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Chapter 1

Field Invariants

In this chapter we wish to review a number of classical properties and invariants
of fields, and to discuss their elementary (or non-elementary) nature. Actually,
we wish to distinguish between two notions of elementary properties of fields.
The first, and weaker notion, is that of a property P of fields (in the usual,
wide sense of non-formalized mathematics) such that whenever a field F has
the property P , so does any other field F ′ which is elementarily equivalent to
F . The second, and stronger notion, is that of a proprerty P of fields which can
be given by a sentence φ in the language of rings. We call the first property
simply elementary, or an elementary invariant, and the second property finitely
axiomatizable. By way of explanation, observe that if P is an elementary prop-
erty, then it can be axiomatized – it is equivalent to a possibly infinite union of
first-order sentences φ – indeed the definition of an elementary property ensures
that the collection of sentences true in every field having property P is well-
defined, and this is the axiomatization. If the axioms are themselves equivalent
to a finite list, they are equivalent to a single sentence φ – this justifies our
terminology.

It is very much in the spririt of the talks presented at the Winter School to
distinguish between elementary properties and finitely axiomatizable proper-
ties. Indeed, a property is elementary if and only if it is preserved by passage
to ultrapowers, whereas a property is finitely axiomatizable if and only if it is
preserved by passage to ultraproducts. We will see many examples (some very
familiar) of elementary properties that are not finitely axiomatizable below.

A word about the “geometric interpretation of elementary equivalence”: as
noted by Pop, the condition that two fields F1, F2 are elementarily equivalent
can be viewed as a sort correspondence between Diophantine problems over one
field and Diophantine problems over the other. But we should be careful: this is
not literally true in the sense Pop presented in his lecture notes.1 By definition,

1Some discussion of this point took place at Professor McCallum’s dining room table.
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4 CHAPTER 1. FIELD INVARIANTS

two fields are elementarily equivalent if for all sentences φ (i.e., no free vari-
ables) in the language of fields, φ holds in one field if and only if it holds in the
other. The point is that, since the sentences φ will have quantifiers (and no free
variables!), there is no corresponding geometric object Sφ existing as a subset of
Zn. Moreover, it is certainly not enough to check that for every constructible2

subset S ⊂ Zn, S(F1) is nonempty if and only if S(F2) is nonempty; we need
quantifiers. For example, take F1 = C and F2 = C(t). Then any finite-type
Z-scheme will have points over F1 if and only if its fibre over Spec(Q) – a Q-
algebraic set – is nonempty, and this is exactly the same condition for it to have
points over F2. On the other hand, the sentence “For all b, c ∈ F , there exists
x ∈ F such that x2 + bx+ c = 0” is true in F1 but not in F2 (take b = 0, c = t)
– note the use of quantification.

Remark: It is still true that every finite-type Z-scheme S gives rise to a “Boolean-
valued” elementary invariant of F , according to whether S(F ) is empty or not.
We refer to these invariants as absolute invariants. As above, when F contains
an algebraically closed field, we get no information from the absolute invariants,
but otherwise (e.g. when F is finitely generated) we do get some information;
some particular examples of this will be discussed later, including an example of
two finitely generated fields which are not distinguished by any of their absolute
invariants.

1.1 Finitude, characteristic, algebraic closure

Invariant 0: Finiteness/Infinitude of F .

Because of the sentence “There exist 1 + . . . + 1 (q times) distinct elements
of F and there do not exist 1 + . . .+ 1 (q+ 1 times) distinct elements,” having q
elements is a finitely axiomatizable property of a field. It follows that finiteness
is an elementary property, being the infinite union of these sentences over all q.
On the other hand, finiteness itself is not finitely axiomatizable, as we can see
by considering the pseudofinite field associated to a nonprincipal ultrafilter D
on the prime numbers.

F∞(D) :=
∏

Fp/D.

(If finiteness were finitely axiomatizable, then F∞(D) would be finite, but then
it would be finite of some given cardinality p, which it isn’t, because at most
one of its factors has this property.)

Of course, the above argument is quite general: if ψi is an infinite collection of

2In the Zariski topology; recall that a constructible subset of a topological space is a
finite union of locally closed subspaces, or equivalently is an element of the Boolean algebra
generated by the closed subsets
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sentences with the property that for all i there exists a structure Mi satisfying
ψi and the negation of ψj for all j 6= i, then

∨
i ψi is not finitely axiomatizable

by consideration of the ultraproduct ΠMi/D.3

Let us make one more comment before moving on to more interesting exam-
ples. First of all, our Invariant 0 has classified finite fields up to isomorphism
as well as elementary equivalence – the complete theory of a finite field has a
unique model. It is worth remarking that the analogous statement is false for
any infinite field, and not just for cardinality reasons:

Proposition 1 The complete theory of any infinite field has at least two count-
able models.

Reminder of proof: One knows that in a complete theory with a unique count-
able model (an “ω-categorical theory”), the algebraic closure of any finite set
is finite, and indeed uniformly bounded: there exists a function f : Z+ → Z+

such that the algebraic closure of an n-element set has at most f(n) elements
[Marker, p. ???]. Applying this to an ω-categorical field, we see that there
exists N = N(F ) such that for all α ∈ F , the subfield generated by α has size
at most N . But this means that F ⊂ µN (F ), so that F has at most N elements.

Using a little more model theory, this result can be improved as follows.

Proposition 2 Any infinite field has infinitely many countable models.

A proof of this result was supplied at the author’s request by N. Ackerman; we
give his argument in the appendix.

Remark: The number of countable models of any theory over a countable lan-
guage is at most 2ℵ0 , so that the number of countable models I(T (F ),ℵ0) of
any infinite field F satisfies

ℵ0 ≤ I(T (F ),ℵ0) ≤ 2ℵ0 .

These inequalities are sharp: e.g. the lower bound is attained by an alge-
braically closed field and the upper bound by a real-closed field. (We are not
sufficiently set-theoretically inclined to pursue here the question of whether,
assuming the falsity of the continuum hypothesis, I(T (F ),ℵ0) can take on a
cardinality strictly between ℵ0 and 2ℵ0 except to say: probably not.)

Note that the elementary equivalence class of the pseudofinite field F∞(D) de-
pends on the choice of the ultrafilter D! (We see again the basic difference be-
tween ultraproducts and ultrapowers – it follows immediately from Los’ theorem
that all ultrapowers of a structure are elementarily equivalent to the structure.)
For instance, consider the sentence

3This formulation makes especially clear that one use of ultraproducts is to hide appeals
to the compactness theorem.
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“There exists x ∈ F such that x2 + 1 = 0.”

This is true in the field Fp iff p = 2 or p is one modulo 4 – i.e., on an infinite,
coinfinite subset of P, the set of prime numbers. Indeed, inside the Stone-Cech
compactification of P both the collection of D’s for which this statement is true
in F∞(D) and the the set of D’s for which it’s false, are nonempty open subsets.

Exercise: As D varies through the 22ℵ0
elements of SC(P), how many ele-

mentarily inequivalent fields F∞(D) arise?

Invariant 1: The characteristic.

The discussion is exactly as above: having a given positive characteristic p
is finitely axiomatizable, so having positive characteristic and having character-
istic zero are both elementary, but neither of these are finitely axiomatizable,
as the example F∞(D) makes clear.

Remark about absolute invariants: Let p ≥ 0 be a prime ideal of SpecZ, and
let Sp = SpecFp ⊂ SpecZ be the subscheme given by the ideal p (so F0 = Q.)
Then Sp(F ) is the set of F -algebra homomorphisms from Fp ⊗Z F to F ; this is
the empty set unless F has characteristic p. Thus the characteristic of a field is
an absolute invariant, and, knowing the characteristic, we can reduce the study
of all absolute invariants to the the study of finite-type schemes over the prime
subfield of F .

Invariant 2: Whether F is algebraically closed.

Again, being algebraically closed is elementary but the obvious axiom scheme
cannot be made finite. For instance, this can be seen as follows: for each prime
p, let Fp be a perfect field whose absolute Galois group is a nontrivial pro-p-
group. Then

∏
Fp/D is algebraically closed.4

Coming back to the question of classification up to elementary equivalence ver-
sus classification up to isomorphism, recall that algebraically closed fields are
classified up to isomorphism by their characteristic and their absolute transcen-
dence degree. In particular, ACFp is uncountably categorical, so by Vaught’s
test it is complete. (Of course, the “better” proof is to deduce the completeness
from quantifier elimination!) Thus we have found enough invariants to clas-
sify algebraically closed fields up to equivalence, and again the relation between
equivalence and isomorphism is quite easy – the extra invariant needed is the
transcendence degree.

4Although we shall not mention it again in these notes, it is important that the obvious
axiom scheme for algebraically closed fields, although infinite, is recursive, an important point
for the decidability of the theory ACFp of algebraically closed fields of characteristic p.
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1.2 Pseudoalgebraic closure

Invariant 3: Whether F is PAC.

Recall that a field F is said to be pseudo-algebraically closed (PAC) if every
absolutely irreducible variety V/F has an F -rational point. This is an elemen-
tary invariant: to see this easily, we use the result of Frey-Geyer ([?]), which
says that it suffices to check that every absolutely irreducible plane curve C/F
has an F -rational point. The point is that it is elementary to say whether a
plane curve of degree d is irreducible, and if it has degree d then geometrically it
can break up into at most d components, so that if it is absolutely reducible, it
becomes so after a degree d field extension. We will see later on that finite field
extensions can be interpreted in F ; the conclusion is that “Every absolutely
irreducible degree d plane curve has an F -rational point” is given by a sentence
in the language of rings. As usual, the PAC property, being the union over d
of all these sentences, is not finitely axiomatizable, and again the pseudofinite
field F∞(D) gives the counterexample: no finite field is PAC (it is very easy to
construct a hyperelliptic curve over a finite field without rational points), but
the Riemann hypothesis for curves over finite fieldsd implies that for fixed d,
absolutely irreducible plane curves of degree d have rational points whenever
the cardinality of F is sufficiently large.

I’m certainly no expert on the matter, but my impression is that while much is
known about PAC fields ([?]), there are too many of them to classify even up to
elementary equivalence: for each projective profinite group G, there is a PAC
field F with Galois group GF = G. Morever, there will be many different PAC
fields with Galois group G – indeed, in the (simplest!) case G = Ẑ, we already
saw that there are infinitely many PAC fields F∞(D) with this Galois group.

1.3 The Hilbert property

Invariant 4: Whether F is Hilbertian.

The property which from the perspective of [?] is somehow dual to PAC, namely,
Hilbertianity of F , is also elementary. To see this, we use the geometric char-
acterization in terms of thin sets from [?]. Namely F is not Hilbertian if F =
A1(F ) can be written as a finite union F = S1∪ . . .∪Sn, where Si = φi(Ci(F )),
φi : Ci → Ai is a morphism of degree at least 2 from an irreducible affine curve.

Some examples of non/Hilbertian fields: A finite field is not Hilbertian; nor
is an algebriacally closed field. Any field for which there exists n such that
the set of nth power classes F ∗/F ∗n is finite is not Hilbertian – so no locally
compact field is Hilbertian. A fundamental property of a Hilbertian field is that
any finite group G arising as a Galois group of F (T ) also arises as a Galois
group of infinitely many disjoint field extensions Ki/F . Since it is conjectured
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that for any field F , every finite group arises as a Galois group of F (T ), it is
also conjectured that every finite group arises infinitely many times as a Ga-
lois group over every Hilbertian field.5 A number field is Hilbertian (Hilbert’s
theorem!); for any field F , F (T ) and F ((T1, T2)) are Hilbertian; and finitely
generated extensions of Hilbertian fields are Hilbertian [?]. In particular, all
absolutely finitely generated fields of characteristic zero and all infinite finitely
generated fields of characteristic p are Hilbertian. We mention in passing a
surprising connection between the seemingly antithetical properties of Hilber-
tianity and pseudo-algebraic closure: with probability 1, the fixed field of the
subgroup generated by n randomly chosen elements of the absolute Galois group
of a Hilbertian field is PAC [?]. In terms of our attempt to classify fields up to
elementary equivalence, the Hilbert property gives us only the following (rather
weak) conclusion:

Fact: If F ∼ F (T ), then F is Hilbertian.

1.4 The Ci property

One says that a field K has the property Ci(d) if every homogeneous form of
degree d in more than di variables has a (not identically zero) solution. This is
visibly finitely axiomatizable. So the property Ci, which is by definition Ci(d)
for all d, is clearly elementary. This is a key property in the context of elemen-
tary equivalence of function fields, so let us review some examples and facts:

Fact: A field is C0 if and only if it is algebraically closed.

Fact (Chevalley-Warning): A finite field is C1.

Fact (Lang): A complete local field with algebraically closed residue field is
C1.

Fact: If F is Ci, F ((t)) is Ci+1.

Fact (Tsen-Lang): If F is Ci and K/F has transcendence degree n, then K
is Ci+n.

Fact (CITE!!): If F is not Ci−1, F (T ) is not Ci.

This last fact shows that the transcendence degree of a finitely generated func-
tion field over an algebraically closed field is an elementary invariant. We will
give another proof of this using Brauer groups.

Example: The property C2 is not finitely axiomatizable, as the theorem of

5One knows at least that every finite solvable group arises over F (T ); for similar partial
results, see [?].
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Ax-Kochen shows: there is a nonprincipal ultrafilter D on P such that∏
Qp/D ∼=

∏
Fp((t))/D.

For all d and p each field Fp((t)) is C2(d), so the right hand side is C2(d) for
all d, hence C2. Terjanian showed that no Qp is C2, so if C2 were given by a
sentence, the left hand side would not be C2, contradiction.

Exercise: Show that for all i > 0, Ci is not finitely axiomatizable.

1.5 Finite-dimensional F -algebras

We now wish to explore a constellation of elementary invariants arising from
interpreting finite-dimensional algebras in F . Recall that we say an algebraic
structure is interpretable in F if we can realize the set as a definable (with con-
stants!) subset of Fn for some n in such a way that the functions, relations,
etc. on the structure are also definable with respect to F .

In particular, any finite dimensional F -algebra A can be interpreted in F ; if
it has dimension n we need n3 “structure constants” for A to define the multi-
plication map: let A = Fv1 ⊕ . . . Fvn and put

(Σaivi) · (Σbjvj) := ΣkΣiΣjaibjc
ij
k vk.

The following properties of a finite-dimensional algebra A are finitely axiomati-
zable:
a) A has a unit.
b) A is associative.
c) A is commutative.
d) The center of A is Fv1 = F1.
e) A is a division algebra.
f) A is isomorphic to the matrix algebra Mn(F ).
g) AutF−alg(A) is a (particular!) finite group G.

All of these are clearly elementary statements, except possibly for the last:
if we can interpret A we can interpret EndF (A) = M[A:F ](A), the algebra of
F -vector space endomorphisms of A. We can then write down the conditions for
an element φ ∈ EndF (A) to preserve the algebra structure and to be invertible,
so if we have finitely many of them we can explicitly write down that under
composition they form a group isomorphic to some given group G.

Absolute algebraic invariants: Since the notion of interpretation allows con-
stants, the class of finite-dimensional algebras that we can speak of individu-
ally is that class which arises by base change from the algebraic closure of the
prime subfield (because, being finite-dimensional, they must therefore arise by
basechange from a finite field extension of the prime subfield). For example, we
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can speak individually of the finite field extensions of the prime subfield of F ,
and from this we deduce that the asbsolute subfield is an elementary invari-
ant. This is an example of one of our absolute invariants.

We can’t speak of other F -algebras individually, but by quantifying over them
we can make many statements about the non/existence of finite dimensional
F -algebras satisfying certain properties.

Galois groups: For instance, the above work shows that for any finite group
G, the statement “There exists a finite Galois extension of F with Galois group
G” can be given by a sentence in the language of fields. With just a little more
work using properties of tensor products of field extensions (exercise!), one can
say “There exist n linearly disjoint Galois extensions K1, . . . ,Kn over F with
Galois group G.” Because of this, we can attach to the elementary equivalence
class of a field F the data of a multiplicity function

mF = mGF
: G → {0, 1, . . . ,∞},

where G is the set of isomorphism classes of finite groups – to each finite group
G, mF (G) is the number of Galois extensions of F with Galois group G, or ∞
if there are infinitely many.

A good question to ask at this point is: can we extract further elementary
information from GF besides the multiplicity function mF ? The answer de-
pends upon “the size” of GF . Recall that a profinite group G is said to be small
if it only has finitely many subgroups of any given finite index. Having small
absolute Galois group is an elementary invariant – indeed it is equivalent to all
the multiplicities being finite (and the fact that there are “only” finitely many
isomorphism classes of groups of fixed order n). We leave for the reader the
proof of the following

Fact: If m : G → {0, 1, . . .} (no ∞!) is a small multiplicity function, there
exists at most one isomorphism class of profinite group G with m = mG.

So if GF is small, it is itself an elementary invariant. Disappointingly, the
converse is also true: if mF (G) = ∞, then for all cardinals κ, there exists an
elementarily equivalent field which has at least κ+ disjoint extensions with Ga-
lois group G. (The proof is straightforward for those who are comfortable with
saturated models: realizing G as a transitive subgroup of some symmetric group
Sn, by realizing a certain n-type over a cardinality κ subset, one sees that any
κ+-saturated model will do.)

The number of elementary equivalence classes of fields with GF isomorphic to a
fixed G will in general be large – we saw this before with the many inequivalent
fiels F∞(D), all with Galois group Ẑ. (There are many more inequivalent fields
with this Galois group and characteristic zero, e.g. the non-PAC field C((t)).)
In fact the class of fields which are determined up to elementary equivalence
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by their absolute Galois group has been determined by F.V. Kuhlmann, who
finds, apart from the classical example of real-closed fields and certain p-adically
closed fields (among them the abelian extensions K/Qp) there are only three
possible further families of such fields.

If we restrict to finitely generated fields, however, then it is a celebrated re-
sult of Pop that GF ∼= GF ′ =⇒ F ∼= F ′ – this is the so-called zero-dimensional
case of “Grothendieck’s anabelian dream.” Thus the absolute Galois group of a
finitely generate field “has enough information” to determine the field; we just
need to extract that information in an elementary way!

Notice that our multiplicity function is useless for any Hilbertian field: if the
inverse Galois problem has an affirmative solution, the multiplicity function on
any Hilbertian field will be identically ∞-valued!

Brauer group invariants: Recall that the Brauer group of a field classifies finite-
dimensional central simple F -algebras up to equivalence: every such algebra A
is isomorphic to Mn(D), a matrix algebra over a division algebra, and A ∼ A′

if D ∼ D′. Recall also that the Brauer group of a finite field vanishes, whereas
the Brauer group of a number field is calculated by the Hasse principle:

0→ Br(K)→
⊕
v

Br(Kv)
Σ→ Q/Z→ 0

where the middle sum extends over the places of K, and the Brauer group of
the completion Kv is Q/Z, Z/2Z or 0 according to whether v is a finite place,
a real Archimedean place, or a complex Archimedean place.

Say that K is a field of characteristic zero. There is a natural (basechange)
map

ϕ : Br(Q)→ Br(K)

induced by A 7→ A⊗Q K. Since finite-dimensional algebras over Q can be spo-
ken of in absolute terms, the kernel of ϕ is an elementary invariant; we call it
the absolute Brauer kernel.

In fact this is an example of what we called above an absolute geometric in-
variant. Associated to every element of D ∈ Br(Q) we have a Severi-Brauer
variety VD/Q, with the property that for any field K of characteristic zero,
[D ⊗K] = 0 ∈ Br(K) iff VD(K) 6= ∅. Thus the absolute Brauer kernel is ob-
tained by checking whether each Severi-Brauer variety over Q has a K-rational
point.

In fact we can do the same thing with Q replaced by any number field k. As
an application, let K/k be a finitely generated field of characteristic zero with
absolute subfield k, so that K = k(V ) can be viewed as the function field of a
smooth projective absolutely irreducible k-variety V . The Brauer kernel then
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has an interpretation via the exact sequence

0→ Pic(V )→ Pic(V/k)(k)
α→ Br(k)→ Br(V ),

where the map α gives the obstruction to a rational divisor class being repre-
sented by a k-rational divisor. Since the map Br(k)→ Br(K) factors through
Br(V ), the existence of a nontrivial element of the absolute Brauer kernel is
equivalent to the existence of a k-rational divisor class on V not represented
by a k-rational divisor. We conclude that this (admittedly somewhat abstruse)
geometric property is an elementary invariant of K.

As an application of the absolute Brauer kernel, we can distinguish Severi-
Brauer varieties of the same dimension from each other: indeed, it is a funda-
mental result of Amitsur that if K = k(VD) is the function field of the Severi-
Brauer variety D, the absolute Brauer kernel is the cyclic subgroup generated
by [D]. It follows that if K ∼ K ′ are the function fields of two Severi-Brauer
varieties of the same dimension 〈[D]〉 = 〈[D′]〉. Amitsur conjectured that when-
ever two Brauer group elements generate the same cyclic subfield of the Brauer
group, their function fields are isomorphic, and he proved this in case the divi-
sion algebras in quiestion are cyclic. Since one knows that all division algebras
over global fields are cyclic (Hasse-Brauer-Noether theorem), this completes the
proof.

1.6 Transitional invariants

In this section we axiomatize (in the informal sense!) a kind of field invariant
which “changes properly” under finitely generated field extensions. A model of
the sort of behavior we have in mind is the Ci property for a field: namely if k
is a Ci field and K/k is a field extension of transcendence degree r, then K is
Ci+r. This leads us to the following

Definition: A transitional field invariant is an assignment

i : Fields→ {0, 1, 2, . . . ,∞}

with the following properties (we interpret the relations ≤ and + on the set
{0, 1, 2, . . .∞} in the most obvious way):
• If L/K is an algebraic field extension, then i(L) ≤ i(K).
• If L/K is a field extension of transcendence degree n, then i(L) ≤ i(K) + n.

A transitional field invariant is strict if whenever K/F is a finitely gener-
ated field extension of transcendence degree n such that i(F ) < ∞, then
i(K) = i(F ) + n.

If i is any transitional field invariant, then we define its virtualization vi
to be vi(F ) := min[K:F ]<∞ i(K). If i is strict, then so is vi.
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Analogously, we say that a {0, 1, . . . ,∞}-valued field invariant is local if when-
ever K is a complete field with residue field F we have i(K) ≤ i(F ) + 1; it is
equicharacteristic local if we have i(F ((t))) ≤ i(F ) + 1. Finally, it is strict
if we have equality when i(F ) <∞.

The theme of this section is the search for a strict transitional invariant i which
is elementary and which is finite on a large class of fields (especially, on finitely
generated fields). The existence of this implies that the transcendence degree
is an elementary invariant among finitely generated fields. We will see several
examples of elementary invariants which are conjecturally strictly transitional
and strictly transitional invariants which are conjecturally elementary. In the
end it is the Milnor conjecture which provides us with an invariant which has
all the desirable properties.

Example 0: The trivial example of a strict transitional invariant is the ab-
solute transcendence degree. But it is not elementary (nor is it local, for that
matter).

Example 1: The “Tsen-Lang invariant” TL : F 7→ the least i such that F
is a Ci field is elementary strict transitional. It is moreover equicharacteristic
local (but not local!). So, as we’ve seen above, TL allows us to conclude that
transcendence degree is an elementary invariant among function fields over e.g.
algebraically closed fields and finite fields. The problem is that being Ci for any
i is too strong a property: vTL(Qp) = vTL(Q) =∞.

Example 2: The p-cohomological dimension. Let cdp(F ) be the p-cohomological
dimension of GF : this is the unique i such that for all discrete p-primary torsion
GF -modules M and all n > 0, Hi+n(GF ,M) = 0 and Hi(GF ,M) 6= 0 for some
M . For simplicity, we stay away from the case when p equals the characteristic
of F . Under this hypothesis, one finds in [?] that cdp (and hence also vcdp) is
strict transitional and strict local. Moreover, it has very appealing finiteness
properties:

• cdp(F ) = 0 iff F is p-closed.
• For all p, cdp(Fq) = 1.
• For all p, `, cdp(Ql) = 2.
• cd2(R) =∞, but vcd2(R) = 0.
• If F is a global field, cdp(F ) = 2 unless p = 2 and F is formally real, in which
case cd2(F ) =∞. But for every global field, vcdp(F ) = 0.

This brings us to the following

Question 3 Is cdp an elementary invariant?

Observe that if any invariant is elementary, so is its virtualization. So if the
answer to this question is yes, then we can detect transcendence degree over an
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enormous variety of fields. Here are some results in this direction:

Having cdp(F ) = 0 is elementary. (Because admitting a degree p field extension
can be seen from the “Galois invariant” of the previous section.)

Having cdp(F ) = 1 is elementary. Indeed, one knows that having cdp(F ) = 1 is
equivalent to the vanishing of the p-component of the Brauer group of all finite
extensions of F ; see [?]. We have seen that this latter property is elementary.

Exercise: Show that if F contains p pth roots of unity, the property ofBr(F )[p∞] =
0 is finitely axiomatizable. (Hint: use the Merkurjev-Suslin theorem.) Is the
property cdp(F ) ≤ 1 finitely axiomatizable?

One defines simply cd(F ) as the supremum over cdp(F ) for all p. So if cdp
is elementary for all primes p then so is cd, but not necessarily conversely. One
knows that the property of having cohomological dimension 2 is elementary: this
is a consequence of a deep theorem of Suslin, which says that cohomological di-
mension at most 2 is equivalent to the property that for all finite extensions l/k
and all finite central division algebras D/l, the reduced norm map N : D → l
is surjective. We leave it as an exercise to the reader who is familiar with this
material to show that this latter statement is elementary.

I know of no similar (even conjectural) characterizations of having p-cohomological
dimension at most 3 that would give us a truly good reason for believing its gen-
eral elementary nature, although I will admit that in my heart I am convinced
by the assembled evidence together with the following remarkable fact.

Proposition 4 Because the Milnor Conjecture holds, cd2 is an elementary in-
variant.

Proof: The particular form of the Milnor Conjecture we want is (as found on p.
12 of Pop’s notes) that, for any field F of characteristic different from two, the
correspondence

en : In(F )/In+1(F )→ Hn(F,Z/2Z)

induced at the level of Pfister forms by

(1, a1)⊗ . . .⊗ (1, an)→ χ−a1 ∪ . . . ∪ χ−an
is an isomorphism. Here the left hand side is tensor (Kronecker) product of n
diagonalized binary quadratic forms, and the χ−ai in the right hand side denotes
the image of −ai ∈ F×/F×2 under the Kummer isomorphism F×/F×2 →
H1(F, µ2) = H1(F,Z/2Z). Since one knows that the p-cohomological dimension
can be computed using the Galois module Z/pZ [CG, p. ??], it follows that the
2-cohomological dimension of any field k (not of characteristic 2) is the largest
integer n such that there exists an anisotropic n-fold Pfister form. But, the
statement “There exists an n-fold anisotropic Pfister form” (for a particular
value of n) is evidently a sentence in the language of fields, completing the
proof.
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1.7 More Brauer invariants

In this section, we work with an unspecified prime p which we assume not to
be the characteristic of any of the fields under discussion.

The Milnor conjecture implies that the transcendence degree is an elementary
invariant among function fields over a field k with (v)cd2(k) < ∞. Here we
want to present a conjecture about Brauer groups that implies the same result
for any odd prime p.

Further Brauer invariants: Define the period of a central division algebra D/K
to be the order of its class in Br(K) – more concretely, it is the least positive a
such that D⊗a ∼= Mn(K). Also we define the index of D/K just to be

√
[D : K].

One knows that for any division algebra D over any field K, the period divides
the index and the two quantities have the same prime factors. For any given
prime p and positive integer a, the following can easily be made into a sentence
in the language of fields:

Ψ(p, a) := “There exists a K-central division algebra of period p and index
pa.”

It is probable that these sentences should distinguish between function fields
of differing transcendence degrees over a very general class of base fields k, as
we will now explain. We begin with the following result:

Proposition 5 Let k be a field with the property that for some prime p, there
exists an absolute bound on i on the indices of all elements of prime order in the
Brauer group of all finite extensions of k. Then k is not elementarily equivalent
to any finitely generated regular field extension of positive transcendence degree.

Seeking a contradiction, suppose K/k is a finitely generated field extension of
positive transcendence degree with K ∼ k. Because the hypotheses are stable
upon finite base extension of k, we may assume that k contains the pth roots of
unity and that K admits a corresponding smooth projective variety V/k with a
k-rational point, so that the map Br(k) → Br(K) is injective. By hypothesis,
there is a k-central division algebra D of period p and index pi but none of
period p and index pi+1. We will produce a central division algebra D′/K of
period p and index pi+1, exhibiting the inequivalence of k and K. First consider
the pushforward of D to K – we get a “constant” Azumaya algebra, which by
our above base extension we have ensured is still division. Observe that there
exist plenty of cyclic p extensions L/K such that DL remains a division algebra
– indeed take any p-extension except a basechange of k. The property of their
existing a period p index pi division algebra and a cyclic p-extension which does
not reduce its index is elementary – since it’s true in K, it must therefore also
be true of some division algebra (which we continue to denote D) over k. Now
consider the following result from [?]:



16 CHAPTER 1. FIELD INVARIANTS

Proposition 6 Let k′/k be a cyclic p-extension with generator σ and A/k a
central simple algebra. Write Ak′ , Ak(t), Ak((t)) for the base changes of A to
k′, k(t) and k((t)) respectively. Then the following are equivalent:
a) A0 := Ak′ is a division algebra.
b) A1 := Ak(t) ⊗k(t) (k′(t)/k(t), σ, t) is a divison algebra.
c) A2 := Ak((t)) ⊗k((t)) (k′((t))/k((t)), σ, t) is a division algebra.

Choose a finite map V → Pn such that in the associated coordinate sys-
tem (t1, . . . , tn) the assumed k-rational point on V lies over the origin in Pn.
By an iterated application of the propostion, we can build a division algebra
Dn/k(t1, . . . , tn) of period p and index pi+n. Looking at part c) of the proposi-
tion, we see that Dn remains a division algebra even locally around the origin,
so that its pullback to V remains a division algebra even locally around P ,
hence is a division algebra.

The question of course, is when the hypotheses of Proposition 5 are satisfied.
Consider the following conjecture.

Conjecture 7 (Period-index conjecture for Brauer groups) Let k be a field of
characteristic different from p with cdp(k) = d.
a) If [D] ∈ Br(k)[p], then the index of D divides pd−1.
b) Assume that there exists a positive integer a such that for all finite field
extensions l/k, all elements [D] ∈ Br(l)[p] have index dividing pa. Then if K/k
is a field extension of transcendence degree one, all elements D ∈ Br(K)[p] have
index dividing pa+1.

Proposition 5 and Conjecture 7 imply that for any p, fields of differing tran-
scendence degrees over a field of finite (virtual) p-cohomological dimension are
elementarily inequivalent.

I am afraid that the evidence for Conjecture 7 is thus far rather meager. Part
a) holds rather trivially for fields of p-cohomological dimension at most one. It
is classically known to hold for local and global fields; it is known for p = 2 and
p = 3 for C2-fields [Artin];


