(2n−1)2n

=
1

2n
e−πieπi/2n =

−1

2n
eπ/2n.

So by the Residue Theorem we have

2πi

(
−1

2n
eπi/2n

)
=
−πi
N

eπi/2n =

∫
γR

f =

∫
γ1,R

f +

∫
γ2,R

f +

∫
γ3,R

f.

Now, on the one hand, certainly

lim
R→∞

∫
γ1,R

f = J.

On the other hand, the ML-Inequality gives∫
γ2,R

f ≤ML ≤ 1

R2n

(π
n
R
)
→ 0

as R → ∞. We are left with the “third hand”,
∫
γ3,R

f , which we write as −
∫
−γ3,R f . Now

−γ3,R(t) = teπi/n for t ∈ [0, R], so −γ′3,R(t) = eπi/n, and thus∫
γ3,R

f = −
∫
−γ3,R

f = −
∫ R

0

eπi/ndt

(te2πi/n)2n + 1
= −eπi/nJ.

Thus, taking R→∞ we get

(−πi/n)eπi/2n = lim
R→∞

∫
γR

f = (1− eπi/n)J,

so

I = 2J =
−2πi

n

eπi/2n

1− eπi/n
=
π

n

2i

eπi/2n − e−πi/2n
=
π

n
csc(π/2n).

Example 8.7. (Fresnel Integrals) Following [MH, p. 319] we will show that∫ ∞
0

cos(x2)dx =

∫ ∞
0

sin(x2)dx =

√
π

8
.

In fact, our first order of business is to show that these improper integrals are convergent! This
is really not trivial: notice that the functions cos(x2) and sin(x2) do not tend to 0 as x → ±∞.
In the discrete world – i.e., for an infinite series – this would already doom us to divergence.
But improper integrals can work differently. The idea of the convergence is as follows: the graph
of either function is sinusoidal, with amplitude 1 but with the peaks and troughs occurring with
increasing rapidity (formally, the distance between consecutive zeros approaches 0 as |x| → ∞).
If one contemplates a picture, one guesses that the signed area of each region between consecutive
zeros is larger in absolute value than the next one, and the absolute value of the signed area of each
piece approaches 0. Therefore applying the Alternating Series test to the sum of the signed areas
of the “humps” one gets convergence....or so it looks.

The above argument is actually correct, but there is a variant that is easier to make rigorous:
we make the substitution u = x2, so x =

√
u and dx = 1

2u
−1/2du. Then we get∫ ∞

0

cos(x2)dx =
1

2

∫ ∞
0

cosudu√
u
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(and similarly for the sine integral). Now we still have a sequence of signed areas of “humps” alter-
nating in sign, but each of the humps has the same width, π, and the amplitude is now decreasing
to 0. More precisely, since the numerator is periodic and the denominator is increasing, it is now
clear that the Alternating Series Test applies to show the convergence of the improper integral.

Having established convergence, we observe that it is equivalent to show∫ ∞
−∞

cos(x2)dx =

∫ ∞
−∞

sin(x2)dx =
√
π/2.

We do so via the following unlikely looking contour iuntegral. The function we use is

f(z) :=
eiz

2

sin(
√
πz)

,

and the contour γR is a positively oriented rectangle centered at 0 and with sides parallel to the
coordinate axes. The width of the rectangle is

√
π and the height is 2R; thus e.g. the points ±

√
π/2

and ±Ri are the intersection points of the rectangle with the x and y axes. The singularities of f
lie at integer multiples of

√
π, and the only such point lying inside γR is at 0. This is a simple pole

and so we compute

Res(f ; 0) =
1√
π

and thus ∫
γR

f =
2πi√
π

= 2
√
πi.

Now we we will evaluate
∫
γR
f more directly. Let γ1,R, γ2,R, γ3,R and γ4,R be the four parts of the

integral: the first piece proceeds eastward along the bottom side, the second piece northward along
the right side, the third peice westward along the top side, and the fourth piece downward along the
left side. Our first claim is that

lim
R→∞

∫
γ1,R

f = lim
R→∞

∫
γ3,R

f = 0.

We will do the argument for γ1,R as the one for γ3,R is almost identical. Along I, we have
z = x−Ri, so

|eiz
2

| = |ei(x
2−2Rix−R2)| = e2Rx

and

sin(
√
πz)| = 1

2
|ei
√
πx−R

√
π − e−i

√
πx+R

√
π|

≥ 1

2

(
|e−i

√
πx||eR

√
π| − |ei

√
πx||e−R

√
π|
)

=
1

2

(
eR
√
π − e−R

√
π
)
,

so

|
∫
1,R

f | ≤ 2

eR
√
π − e−R

√
π

∫ √π/2
−
√
π/2

e2Rxdx =
1

R
→ 0

as R→∞. On the other hand, we have∫
2,R

f +

∫
4,R

f =

∫ R

−R

ei(
√
π/2+iy)2idy

sin(π/2 +
√
πyi)

+

∫ −R
R

ei(−
√
π/2+iy)2idy

sin(−π/2 +
√
πyi)

= i

∫ R

−R

ei(π/4−y
2)(e−

√
πy + e

√
πy)dy

cos(i
√
πy)

= 2i

∫ R

−R
ei(π/4−y

2)dy

= 2e3πi/4
∫ R

−R
e−iy

2

dy =
√

2(−1 + i)

(∫ R

−R
cos(x2)dx− i

∫ R

−R
sin(x2)dx

)
.
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Therefore

2
√
πi =

√
2(−1 + i)

(∫ ∞
−∞

cos(x2)dx− i
∫ ∞
−∞

sin(x2)dx

)
,

and thus
√

2
√
πi = −

∫ ∞
−∞

cos(x2)dx+

∫ ∞
−∞

sin(x2)dx+ i

∫ ∞
−∞

cos(x2)dx+ i

∫ ∞
−∞

sin(x2)dx.

Equating real parts gives ∫ ∞
−∞

cos(x2)dx =

∫ ∞
−∞

sin(x2)dx.

In view of this, equating imaginary parts gives

√
2
√
π = 2

∫ ∞
−∞

cos(x2)dx

and thus ∫ ∞
−∞

cos(x2)dx =

∫ ∞
−∞

sin(x2)dx =

√
π

2
.

8.4. Summation of series. In this section we will apply the Residue Theorem to exactly compute
the sums of certain infinite series. Especially, we’ll show:

∞∑
n=1

1

n2
=
π2

6
.

Theorem 8.8. (Summation Theorem) Let f be holomorphic on C except for finitely many isolated
singularities. Let CN be the square centered at 0 with side lengths 2N + 1. Suppose that

(21) lim
N→∞

∫
CN

π cot(πz)f(z)→ 0.

Let

f∗(n) :=

{
f(n) if n is not a singularity of f

0 if n is a singularity of f
.

Then

(22) lim
N→∞

N∑
n=−N

f∗(n) = −
∑
zi

Res(π cot(πz)f(z); zi).

where zi ranges over the singularities of f .

Proof. We may assume that N is large enough so that all the singularities of f lie inside CN . We
also observe that Z∩CN = ∅ and the integers that lie inside CN are −N,−N + 1, . . . , 0, 1, . . . , N .

By the Residue Theorem,
∫
CN

π cot(πz)f(z)dz is equal to 2πi times the sum of the residues of

π cot(πz)f(z) inside CN . So

0 = lim
N→∞

∫
Cn

π cot(πz)f(z) = 2πi(Σ1 + Σ2),

where Σ1 is the sum over the residues of f at −N,−N + 1, . . . , N − 1, N and Σ2 is the sum of the
residues at the singularities of f . It follows of course that Σ1 = −Σ2. We observe that the right
hand side of (22) is precisely −Σ2. As for the left hand side, if f has a singularity at n ∈ [−N,N ]
then f∗(n) = 0; if not, then f is holomorphic at n and thus

Res(π cot(πz)f(z);n) = f(n) Res(π cot(πz)) = f(n) · 1 = f(n).

It follows that the left hand side of (22) is Σ1, completing the proof. �
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Lemma 8.9. There is a constant A > 0 such that: for N ∈ Z+, let CN be the square as in
Theorem 8.8. Then for all N ∈ Z+ we have

| cot(πz)| ≤ A.

Proof. Let z = x+ iy. We consider cases.
Case 1: Supppose y > 1

2 . Then

| cot(πz)| = |e
πiz + e−πiz

eπiz − e−πiz
| = |e

πix−πy + e−πix+πy

eπix−πy − e−πix+πy
| ≤ |e

πix−πy|+ |e−πix+πy|
|e−πix+πy| − |eπix−πy|

=
e−πy + eπy

eπy − e−πy
=

1 + e−2πy

1− e−2πy
≤ 1 + e−π = A1,

say.
Case 2: Suppose y < −1

2 . Then

| cot(πz)| ≤ eπy + eπy

e−πy − eπy
=

1 + e2πy

1− e2πy
≤ 1 + e−π = A1.

Case 3: Suppose y ∈ [−1/2, 1/2], so z = N + 1
2 + iy or z = −N − 1

2 + iy. In the first case we have

| cot(πz)| = | cot(π(N +
1

2
+ iy))| = | cot(π/2 + πiy)| = | tanh(πy)| ≤ tanh(π/2) = A2,

say. Similarly, if z = N + 1
2 + iy, we have

| cot(πz)| = | cot(π(−N − 1/2 + iy))| = | tanh(πy)| ≤ tanh(π/2) = A2.

Thus for all z ∈ CN , we have | cot(πz)| ≤ max(A1, A2). �

Proposition 8.10. Suppose f is holomorphic on C except for isolated singularities. If there are
R,M > 0 such that

|z| ≥ R =⇒ |zf(z)| ≤M,

then f satisfies the hypothesis (21) of the Summation Theorem.

Proof. Since |zf(z)| is bounded for all |z| ≥ R. all the singularities of f lie in |z| ≤ R. Changing
variables z 7→ 1

z , we get that |f(1/z)/z| ≤M on |z| ≤ 1
R , so 0 is a removable singularity of f(z)/z,

so we can write

f(1/z)/z =

∞∑
n=0

anz
n

and thus for all z ≥ R we have

f(z) = a0/z + a1/z
2 + . . . .

Next we observe that ∫
Cn

π cot(πz)dz

z
= 0,

since the integrand is an even function with only singularity at 0, so the residue at 0 is 0. Because
of this we may write ∫

CN

π cot(πz)f(z)dz =

∫
CN

π cot(πz)
(
f(z)− a0

z

)
dz.

Now for |z| > R we have

f(z)− a0
z

=
a1
z2

+
a2
z3

+ . . .
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Fix R′ > R. Then, since a1 +a2z+a3z
2 + . . . is analytic on the open disk |z| < 1

R , it is continuous

there and thus continuous on the smaller closed disk |z| ≤ 1
R′ and thus bounded there. It follows

that there is M ′ > 0 such that for |z| ≥ R′ we have

|f(z)− a0
z
| ≤ M ′

|z|2
.

Suppose that N is large enough so that all points on the square CN satisfy |z| ≥ R′. Then using
the ML-inequality and Lemma 8.9 we get∣∣∣∣ ∫

CN

π cot(πz)f(z)dz

∣∣∣∣ =

∣∣∣∣ ∫
Cn

π cot(πz)
(
f(z)− a0

z

)
dz

∣∣∣∣
≤ π · 4(2N + 1) · M ′

(N + 1/2)2
sup
z∈CN

| cot(πz)| ≤ 4πM ′A(2N + 1)

(N + 1/2)2
→ 0

as N →∞.
�

Exercise 8.1. Show that the Laurent series expansion of π cot(πz) is

(23)
1

z
− π2

3
z − π4

45
z3 − 2π6

945
z5 − π8

4725
z7 − 2π10z9

93555
− 1382π12

638512875
z11 +O(z13).

Theorem 8.11. We have
∞∑
n=1

1

n2
=
π2

6
.

Proof. We apply the Summation Theorem with f(z) = 1
z2 . Note that the hypotheses apply by

Proposition 8.10. (Also note that it is much easier to prove Proposition 8.10 for f(z) = 1
z2 then to

prove the general case.) The only singularity of f is at f = 0, so

N∑
n=−N

f∗(n) =

−1∑
n=−N

1

n2
+

N∑
n=1

1

n2
= 2

N∑
n=1

1

n2
,

because f(z) = 1
z2 is an even function. Thus

∞∑
n=1

1

n2
= lim
N→∞

N∑
n=1

1

n2
=

1

2

N∑
n=−N

f∗(n)
ST
=
−1

2
Res(π cot(πz)/z2; 0).

No problem: the a−1 coefficient of π cot(πz)/z2 is the a1 coefficient of π cot(πz), so
∞∑
n=1

1

n2
=
−1

2
Res(π cot(πz)/z2) =

−1

2

−π2

3
=
π2

6
. �

This method generalizes widely:

Theorem 8.12. (Summing ζ(2k) for a positive integer k)
a) Let

π cot(πz) =

∞∑
n=−1

anz
n,

i.e., an is the nth Laurent series coefficient of π cot(πz). Then for all k ∈ Z+, we have
∞∑
n=1

1

n2k
=
−a2k−1

2
.
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b) In particular, we have

∞∑
n=1

1

n4
=
π4

90
.

∞∑
n=1

1

n6
=

π6

945
.

∞∑
n=1

1

n8
=

π8

9450
.

∞∑
n=1

1

n10
=

π10

93555
.

∞∑
n=1

1

n12
=

691π12

638512875
.

Proof. a) Take f(z) = 1
z2k

and proceed exactly as in the proof of Theorem 8.11.
b) This follows from part a) and (23). �

Exercise 8.2. Show that for every even k ≥ 2,
∑∞
n=1

1
nk

is a positive rational number times π2k.

Notice that since π cot(πz) is an odd function, all the even numbered terms in its Laurent series
expansion are zero. It follows from the same methods that

−1∑
n=−∞

1

n3
+

∞∑
n=1

1

n3
= 0

and similarly for all odd integers k ≥ 5. However this is a trivial conclusion – since 1
n3 is odd,

certainly 1
(−n)3 = − 1

n3 . This method is useless in evaluating the sums

ζ(k) =

∞∑
n=1

1

nk

for an odd positive integer k. In fact no exact formula is known for any odd k ≥ 3. What is known:

Theorem 8.13. (Odd Zeta Values)
a) (Apéry [Ap79]) ζ(3) is irrational.
b) (Ball-Rivoal [BR01]) ζ(k) is irrational for infinitely many odd k. In fact, the Q-vector space
spanned by ζ(3), ζ(5), ζ(7), . . . is infinite-dimensional.
c) (Zudilin [Zu04]) At least one of ζ(5), ζ(7), ζ(9) and ζ(11) is irrational.

9. The Riemann zeta function

Unfortunately this section is currently blank.
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