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15.8. Wójcik’s Proof of the Three Squares Theorem 95
15.9. Ankeny’s Proof of the Three Squares Theorem 99



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 3

15.10. Mordell’s Proof of the Three Squares Theorem 101
15.11. Some applications of the Three Squares Theorem 103
15.12. The Ramanujan-Dickson Ternary Forms 104
16. Applications of GoN: Isotropic Vectors for Quadratic Forms 107
16.1. Cassels’s Isotropy Theorem 107
16.2. Legendre’s Theorem 108
16.3. Holzer’s Theorem 117
16.4. The Cochrane-Mitchell Theorem 120
16.5. Nunley’s Thesis 123
17. GoN Applied to Diophantine Equations Over Number Fields 123
17.1. Reminders on quadratic forms over number fields 123
17.2. Sums of Two Squares in Integral Domains 125
17.3. Sums of two squares in ZK , K = Q(

√
5) 128

17.4. Sums of Squares in Z[i] 130
17.5. Hermite constants in number fields 132
18. Geometry of Numbers Over Function Fields 133
18.1. No, seriously. 133
18.2. Tornheim’s Linear Forms Theorem 133
18.3. Eichler’s Linear Forms Theorem 136
18.4. Function Field Vinogradov Lemma 137
18.5. Prestel’s Isotropy Theorem 138
18.6. The Prospect of a GoN Proof for Ternary Hasse-Minkowski 140
18.7. Chonoles’s Geometry of Numbers in Fq(( 1

t )) 142
18.8. Mahler’s non-Archimedean Geometry of Numbers 145
18.9. Normed Rings 147
18.10. Gerstein-Quebbemann 149
19. Abstract Blichfeldt and Minkowski 152
References 154

1. Lattices in Euclidean Space

Fix a positive integer N , and consider N -dimensional Euclidean space RN . In
particular, under addition RN has the structure of a locally compact topological
group. A vector group is a topological group G isomorphic to a subgroup of
(RN ,+) for some N . In particular, RN is a vector group.

1.1. Discrete vector groups.

At the other extreme are the discrete subgroups: those for which the induced
subspace topology is the discrete topology.

Exercise 1.1: Show that for a subgroup G ⊂ RN the following are equivalent:
(i) The infimum of the lengths of all nonzero elements of G is positive.
(ii) G is discrete.

Proposition 1.1. Let G be a Hausdorff topological group and H a locally compact
subgroup. Then H is closed in G. In particular, every discrete subgroup of a
Hausdorff group is closed.
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Proof. Let K be a compact neighborhood of the identity in H. Let U be an open
neighborhhod of the identity in G such that U ∩H ⊂ K. Let x ∈ H. Then there
is a neighborhood V of x such that V −1V ⊂ U , so then

(V ∩H)−1(V ∩H) ⊂ K.

Since x ∈ H, there exists y ∈ V ∩ H, and then V ∩ H ⊂ yK. Since for every
neighborhood W of x, W ∩V is also a neighborhood of x and thus W ∩V ∩H 6= ∅,
x ∈ V ∩H. Since yK is compact in the Hausdorff space H, it is closed and thus
x ∈ V ∩H ⊂ yK = yK ⊂ H. So H is closed. �

Example 1.2: For every 0 ≤ n ≤ N , there is a discrete subgroup of RN isomorphic
as a group to Zn. This is almost obvious: the subgroup ZN of RN – what we
call often call the standard integer lattice – is discrete, and hence so too are
the subgroups Zn = ZN ∩ (Rn × 0N−n). Thus for all n ≤ N , there are discrete
subgroups of RN which are, as abstract groups, free abelian of rank n.

In fact the converse is also true: every discrete subgroup of RN is free abelian
of rank at most N . But this is not obvious! The following exercise drives this home.

Exercise 1.3: a) Show that, as abstract groups, (RN ,+) ∼= (R,+).1

b) Deduce that for all n,N ∈ Z+, RN admits a subgroup G ∼= Zn.
c) Show in fact that RN admits a subgroup which is free abelian of rank κ for every
cardinal number κ ≤ #R.

Define the real rank r(G) of a vector group G ⊂ RN to be the maximal car-
dinality of an R-linearly independent subset of G, so 0 ≤ r(G) ≤ N . For instance,
the discrete subgroup Zn ⊂ ZN ⊂ RN of Example 1.1 above has real rank n.

Theorem 1.2. Let G be a discrete subgroup of RN , of real rank r. There are
R-linearly independent vectors v1, . . . , vr such that G = 〈v1, . . . , vr〉Z.

Proof. By Proposition 1.1, G is closed.First observe that r = 0 ⇐⇒ G = {0}
and this is a trivial case. Henceforth we assume 0 < r ≤ N . By definition of
real rank, there are e1, . . . , er ∈ G which are R-linearly independent. Let P =
{
∑r
i=1 xiei | ei ∈ [0, 1]} be the corresponding paralleletope. Thus G∩P is a closed,

discrete subspace of a compact set, hence finite. Let x ∈ G. Since r is the real rank
of G, there are λ1, . . . , λr ∈ R such that x =

∑r
i=1 λiei. For j ∈ Z, put

xj = jx−
r∑
i=1

bjλicei.

Thus

xj =

r∑
i=1

(jλi − bjλic)ei,

so xj ∈ P ∩ G. Since x = x1 +
∑r
i=1bλicei, we seee that G is generated as a

Z-module by G ∩ P hence is finitely generated. Further, since G ∩ P is finite and
Z is infinite, there are distinct j, k ∈ Z such that xj = xk. Then

(j − k)λi = bjλic − bkλic,

1We maintain our convention that N is an arbitrary, “fixed” positive integer.
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so λi ∈ Q. Thus G is generated as a Z-module by a finite number of Q-linear
combinations of the ei’s. Let d be a common denominator of these coefficients,
so dG ⊂

∑r
i=1 Zei. By the sturcture theory of finitely generated modules over a

PID, there is a Z-basis f1, . . . , fr of
∑r
i=1 Zei and integers α1, . . . , αr such that

dG = 〈α1f1, . . . , αrfr〉. The free rank of dG is the same as the free rank of G,
which is at least r since e1, . . . , er ∈ G. It follows that the free rank of G is exactly
r and the integers αi are all nonzero. It follows that dG is generated as a Z-module
by the R-linearly indepenent vectors f1, . . . , fr, hence G is generated as a Z-module
by the R-linearly independent vectors v1 = f1

d , . . . , vr = fr
d . �

Exercise 1.4: Deduce from Theorem 1.2 the following purely algebraic result: any
subgroup of a free abelian group of finite rank n is free abelian of rank at most n.

We define a lattice in RN to be a discrete subgroup which is, as an abstract
group, free abelian of rank N . (Note that what we call a “lattice” is sometimes
called a “full lattice” or a “lattice of full rank” by other authors.) By Theorem 1.2,
a subgroup of RN is a lattice iff it is the Z-span of an R-basis v1, . . . , vN for RN :
we refer to {v1, . . . , vN} simply as a basis for Λ.

Exercise 1.5: Let Λ ⊂ RN be a lattice, and let S ⊂ Λ be a subset. Show that
S is Z-linearly independent iff it is R-linearly independent.

1.2. Hermite and Smith Normal Forms.

In general, the notions of Hermite and Smith normal forms belong to the struc-
ture theory of finitely generated modules over a PID. We restrict ourselves to the
case of direct relevance here: let N ∈ Z+, and let M ∈MN (Z).

The matrix M = (mij) is in Hermite normal form (HNF) if:
(HNF1) M is upper triangular: mi,j = 0 for all i > j,
(HNF2) mi,i > 0 for all 1 ≤ i ≤ N , and
(HNF3) For all 1 ≤ i < j ≤ N , 0 ≤ mij < mii.

The matrix M = (mij) is in Smith normal form (SNF) if
(SNF1) M is diagonal: mij = 0 for all i 6= j,
(SNF2) mi,i ≥ 0 for all 1 ≤ i ≤ N , and
(SNF3) Forall 1 ≤ i < N , mii | mi+1,i+1.

Theorem 1.3. (Hermite) Let A ∈MN (Z) with detA 6= 0. Then there is a unique
matrix M in Hermite normal form such that M = AU for some U ∈ GLN (Z).

Proof. See [Coh, §2.4.2] for a constructive proof, i.e., an algorithm for putting A in
Hermite Normal Form together with a proof of its correctness. �

Exercise: Show that Theorem 1.3 is equivalent to the following statement about
Z-modules: let Λ ⊂ ZN be a free abelian group of rank N . Then there is a Z-basis
v1, . . . , vN of Λ and M = (mij) ∈MN (Z) in HNF such that

v1 = m11e1 +m12e2 + . . .+m1NeN ,

v2 = m22e2 +m23e3 + . . .+m2NeN ,
...
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vN = mNNeN .

Theorem 1.4. (Smith) Let A ∈ MN (Z). Then there is a unique matrix M in
Smith normal form such that M = V AU for some U, V ∈ GLN (Z).

Proof. In [J1] a more general result is given (for not necessarily square matrices
with coefficients in an arbitrary PID). [Coh, §2.4.4] gives a constructive proof when
detA 6= 0, which can be easily adapted to the singular case. �

Exercise: Show that Theorem 1.4 is equivalent to the following statement about Z-
modules: let Λ1

∼= ZN , and let Λ2 be a subgroup. Then there is a Z-basis v1, . . . , vN
for Λ1 and positive integers d1 | d2 | . . . | dN such that d1v1, . . . , dNvN generates
Λ2, and restricting to the divi’s with di 6= 0 gives a Z-basis for Λ2.

Corollary 1.5. Let p be a prime number, n,N ∈ Z+, and V =
⊕N

i=1 Z/pnZ.
Let H be a subgroup of V .
a) There are unique natural numbers 0 ≤ n1 ≤ n2 ≤ . . . ≤ nN ≤ n such that

H ∼=
N⊕
i=1

Z/pniZ.

b) We have V/H ∼=
⊕N

i=1 Z/pn−niZ.

Proof. Let Λ0 be a free abelian group of rank N , and let Λ2 = pnΛ. Then
Λ0/Λ2

∼= V , so by the correspondence principle there is a subgroup Λ1 ⊂ Λ0

such that Λ1/Λ2 = H. Apply Smith Normal Form to Λ1 and Λ2: there exists
a basis v1, . . . , vN of Λ1 and positive integers d1, . . . , dN with di | di+1 such that
d1v1, . . . , dNvN is a basis of Λ2, and thus

H = Λ1/Λ2
∼=

N⊕
i=1

Z/diZ.

Since H is a p-group, we may write di = pni , establishing part a).

Next note that since Λ2 = pnΛ1, pn1

pn e1, . . . ,
pnN

pn eN is a Z-basis for Λ0, and thus

V/H = (Λ0/Λ2)/(Λ1/Λ2) ∼= Λ0/Λ1
∼=

N⊕
i=1

Z/pn−niZ.

�

1.3. Fundamental regions, covolumes and sublattices.

For a group G acting on a space X, a fundamental region is a subset R ⊂ X
containing exactly one element from every G-orbit on X. In other words, a funda-
mental region is precisely the image of a section of the orbit map X → G\X. Thus
the translates of any fundamental region partition the space:

X =
∐
g∈G

gR.

In general there are many fundamental regions, and one looks for fundamental re-
gions with nice topological properties. In general, a fundamental region X need be
neither open nor closed, so often it is convenient to deal with closed fundamental
regions X, even though these are no longer fundamental regions in the strict sense.
Thus we say a family of subsets {Yi} of a topological space X is a tiling of X if
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(T1)
⋃
i Yi = X, and

(T2) For all i 6= i′, Y ◦i ∩ Y ◦j = ∅.

Note also that there is a natural (quotient) map q : X → G\X which is injec-
tive on X◦. One important consequence of this is that if X is compact, so is G\X.

Now we come back to earth: let Λ be a lattice in RN , and view Λ as acting on RN
via translations. A particularly nice fundamental region can be obtained using any
basis v = {v1, . . . , vN}: namely we define the fundamental parallelopiped

P(v) = {α1v1 + . . .+ αNvN | αi ∈ [0, 1)}.
Exercise: Show that P(v) is a fundamental region for the action of Λ on RN .

As above, it is also natural to consider the closed parallelopipeds

P(v) = {α1v1 + . . .+ αNvN | αi ∈ [0, 1]}.

Since P(v) is compact, the quotient space RN/Λ is compact. In fact we can say
much more: the identifications on the boundary of the closed parallelopiped are
precisely that of identifying the αi = 0 face with the αi = 1 face for 1 ≤ i ≤ N , and
thus the quotient space is an N -dimensional torus, i.e., isomorphic as a topological
group to the product of N circles.

One can show that under suitable hypotheses, a measure on the space X descends
to give a measure on the quotient X/G. One way to do this is to define measures in
terms of fundamental regions. For instance, we wish to define the measure of X/G
to be the measure of a fundamental region, and for this to make sense we must
check (i) that we may always choose a measurable fundamental region and (ii) any
two measurable fundamental regions have the same measure. These arguments are
carried through in some generality in XXXX.

In the situation of a lattice acting on Euclidean space things are easier: we can
restrict as above to fundamental parallelotopes. Since for any basis v of RN , the
parallelotopes P(v) and P(v) are the images of the paralleltopes (cubes!) associ-
ated to the standard orthogonal basis e1, . . . , eN under the matrix Mv with columns
v1, . . . , vN , we have

VolP(v) = VolP(v) = |detMv|.
Now suppose v and w are two bases for the same lattice Λ. Then there is A ∈
GLN (Z) with AMv = Mw, so

|detMw| = |detA||detMv| = | ± 1||detMv| = |detMv|.

Thus the volume of a fundamental parallelopiped for Λ is independent of the chosen
basis for Λ. We call this invariant the covolume of Λ and denote it by Covol Λ.

1.3.1. Sublattices and indices.

If Λ′ and Λ are lattices in RN we say that Λ′ is a sublattice of Λ.
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Proposition 1.6. Let Λ be a lattice in RN , and let G ⊂ Λ be any subgroup. The
following are equivalent:
(i) G is a lattice.
(ii) The index [Λ : G] is finite.
(iii) RN/G is compact.

Proof. By Exercise 1.4 (or by Smith Normal Form), G is a free abelian group of
rank n ≤ N . By Smith Normal Form, there are bases v1, . . . , vN for Λ, w1, . . . , wn
for G and d1, . . . , dn ∈ Z+ such that wi = divi for 1 ≤ i ≤ n. Thus

Λ/G ∼= ZN−n ⊕
n⊕
i=1

Z/diZ

and

RN/G ∼= RN−n ⊕ (S1)n.

From these isomorphisms the equivalence of (i), (ii) and (iii) follows immediately.
�

Proposition 1.7. (Index-Covolume Relation) Let Λ′ be a sublattice of Λ. Then

Covol Λ′ = [Λ : Λ′] Covol Λ.

Proof. A Smith Normal Form argument works; we leave the details to the reader.
�

In fact the result of Proposition 1.7 holds much more generally, and here is an
argument which works in this generality: let R be a fundamental region for the
action of Γ on X, and let Γ′ a finite index subgroup of Γ. Let g1, . . . , gI be a set of

coset representatives for Γ′ in Γ. Then
⋃I
i=1 giR is a fundamental region for Γ′ and

Vol

I⋃
i=1

giR =

I∑
i=1

Vol giR =

I∑
i=1

VolR = nVolR.

1.3.2. The number of index n sublattices of ZN .

For n,N ∈ Z+, let LN (n) denote the number of index n sublattices of ZN . It
is a nice application of the previous material to evaluate LN (n) in various cases.

First let us establish that LN (n) is finite in all cases and give an explicit upper
bound. The key idea is that if Λ is an index n sublattice of ZN , then ZN/Λ is an
n-torsion abelian group, hence Λ ⊃ (nZ)N . Put Λ = Λ/(nZ)N , so Λ ⊂ (Z/nZ)N .
Thus the index n sublattices of ZN correspond bijectively to index n subgroups of
(Z/nZ)N , i.e., to order nN−1 subgroups of (Z/nZ)N . A crude upper bound is the
number of nN−1-element subsets of (Z/nZ)N , so

LN (n) ≤
(
nN

nN−1

)
≤ 2n

N

.

Exercise: Show that L1(n) = 1 for all n ∈ Z+.

Proposition 1.8. For any prime number p, LN (p) = pN−1
p−1 .
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Proof. By the above analysis, when n = p is prime, we want to count the codimen-
sion one Fp-subspaces of V ∼= FNp . By duality, the codimension one subspaces of

V correspond to the one-dimensional subspaces of V ∨ ∼= FNp . A one-dimensional

subspace of FNp is given as the span of any nonzero vector v and 〈v1〉 = 〈v2〉 iff

v2 = αv1 for some α ∈ F×p . This leads to the count LN (p) =
#FN

p −1

p−1 = pN−1
p−1 . �

Proposition 1.9. The function LN : Z+ → Z+ is multiplicative: that is, for
N,n1, n2 ∈ Z+ with gcd(n1, n2) = 1, we have

LN (n1n2) = LN (n1)LN (n2).

Exercise: Prove Proposition 1.9. (Hint: use the Chinese Remainder Theorem.)

By Proposition 1.9, it is enough to evaluate LN (pn) for any prime power pn. Clearly
LN (p0) = 1, and we have already evaluated LN (p). Let us examine the next case.

Example 1.10. We will compute L2(p2); equivalently by our preliminary analysis,
we wish to count subgroups Λ of V = (Z/p2Z)2 of index p2, and hence also of order
p2. There are two possible group structures for Λ: Z/p2Z and Z/pZ× Z/pZ.

Suppose first that Λ ∼= Z/p2Z. Thus Λ is generated by a single element of
maximal order p2. The number of elements of order p2 is #V −#V [p] = p4− p2 =
p2(p2−1). To count subgroups rather than generators of subgroups we divide by the
number of generators of a subgroup of order p2, i.e., ϕ(p2) = p2 − p, and thus the

number of cyclic subgroups Λ is p2(p2−1)
p(p−1) = p(p+ 1) = p2 + p.

Now suppose Λ ∼= Z/pZ × Z/pZ. Then Λ ⊂ V [p] and both have order p2, so
Λ = V [p], i.e., there is exactly one such subgroup. Thus

L2(p2) = p2 + p+ 1.

Lemma 1.11. Let p be a prime number and n,N ∈ Z+. The number of cyclic
order pn subgroups of V = (Z/pnZ)N is

G1,N (pn) =
(pn)N − (pn−1)N

ϕ(pn)
=
p(n−1)N (pN − 1)

pn−1(p− 1)
= p(N−1)(n−1)

(
1 + p+ . . .+ pN−1

)
.

Exercise: Prove Lemma 1.11. (Suggestion: adapt Example 1.10 above.)

Theorem 1.12. For any n ∈ Z+, L2(n) = σ(n) =
∑
d|n d.

Proof. Step 1: We have already seen that the function L2 is multiplicative. So too
is the divisor sum function, so it suffices to show the result in the case n is a prime
power, in which case an equivalent form of the statement to be proved is

L2(pn) = pn + pn−1 + . . .+ p+ 1.

Putting V = (Z/pnZ)2, we want to count subgroups Λ of index pn, equivalently
of order pn. By Corollary 1.5 such a subgroup is of the form Z/pn−a ⊕ Z/pa for
0 ≤ a ≤ dn−1

2 e: we call these subgroups of type a. We claim that the number

of subgroups of type a is pn−2a + pn−2a−1 unless n is even and a = n
2 = dn−1

2 e,
in which case there is exactly one subgroup of type a. In the final case we have
Λ ⊂ V [p

n
2 ] and both have pn elements, so we must have Λ = V [p

n
2 ].

Suppose a = 0, so Λ ∼= Z/pn. Then by Lemma 1.11 the number of type 0
subgroups is C(2, pn) = pn−1(p+ 1) = pn + pn−1.

Now suppose 0 < a < n
2 , so Λ ∼= Z/pn−aZ × Z/paZ and thus Λ ⊂ V [pn−a] ∼=
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(Z/pn−aZ)2. By Corollary 1.5, V [pn−a]/Λ ∼= Z/pn−2aZ. By duality the number of
quotient groups of V [pn−a] which are cyclic of order pn−2a is equal to the number
of subgroups of V [pn−a] which are cyclic of order pn−2a; since such subgroups
are contained in V [pn−2a], their number is C(2, pn−2a) = pn−2a + pn−2a−1. This
establishes the claim. Finally, note that adding up the number of type a subgroups
for 0 ≤ a ≤ dn−1

2 e indeed gives pn + . . .+ p+ 1 = σ(pn). �

Exercise: Try to adapt the above methods to compute LN in the general case.

It is now time to admit that we have been playing around a bit: with the right
tool, the computation of LN can be done in one fell swoop. That tool is Her-
mite normal form. Indeed, let Λ ⊂ ZN be an index n sublattice. Choosing a
Z-basis v = {v1, . . . , vN} and taking Mv the matrix with columns v1, . . . , vN , we
have Λ = MvZN and n = |detMv|. Now we encounter an issue which will recur
throughout these notes: we want to consider (here: to count) lattices of index n,
not ordered Z-bases of lattices of index n. In slightly fancier terms, we want to
count the number of GLN (Z)-orbits on the set of integral N ×N matrices with de-
terminant n. Aha! By Theorem 1.3 every GLN (Z)-orbit contains a unique matrix
in Hermite normal form, so we need only count the number of N ×N matrices in
Hermite normal form with determinant n.

Let us begin with the case N = 2: then a determinant n matrix in HNF is of

the form

[
a b
0 n

a

]
with a > 0 and 0 ≤ b < a. Thus a ranges over all (posi-

tive!) divisors of n and for each such divisor a we have a choices for b, and thus∑
d|I n = σ(n) HNF matrices in all. This gives a new proof of Theorem 1.12!

The case of general N is not essentially harder but only requires a little more
notation. Fix N and n, and consider the set of N ×N matrices in Hermite normal
form of determinant N . The upper left entry can be any positive divisor d of n; the
remaining N − 1 entries on the first row are arbitrary elements of [0, d− 1), hence
there are dN−1 choices. The entries in the first column below the first are all zero,
and – the key point! – the lower right N − 1×N − 1 submatrix is also in Hermite
normal form and has determinant n

d . It follows that

(1) LN (n) =
∑
d|n

dN−1LN−1

(n
d

)
.

A student of elementary number theory will recognize the right hand side of (1) as
a Dirichlet convolution: in general, for functions f, g : Z+ → C, we put

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

The Dirichlet convolution is (easily seen to be) a commutative, associative product
(in fact, the set of all functions f : Z+ → C endowed with pointwise sum and
convolution product is an interesting commutative ring, in particular a UFD). Let
us write I for the function n 7→ n. Then we may rewrite (1) as

∀N ≥ 2, LN = IN−1 ∗ LN−1,

from which we immediately deduce the following result.
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Theorem 1.13. For N ∈ Z+,

LN = IN−1 ∗ IN−2 ∗ · · · I · I0.

In other words, for all n ∈ Z+,

LN (n) =
∑

n1,...,nN |n, n1···nN=n

nN−1
1 nN−2

2 · · ·n1
N−1n

0
N .

Remark 1. We get an even prettier formula by performing a “Dirichlet transform”.
Given a function f : Z+ → C, we associate the formal Dirichlet series

Df (s) =

∞∑
n=1

f(n)

ns
.

Let us define the zeta function of the Z-module ZN as

ζZN (s) = DLN
(s) =

∞∑
n=1

LN (n)

ns
.

Then Theorem 1.13 is equivalent to the identity

ζZN (s) = ζ(s)ζ(s− 1) · · · ζ(s− (N − 1)),

where ζ(s) is the usual Riemann zeta function.

Unfortunately it is not always trivial to wring from an “exact formula” a useful
asymptotic estimate. Here we can give a useful upper bound.

Corollary 1.14. Fix N ∈ Z+. Then the number of sublattices of ZN of index at
most T is at most TN .

Proof. It will be convenient to allow T to be any positive real number and define

LN (T ) =
∑bTc
n=1 LN (n); thus we will show that LN (T ) ≤ TN for all T > 0, and we

do so by induction on N , the case N = 1 being clear, since L1(T ) = bT c ≤ T . So
let N ≥ 2 and assume that LN−1(T ) ≤ TN−1. Then

LN (T ) =
∑

n1,...,nN>0, n1···nN≤T

nN−1
1 nN−2

2 · · ·n1
N−1n

0
N

=

bTc∑
n1=1

∑
n2,...,nN>0, n2···nN≤T/n1

nN−2
2 · · ·n1

N−1n
0
N =

bTc∑
n1=1

nN−1
1 LN−1(T/n1)

IH
≤
bTc∑
n1=1

nN−1
1

(
T

n1

)N−1

=

bTc∑
n1=1

TN−1 = bT cTN−1 ≤ TN .

�

In fact:

Corollary 1.15. Fix N ∈ Z+. Then as a function of T ,

T∑
n=1

LN (n) ∼
(
ζ(2)ζ(3) · · · ζ(N)

N

)
TN .

Proof. We refer the interested reader to [GG06, Lemma 1.1]. �
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1.3.3. A characterization of lattice subbases.

Lemma 1.16. (Hermite’s Lemma) Let R be a PID with fraction field K, let 0 6=
v = (a1, . . . , an) ∈ Rn, and let be any generator of the ideal 〈a1, . . . , an〉.
a) There exists A ∈Mn(R) with first column v and detA = d.
b) In particular, the unimodular group GLn(R) acts transitively on primitive vectors
in Rn, i.e., vectors v = (a1, . . . , an) with 〈a1, . . . , an〉 = R.

Proof. a) We go by induction on n, the case n = 1 being trivial. The case n = 2 is
easy, but let’s do it: by definition of d, there exist b1, b2 ∈ R such that a1b2−a2b1 =
d, and then the matrix

A =

[
a1 b1
a2 b2

]
has first column v = (a1, a2) and determinant d.
Now assume that n ≥ 3 and that the result holds in Rn−1. Thus there exists
A′ ∈Mn−1(R) with first column (a1, . . . , an−1) and determinant d′ any prescribed
generator of the ideal 〈a1, . . . , an−1〉. Since dR = 〈a1, . . . , an−1, an〉, there are
x, y ∈ R such that d′x−any = d. Now we consider the following matrix A ∈Mn(R):
its upper left (n − 1) × (n − 1) corner will be the matrix A′; its nth row will be
(an, 0, . . . , 0, x), and its nth column will be (a1y

d′ , . . . ,
an−1y
d′ , x)T . Note that A has

first column (a1, . . . , an)T , so it remains to show that detA = d.
Let An,1 be the minor obtained by crossing out the nth row and 1st column of

A. Then Laplace expansion along the nth row of A gives

detA = (−1)n−1an detAn−1 + d′x.

Moreover, the matrix d′An−1 is obtained from A′ by multiplying columns 2 through
n − 1 of A′ by d′, then cyclically permuting the columns, and finally multiplying
the last column by y. Thus

(d′)n−1 detAn−1 = det(d′An−1) = (d′)n−2(−1)n−2y detA′ = (d′)n−1(−1)n−2y,

so
detAn−1 = (−1)n−2y,

and thus
detA = (−1)n−1an(−1)n−2y + d′x = d′x− any = d.

b) For A ∈Mn(R), A ∈ GLn(R) iff 〈detA〉 = R, so this follows from part a). �

The above proof of Lemma 1.16a) is a very classical one. (I don’t know whether it
was Hermite’s proof, but it uses only tools that he would have had.) On the other
hand, if we think about Lemma 1.16 from the perspective of module theory, one
can give a much simpler argument.2 We develop it in the following exercises.

Exercise: Let R be an integral domain with fraction field K. A vector v =
(x1, . . . , xn) ∈ Rn is primitive if 〈x1, . . . , xn〉 = R.
a) Let b1, . . . , bn be a basis for Rn. Show that each bi is a primitive vector.
b) Show that for v ∈ (Rn)•, the following are equivalent:
(i) v is a primitive vector.
(ii) 〈v〉K ∩Rn = 〈v〉.
(iii) The R-module Rn/〈v〉 is torsionfree.

2I learned this simpler approach from Martin Brandenburg.
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c) Let R be a PID and v ∈ Rn be a primitive vector. Use part b) and the short
exact sequence

0→ 〈v〉 → Rn → Rn/〈v〉 → 0

to show that there is M ∈ GLn(R) with M(e1) = v.
d) Deduce part a) of Hermite’s Lemma from part c).

1.4. The Classification of Vector Groups.

The aim of this section is to prove that every closed subgroup of RN is isomor-
phic to Rd × Zr−d, where r = r(G) and 0 ≤ d ≤ N . In fact, our first order of
business is to define the quantity d for any vector group, i.e., a not necessarily
closed subgroup of RN .

Let G be a subgroup of RN . For ε > 0, we define d(ε) to be the maximal car-
dinality of an R-linearly independent subset of G ∩B0(ε), and we put

d = d(G) = inf
ε>0

d(ε).

Since d(ε) is a weakly increasing function of ε taking values in the finite set {0, . . . , N},
for sufficiently small values of ε it is constant, and this constant value is d(G), the
dimension of G.

Exercise: Show that G is discrete iff d(G) = 0.

To any d-dimensional vector group G we attach a d-dimensional linear subspace
W = W (G) as follows: choose ε0 > 0 sufficiently small such that d = d(ε0).
For any 0 < ε < ε0, choose R-linearly independent vectors v1, . . . , vd and put
W (ε) = 〈v1, . . . , vd〉. Each W (ε) is independent of the chosen vectors, for otherwise
we would get more than s linearly independent vectors of length less than ε0. By
the same reasoning, for all ε2 < ε1 < ε0, W (ε1) = W (ε2), and thus we have defined
a subspace W depending only on G.

Let us put Gc = G ∩W (G).

Lemma 1.17. Gc is dense in W (G).

Theorem 1.18. Let G be a vector group with r(G) = r and dimension d. Then
there is a discrete subgroup Gd of G of rank r − d such that

G = Gc ⊕Gd.

Corollary 1.19. Let G ⊂ RN be a closed vector group. Then Gc = W (G), so

G = W ⊕G′ ∼= Rd ⊕ Zr−d.

Proof. By Lemma 1.17 Gc is dense in W (G). But since G is closed in RN , so is
Gc = G ∩W (G), and thus Gc = W (G). The rest follows from Theorem 1.18. �

1.5. The space of all lattices.

Let LN be the set of all lattices in RN . The linear action of GLN (R) on RN
induces an action of GLN (R) on LN : namely, for g ∈ GLN (R) and Λ ∈ LN , we put

gΛ = {gx | x ∈ Λ}.
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To see that gΛ is again a lattice, choose a basis v1, . . . , vN for Λ. Then gv1, . . . , gvN
is an R-basis for RN and a Z-basis for gΛ, so gΛ is a lattice. Further, since every
lattice has a basis and GLN (R) acts transitively on bases of RN , it follows that
GLN (R) acts transitively on LN . However, unlike the action on bases, since a lattice
has many bases, the action on GLN (R) is not simply transitive. The stabilizer of
the standard integer lattice ZN in GLN (R) is, essentially by definition, the discrete
subgroup GLN (Z), i.e., the subgroup of invertible matrices with integer entries
and with inverse having integer entries, or equivalently the subgroup of matrices
having integer entries and determinant ±1. The orbit stabilizer theorem gives an
isomorphism of GLN (R)-sets

LN ∼= GLN (R)/GLN (Z).

By some deep theorems in differential geometry, GLN (R)/GLN (Z) can be natu-
rally endowed with the structure of a smooth (even real analytic) manifold, whose
underlying topology is simply the quotient topology. Thus we may view LN as
having this structure.

Example 1.5: When N = 1, GLN (R)/GLN (Z) ∼= R>0: this corresponds to the
fact that a lattice in R has a unique positive real number generator. Notice that
this space is non-compact in “two different directions”. This will later be made
precise, and necessary and sufficient conditions for a subset of LN to be compact
will be given: Mahler’s Compactness Theorem.

2. The Lattice Point Enumerator

2.1. Introduction.

Consider the following very classical problem: how many lattice points lie on or
inside the circle x2 + y2 = r2? Equivalently, for how many pairs (x, y) ∈ Z2 do we
have x2 + y2 ≤ r2? Let L(r) denote the number of such pairs.

Upon gathering a bit of data, it becomes apparent that L(r) grows quadratically

with r, which leads to consideration of L(r)
r2 . Now:

L(10)/102 = 3.17.

L(100)/1002 = 3.1417.

L(1000)/10002 = 3.141549.

L(104)/108 = 3.14159053.

The pattern is pretty clear!

Theorem 2.1. As r →∞, we have L(r) ∼ πr2. Explicitly,

lim
r→∞

L(r)

πr2
= 1.

Once stated, this result is quite plausible geometrically: suppose that you have to
tile an enormous circular bathroom with square tiles of side length 1 cm. The total
number of tiles required is going to be very close to the area of the floor in square
centimeters. Indeed, starting somewhere in the middle you can do the vast major-
ity of the job without even worrying about the shape of the floor. Only when you
come within 1 cm of the boundary do you have to worry about pieces of tiles and
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so forth. But the number of tiles required to cover the boundary is something like a
constant times the perimeter of the region in centimeters – so something like Cπr –
whereas the number of tiles in the interior is close to πr2. Thus the contribution to
the boundary is neglible: precisely, when divided by r2, b it approaches 0 as r →∞.

I myself find this heuristic convincing but not quite rigorous. More precisely, I
believe it for a circular region and become more concerned as the boundary of the
region becomes more irregularly shaped, but the heuristic doesn’t single out exactly
what nice properties of the circle are being used. Moreover the “error” bound is
fuzzy: it would be useful to know an explicit value of C.

2.2. Gauss’s Solution to the Gauss Circle Problem.

The first proof of Theorem 2.1 that we will present was given by Gauss in 1837. In
fact he proves a stronger result. Namely, we define the error

E(r) = |L(r)− πr2|,

so that Theorem 2.1 is equivalent to the statement

E(r) = o(r2),

or to spell out the “little oh notation”,

lim
r→∞

E(r)

r2
= 0.

Theorem 2.2. (Gauss) For all r ≥ 7, E(r) ≤ 10r.

Proof. Let P = (x, y) ∈ Z2 be such that x2 + y2 ≤ r2. To P we associate the
square S(P ) = [x, x+ 1]× [y, y + 1], i.e., the unit square in the plane which has P
as its lower left corner. Note that the diameter of S(P ) – i.e., the greatest distance

between any two points of S(P ) – is
√

2. So, while P lies within the circle of radius

r, S(P ) may not, but it certainly lies within the circle of radius r +
√

2. It follows
that the total area of all the squares S(P ) – which is nothing else than the number

L(r) of lattice points – is at most the area of the circle of radius r +
√

2, i.e.,

L(r) ≤ π(r +
√

2)2 = πr2 + 2
√

2πr + 2.

A similar argument gives a lower bound for L(r). Namely, if (x, y) is any point

with distance from the origin at most r −
√

2, then the entire square (bxc, bx +
1c)× (byc, by + 1c) lies within the circle of radius r. Thus the union of all the unit
squares S(P ) attached to lattice points on or inside x2 + y2 = r covers the circle of

radius r −
√

2, giving

L(r) ≥ π(r −
√

2)2 = πr2 − 2
√

2πr + 2.

Thus

E(r) = |L(r)− πr2| ≤ 2π + 2
√

2πr ≤ 7 + 9r ≤ 10r,

the last inequality holding for all r ≥ 7. �
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2.3. A second solution to the Gauss Circle Problem.

Here is a second, quite different, proof of Theorem 2.1.

The first step is to notice that instead of counting lattice points in an expand-
ing sequence of closed disks, it is equivalent to fix the plane region once and for all
– here, the unit disk D : x2+y2 ≤ 1 – and consider the number of points (x, y) ∈ Q2

with rx, ry ∈ Z. That is, instead of dividing the plane into squares of side length
one, we divide it into squares of side length 1

r . If we now count these “ 1
r -lattice

points” inside D, a moment’s thought shows that this number is precisely L(r).

Now what sort of thing is an area? In calculus we learn that areas are associ-
ated to integrals. Here we wish to consider the area of the unit disk as a double
integral over the square [−1, 1]2. In order to do this, we need to integrate the
characteristic function 1D of the unit disk: that is, 1D(x) is 1 if x ∈ D and oth-
erwise. Now the division of the square [−1, 1]2 into 4r2 subsquares of side length
1
r is exactly the sort of sequence of partitions that we need to define a Riemann

sum: that is, the maximum diameter of a subrectangle in the partition is
√

2
r , which

tends to 0 as r →∞. Therefore if we choose any point P ∗i,j in each subsquare, then

Σr :=
1

r2

∑
i,j

1D(P ∗i,j)

is a sequence of Riemann sums for 1D, and thus

lim
r→∞

Σr =

∫
[−1,1]2

1D = Area(D) = π.

But we observe that Σr is very close to the quantity L(r). Namely, if we take each
sample point to be the lower left corner of corner of the corresponding square, then
r2Σr = L(r) − 2, because every such sample point is a lattice point (which gets
multiplied by 1 iff the point lies inside the unit circle) and the converse is true
except that the points (1, 0) and (0, 1) are not chosen as sample points. So

lim
r→∞

L(r)

r2
= lim
r→∞

L(r)− 2 + 2

r2
= lim
r→∞

Σr + 0 = π.

2.4. Introducing the Lattice Point Enumerator.

One may well wonder why we have bothered with the second proof of Theorem
2.1 since the first proof is more elementary and gives a sharper result. The answer
is that the second proof is amenable to a significant generalization. Indeed, consider
any bounded subset Ω ⊂ RN , and for r ∈ R>0 consider the r-dilate of Ω:

rΩ = {rP = (rx1, . . . , rxN ) | P = (x1, . . . , xn) ∈ Ω}.

We define the lattice point enumerator

LΩ(r) = #(rΩ ∩ ZN ),

which counts the number of standard lattice points lying in the rth dilate of Ω.
Now we wish to generalize Theorem 2.1 by showing that as r approaches ∞, LΩ(r)
is asymptotic to the (N -dimensional) volume of Ω times rN .

However, we certainly need some additional hypothesis on Ω for this to be true.
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Example: Let [0, 1]NQ be the set of all points (x1, . . . , xN with each xi a ratio-

nal number in [0, 1], and put Ω = [0, 1]N \ [0, 1]NQ . Then, for any r ∈ Z+, the

lattice points in rΩ are in bijection with the 1
r -lattice points in Ω, of which there

are none. On the other hand, for irrational r, LΩ(r) does grow like rN , so overall
it is not asymptotic to any constant times rN . The set Ω is Lebesgue measurable
with m(Ω) = 1, so evidently requiring Lebesgue measurability is not enough.

Looking at the second proof of Theorem 2.1 we can isolate the condition on Ω
that was used: the Riemann integrability of the characteristic function χD of
the region D. It is a basic fact that a bounded function on a bounded domain
is Riemann integrable if and only if it is continuous except on a set of measure
zero. The characteristic function χD is discontinuous precisely along the boundary
of D, so the necessary condition on D is that its boundary have measure zero. In
geometric measure theory, such regions are called Jordan measurable.

Jordan measurability is a relatively mild condition on a region: for instance any
region bounded by a piecewise smooth curve (a circle, ellipse, polygon. . .) is Jor-
dan measurable. In fact a large collection of regions with fractal boundaries are
Jordan measurable: for instance Theorem 2.3 applies with R a copy of the Koch
snowflake, whose boundary is a nowhere differentiable curve.

Note that we have defined Jordan measurability and not Jordan measure. It is
certainly possible to do so: roughly speaking, we define outer and inner Jordan
measure as with Lebesgue measure but by using finite unions of basic regions
(products of intervals), and then the most salient feature of the Jordan measurable
sets are that they form an algebra of sets but not a σ-algebra. It is not yet clear
to me whether it is our business to get into the finer points of Jordan measure, so I
have not included it here (or really learned it myself...). In particular every Jordan
measurable set is Lebesgue measurable, and we denote the Lebesuge measure of
Ω ⊂ RN simply as Vol Ω.

Theorem 2.3. Let Ω ⊂ RN be bounded and Jordan measurable. Then

lim
r→∞

LΩ(r)

rN
= Vol Ω.

Proof. This is a very direct generalization of the second proof of Theorem 2.1 given
in §1.3 above. Indeed, by scaling appropriately we may assume that Ω ⊂ (−1, 1)N ,

and then for any r ∈ Z+, LΩ(r)
rN

is precisely a Riemann sum for the characteristic

function 1Ω corresponding to the partition of [−1, 1]N into subsquares of side length
1
r , so the convergence of these sums to

∫
1Ω as r → ∞ is immediate from the

definition of Jordan measurability.3 �

Exercise: Show that a bounded, Jordan measurable set has positive volume iff it
has nonempty interior.

3One technical remark: when we say the limit exists as r →∞, we really mean that r is allowed
to take on all positive real number values. In order to divide [−1, 1]N exactly into subsquares of

side length 1
r

we clearly need r ∈ Z+. However, it should be rather clear that the argument can

be adapted to the case of arbitrary positive r at the cost of making it a little less clean.
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When Ω has nonempty interior – the case that we will be mostly interested in
in what follows – an equivalent statement of Theorem 2.3 is

(2) LΩ(r) ∼ (Vol Ω)rN

as r →∞. (When Vol Ω = 0, (2) asserts that for sufficiently large r, rΩ contains no
lattice points, which of course need not be true. I thank David Krumm for pointing
out that Theorem 2.3 should not be formulated this way when Vol Ω = 0, although
I didn’t immediately understand what he was getting at.)

2.5. Error Bounds on the Lattice Enumerator.

Suppose Ω ⊂ RN is a bounded Jordan measurable set of positive volume (equiva-
lently, nonempty interior). By a simple Riemann integration argument we showed
LΩ(r) ∼ (Vol Ω)rN as r → ∞. Again though, when Ω is the closed unit disk in
R2 Gauss’s classical argument did better than this: we got not only an asymptotic
formula for the lattice point enumerator but an explicit upper bound for the
error function

E(r) = |LΩ(r)− (Vol Ω)rN |.
So it is a natural problem – perhaps the fundamental problem in this area – to
give sharp bounds on E(r) for various Jordan measurable regions Ω.

A little reflection shows that what we want to say about the error will depend
quite a lot on what sort of set the boundary ∂Ω is. For instance, one has the
following generalization of Gauss’s argument.

Theorem 2.4. Suppose that Ω ⊂ RN is bounded, Jordan measurable with nonempty
interior and that ∂Ω is piecewise C1. Then

E(r) = O(rN−1).

I find Theorem 2.4 to be “geometrically obvious”, and there is even a published pa-
per of mine in which I simply assert it without any proof or reference. Nevertheless
it would be a nice exercise for someone to write down a careful argument.

Example 2.5. Let Ω = [−1, 1]2 ⊂ R2. Then for all r ∈ Z+, rΩ = [−r, r]2, and
this square consists of 2r + 1 rows of 2r + 1 lattice points, so

LΩ(r) = (2r + 1)2 = 4r2 + 4r + 1

and thus

EΩ(r) = 4r + 1.

That is, the error term actually is as large as a constant times rN−1 in this case.
The coefficient 4 of r2 is indeed the 2-dimensional volume of Ω = [−1, 1]2. The
coefficient 4 of r is in fact half the 1-dimensional volume of the boundary ∂Ω (in
this case the perimeter of the square, which is 8). The constant coefficient 1 is in
fact the Euler characteristic of Ω.

Exercise: Extend Example 2.5 to [−1, 1]N ⊂ RN .

Remark 2. In some sense [−1, 1]2 is the “worst placement” of the unit square: it
is positioned so as to pick up as many lattice points on the boundary as possible. If
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we were to rotate the square about the origin by some generic4 angle, we have a
right to expect a smaller error term.

To say more about the error term I now want to consider separately three different
cases.

2.6. When ∂Ω is smooth and positively curved.

The first person to make qualitative progress on Gauss’s bound E(r) = O(r) for
Ω the unit disk in R2 was W. Sierpinski, in a prize essay he submitted while an
undergraduate (!) student at the Univesity of Warsaw. He showed:

Theorem 2.6. (Sierpinski, 1906) Let Ω be the closed unit disk in R2. Then

EΩ(r) = O(r
2
3 ).

The next important result was a lower bound on the error.

Theorem 2.7. (Hardy, Landau 1916) Let Ω be the closed unit disk in R2. There

is no constant C such that EΩ(r) ≤ Cr 1
2 .

The standard conjecture is that the Hardy-Landau lower bound is essentially sharp.

Conjecture 2.8. (Gauss Circle Problem) Let Ω be the closed unit disk in R2.
Then for every ε > 0, there exists Cε > 0 (i.e., a “constant depending on ε”) such
that

EΩ(r) ≤ Cεr
1
2 +ε.

So far as I know, the best known upper bound is the following one.

Theorem 2.9. (Huxley [Hu00]) Let Ω be the closed unit disk in R2. Then

EΩ(r) = O(r
131
208 ) = O(r0.6298...).

Despite the fact that 131
208 is much closer to 2

3 than to 1
2 , in between Sierpinski and

Huxley come many other distinguished mathematicians. In other words, Conjec-
ture 2.8 is extremely difficult. In particular it is beyond the scope of our research
group to work on, and I mention it just for culture.

Because the disk is rotationally symmetric, it is reasonable to expect that its er-
ror function is especially small. But one wants to prove similar, if more modest,
upper bounds for regions Ω which have smooth, positively curved boundary, e.g.
ellipsoids. For this one has the following result.

Theorem 2.10. (van der Corput, Hlawka) Suppose that ∂Ω is sufficiently smooth
with everywhere positive Gaussian curvature. Then

EΩ(r) = O(rn(n−1
n+1 )).

Taking N = 2 in Theorem 2.10 gives an exponent of 2
3 and hence a generalization

of Theorem 2.6. The case N = 2 was established by van der Corput in his 1919
thesis. The higher dimensional case is due to Hlawka.

4Using this word probably reveals my loyalties to algebraic geometry rather than geometric
measure theory. Better would be: random.
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2.7. When ∂Ω is a fractal set.

Given that the science of counting lattice points in regions with very nice bound-
aries is probably too advanced for us to jump in midstream and make any kind of
meaningful contribution, it is tempting to switch to the other extreme: recall that
in Theorem 2.3 we are allowed to take any bounded, Jordan measurable set Ω, i.e.,
any bounded set whose boundary has Lebesgue measure zero. In particular, ∂Ω
can be a fractal set of some fractal dimension N − 1 < α < N . For instance, we
could count lattice points in dilates of the Koch snowflake.

It is natural to expect an upper bound on the error in terms of the fractal di-
mension of ∂Ω. This is attained in relatively recent work of L. Colzani.

Theorem 2.11. (Colzani [Col97]) Let Ω ⊂ RN be a bounded Jordan measurable
set with boundary of fractal dimension α. Then

EΩ(r) = O(rα).

Remark 3. a) We are being deliberately vague with the term “fractal dimension”,
since there are many different definitions of fractal dimension, morally the same
but differing in their technical details. Colzani proves the result for a specific notion
of fractal dimension adapted to his purpose, which seems reasonable. Whether the
result holds for, say, the Hausdorff dimension is unknown to me.
b ) If for Ω ⊂ RN , ∂Ω is piecewise C1 then it will have fractal dimension N − 1.
Thus Colzani’s Theorem should in particular recover Theorem 2.4, and this is worth
checking up on.

So far as I know, the question of a converse to Theorem 2.11 remains open.

Problem 1. For each N ∈ Z+ and α ∈ (N − 1, N), find a bounded Jordan mea-
surable subset Ω ⊂ RN such that EΩ(r) is not bounded by a constant times rα.

I haven’t seriously thought about Problem 1, so as far as I know it could be rather
simple to prove (or not, of course). It’s certainly worth a try.

2.8. When Ω is a polytope.

We will devote the next section to a study of this case.

3. The Ehrhart (Quasi-)Polynomial

3.1. Basic Terminology.

For a subset S ⊂ RN , the affine hull of S is the least affine linear subspace
containing S (that is, the intersection of all affine subspaces of RN containing S).
If S is convex, then the dimension of S is the dimension of the affine hull of S.
(This is a reasonable definition: any convex subset, viewed as a subspace of its
affine hull, has nonempty interior, and thus e.g. the Hausdorff dimension of S is
equal to the dimension of its affine hull.) We say that S is full dimensional if its
affine hull is RN .

A convex polytope in Euclidean space RN is the convex hull of a finite sub-
set of points. A convex polytope is integral if it is the convex hull of a finite
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subset of ZN and rational if it is the convex hull of a finite subset of QN .

Let L ∈ Z+ and d ∈ N. A function f : Z+ → C is a quasi-polynomial function
of period L and degree d if it can be expressed in the form

f(r) = cd(r)r
d + cd−1r

d−1 + . . .+ c1(r)r + c0(r)

for L-periodic functions c0, . . . , cd : Z+ → C with cd(r) not identically zero. Just
to be sure, we say ci : Z+ → C is L- periodic if x ≡ y (mod L) =⇒ ci(x) = ci(y).
Thus a quasi-polynomial function is a function which is given as a possibly different
polynomial on each residue class modulo L, and such that the largest degree of these
polynomials is equal to d. Note also that saying that a function has period L does
not preclude the possibility that it may also have period some proper divisor of L.
Finding the least period of a quasi-polynomial can be an interesting problem.

Theorem 3.1. (Ehrhart) Let Ω ⊂ RN be a polytope with nonempty interior.
a) If Ω is an integral polytope, there is a polynomial P (t) ∈ R[t] such that for all
r ∈ Z+, LΩ(r) = P (r).
b) If Ω is a rational polytope and L ∈ Z+ is a common denominator for the coor-
dinates of the vertices of Ω, then there is a quasi-polynomial f : Z+ → R of period
L and degree N such that f(r) = LΩ(r) for all r.

Exercise: Let Ω be an integral polytope with Ehrhart polynomial P (t) = cdt
d +

. . . + c1t + c0 of degree d. Show that for all 0 ≤ k ≤ d, d!ck ∈ Z. (Hint: this
has nothing to do with polytopes or geometry. In fact it holds for any polynomial
which take integer values at all positive integers.)

The polynomial in part a) is the Ehrhart polynomial and the quasi-polynomial
in part b) is the Ehrhart quasi-polynomial. Both are worthy objects of study.

Just to name one specific problem, it is interesting to look at how many distinct
polynomials comprise the Ehrhart quasi-polynomial: a priori we may get a differ-
ent polynomial function for each residue class modulo the least common multiple
of the denominators of the vertices of Ω. But it follows from Theorem 2.1 that
the leading coefficient of every quasi-polynomial is Vol Ω. Roughly speaking the
coefficient ck(r) of rk “depends more and more strongly on r” as k decreases.

Problem 2. Let Ω ⊂ RN be a rational polytope.
a) What is the period of the Ehrhart quasi-polynomial? Of each coefficient?
b) How many distinct polynomial functions comprise the Ehrhart quasi-polynomial?

These questions are interesting already for very simple polytopes. In [AC05], Gil
Alon and I looked at the case of the simplices ax+ by + cz = 1, x, y, z ≥ 0. (Note
that this is a 2-dimensional simplex – i.e., a triangle – living inside a hyperplane
in R3. Thus it is not a “full dimensional polytope” in R3 so does not literally fit
into the setup of Theorem 3.1, but the results adapt immediately to such things.)
We found that taking the coefficients a, b, c ∈ Z to be not pairwise coprime has
interesting effects on the Ehrhart coefficients.

4. Convex Sets, Star Bodies and Distance Functions

4.1. Centers and central symmetry.
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Let Ω ⊂ RN . A point C is a center for Ω if for all P ∈ Ω, the reflection of
P through C is also in Ω.

Exercise: A bounded subset of RN has at most one center.

Thus, by choosing coordinates appropriately we may assume that a bounded set
with a center has the origin as the center: we say that a subset Ω of RN is centrally
symmetric if the origin is a center, or in other words if P ∈ Ω =⇒ −P ∈ Ω.

4.2. Convex Subsets of Euclidean Space.

A subset S of RN is convex if x, y ∈ S =⇒ λx+ (1− λ)y ∈ S for all 0 ≤ λ ≤ 1.

Exercise: Is the empty set convex?

Exercise:
a) Show: if {Si}i∈I is any family of convex subsets of RN , then

⋂
i∈I Si is convex.

b) Show that the union of two convex subsets of RN need not be convex.
c) Let S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . ⊂ RN all be convex. Show

⋃∞
n=1 Sn is convex.

Exercise: Show that a nonempty convex set is connected and simply connected.

Exercise: Let S1 ⊂ RM and S2 ⊂ RN be two convex sets. Show that the Cartesian
product S1 × S2 ⊂ RM+N is convex.

Exercise: Let S be any subset of RN . Define ConvS to be the intersection of
all convex subsets Ω of RN which contain S. Show that ConvS is the unique min-
imal convex subset containing S. It is often called the convex hull of S.

Exercise: A set S ⊂ RN has the midpoint property if for all x, y ∈ S, x+y
2 ∈ S.

a) Show that every convex set has the midpoint property.
b) Give an example of a non-convex subset of RN with the midpoint property.
c) Dis/prove: an open subset S ⊂ RN with the midpoint property must be convex.
d) Dis/prove: a closed subset S ⊂ RN with the midpoint property must be convex.

If x1, . . . , xm is a finite set of vectors in RN , a convex combination of these
vectors is a linear combination

λ1x1 + . . .+ λmxm

with λi ∈ R and satisfying the additional conditions

λ1, . . . , λm ≥ 0, λ1 + . . .+ λm = 1.

More generally, if S is any subset of RN , then a convex combination of elements of
S is a convex combination of some finite subset of S.

Proposition 4.1. A subset S of RN is convex iff every convex combination of
vectors in S is again a vector in S.

Exercise: Prove Proposition 4.1.
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Proposition 4.2. Let S be a subset of RN . Then the set of all convex combinations
of elements of S is ConvS, the convex hull of S.

Exercise: Prove Proposition 4.2.

For a subset Ω ⊂ RN , we denote by ∂Ω the boundary of Ω, i.e., the closure of
Ω intersected with the closure of RN \ Ω.

Proposition 4.3. Let K be a convex subset of RN .
a) We have K◦ = (K)◦. (In particular an open convex set is regular-open.)
b) We have K = K◦. (In particular a closed convex set is regular-closed.)

Proof. . . . �

Proposition 4.4. Let K be a convex subset of RN , and let S be a set with K◦ ⊂
S ⊂ K. Then S is convex. In particular K◦ and K are convex.

Proof. . . . �

To consolidate the preceding two results: a convex set need not be open or closed,
but every convex set is obtained by starting with an open convex set and adding
in an (arbitrary) subset of its boundary and also by starting with an closed convex
set C and removing an (arbitrary) subset of its boundary. Thus it is natural to
restrict attention to convex sets which are either open or closed. Moreover, there
is a duality between open and closed convex sets: no information is lost in pass-
ing from a closed convex set to its interior or from an open convex subset to its
closure. (This is useful for instance when comparing various people’s definitions of
“convex body”: some require it to be open and some to be closed, but it certainly
doesn’t matter.) The use of the term “duality” for this simple observation may
seem pretentious, but when we discuss the Ehrhart polynomial of integral polytope
the justification will become clear!

Every convex subset of RN is Lebesgue measurable. This plausible (and true!)
result will be taken for granted for now. Later on we will discuss a significantly
stronger result: every bounded convex subset of RN is Jordan measurable. As
is typical in this subject, we denote the N -dimensional Lebesgue measure of Ω by
Vol Ω. (Note: “Ω is Lebesgue measurable” allows the possibility that Vol Ω =∞!)

Theorem 4.5. Let Ω ⊂ RN be convex.
a) The following are equivalent:
(i) Ω is “flat”: i.e., Ω is contained in some hyperplane in RN .
(ii) Vol Ω = 0.
(iii) Ω has empty interior.
b) If 0 < Vol Ω <∞, then Ω is bounded.

Proof. a) (i) =⇒ (ii) =⇒ (iii) is immediate for all subsets Ω of RN .
(iii) =⇒ (i): we show the contrapositive. Suppose that Ω does not lie in any
hyperplane in RN . Then there are x1, . . . , xN+1 ∈ Ω not lying in any hyperplane.
Their convex hull is an N -dimensional simplex, which has nonempty interior.
b) By part a), since Vol Ω > 0, Ω has nonempty interior. Thus by translating Ω we
may assume that 0 is an interior point of Ω and thus that there exists ε > 0 such
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that for all 1 ≤ i ≤ N , εei ∈ Ω. We claim that for any x ∈ Ω,

||x||∞ = max
1≤i≤N

|xi| ≤
(N !) Vol Ω

εN−1
,

which certainly suffices to show that Ω is bounded.
proof of claim Indeed, if xi 6= 0, then the simplex with vertices 0, x, {εej}j 6=i is

contained in Ω, and this simplex has volume εN−1|xi|
N ! ≤ Vol Ω. �

4.3. Star Bodies.

Let Ω ⊂ RN be a subset. A point P ∈ Ω is a star point if for all P ′ ∈ Ω
the entire line segment PP ′ = {(1− λ)P + λP ′ | 0 ≤ λ ≤ 1} is contained in Ω. A
subset Ω is a star set if it contains at least one star point.

Exercise: Show that Ω ⊂ RN is convex iff every point of Ω is a star point.

Exercise: Let Ω1, Ω2 be star sets.
a) Show that Ω1 ∩ Ω2 need not be a star set.
b) If your example for part a) was one in which Ω1 ∩ Ω2 = ∅, congratulations on
your rigor and sense of economy. Now find another example in which the intersec-
tion is nonempty.
c) Let {Ωi}i∈I be a family of subsets of RN . Suppose that P ∈ RN is a star point
of Ωi for all i. Show that P is a star point of

⋂
i∈I Ωi.

A central ray in RN is a subset of the form R≥0 · P for some P 6= 0.

A star body is a subset Ω ⊂ RN satisfying all of the following:
(SB1) 0 is a star point of Ω.
(SB2) 0 lies in the interior of Ω.
(SB3) Every central ray intersects ∂Ω in at most one point.

A convex body is a convex set which is a star body.
Now in fact a convex set is a convex body iff it has zero as an interior point,

i.e., this, together with convexity, implies (SB1) (obviously) and (SB3) (not so ob-
viously). In order to get a quick, tidy proof of the latter implication, we will treat
it as part of our discussion on “distance functions”, coming up next.

4.4. Distance Functions.

Consider the following properties of a function f : RN → R≥0:
(DF0) f is continuous.
(DF1) f(x) = 0 ⇐⇒ x = 0.
(DF1′) f(0) = 0.
(DF2) For all λ ∈ R+ and all x ∈ RN , f(λx) = λf(x).
(DF3) For all x, y ∈ RN , f(x+ y) ≤ f(x) + f(y).
(DF4) For all x ∈ RN , f(−x) = f(x).

A function satisfying (DF0), (DF1) and (DF2) is a distance function. A function
satisfying (DF0), (DF1), (DF2) and (DF3) is a convex distance function. A
function satisfying (DF4) is even. Finally, if in any of the above we replace (DF1)
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with the weaker (DF1′) we speak of pseudo-distance functions.

Example (Lp norms on RN ): . . .

Theorem 4.6. a) Let f : RN → R be a pseudo-distance function, and put

Ωf = f−1([0, 1)).

Then Ωf is an open star body with boundary f−1(1) and exterior f−1((1,∞)).
b) Let Ω be a star body. We define fΩ : RN → [0,∞) as follows: fΩ(0) = 0; for all
x ∈ ∂Ω, fΩ(x) = 1; for all λ ∈ (0,∞) and x ∈ RN , fΩ(λx) = λf(x). Then fΩ is a
pseudo-distance function.
c) We have fΩf

= f and ΩfΩ
= Ω◦. In particular there is a bijective correspondence

between pseudo-distance functions and open star bodies.
d) A pseudo-distance function is a distance function iff its corresponding star body
is bounded.
e) If Ω is a convex set with 0 ∈ Ω◦, then defining fΩ as in part b) we get a convex
pseudo-distance function. Conversely, the star body corresponding to any convex
pseudo-distance function is convex.
f) A pseudo-distance function is even iff its corresponding star body is centrally
symmetric.

Proof. Mr. Brian A. Bonsignore gave a lecture on this material, using [C, pp. 103-
111] as a source. This writeup closely follows his lecture notes.
a) Ωf is open: by (DF0), f is continuous; and Ωf = f−1([0, 1)) = f−1((−1, 1)).
0 is a star point of Ωf : by (DF1′), f(0) = 0, so 0 ∈ Ωf . If x ∈ Ωf , then f(x) < 1,
and so f(λx) = λf(x) < 1 for all λ ∈ [0, 1]. Thus λx ∈ Ωf for all λ ∈ [0, 1].
∂Ωf = f−1(1): if f(x) = 1, then for λ ∈ [0,∞), f(λx) = λf(x) = λ. Thus λx ∈ Ωf
when λ < 1 and λx /∈ Ωf when λ > 1. So every neighborhood of x meets Ωf and
RN \ Ωf , so x ∈ ∂Ωf . Conversely, if f(x) < 1, let δ be such that f(x) < δ < 1.

Then x ∈ f (−1)((−1, δ)) ⊂ Ωf , so x ∈ Ω◦f . The f(x) > 1 case is similar.

That the exterior of Ωf is f−1((1,∞)) follows immediately.
b) (DF1′): Since λ0 = 0 ∈ Ω for all λ ∈ [0,∞), fΛ(0) = 0.
(DF2): Let x ∈ RN . If λx ∈ Ω for all λ ∈ [0,∞), then fΩ(λx) = 0 = λf(x) for
all λ ≥ 0. On the other hand, if λx ∈ ∂Ω for some λ > 0, then fΩ(x) = 1

λ and
fΩ(λx) = 1, so

fΩ(λx) = 1 = λ · 1

λ
= λf(x).

(DF0): First we show that fΩ is continuous at 00. Fix ε > 0. Since Ω is open, there

is δ > 0 such that B(0, δ) ⊂ Ω. If |x| ≤ δε, then δ
|x|x ∈ B(0, δ) ⊂ Ω, and thus

fΩ(x) ≤
(
δ

|x|

)−1

=
|x|
δ
≤ δε

δ
= ε.

Next let x ∈ RN \ {0} and again fix ε > 0. Since 1
fΩ(x)+ε <

1
fΩ(x) ,

x′ =
1

fΩ(x) + ε
x ∈ Ω.

Since Ω is open, there is η > 0 such that B(x′, η) ⊂ Ω). Let B = (fΩ(x)+ε)B(x′, η),
an open neighborhood of x. If y ∈ B, then y = (fΩ(x)+ε)y′ for some y′ ∈ B(x′, η) ⊂
Ω, and thus

(3) fΩ(y) = fΩ((fΩ(x)− ε)y′) = (fΩ + ε)fΩ(y′) < fΩ(x) + ε.
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If fΩ(x) ≤ ε, then fΩ(y) ≥ 0 ≥ fΩ(x)−ε and thus |fΩ(y)−fΩ(x)| < ε. If fΩ(x) > ε,
then consider

x′′ =
1

fΩ(x)− ε
x ∈ RN \ Ω.

Since RN \ Ω is open, there is η′ > 0 such that B(x′′, η′) ⊂ RN \ Ω. Let B′′ =
(fΩ(x) − ε)B(x′′, η′), an open neighborhood of x. Then for y′′ ∈ B(x′′, η′) and
y = (fΩ(x)− ε)y′′ ∈ B′′, we have

(4) fΩ(y) = (fΩ(x)− ε)fΩ(y′′) > fΩ(x)− ε.

Thus, for y ∈ B′ ∩B′′, fΩ(x)− ε < fΩ(y) < fΩ(x) + ε by (3) and (4).
c) First: if f : RN → [0,∞) is a pseudo-distance function, we must show that
fΩf

= f . We have

fΩf
(0) = 0 = f(0).

Suppose x ∈ RN is such that f(x) = 0. Then λx ∈ Ωf for all λ ∈ [0,∞), so by
definition of fΩf

, we have fΩf
(x) = 0 = f(x). Otherwise, f(x) = c > 0, and then

f(
x

c
) =

1

c
f(x) = 1,

so x
c ∈ f

−1(1) = ∂Ωf . Since c−1 is the unique number such that c−1x ∈ ∂Ωf , we

have fΩf
(x) = (c−1)−1 = c = f(x). Thus fΩf

= f .
Next: if Ω is an open star body, we must show Ω = ΩfΩ . By definition, ΩfΩ =

f−1
Ω ([0, 1]). If λx ∈ Ω for all λ ∈ [0,∞) then fΩ(x) = 0 and x ∈ ΩfΩ

. If x ∈ Ω and
cx ∈ ∂Ω for some c > 0, then c > 1 and thus fΩ(x) = 1

c < 1, so x ∈ ΩfΩ
. This

shows Ω ⊂ ΩfΩ .
Conversely, suppose x ∈ ΩfΩ . Then fΩ(x) = 0 or 0 < fΩ(x) < 1. If fΩ(x) = 0,

then x ∈ Ω. If 0 < fΩ(x) < 1, then 1
fΩ(x) is greater than 1 and is the unique number

λ such that 1
λx ∈ ∂Ω. Thus x = fΩ(x) x

fΩ(x) ∈ Ω. This shows that ΩfΩ
⊂ Ω and

thus overall that Ω = ΩfΩ
.

d) . . .
e) . . .
f) . . . �

4.5. Jordan measurability.

Theorem 4.7. Every bounded convex set is Jordan measurable.

Proof. . . . �

Exercise: a) Exhibit a bounded star body which is not Jordan measurable.
b) Exhibit a bounded star set which is not Lebesgue measurable.

5. Minkowski’s Convex Body Theorem

5.1. Statement of Minkowski’s First Theorem.

Theorem 5.1. Let Ω ⊂ RN be a convex body with Vol Ω > 2N . Then Ω∩ZN ) {0}.

Corollary 5.2. Let Ω ⊂ RN be a compact convex body with Vol Ω = 2N . Then
#(Ω ∩ ZN ) > 1.
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Proof. Let ε > 0, and put Kε = (1 + ε)Ω. Then for all ε > 0, Theorem 5.1a) applies
to Kε, which therefore admits a nonzero lattice point. On the other hand, since
Kε is bounded, its intersection with ZN is finite; moreover, as ε decreases the set
Kε∩ZN either stays the same or decreases. It follows that there exists 0 6= P ∈ ZN
such that P ∈ Kε for all ε > 0, so P lies in

⋂
ε>0Kε = Ω. �

Exercise: Does Corollary 5.2 remain valid when “compact” is weakened to “closed”?

5.2. Mordell’s Proof of Minkowski’s First Theorem.

Our first proof of Theorem 5.1 follows L.J. Mordell [Mo35].

Step 0: Via the rescaling Ω 7→ 1
2Ω, an equivalent statement is:

If a convex body Ω ⊂ RN has volume greater than one, it contains a nonzero
point P such that 2P ∈ ZN .

So let Ω ⊂ RN be a convex body with Vol Ω > 1.

Step 1: If P,Q ∈ Ω, then by central symmetry −Q ∈ Ω, and then by convesx-
ity 1

2P + 1
2 (−Q) = 1

2P −
1
2Q ∈ Ω.

Step 2: For r ∈ Z+, put

L(r) = #(rΩ ∩ ZN ) = #(Ω ∩ 1

r
ZN ).

By Theorem 4.7, Ω is Jordan measurable, so Theorem 2.3 applies to show that

lim
r→∞

L(r)

rN
= Vol Ω.

Therefore, for sufficiently large r we must have L(r) > rN = #(Z/rZ)N . By the
Pigeonhole Principle there exist distinct P = (x1, . . . , xn), Q = (y1, . . . , yn) ∈ ZN
such that xi ≡ yi (mod r) for all 1 ≤ i ≤ n and 1

rP,
1
rQ ∈ Ω. By Step 1,

R =
1

2

(
1

r
P

)
− 1

2

(
1

r
Q

)
=

1

2

(
x1 − y1

r
, . . . ,

xn − yn
r

)
∈ Ω ∩ 1

2
(ZN \ {0}).

5.3. Statement of Blichfeldt’s Lemma.

Let us call a bounded subset Ω ⊂ RN packable if its translates by lattice points
x ∈ ZN are pairwise disjoint: i.e., for all x 6= y ∈ ZN , (x+ Ω) ∩ (y + Ω) = ∅.

Exercise: Show Ω is not packable iff there exist x, y ∈ Ω such that x−y ∈ ZN \{0}.

Theorem 5.3. (Blichfeldt) If Ω ⊂ RN is measurable and packable, then Vol Ω ≤ 1.

Note that in Theorem 5.3 we said “measurable”, not “Jordan measurable”. In fact
– unlike most of the other results we have seen so far – the result holds for Lebesgue
measurable sets. We will actually give two proofs, one using properties of Lebesgue
measure, and another more elementary proof assuming that Ω is Jordan measurable
and using properties of the Riemann integral.
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5.4. Blichfeldt’s Lemma Implies Minkowski’s First Theorem.

But first let us demonstrate the following.

Proposition 5.4. Blichfeldt’s Lemma implies Minkowski’s First Theorem.

Proof. As above, we may assume Vol Ω > 1 and show Ω∩( 1
2Z\{0}) 6= ∅. Applying

Theorem 5.3 to Ω, there exist distinct x, y ∈ Ω such that P = x− y ∈ ZN . Also as
above, y ∈ Ω =⇒ −y ∈ Ω and thus 1

2x+ 1
2 (−y) = 1

2P ∈ Ω ∩ ( 1
2Z

N \ {0}). �

5.5. First Proof of Blichfeldt’s Lemma: Riemann Integration.

We will prove the contrapositive: supppose Ω is packable, i.e., that the translates
{x+ Ω | x ∈ ZN} are pairwise disjoint. Let d be a positive real number such that
every point of Ω lies at a distance at most d from the origin (the boundedness of Ω
is equivalent to d <∞).

Let Br(0) be the closed ball of radius r centered at the origin. It has volume
c(N)rN where c(N) depends only on N . By Theorem 2.3 we know that the number
of lattice points inside Br(0) is asymptotic to c(N)rN . Therefore the number of
lattice points inside Br−d(0) is asymptotic, as r →∞, to c(N)(r− d)N ∼ c(N)rN .
Therefore for any fixed ε > 0, there exists R such that r ≥ R implies that the
number of lattice points inside Br−d(0) is at least (1− ε)c(N)rN .

Now note that if x ∈ ZN is such that ||x|| ≤ r − d, then the triangle inequality
gives x + Ω ⊂ B0(r). Then, if Ω is packable, then we have at least (1 − ε)c(N)rN

pairwise disjoint translates of Ω contained inside B0(r). Therefore we have

c(N)rN = Vol(Br(0)) ≥ Vol(P (Ω) ∩Br(0)) ≥ (1− ε)c(N)rN Vol(Ω),

and therefore

Vol(Ω) ≤ 1

1− ε
.

Since this holds for all ε > 0, we conclude Vol(Ω) ≤ 1.

5.6. Second Proof of Blichfeldt’s Lemma: Lebesgue Integration.

Let m denote Lebesgue measure on RN . Suppose Ω ⊂ RN is Lesbesgue mea-
surable and packable: that is the sets {Ω− x}x∈ZN are pairwise disjoint. For each
x = (x1, . . . , xn) ∈ ZN , put

[x, x+ 1) = [x1, x1 + 1)× . . .× [xn, xn + 1)

and

Ωx = Ω ∩ [x, x+ 1),

so

Ω =
∐
x∈ZN

Ωx

and thus

m(Ω) =
∑
x∈ZN

m(Ωx).

Since Ω is packable, the family {Ωx − x} is pairwise disjoint, so

m(
∐
x∈ZN

Ωx − x) =
∑
x∈ZN

m(Ωx − x)
∗
=
∑
x∈ZN

m(Ωx) = m(Ω);
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in the starred equality we have used the translation invariance of m. On the other
hand, each Ωx − x is contained in [0, 1)N , so

m(Ω) = m(
∐
x∈ZN

Ωx − x) ≤ m([0, 1)N ) = 1.

5.7. A Strengthened Minkowski’s First Theorem.

Let Λ ⊂ RN be any full lattice. It is a simple matter to formulate a version of
Minkowski’s First Theorem with the standard integer lattice ZN replaced by Λ.

Consider a linear automorphism M : RN → RN , which we may identify with
its defining matrix M ∈ GLN (R) (i.e., M = (mij) is an N × N real matrix with
nonzero determinant).

Lemma 5.5. Let Ω be a subset of RN and M : RN → RN be an invertible linear
map. Consider the image

M(Ω) = {M(x1, . . . , xn)t | (x1, . . . , xn) ∈ Ω}.

a) Ω is nonempty ⇐⇒ M(Ω) is nonempty.
b) Ω is bounded ⇐⇒ M(Ω) is bounded.
c) Ω is convex ⇐⇒ M(Ω) is convex.
d) Ω is centrally symmetric ⇐⇒ M(Ω) is centrally symmetric.
e) Ω is Jordan measurable ⇐⇒ M(Ω) is Jordan measurable, and if so,

Vol(M(Ω)) = |det(M)|Vol(Ω).

Exercise: Prove Lemma 5.5.

Corollary 5.6. If Ω ⊂ RN is a convex body and M : RN → RN is an invertible
linear map, then M(Ω) is a convex body, and Vol(M(Ω)) = |det(M)|Vol(Ω).

Recall that the lattice points inside rΩ are precisely the 1
r -lattice points inside Ω.

This generalizes to arbitrary transformations as follows: for M ∈ GLN (R), put

Λ := MZN = {M(x1, . . . , xN )t | (x1, . . . , xN ) ∈ ZN .

The map Λ : ZN → MZN is an isomorphism of groups, so MZN is, abstractly,
simply another copy of ZN . However, it is embedded inside RN differently. A nice
geometric way to look at it is that ZN is the vertex set of a tiling of RN by unit
(hyper)cubes, whereas Λ is the vertex set of a tiling of RN by (hyper)parallelopipeds.
A single parallelopiped is called a fundamental domain for Λ, and the volume of
a fundamental domain is given by |det(M)|. We sometimes refer to the volume of
the fundamental domain as the covolume of Λ and write

Covol(Λ) = |det(M)|.

Now the fundamental fact – a sort of “figure-ground” observation – is the following:

Proposition 5.7. Let Ω ⊂ RN and let M : RN → RN be an invertible linear map.
Then M induces a bijection between M−1(ZN ) ∩ Ω and ZN ∩M(Ω).

Exercise: Prove Proposition 5.7.
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Applying this (with M−1 in place of M) gives the following: if we have a lat-
tice Λ = MZN , and a convex body Ω, the number of points of Λ ∩ Ω is the same
as the number of points of ZN ∩M−1(Ω). Since

Vol(M−1(Ω)) = |det(M−1)|Vol(Ω) =
Vol(Ω)

det(M)
=

Vol(Ω)

Covol(ΛM )
,

we immediately deduce a more general version of Minkowski’s theorem.

Theorem 5.8. (Minkowski’s First Theorem, Mark II) Let Ω ⊂ RN be a convex
body. Let M : RN → RN be an invertible linear map, and put ΛM = M(ZN ).
Suppose that

Vol(Ω) > 2N Covol(ΛM ) = 2N |det(M)|.
Then there exists x ∈ Ω ∩ (ΛM \ (0, . . . , 0)).

5.8. Some Refinements.

Proposition 5.9. (Measure Theoretic Pigeonhole Principle) Let (X,A, µ) be a
measure space, {Si}i∈I be a countable family of measurable subsets of X, and m ∈
N. If

(5)
∑
i∈I

µ(Si) > mµ(
⋃
i∈I

Si),

then there is x ∈ X with #{i ∈ I | x ∈ Si} > m.

Proof. By replacing X with
⋃
i∈I Si we may assume that

⋃
i∈I Si = X. Further, it

is no loss of generality to assume that µ(X) > 0 and that no x ∈ X lies in infinitely
many of the sets Si: indeed, in the former case the hypothesis does not hold and
in the latter case the conclusion holds.

For a subset S ⊂ X, denote by 1S the associated characteristic function: 1S(x) =
1 if x ∈ S, and otherwise 1S(x) = 0. Put

f =
∑
i∈I

1Si .

For any x ∈ X, f(x) = #{i ∈ I | x ∈ Si}, so f : X → R is a measurable function.
The condition (5) can be reexpressed as∫

X

fdµ > m

∫
X

dµ,

so we must have #{i ∈ I | x ∈ Si} = f(x) > m for at least one x ∈ X. �

Theorem 5.10. (First Generalized Blichfeldt Lemma) Let Ω ⊂ RN be a measurable
subset, let Λ be a full lattice in RN , and let m ∈ Z+. Suppose Vol Ω > mCovol(Λ).
Then there exist distinct w1, . . . , wm+1 ∈ Ω such that for all 1 ≤ i, j ≤ m + 1,
wi − wj ∈ Λ.

Proof. For x = (x1, . . . , xn) ∈ Λ, put

[x, x+ 1) = [x1, x1 + 1)× . . .× [xn, xn + 1)

and
Ωx = Ω ∩ [x, x+ 1).

Then Ω =
∐
x∈Λ Ωx, so

(6)
∑
x∈Λ

m(Ωx − x) =
∑
x∈Λ

m(Ωx) = m(Ω) > mCovol(Λ).
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Then F = [0, 0 + 1) is a fundamental domain for Λ, so m(F) = Covol Λ. For all
x ∈ Λ, Ωx − x ⊂ F , so taking X = F , I = Λ, Si = Ωi − i, by (6) the hypotheses of
the Measure Theoretic Pigeonhole Principle are satisfied and thus there is v ∈ F
and x1, . . . , xm+1 ∈ Λ such that

v ∈
m+1⋂
i=1

Ωxi
− xi.

Thus for 1 ≤ i ≤ m+ 1 there is wi ∈ Ωxi – so w1, . . . , wm+1 are distinct – such that

∀1 ≤ i ≤ m+ 1, wi − xi = v.

It follows that for all 1 ≤ i, j ≤ m+1, wi−wj = (xi+v)−(xj+v) = xi−xj ∈ Λ. �

Exercise: Let Λ ⊂ RN be a subgroup, Ω ⊂ RN a subset and m ∈ N.
a) Show that the following are equivalent:
(i) There is w ∈ Ω such that #((Ω− w) ∩ Λ) ≥ m+ 1.
(ii) There is v ∈ RN such that #((Ω− v) ∩ Λ) ≥ m+ 1.
(iii) There are w1, . . . , wm ∈ Ω such that for all 1 ≤ i, j ≤ m, wi − wj ∈ Λ.

(iv) There are x1, . . . , xm+1 ∈ Λ such that
⋂m+1
i=1 Ω + xi 6= ∅.

When these equivalent conditions hold, we say Ω is m-packable for Λ.
b) Show that Ω is 0-packable for Λ iff Ω 6= ∅.
c) Show that if Λ = ZN , then Ω is 1-packable for Λ iff Ω is packable.

Exercise: Let Λ ⊂ RN be a subgroup, Ω ⊂ RN , and m ∈ Z+. We say Ω is essen-
tially m-packable for Λ if for any distinct x1, . . . , xm+1 ∈ Λ, m(

⋂m+1
i=1 Ω+xi) = 0.

a) Show that if a subset Ω ⊂ RN ism-packable for Λ then it is essentiallym-packable
for Λ. Give an example to show that the converse does not hold.
b) Observe that an equivalent reformulation of Theorem 5.10 is: if a measurable
subset Ω ⊂ RN is m-packable for a lattice Λ ⊂ RN , then m(Ω) ≥ mCovol Λ.
c) Prove the following result – which is, in view of part b), a mild strengthening
of Theorem 5.10 – if Ω ⊂ RN is essentially m-packable for a lattice Λ ⊂ RN , then
m(Ω) ≥ mCovol Λ.

Exercise: a) Show that in under the hypotheses of the Measure Theoretic Pigeon-
hole Princple one can extract a stronger conclusion: there is a subset J ⊂ I with
#J = m+ 1 such that µ(

⋂
i∈J Si) > 0.

b) Observe that an equivalent reformulation of Theorem 5.10 is: suppose Ω ⊂ RN
is Lebesgue measurable, Λ ⊂ RN is a lattice, and m ∈ Z+ are such that m(Ω) >
mCovol Λ. Then there is w ∈ Ω such that Ω− w contains at least m+ 1 points of
Λ.
c) Prove the following result – which is, in view of part b), a mild strengthening of
Theorem 5.10 – suppose Ω ⊂ RN is Lebesgue measurable, Λ ⊂ RN is a lattice, and
m ∈ Z+ are such that m(Ω) > mCovol Λ. Show that {w ∈ Ω | #((Ω − w) ∩ Λ) ≥
m+ 1} has positive Lebesgue measure.

Theorem 5.11. (van der Corput) Let Ω ⊂ RN be a nonempty centrally symmetric
convex subset.
a) Then #(Ω ∩ ZN ) ≥ 2(dVol(Ω)

2N e − 1) + 1.

b) If Ω is closed and bounded, then #(Ω ∩ ZN ) ≥ 2(bVol(Ω)
2N c) + 1.
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Exercise: Prove Theorems 5.10 and 5.11. (Hint/challenge: all of the proofs we have
given so far should generalize to this context.)

5.9. Pick’s Theorem via Minkowski’s Theorem.

A convex polygon P ⊂ R2 is a lattice polygon if all of its vertices are points
of the standard integral lattice Z2. The following 1899 result of G.A. Pick is a true
classic: of all the theorems that I should have been taught but wasn’t as a student
(high school, college,. . .), perhaps this one is at the very top of the list.

Theorem 5.12. (Pick’s Theorem) Let P ⊂ R2 be a lattice polygon. Let I be the
number of lattice points on the interior P ◦ of P and let B be the number of lattice
points on the boundary ∂P of P . Then the area of P is

Area(P ) = I +
B

2
− 1.

There are many proofs of Pick’s Theorem, including some which are accessible to
high school students. Here we follow a recent paper of Murty and Thain [MuTh07]
which deduces Pick’s Theorem from Minkowski’s Convex Body Theorem.

Proof. Step 0: Define a elementary triangle to be a lattice triangle with no
interior lattice points. Pick’s Theorem applied to an elementary triangle is precisely
the assertion that the area of any elementary triangle is 1

2 . Our strategy is as follows:
first we will prove Pick’s Theorem for elementary triangles and then we will deduce
the general case of Pick’s Theorem from this by an induction / dissection argument.
Step 1: We claim that the area of any elementary triangle is at least 1

2 . Indeed,
the area of triangle ABC is equal to half the area of the parallelogram with sides
AB, BC and thus half the magnitude of the cross product (A−B)× (C−B). But
the cross product of A − B and C − B is a nonzero lattice vector, so its length is
at least 1, and thus the area of ABC is at least 1

2 .

Step 2: We claim the area of any elementary triangle T1 is at most 1
2 . Let the

vertices of the triangle T1 be ABC. Each of the following linear transformations
sends lattice points to lattice points: 180◦ rotation about a lattice point, and
translation by a lattice point. Thus the image of any elementary triangle under
any composition of such transformations is again an elementary triangle. Consider
the triangle T2 obtained by reflecting T1 through the line AB. Then T2 can also
be obtained by rotating 180◦ around vertex B and translating by the lattice point
A−C, so it is an elementary triangle. Similarly, we may attach elementary triangles
T2, T3, T4 by reflecting across the other two sides of the triangle. This resulting
union of four elementary triangles is again an elementary triangle, say P1. Finally,
consider P2, the elementary triangle obtained by rotating P1 180◦ about P1, and
consider Ω = P1 ∪ P2. Then Ω◦ is a convex body which is symmetric around the
lattice point B has no nonzero lattice points, and has area 8 Area(T1). If Area(T1) >
1
2 then Area(Ω◦) > 4, contradicting Minkowski’s Convex Body Theorem.
Step 3: We may triangulate P , i.e., by drawing straight lines connecting some of
the vertices, we express P as a finite union of lattice triangles T1∪Tn, such that for
all i 6= j, Ti and Tj are either disjoint or share precisely one common side. And we
may go further: for each interior lattice point P of a triangle Ti = ABC we may
draw line segments AP , BP , CP , which subdivides Ti into three lattice triangles
and decreases the total number of interior lattice points by one. Applying this
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procedure finitely many times we arrive at a triangulation of P into finitely many
elementary triangles, i.e., lattice triangles possessing no interior lattice points.

We now claim that for all n ∈ Z+, every convex lattice polygon which is a union
of n elementary triangles satisfies Pick’s Theorem. We prove this by induction on n:
the base case – i.e., 1 elementary triangle – has been shown in Steps 1 and 2 above.
Now suppose that Pick’s Theorem holds for all convex lattice polygons which are a
union of n elementary triangles, and let Pn+1 be a convex lattice polygon which is
a union of n+ 1 elementary triangles. Take one of the exterior elementary triangles
T and write Pn+1 = Pn∪T . Let In and Bn be the number of interior and boundary
lattice points for Pn, and let In+1, Bn+1 be these same quantities for Pn+1. Then
we have In+1 = In, Bn+1 = Bn + 1 and Area(Pn+1) = Area(Pn) + 1

2 , so

Area(Pn+1) = Area(Pn) +
1

2
= In +

Bn
2
− 1 +

1

2
= In+1 +

Bn+1

2
− 1. �

Exercise: Show there are infinitely many noncongruent elementary triangles.

Exercise: Draw nice pictures for the argument in Step 2 of the proof of Theo-
rem 5.12. (In [MuTh07] they draw only a single diagram, and their basic triangle
ABC appears to be an isosceles right triangle: the result is trivial in this case!)

Exercise: a) Show that the hypothesis of convexity of the lattice polygon P can
be relaxed to simplicity: i.e., plane regions whose boundary consists of a single
simple polygonal curve.
b) An example of a polygonal region to which Pick’s Theorem does not apply is
[0, 3] × [0, 3] \ (1, 2) × (1, 2), i.e., a “square torus”. Formulate a more general ver-
sion of Pick’s Theorem which applies to such regions. (Suggestion: replace the “1”
which occurs in Pick’s Theorem with the Euler characteristic of P .)

6. Minkowski’s Theorem on Successive Minima

Let Ω ⊂ RN be a convex body. Define the Minkowski minimum λ1 = λ1(Ω)
to be the infimum over all positive real numbers λ such that dimR〈(λΩ)∩ZN 〉R ≥ 1.

Equivalently but more simply, λ1 is the smallest dilate of Ω which contains a
nonzero lattice point. Since Vol(λΩ) = λN Vol Ω, by Minkowski’s First Theorem
we certainly have a nontrivial lattice point when λ > 2

(Vol Ω)
1
n

, and thus

(7) λ1(Ω) ≤ 2

(Vol Ω)
1
n

.

Exercise: a) Show that Minkowski’s First Theorem is equivalent to (7).
b) State a version of (7) with an arbitrary lattice Λ in place of ZN .

The point of this somewhat unlikely looking restatement of Minkowski’s First The-
orem is the following generalization. For 1 ≤ i ≤ n, we define the ith successive
minimum λi = λi(Ω) as

λi = inf{λ ∈ R | dimR〈(λΩ) ∩ ZN 〉R ≥ i.



34 PETE L. CLARK

That is, λi is the least dilate of Ω needed to attain not just a nonzero lattice point
but i R-linearly independent lattice points. Clearly we have

λ1 ≤ λ2 ≤ . . . ≤ λn.

Moreover we may replace ZN by a lattice Λ in RN and define successive minima

λ1(Ω,Λ) ≤ λ2(Ω,Λ) ≤ . . . ≤ λn(Ω,Λ).

Theorem 6.1. (Minkowski’s Second Theorem) Let Ω ⊂ RN be a convex body and
Λ ⊂ RN a full lattice. Then:

(8)
1

n!

N∏
i=1

2

λi(Ω,Λ)
≤ Vol Ω

Covol Λ
≤

N∏
i=1

2

λi(Ω,Λ)
.

7. The Minkowski-Hlawka Theorem

Minkowski’s Convex Body Theorem asserts that a convex body in RN of volume
greater than 2N must have a nonzero point in every lattice Λ of covolume one (and
the number 2N is best possible as we range over all convex bodies). It is natural
to ask about the converse: suppose that a subset Ω has a nonzero point in every
lattice of covolume one. Does this imply a lower bound on the volume of Ω?

Minkowski himself conjectured an answer. More precisely, Minkowski’s seminal
writings on geometry of numbers contain the statement of a theorem of this type,
but no proof was ever published by Minkowski or found in the unpublished work he
left behind after his death in 1909. Minkowski’s “theorem” was first proved in 1943
in a celebrated work of E. Hlawka [Hl43]. Because (or in spite of?) this history it
is traditional to speak of the Minkowski-Hlawka Theorem.

7.1. Statement of the theorem.

Theorem 7.1. (Minkowski-Hlawka) Let N ≥ 2, and let Ω ⊂ RN be bounded and
Jordan measurable. Suppose that Ω has a nonzero point in every lattice Λ ⊂ RN of
covolume 1.
a) Then Vol Ω ≥ 1.
b) If Ω is a star body, then Vol Ω ≥ ζ(N) =

∑∞
k=1

1
kN

.
c) If Ω is a symmetric star body, then Vol Ω ≥ 2ζ(N).

Exercise: Show that the results of Theorem 7.1 are false for N = 1.

Many different proofs of Theorem 7.1 (and also improvements, variants,...) have
been published over the years:5 [Hl43], [Ma44] (with ζ(N) replaced by 1

N – i.e., a
quantitatively weaker result), [Si45] (as a consequence of a Mean Value Theo-
rem in the geometry of numbers), [Ma46] (with a better constant than ζ(N) in the
case of a convex body), [DaRo47] (improvements on the preceding paper), [Ro47],
[Ro51] (by a method which is related to van der Corput’s extension of Minkowski’s
First Theorem), [Ca53a], [Ro56] (a substantial quantitative improvement for large
N), [Sa68] (a version of Minkowski-Hlawka with unimodular matrices replaced by
rotation matrices) and [Th96] (an adelic analogue).

5What follows is not a comprehensive list!
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7.2. Proof of Minkowski-Hlawka, Part a).

The following argument is taken from Hardy and Wright.6 Hardy and Wright are,
in turn, following Rogers [Ro47], but (as usual) I find their exposition to be superior.

Let N ≥ 2 and let Ω ⊂ RN be bounded and Jordan measurable, with Vol Ω < 1.
We need to find a covolume 1 lattice Λ ⊂ RN such that Λ• ∩ Ω = ∅.

Step 1: Let C > 0 be such that Ω ⊂ [−C,C]N . Let p > CN be a prime num-
ber. Let A1, . . . , AN−1 ∈ Z and put A = (A1, . . . , AN−1). For each such A, we
define a lattice ΛA = MAZN , with

MA =



1

p
N−1
N

0 0 . . . 0

A1

p
N−1
N

p

p
N−1
N

0 . . . 0

A2

p
N−1
N

0 p

p
N−1
N

. . . 0

...
AN−1

p
N−1
N

0 0 . . . p

p
N−1
N


.

Then detMA = 1, so Covol ΛA = 1. The strategy of the proof is as follows: we will
assume that for all A ∈ ZN−1, Λ•A ∩ Ω 6= ∅ and deduce Vol Ω ≥ 1.

Step 2: So, suppose that for each A ∈ ZN−1 there exists a nonzero point PA ∈
ΛA ∩Ω. Such a point is of the form MA(x1, . . . , xN )T for (x1, . . . , xN ) ∈ (ZN )•, so

PA = (P1, . . . , PN ) = MA(x1, . . . , xN )T =
1

p
N−1
N

(x1, A1x1+px2, . . . , An−1x1+pxN ).

Suppose x1 = 0. Then for 1 ≤ i ≤ N − 1 we have

|Pi| = p
1
N |xi+1| ≤ C < p

1
N ,

so x2 = . . . = xN = 0 and thus PA = 0, contradiction. So x1 6= 0, and moreover

0 < |x1| = p
N−1
N |P1| ≤ Cp

N−1
N < p

1
N p

N−1
N = p.

Next suppose that for A,A′ ∈ ZN−1 we have PA = PA′ = MA′(x
′
1, . . . , x

′
N )T . Then

x1 = x′1 and thus for all 1 ≤ i ≤ N − 1,

Aix1 + pxi+1 = A′ix1 + px′i+1.

Since gcd(x1, p) = 1, it follows that for all i, p | (Ai −A′i).
Step 3: Because of Step 2, the map {0, . . . , p−1}N−1 → Ω given byA = (A1, . . . , AN−1) 7→
PA is injective. This shows

pN−1 ≤ #

(
1

p
N−1
N

ZN ∩ Ω

)
= #(ZN ∩ p

N−1
N Ω) = LΩ(p

N−1
N ),

6They present their proof with N = 2 and remark that it extends “at once” to N dimensions.
It took me about half an hour to figure out how to make this extension: close enough, I suppose.
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where LΩ(r) is the lattice point enumerator of §1. Equivalently, for all p > CN ,

(9)
LΩ(p

N−1
N )

(p
N−1
N )N

≥ 1.

Since Ω is bounded and Jordan measurable, by Theorem 2.3 we have

(10) lim
r→∞

LΩ(r)

rN
= Vol Ω.

Comparing (9) and (10)7, we deduce Vol Ω ≥ 1.

7.3. Primitive Lattice Points.

Let (G,+) be a commutative group. A nonzero element x ∈ G is primitive if
it is not nontrivially divisible in G: precisely, x is primitive iff for all y ∈ G and
n ∈ Z+, ny = x =⇒ n = ±1.

Convention: For the applications to follow, it turns out to be convenient to
regard the identity element 0 as a primitive element, even though the definition
seems to exclude it. (No big deal either way, of course...)

Exercise: a) Let x be a primitive element of the commutative group G. Show
that x has infinite order.
b) Show that the group (Q,+) has no primitive elements. (More generally, this
holds for any divisible abelian group.)
c) Show that the primitive elements of (Z,+) are precisely ±1.

On the other hand, for N > 1 the group ZN has infinitely many primitive el-
ements, for instance (1, . . . , 1, a) for any a ∈ Z. It is easy to give an algebraic
characterization of primitive elements in ZN .

Proposition 7.2. (x1, . . . , xN ) ∈ (ZN )• is primitive iff gcd(x1, . . . , xN ) = 1.

Exercise: Prove Proposition 7.2.

There is an interesting geometry of primitive vectors in ZN which gives rise to
an important generalization of our lattice point enumerator function.

Namely, suppose that Λ ⊂ RN is a lattice. Then as an additive group, Λ ∼= (ZN ,+)
so the above characterization of primitive elements applies: let e1, . . . , eN be a Z-
basis for Λ, so an arbitrary v ∈ Λ has a unique expression as v = x1e1 + . . .+xNeN .
Really this gives an isomorphism Λ

∼→ ZN , which shows that v is primitive iff
gcd(x1, . . . , xN ) = 1.

There is an alternate, more geometric take on primimtive points in lattices which
is worth mentioning. Namely, let v1, v2 be two vectors in a lattice Λ ⊂ RN . We say
that v2 is visible from v1 if the line segment joining v1 to v2 does not contain any
other points of Λ. Of course v2 is visible from v1 iff v1 is visible from v2.

7And using the fact that there are infinitely many prime numbers!
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Proposition 7.3. Let Λ ⊂ RN be a lattice, and let v, v1, v2 ∈ Λ.
a) Then v2 is visible from v1 iff v2 − v1 is a primitive vector.
b) In particular, a vector v ∈ Λ is primitive iff it is visible from the origin 0.

Exercise: Prove Proposition 7.3.

Proposition 7.3 suggests that the visibility relation is simply a repackaging of the
notion of primitive vectors. For our purposes this will be true, but we should remark
that by making one further definition one gets an array of interesting problems in
discrete geometry of a kind distinct from those we are considering here. Namely,
suppose S1 and S2 are subsets of RN . Then we say S1 is visible from S2 if for
each x ∈ S1 there exists y ∈ S2 such that the line segment xy contains no elements
of S1 other than x and (possibly) y.8 There is a rapidly increasing literature on
problems involving this concept.

Let us consider the primitive lattice point enumerator function: for Ω ⊂ RN a
bounded set and r ∈ R>0, let PLΩ(r) be the number of primitive points in the stan-
dard integer lattice ZN which are contained in the dilate rΩ. More explicitly, we are
counting one plus the number of (x1, . . . , xN ) ∈ ZN such that gcd(x1, . . . , xN ) = 1
and (x1

r , . . . ,
xN

R ) ∈ Ω.

Let ζ(s) be the Riemann zeta function, defined for <s > 1 by ζ(s) =
∑∞
n=1

1
ns

and having a meromorphic continuation to C with a single simple pole at s = 1.

Theorem 7.4. Let N ≥ 2 and Ω ⊂ RN bounded and Jordan measurable. Then

lim
r→∞

PLΩ(r)

rN
=

Vol Ω

ζ(N)
.

Proof. Exercise for Lauren Huckaba and Alex Rice: see [HW6ed, §24.10]. The
proof makes use of some (simple) results of §16.5 and §17.5 of loc. cit. concerning
analytic aspects of Möbius inversion. �

Just as we did in §1 for LΩ, it is very natural to consider the error function

PEΩ(r) = |LΩ(r)−
(

Vol Ω

ζ(N)

)
rN |

and try to get upper bounds in terms of smoothness conditions on ∂Ω. Plenty
of work has indeed been done on this – though not as much for the conventional
lattice point enumerator function – and it seems that this problem has a more
number-theoretic flavor than the corresponding one for the conventional lattice
point enumerator. In particular, much better bounds on PEΩ can be attained un-
der the assumption of the Riemann Hypothesis.

There is a lot of neat stuff here and plenty of other possible directions for gen-
eralization – what if we tried to enumerate lattice points satisfying some other
“arithmetic condition” besides primitivity? – but for now we move on to complete
the proof of Minkowski-Hlawka.

8The literature I have consulted does not make it clear whether we should allow y ∈ S1 or not.
Probably both cases should be considered...
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7.4. Proof of Minkowski-Hlawka Part b).

Let Ω ⊂ RN be a bounded, Jordan measurable star body such that for every covol-
ume one lattice Λ ⊂ RN , we have Ω∩Λ• 6= ∅. We wish to show that Vol Ω ≥ ζ(N).

The basic setup is identical to that of part a): especially, we continue to use the
lattice ΛA for A = (A1, . . . , AN−1) ∈ ZN−1. The extra idea here is as follows: the
star body structure of Λ allows us to use the primitive lattice point enumerator
PLΩ rather than the conventional lattice point enumerator LΩ, and thus the extra
factor of ζ(N) comes directly from Theorem 7.4.

How does this work? It’s very simple: for any lattice Λ ⊂ RN , let v ∈ Λ. If
e1, . . . , eN is a Z-basis of Λ, we may uniquely write v = x1e1 + . . . + xNeN for
xi ∈ Z. Put d = gcd(x1, . . . , xN ). Then v is primitive iff d = 1, but in every case
we can canonically associate to v a primitive lattice point

v′ :=
1

d
P.

Now for all A ∈ ZN−1, since PA ∈ Ω ∩ Λ•A and Ω is a star body, then also P ′A =
1
dPA ∈ Ω∩Λ•A. We claim that, as above, for (A1, . . . , AN−1) in {0, . . . , p− 1}N−1,
the points P ′A are pairwise distinct. Indeed, let

PA =
1

pN−1N
(x1, A1x1 + px2, . . . , An−1x1 + pxn),

PB =
1

pN−1N
(y1, B1y1 + py2, . . . , Bn−1y1 + pyn),

and suppose that P ′A = P ′B . Then there exist d1, d2 ∈ Z+ such that gcd(x1, A1x1 +
px2, . . . , An−1x1 + pxn) = d1, gcd(y1, B1x1 + py2, . . . , Bn−1y1 + pyn) = d2 and

(11) d2(x1, A1x1 +px2, . . . , An−1x1 +pxn) = d1(y1, B1y1 +py2, . . . , Bn−1y1 +pyn).

Since gcd(x1y1, p) = 1 and d1d2 | x1y1, gcd(d1d2, p) = 1. Equating the first two
coordinates of (11) gives

d2x1 = d1y1

d2A1x1 + d2px2 = d1B1y1 + d1py2 = d2x1B1 + d1py2.

(A1 −B1)d2x1 = p(d2x2 − d1y2),

and since gcd(p, d2x1) = 1, we conclude p | A1−B1 and thus, since 0 < A1, B1 < p,
A1 = B1. In a similar way we deduce A2 = B2, . . . , AN = BN , so PA = PB .

Thus for all p > CN we have

(12)
PLΩ(p

N−1
N )

(p
N−1
N )N

≥ 1.

On the other hand, by Theorem 7.4 we have

(13) lim
r→∞

PLΩ(r)

rN
=

Vol Ω

ζ(N)
.

Comparing (12) and (13) we deduce Vol Ω ≥ ζ(N).
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7.5. Proof of Minkowski-Hlawka Part c).

Finally, we suppose that Ω is a symmetric star domain. Then, for each primitive
lattice point P ′A ∈ Ω, its negative −P ′A is also a primitive lattice point in Ω. If we
can check that −P ′A 6= P ′B for any B ∈ {0, . . . , p−1}N−1, then we have found twice
as many primitive lattice points as we had before, and feeding this into the primitive
lattice point enumerator function PLΩ(r) as in part b) above we extract an extra
factor of 2 in Vol(Ω). But in fact for all B = (B1, . . . , BN−1) ∈ {0, . . . , p− 1}N−1,
the first coordinate of P ′B is positive, so of course it is not equal to −P ′A: done.

A more geometric / conceptual take on the above arugment is as follows: we cut
our symmetric star body Ω by the hyperplane H = {x1 = 0}. Indeed for any
symmetric subset Ω ⊂ RN and any hyperplane H, if we put

Ω+ = {x ∈ Ω | H(x) > 0},Ω− = {x ∈ Ω | H(x) < 0},

then x 7→ −x gives an isometry Ω+ → Ω−: if H(x) > 0, then H(−x) = −H(x) < 0.
Thus, if Ω is a bounded symmetric star body, then Ω+ and Ω− are star bodies with

Vol(Ω+) = Vol(Ω−) =
1

2
Vol(Ω)

and for any lattice Λ,

(#Λ ∩ Ω+) + (#Λ ∩ Ω−) + (#Λ ∩ Ω ∩ {H = 0}) = #Λ ∩ Ω.

Thus, as Neil Lyall suggests, if we can find a hyperplane H which does not contain
any nonzero lattice points in Ω, then we immediately deduce from part b) that
Vol Ω+ ≥ ζ(N) and thus Vol Ω = 2 Vol Ω+ ≥ 2ζ(N). This is easily done:

Exercise: Let Λ ⊂ RN be a lattice, and let Ω ⊂ RN be a bounded set.
a) Show that for any hyperplane H0, there exist arbitrarily close hyperplanes H (as
measured using the unit normal vector, for instance) H such that H ∩Λ• ∩Ω = ∅.
b) Let c1, . . . , cN−1 be real numbers, not all zero. Show that if cN ∈ R is such that
there exists v = (x1, . . . , xN ) ∈ Λ• such that c1x1 + . . . + cN−1xN−1 + cNxN = 0,
then cN lies in the finite-dimensional Q-vector space generated by c1, . . . , cN−1.
Deduce from this that for fixed c1, . . . , cN−1, for all but countably many cN ∈ RN
the hyperplane H(x) = c1x1 + . . .+ cNxN meets Λ only at 0.
c) Prove or disprove: The set of hyperplanes H in RN such that H ∩ Λ ) {0} has
measure zero in an appropriate sense (e.g. as a subset of PN (R)).

Finally, Alex Rice suggests that in fact any hyperplane H will work: if Ω is bounded
and Jordan measurable in RN then Ω∩H is bounded and Jordan measurable in H,
viewed as an N−1-dimensional Euclidean space and thus #LΩ∩H(r) = O(rN−1) =
o(rN ). Thus the number of lattice points on the hyperplane H = 0 is asymptotically
negligible and the argument goes through.

8. Mahler’s Compactness Theorem

9. Lattice Points in Star Bodies

9.1. Lp norms.
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For complex numbers z with positive real part, the gamma function is defined as

Γ(z) =

∫ ∞
0

tz−1e−tdt.

Proposition 9.1. Let n ∈ N. Then:

(14) Γ(n+ 1) = n!

and

(15) Γ(n+
1

2
) =
√
π

(
1 · 3 · · · (2n− 1)

2n

)
=
√
π

(
(2n)!

22nn!

)
.

Exercise: Prove Proposition 9.1.

For future reference we give exact values and decimal approximations for some
small values of Γ at positive half/integer arguments.

Γ

(
1

2

)
=
√
π ≈ 1.7724538509055160273

Γ(1) = 0! = 1,

Γ

(
3

2

)
=

√
π

2
≈ 0.8862269254527580137

Γ(2) = 1! = 1,

Γ

(
5

2

)
=

3
√
π

4
≈ 1.3293403881791370205

Γ(3) = 2! = 2,

Γ

(
7

2

)
=

15
√
π

8
≈ 3.3233509704478425512 ,

Γ(4) = 3! = 6.

Theorem 9.2. Let N ∈ Z+ and p ≥ 1. Consider the even distance function

fp : RN → R≥0, x 7→

(
N∑
i=1

|xj |p
) 1

p

.

Let BN,r = f−1
p ([0, 1)) be the open unit ball in (RN , || ||p). Then

Vol(BN,r) =
2NΓ( 1

p + 1)N

Γ(Np + 1)
.

In particular, taking r = 2, the volume of the Euclidean unit ball in RN is

VN =
2πN/2

NΓ(N2 )
.

Proof. [S, pp. 25-26]. �

In particular we have

V2 = π, V3 =
4π

3
, V4 =

π2

2
.

9.2. Linear Forms.
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9.2.1. Minkowski’s Linear Forms Theorem.

Theorem 9.3. Let Λ ⊂ RN be a lattice. Let C = (cij) ∈ MN (R) be a matrix.
Consider the associated system of linear forms

Li(x) = Li(x1, . . . , xn) =

n∑
j=1

cijxj , 1 ≤ i ≤ n.

Let ε1, . . . , εn be positive real numbers such that

(16) |detC|Covol Λ ≤
N∏
i=1

εi.

Then there is x = (x1, . . . , xN ) ∈ Λ•, with |Li(x)| ≤ εi for all 1 ≤ i ≤ N .

Proof. Step 0: If L is a linear form, the function x 7→ |L(x)| is a symmetric, convex
distance function, so that the sets {x | |L(x)| < ε} are symmetric convex bodies.
Step 1: Suppose that |detC| > 0. By replacing Li with Li

εi
one sees it is no loss of

generality to assume ε1 = . . . = εN = 1. Now consider

Ω = {x ∈ RN | ∀1 ≤ i ≤ N, |Li(x)| ≤ 1}.

Then Ω is a compact, symmetric convex body. Indeed it is the image of the cube

[−1, 1]N under the linear transformation C−1, so it has volume Vol([−1,1]N

detC = 2N

detC .

Therefore the inequality (16) is equivalent to Vol Ω ≥ 2N Covol Λ, so Minkowski’s
Convex Body Theorem applies to give a point x ∈ Λ• ∩ Ω, the desired result.
Step 2: When detC = 0, the region Ω is a symmetric convex body of infinite
volume, so the result holds for any positive ε1, . . . , εn. �

Remark 4. Our earlier observation that Minkowski’s Convex Body Theorem is
sharp in the sense that the constant 2N cannot be improved can be repeated at this
point to observe that the constant in (16) is sharp: indeed, if L(xi) = xi for all i
and εi < 1 for all i, then there is of course no x ∈ (ZN )• such that |L(xi)| < εi for
all i.

Exercise: Show that in Theorem 9.3 the generality of arbitrary matrix C and also
an arbitrary lattice Λ is illusory: i.e., deduce Theorem 9.3 from the special cases:
(i) Li(x) = xi for all i and
(ii) Λ = Zn.

Exercise: Let C = (cij) ∈ GLN (R); for 1 ≤ i ≤ N put Li(x) =
∑n
j=1 cijxj . Show:

∃ x = (x1, . . . , xN ) ∈ ZN \ {0} such that |Li(x)| ≤ |detC| 1
N for all 1 ≤ i ≤ N .

9.3. Products of Linear Forms.

Let C = (cij) ∈ GLN (R), and consider again the associated system of linear forms

Li(x) =

N∑
j=1

cijxj ,

and put

D = |detC|.
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By Theorem 9.3, for any ε1, . . . , εN > 0 such that D ≤
∏N
i=1 εi, there is x ∈ (ZN )•

with |Li(x)| ≤ εi for all 1 ≤ i ≤ N . Now consider f(x) = L1(x) · · ·LN (x) the
product of N linear forms. Thus there is x ∈ (ZN )• such that

(17) |f(x)| = |L1(x) · · ·LN (x)| ≤ D.

Exercise: Show that (9.4) is sharp when N = 1.

Note that for N > 1, the level sets of |f | are non-convex starbodies, so Minkowski’s
Theorem does not apply to them directly. We can bring MCBT to bear however by

finding an inscribed convex body. Let g(x) = 1
N

∑N
i=1 |x|. Thus g is a rescaling

of the L1-norm on RN , so it is a symmetric distance function, and by Theorem 9.2,
if Ω = g−1([0, 1)) is the corresponding convex body,

Vol(Ω) = NN Vol(BN,1) =
2NNN

N !
.

Making a linear change of variables, we get

Vol((g ◦ C)−1([0, 1])) = Vol(C−1 ◦ g−1([0, 1)) = Vol(C−1Ω) =
Vol Ω

D
=

2NNN

DN !
.

By the AGM inequality, for x ∈ RN ,

f(x) = |L1(x) · · ·LN (x)| ≤
(
|L1(x)|+ . . .+ |LN (x)|

N

)N
= (g ◦ C)N .

Applying the distance function formulation of MCBT, we get

min(f) ≤ min((g ◦ C)N ) = min(g ◦ C)N ≤ 2N

Vol(CΩ)
=

(
N !

NN

)
D.

We record the preceding work as follows.

Theorem 9.4. (Product of Linear Forms) Let C = (cij) ∈ GLN (R), and for

1 ≤ i ≤ N , put Li(x) =
∑N
j=1 cijxj. Then there is x = (x1, . . . , xN ) ∈ (ZN )• such

that

(18) f(x) = |L1(x) · · ·LN (x)| ≤
(
N !

NN

)
|detC|.

Clearly (9.6) is an improvement over (9.5) for every N > 1, and a substantial im-
provement for large N .

Example: Taking N = 2 in Theorem 9.4, we find that there are integers x and y, not
both zero, such that |L1(x, y)L2(x, y)| ≤ D

2 . In this case the problem is precisely
that of the homogeneous minimum of an indefinite binary quadratic form. We will
investigate this in the next section and find that the sharp bound is |L1L2| ≤ D√

5
.

Example: Taking N = 3 in Theorem 9.4, we find that there are integers x, y, z,
not all zero, such that |L1(x, y, z)L2(x, y, z)L3(x, y, z)| ≤ 2D

9 . In this case finding
the best bound is already a piece of 20th century mathematics: it is a result of
Davenport that one can have f = |L1L2L3| ≤ D

7 , with equality iff f is equivalent
under a Z-linear change of variables to a scalar multiple of the cubic form

(x+ 2 cos
2π

7
y + 2 cos

4π

7
z)(x+ 2 cos

4π

7
y + 2 cos

6π

7
z)(x+ 2 cos

6π

7
y + 2 cos

8π

7
z).



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 43

9.4. Positive Definite Quadratic Forms.

Lemma 9.5. Let q(t) = q(t1, . . . , tN ) =
∑

1≤i≤j≤N aijtitj ∈ R[t1, . . . , tn] be a real

quadratic form which is positive definite: q(x) > 0 for all x ∈ (RN )•. Let disc q
be the determinant of the matrix Mq with (i, j) entry aij if i = j and

aij
2 if i 6= j.

Put
ΩR = {x ∈ RN | q(x) ≤ R2}.

Then

(19) Vol ΩR =
VN

(disc q)
1
2

RN .

Proof. Step 1: Suppose q = q0 = t21 + . . . + t2N . Then ΩR is nothing else than the
R-ball with respect to the L2-norm, so its volume is RNVN . Note that disc q0 = 1,
so this verifies our claim in this case. Note
Step 2: Suppose q is diagonal: q = a1t

2
1 + . . .+ aN t

2
N , so disc q = a1 · · · aN . Then

ΩR = {x ∈ RN | a1x
2
1+. . .+aNx

2
N ≤ R2} = {x |

(
x1√
a1

)2

+. . .+

(
xN√
aN

)2

≤ R2}.

Let y = (y1, . . . , yN ) = ( x1√
a1
, . . . , xN√

aN
). Then q(x) = q0(y), so making this lin-

ear change of variables transforms ΩR(q) to ΩR(q0). Thus Vol(ΩR(q)) is equal to
Vol(ΩR(q0)) times the determinant of the linear transformation x 7→ y, i.e.,

Vol(ΩR(q)) =
Vol(ΩR(q0))
√
a1 · · · an

=
VN

(disc(q))
1
2

RN .

Step 3: By the Spectral Theorem, any real symmetric matrix may be orthogo-
nally diagonalized: there is an orthogonal matrix P such that q(Px) is diago-
nal. Orthogonal transformations leave the volume unchanged. On the matrix side,
Mq(y) = PTMqP , so disc q(y) = detPTMqP = (detP )2 detMq = disc q. Thus we
have reduced to the diagonal case of Step 2. �

Theorem 9.6. (Minkowski, 1891) Let q(t1, . . . , tN ) =
∑

1≤i≤j≤N aijtitj ∈ R[t1, . . . , tn]
be a positive definite real quadratic form. Let Λ ⊂ Rn be a lattice. There exists
v ∈ Λ• such that

q(v) ≤ 4(disc q)
1
N

V
2
N

N

(Covol Λ)
2
N .

Proof. Note that f(x) =
√
q(x) is a symmetric convex distance function in the

sense of §2.4, with associated closed symmetric convex bodies the ellipsoids

ΩR = {x ∈ RN | q(x) ≤ R2}.
By Minkowski’s Convex Body Theorem (Mark II) we have a nonzero lattice point
in {v ∈ RN | q(v) ≤ R2} when

VN

(disc q)
1
2

RN = Vol ΩR = 2N Covol Λ,

i.e., if R2 = 4(disc q)
1
N

V
2
N

N

(Covol Λ)
2
N . So there is v ∈ Λ• with

q(v) ≤ R2 =
4(disc q)

1
N

V
2
N

N

(Covol Λ)
2
N .
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�

So there is a constant cN such that for all positive definite, real n-ary forms q,

min
x∈(ZN )•

q(x) ≤ cN |disc q| 1
N .

This qualitative form of Theorem 9.6 was proven in 1850 by Hermite. Hermite’s
arguments gave an explicit value of cN , but it is much worse than the constant

MN = 4V
− 2

N

N

given by Minkowski’s Theorem. Contemplating his improvement of Hermite’s the-
orem Minkowski realized that his argument applied to much more general sets than
level sets of positive definite quadratic forms – namely to symmetric convex bodies
– and thus the Geometry of Numbers was born.

Table of Values of MN :

M2 =
4

π
= 1.2732395 . . .

M3 =

(
6

π

) 2
3

= 1.5393389 . . .

M4 =
4
√

2

π
= 1.8006326 . . . .

M5 = 2.05845 . . . .

M6 = 2.313629796 . . .

M7 = 2.566728336 . . .

M8 = 2.8181423672 . . .

M9 = 3.068162 . . .

M10 = 3.3170068 . . .

We saw that the constant in Minkowski’s Convex Body Theorem cannot be im-
proved, but to see that it cannot be improved we took convex bodies associated
to the L∞-norm. It is reasonably to expect that when we restrict to ellipsoids the
constant can be improved. This leads to the following key definition: for a function
f : RN → R≥0, we define its homogeneous minimum

m(f) = inf
x∈(ZN )•

f(x).

For any nondegenerate N -ary real form q, we define the Hermite invariant

γ(q) =
m(q)

|disc q| 1
N

.

The next exercise addresses the sense in which γ(q) is actually an “invariant” of q.

Exercise: Let q1 and q2 be two N -ary real quadratic forms.
a) Suppose that q1 and q2 are integrally equivalent: i.e., there exists A ∈ GLN (Z)
such that q1(At) = q2(t). Show that γ(q1) = γ(q2).
b) Suppose that q1 and q2 are homothetic: i.e., there exists α ∈ R>0 such that
q2 = αq1. Show that γ(q1) = γ(q2).
c) Let us say that q1 and q2 forms are H-equivalent if there exists A ∈ GLN (Z)
and α ∈ R>0 such that q2(t) = αq1(At). By parts a) and b) above, H-equivalent
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forms have the same Hermite invariant. Show that H-equivalence is actually an
equivalence relation on (i) all nondegenerate n-ary real quadratic forms and (ii) all
positive definite n-ary real quadratic forms.

For N ∈ Z+, define the Hermite constant

γN = sup
q
γ(q),

where q ranges over all positive definite N -ary quadratic forms.

Exercise: Show that γ(q) = 1 for every nondegenerate unary quadratic form q;
in particular, γ1 = 1.

Here is a very simple-minded way to give a lower bound on γN : find a positive
definite integral quadratic form q(t) ∈ Z[t] = Z[t1, . . . , tn] which integrally rep-
resents 1. Then we must have m(q) = 1. An easy way to ensure an integral
representation of 1 is to have a11 = 1: then q(1, 0, . . . , 0) = 1. We try choose the
form to have as small discriminant as possible: this gives a better bound on γN .

Example: For any N ∈ Z+, take q0 = x2
1 + . . . + x2

N . Then clearly min(q0) =
1 = disc(q1), so γ(q0) = 1. We deduce:

Proposition 9.7. We have γN ≥ 1 for all N ∈ Z+.

Example: Let N = 2. Then, as above, we have everyone’s favorite binary form
q0 = x2 + y2, with Hermite invariant 1. This isn’t bad, but we can do better with
the nondiagonal form q1(x, y) = x2 + xy + y2. Again m(q1) = 1, but now

disc q1 = det

[
1 1

2
1
2 1

]
=

3

4
,

so γ(q1) = 1√
34

= 2√
3
. Can we do even better than this? Not by this method:

the general integral binary quadratic form q(x, y) = ax2 + bxy+ cy2 has associated

matrix

[
a b

2
b
2 c

]
and thus discriminant ac − b2

4 = 4ac−b2
4 . The numerator is a

positive integer congruent to 0 or 3 mod 4, so the smallest it can take is 3 and thus
disc q ≥ 3

4 . So let’s record what we have so far:

1.15470 . . . =
2√
3
≤ γ2 ≤M2 =

4

π
= 1.2732 . . .

It turns out that γ2 = 2√
3
. In fact even more is true: if a positive definite binary

quadratic form q has Hermite invariant 2√
3
, then q is H-equivalent to x2 + xy+ y2.

This is a theorem of Lagrange that we will prove later on in this section.

Example: Let N = 3. Again, we can do better than q0 = x2 + y2 + z2 simply
by taking all cross-terms with coefficient 1: q2 = x2 + y2 + z2 +xy+xz+ yz. Then
m(q2) = 1 and det(q2) = 1

2 , so γ(q2) = 2
1
3 . Thus

1.25992 . . . = 2
1
3 ≤ γ3 ≤M3 =

(
6

π

) 2
3

= 1.5393389 . . . .
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It is a theorem of Gauss that γ3 = 2
1
3 , and moreover a positive definite ternary

quadratic form has Hermite invariant 2
1
3 iff it is H-equivalent to q2. We will give a

proof later in these notes when we discuss reduction theory.

Example: Let N = 4. Based on the previous examples, it is natural to con-
sider q3 = x2 + y2 + z2 + w2 + xy + xz + xw + yz + yw + zw, for which we have

γ(q3) = (5/16)
−1
4 = 1.33748 . . .. In fact though, if we look even through forms with

small integer coefficients, we soon find q4 = x2 + xz+ y2− yz+ z2− zw+w2, with
γ(q4) =

√
2 = 1.41421 . . .. Thus

1.41421 . . . =
√

2 ≤ γ4 ≤M4 =
4
√

2

π
= 1.8006326 . . . .

It is a theorem of Korkine-Zolotarev that γ4 =
√

2, and moreover a positive
definite quaternary form q has γ(q) =

√
2 iff q is H-equivalent to q4. Later we will

follow a method of Mordell which enables us to derive γ4 from knowledge of γ3.

Exercise: Use the Minkowski-Hlawka Theorem to give an explicit lower bound

on γN for all N ≥ 2. (When I did this calculation, I got γN ≥ (2VNζ(N))
−2
N , but I

didn’t check this against anything in the literature, so don’t take my word for it!)

Theorem 9.8. There are positive constants C1, C2 such that for all N ∈ Z+,

C1 ≤
γN
N
≤ C2.

Exercise: Use the previous exercise to prove Theorem 9.8. (Hint: given the previous
exercise, much of the additional work is undergraduate advanced calculus involving
the Γ function. For instance, Stirling’s formula should be helpful here.)

9.5. Binary Quadratic Forms.

In this section we consider binary quadratic forms over the real numbers. Through-
out, we let A,B,C ∈ R and consider

Q(x, y) = Ax2 +Bxy + Cy2.

We define

∆ = ∆(Q) = B2 − 4AC.

Note that ∆(Q) = −4(discQ), where discQ = AC − B2

4 is the determinant of the
associated symmetric matrix [

A B
2

B
2 C

]
.

We say the binary form Q is degenerate if ∆ = 0 and nondegenerate if ∆ 6= 0.

Lemma 9.9. Let K be a field of characteristic different from 2, and let Q(x, y) =
Ax2 +Bxy + Cy2 ∈ K[x, y] be a quadratic form. TFAE:
(i) Q is degenerate: B2 = 4AC.
(ii) There exists a linear form L(x, y) = αx+ βy and γ ∈ K× such that

Q(x, y) = γL(x, y)2.
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Exercise:
a) Prove Lemma 9.9.
b) Use Lemma 9.9 to show: if Q(x, y) ∈ R[x, y] is a degenerate binary quadratic
form, then for any ε > 0 there exist (x, y) ∈ (Z2)• such that |Q(x, y)| < ε.

Recall that for any domainR, a quadratic formQ(x) = q(x1, . . . , xn) ∈ R[x1, . . . , xn]
is isotropic if there exists x ∈ (Rn)• such thatQ(x) = 0; otherwiseQ is anisotropic.

Proposition 9.10. Let R be a domain of characteristic different from 2 with frac-
tion field K. Let Q(x, y) = Ax2 +Bxy+Cy2 ∈ R[x, y] be a binary quadratic form.
Consider the following conditions:
(iR) There exist α, β, γ, δ ∈ R such that

Q(x, y) = (αx+ βy)(γx+ δy).

(iK) There exist α, β, γ, δ ∈ K such that

Q(x, y) = (αx+ βy)(γx+ δy).

(iiR) ∆ = B2 − 4AC is a square in R.
(iiK) ∆ = B2 − 4AC is a square in K.
(iiiR) Q(x, y) is isotropic over R.
(iiiK) Q(x, y) is isotropic over K.
a) We have (iR) =⇒ (iK), (iiR) =⇒ (iiK), and (iiiR) ⇐⇒ (iiiK).
b) We have (iK) ⇐⇒ (iiK) ⇐⇒ (iiiK).
c) If R is integrally closed, then (iiR) ⇐⇒ (iiK).
d) If R is a UFD, then (iR) ⇐⇒ (iK) and thus all six conditions are equivalent.

Exercise: a) Prove Proposition 9.10. (Suggestion: if you are not a fan of commu-
tative algebra, just prove it when R = K is a field and when R = Z.)
b) If you are really a fan of commutative algebra, try to construct examples to show
that the additional hypotheses in Proposition 9.10 c) and d) above are needed in
the sense that there are some domains R and binary forms Q(x, y) for which the
equivalences do not hold.

Remark 5. The equivalence (iiiR) ⇐⇒ (iiiK) holds for forms in any number of
variables. The other results are very particular to binary forms, as the following
exercise makes clear.

Exercise: Let R be a domain of characteristic different from 2 with fraction field
K. Let q(x) = q(x1, . . . , xn) be a quadratic form over R with n ≥ 3.
a) Suppose that q is nondegenerate in the sense that its defining symmetric matrix
has nonzero determinant. Show that q is irreducible as a polynomial in K.
b) For those who know some algebraic geometry: a quadratic form q(x1, . . . , xn)
defines a quadric, i.e., a projective hypersurface

Q : q(x) = 0

in Pn/K . Still assuming charK 6= 2, show that the quadratic Q is smooth and geo-

metrically irreducible iff the quadratic form q is nondegenerate.
c) Show that the results of the previous parts break down in characteristic 2.
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Let Q(x, y), Q′(x′, y′) be two binary real quadratic forms. We say that Q and
Q′ are SL2(Z)-equivalent – and write Q ∼ Q′ – if there is M ∈ SL2(Z) such that[

x
y

]
= M

[
x′

y′

]
.

In terms of the definining symmetric matrices AQ and AQ′ this is the usual con-
gruence relation

AQ = MTAQ′M

with M ∈ SL2(Z). We also have the notion of SLN (Z)-equivalence for real qua-
dratic forms Q(x1, . . . , xN ) and Q′(x′1, . . . , x

′
N ).

For any real quadratic form Q(x) = Q(x1, . . . , xN ), we define the homogeneous
minimum of Q on a lattice Λ ⊂ RN

min(Q,Λ) = inf
v∈Λ•

|Q(v)|.

We abbreviate min(Q,ZN ) to minQ.

Lemma 9.11. If Q(x) and Q′(x′) are GLN (Z)-equivalent real quadratic forms,
then:
a) We have |discQ| = |discQ′|.
b) For any lattice Λ ⊂ RN we have min(Q,Λ) = min(Q′,Λ).

Exercise: Prove Lemma 9.11.

Now we can introduce the basic idea of reduction of real quadratic forms. Given
a real quadratic form Q(x) = Q(x1, . . . , xN ), we wish to exploit Lemma 9.11 to find
Q′ ∼ Q for which m(Q′,Λ) is easier to compute. It turns out in many cases there
is a canonical “best” representative of the SLN (Z)-equivlaence class of Q, and the
process of replacing Q by this “best representative” Q′ is called reduction.

In general this is a big production, but when N = 2 one can just do it.

Lemma 9.12. (Binary Reduction) Let Q(x, y) = Ax2 + Bxy + Cy2 be a nonde-
generate real binary quadratic form. Let (x0, y0) ∈ Z be coprime integers such that
Q(x0, y0) = M 6= 0. Then there are b, c ∈ R such that Q ∼Mx2 + bxy + cy2 with

−|M | < b ≤ |M |.

Proof. Step 1: Let x0, y0 be relatively prime integers such that M = Q(x0, y0) 6= 0.
Choose x1, y1 ∈ Z such that x0y1 − x1y0 = 1. Then

x = x0x
′ + x1y

′, y = y0x
′ + y1y

′

lies in SL2(Z) and transforms Q(x, y) into Q′(x′, y′) with

A′ = Ax2
0 + 2Bx0y0 + Cy2

0 = Q(x, y) = M.

Step 2: Let n ∈ Z. Then

x′ = x′′ + ny′′, y′ = y′′

lies in SL2(Z) and transforms Q′(x′, y′) into

Q′′(x′′, y′′) = a(x′′)2 + bx′′y′′ + c(y′′)2 = M(x′′)2 + (B′ + nM)x′′y′′ + c(y′′)2.

Since M 6= 0, we may choose n such that −|M | < b ≤ |M |, qed. �
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Theorem 9.13. Let Q(x, y) = Ax2 +Bxy+Cy2 be real and positive definite. Then
γ(Q) ≤ 2√

3
, with equality holding iff Q is H-equivalent to q2(x, y) = x2 + xy + y2.

Proof. Since Q is positive definite, lim||(x,y)||→∞Q(x, y) = ∞. Thus Q attains a

nonzero minimum m on the subset (Z2)•, say at (x0, y0). Necessarily x0 and y0

are relatively prime (otherwise dividing through by their gcd would give a smaller
value). By Lemma 9.12, Q ∼ Q′ = mx2 + bxy+ cy2 with −m < b ≤ m. Evaluating
Q′ at (0, 1) gives c ≥ m, and thus

disc(Q) = disc(Q′) = mc− b2

4
≥ m2 − m2

4
=

3m2

4
,

so m = minQ ≤
√

4 disc(Q)
3 .

In the above analysis, equality holds iff c = m and b = m
2 , so Q ∼ Q′ =

m(x2 + xy + y2). Since min(x2 + xy + y2) = 1 and disc(x2 + xy + y2) = 3
4 ,

minQ′ = m =
√

4 disc(Q′)
3 . �

Of course this yields immediately a result promised above.

Corollary 9.14. We have γ2 = 2√
3

.

Theorem 9.15. Let Q(x, y) = Ax2+Bxy+Cy2 be real and indefinite: B2−4AC >
0. Then γ(Q) ≤ 2√

5
, with equality holding iff Q is H-equivalent to x2 + xy − y2.

Proof. Let m = minQ = inf(x,y)∈(Z2)• |Q(x, y)|. First note that we may have
m = 0, but in this case the result is vacuously true. So we may assume that m 6= 0,
and since min(−Q) = min(Q) and disc(−Q) = disc(Q), it is no loss of generality
to assume m > 0. Unfortunately we may no longer assume that the infimum
is attained, which slightly complicates things: nevertheless there exist relatively
prime integers (x0, y0) with M = Q(x0, y0) > 0 and m ≤M < 2m.

By Lemma 9.12, Q ∼ Q′(x, y) = Mx2 + bxy+ cy2 with −M < b ≤M . Note also
0 < ∆(Q) = ∆(Q′) = b2 − 4Mc, so b2 > 4Mc For all x, y ∈ Z, if Q(x, y) < m then
– since m = minQ – we have Q(x, y) ≤ −m. Now

Q(0, 1) = c <
b2

4M
≤ M

4
≤ m

2
< m.

As above, this forces c ≤ −m < 0 and thus |c| ≥ m. We reason in this way again:
If b ≥ 0, then Q(1,−1) = M − b+ c = M − |b|+ c ≤M −m < m.
If b < 0, then Q(1, 1) = M + b+ c = M − |b|+ c ≤M −m < m.
So either way we have M − |b| − |c| ≤ −m, or equivalently

|b| ≥M +m− |c|.

It follows that

∆ = b2+4M |c| ≥ (M+m−|c|)2+4M |c| = (M−m+|c|)2+4Mm ≥ (M−m+|c|)2+4m2.

Case 1: Suppose M −m+ |c| ≥ m. Then ∆ ≥ m2 + 4m2 = 5m2.
Case 2: Suppose M −m+ |c| < m. Adding this to M − |b| − |c| ≤ −m gives

|b| > 2M −m ≥ m

and thus

∆ = b2 + 4M |c| > m2 + 4Mm ≥ m2 + 4m2 = 5m2.
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This establishes part a). As for part b), equality occurs in the above iff −c = M =
m = |b|, so Q′ = m(x2± xy− y2). Note that x2 + xy− y2 ∼ x2− xy− y2 (we leave
this as an exercise with the hint that x2 + xy − y2 is multiplicative and repesents
−1) and disc(x2 ± xy − y2) = 5. This establishes part b). �

The following simple result will be useful later.

Proposition 9.16. Let Q(x, y) = Ax2 +Bxy+Cy2 ∈ Z[x, y]. Suppose A > 0 and
∆ = B2 − 4AC = −4. Then Then Q ∼SL2(Z) x

2 + y2.

Exercise: Prove Proposition 9.16. (Hint: first use the known value of γ2 to show
that Q integrally represents 1.)

9.6. The Lattice Constant of a Star Body.

Let Ω ⊂ RN be a star body; we do not assume that Ω is bounded. A lattice
Λ ⊂ RN is Ω-admissible if Λ ∩ Ω◦ = {0}. We define the lattice constant ∆(Ω)
as follows:

∆(Ω) = inf{Covol Λ | Λ is Ω-admissible}.
Since inf ∅ = ∞, this means that we have ∆(Ω) = ∞ iff there are no admissible
Ω-lattices. This can certainly happen: e.g. take Ω = RN .

A lattice Λ is Ω-critical if it is Ω-admissible and Covol Λ = ∆(Ω).

Exercise: Let Ω1 ⊂ Ω2 be star bodies. Show: ∆(Ω1) ≤ ∆(Ω2).

Exercise: a) Suppose Ω is bounded. Show: ∆(Ω) <∞.
b) Give an example of an unbounded star body Ω with ∆(Ω) <∞.
c) Let f(x1, . . . , xN ) = |x1 · · ·xN |. Show that f is a symmetric pseudo-distance
function. Let Ω = f−1([0, 1]) be the corresponding star body. Are there any Ω-
admissible lattices?

Exercise: a) Let Ω be a symmetric convex body. Show that Minkowski’s Con-
vex Body Theorem is equivalent to the inequality

∆(Ω) ≥ 2−N Vol Ω.

b) Let Ω be a symmetric star body. Show that the Minkowski-Hlawka Theorem is
equivalent to the inequality

∆(Ω) ≤ Vol Ω

2ζ(N)
.

For a star body Ω, let v(Ω) be the supremum of VolB as B ranges over convex
bodies B ⊂ Ω.

Theorem 9.17. For any star body Ω we have

∆(Ω) ≥ v(Ω)

2N
> 0.

Exercise: Prove it.
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Let r, s ∈ N with r + s = N . Put

fr,s =

√√√√| r∑
i=1

x2
i −

s∑
j=1

x2
j |.

This is a symmetric pseudo-distance function; put

Ωr,s = Ωfr,s = f−1
r,s ([0, 1])

and

Γr,s = ∆(Ωr,s).

Exercise: a) Show: Γr,s = Γs,r.
Henceforth we may, and shall, assume r ≥ s.
b) Suppose r1 + s1 = r2 + s2, r2 ≥ r1 ≥ s1 and rs ≥ s2. Show

Γr1,s1 ≥ Γr2,s2

and deduce

Γr1,s1 ≥ Γr1+s1 .

Let q = q(x1, . . . , xn) ∈ R[x1, . . . , xn] be a nondegenerate quadratic form. We put

m(q) = inf
x∈(ZN )•

|q(x)|

and

γ(q) =
m(q)

|disc q| 1
N

.

This generalizes the previously defined Hermite invariant of a positive form q. Now
recall Sylvester’s Theorem: if q = q(x1, . . . , xn) ∈ R[x1, . . . , xn] is a nondegenerate
quadratic form, there are unique r, s ∈ N with r + s = N such that there is
M ∈ GLn(R) such that

q(Mx) = fr,s(x).

Let us say that q is of type (r,s). We define

γr,s = sup
q∈R[x1,...,xn]of type (r,s)

γ(q).

Exercise: a) Show that

(20) γr,s = Γ
−2
r+s
r,s .

b) Deduce

γr,s = γs,r ≤ γr+s.

10. More on Hermite Constants

10.1. Hermite’s bound on the Hermite constant.

Theorem 10.1. (Hermite, 1850) Let q(t) = q(t1, . . . , tn) ∈ R[t1, . . . , tn] be an
anisotropic quadratic form. Then

m(q) ≤
(

4

3

)n−1
2

|disc q| 1n .
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Proof. ([G, Thm. 7.5]) We go by induction on n, the case n = 1 being trivial.
Suppose the result holds for all forms of dimension less than n.

By Hermite’s Lemma, any minimal vector extends to a basis, so by replacing
q by an H-equivalent form q(At), we may assume that the minimum occurs at
e1 = (1, 0, . . . , 0), and thus m(q) = |a11|, where q(t) = tTMt.

Let Aϕ : Rn → Rn be the R-linear map given by ϕ(e1) = e1 and for all 1 < j ≤ n,
ϕ(ej) = e′j = ej − a1j

a1
e1. Put q′(t) = q(Aϕt). Then q′ has matrix (a′ij) which is the

direct sum of a11 with a block diagonal matrix 1
a11
C, cij = a11aij−aiia1j . In other

words, q′(t) = a11t
2
1 + q2(t2, . . . , tn), with disc q2 = 1

an−1
11

detC. Since detAϕ = 1,

disc q′ = disc q = a2−n
11 detC, we have detC = an−2

11 disc q.
Write w =

∑
j λjej ∈ Zn. Since for j > 1, ej = e′j +

a1j

a11
e1, we have

w =

(
λ1 +

a12

a11
λ2 + . . .+

a1n

a11
λn

)
e1 + λ2e

′
2 + . . .+ λne

′
n = γe1 + z,

say. Suppose z is a minimal vector for q2. By induction, we find

|q(z)| = |q2(λ2, . . . , λn)| ≤
(

4

3

)n−2
2

| 1

a11
|| detC|

1
n−1 =

(
4

3

)n−2
2

|a11|
−1
n−1 |disc q|

1
n−1 .

Having chosen λ2, . . . , λn ∈ Z to make z minimal, choose λ1 ∈ Z so |γ| ≤ 1
2 . Then

m(q) = |a11| ≤ |q(w)| ≤ γ2a11 + q(z)

≤ |a11|
4

+

(
4

3

)n−2
2

|a11|
−1
n−1 |disc q|

1
n−1 ,

so

|a11|
n

n−1 ≤ |a11|
n

n−1

4
+

(
4

3

)n−2
2

|disc q|
1

n−1 .

Thus

|a11|
n

n−1 ≤
(

4

3

)n
2

|disc q|
1

n−1

and finally

|a11| ≤
(

4

3

)n−1
2

|disc q| 1n .

�

Restricting to positive definite forms, Theorem 10.1 yields the upper bound

γn ≤ Hn =

(
4

3

)n−1
2

.

Explicitly,

γ2 ≤ H2 =

√
4

3
= 1.1547 . . .

γ3 ≤ H3 = 4/3 = 1.333 . . .

γ4 ≤ H4 = (4/3)3/2 = 1.5396 . . .

γ5 ≤ H5 =
16

9
= 1.777 . . .

γ6 ≤ H6 = (4/3)5/2 = 2.0528 . . .
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γ7 ≤ H7 =
64

27
= 2.37037 . . .

γ8 ≤ H8 = (4/3)7/2 = 2.73706794 . . .

γ9 ≤ H9 =
256

81
= 3.16049382716 . . .

γ10 ≤ H10 = (4/3)9/2 = 3.6494239 . . .

Exercise:
a) By comparing the tables of values for Mn and Hn, check that Hn < Mn for
2 ≤ n ≤ 8, and Hn > Mn for n = 9, 10.
b) Show that Hn > Mn for all n ≥ 9.

10.2. The Known Hermite Constants.

There are precisely nine positive integers n for which the exact value of γn is
known, including γ1 = 1. In the following result, when extremal forms are asserted
to be unique, this means that they are unique up to H-equivalence (what else?).

Theorem 10.2. (The Known Hermite Constants)

a) (Lagrange) γ2 =
√

4
3 = 1.1547 . . . There is a unique extremal form,

q2(x, y) = x2 + xy + y2.

b) (Gauss) γ3 = 2
1
3 = 1.25992 . . . There is a unique extremal form,

q3(x, y, z) = x2 + y2 + z2 + xy + xz + yz.

c) (Korkine-Zolotarev) γ4 =
√

2 = 1.4142 . . . There is a unique extremal form,

q4(x, y, z, w) = x2 + y2 + z2 + w2 + xz + xw + yz + yw + zw.

d) (Korkine-Zolotarev) γ5 = 81/5 = 1.5157 . . .. There is a unique extremal form,

q5 = . . . .

e) (Blichfeldt) γ6 = ( 64
3 )

1
6 = 1.665366 . . .. There is a unique extremal form,

q6 = . . . .

f) (Blichfeldt) γ7 = (64)
1
7 = 1.811447 . . .. There is a unique extremal form,

q7 = . . . .

g) (Blichfeldt) γ8 = 2. There is a unique extremal form,

q8 = . . . .

h) (Cohn-Kumar) γ24 = 4. There is a unique extremal form, the Leech lattice.

Theorem 10.3. We have:
a) (Classical) γ1,1 = 2√

5
.

b) (Davenport) γ1,2 = γ2,1 = ( 2
3 )

1
3 .

c) (Oppenheim)γ2,2 = ( 2
3 )

1
2 , γ3,1 = γ1,3 = ( 4

7 )
1
4 .

d) (Margulis) If r, s ≥ 1 and r + s ≥ 5, then γr,s = 0.
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10.3. Mordell’s Inequality.

In [Mo44], Mordell introduced a clever dual lattice technique that gives upper
bounds on Hermite constants in the definite case. His method was refined by Op-
penhiem [Op46] and applied to all quadratic forms by Cassels.

Theorem 10.4. a) (Mordell) For all n ≥ 2, we have

(21) γn ≤ γ
n−1
n−2

n−1 .

b) (Cassels) For r, s ∈ Z+, we have

(22) Γr+s−2
r,s ≥ min Γr+sr−1,s,Γ

r+s
r,s−1.

Proof. a) (Oppenheim [Op46]) It will be easier to compute with the quantity

Ln = γnn . Note that Ln = supf
m(f)n

disc f as f ranges over all positive definite real

n-ary quadratic forms. Since this quantity is scale invariant, we may restrict to
forms f with disc f = 1, and then Ln = supf m(f)n.

Let Mf be the defining symmetric matrix of f . Then its inverse matrix is also
symmetric and positive definite and hence is the defining matrix of a quadratic
form F , which we call the adjugate form of F . This process of taking adjugates
gives an involution on the space of all positive definite n-ary quadratic forms: the
adjugate of F is clearly f . Moreover, if f and g are GLn(Z)-equivalent, so are F
and G, and conversely.

By Hermite’s Lemma, f is GLn(Z)-equivalent to a form g such that b11 =
g(e1) = m(g) = m(f). Let G be the adjugate form of g, and let G′(t2, . . . , tn) =
G(0, t2, . . . , tn). Then G′ is an (n− 1)-ary positive definite form with discG′ = b11.
(This follows from the interpretation of the adjugate as a matrix of cofactors to-
gether with the fact that adj adjA = A since detA = 1.) Now

m(F ) = m(G) ≤ m(G′) ≤ γn−1(discG′)
1

n−1 ,

so

m(F )n−1 ≤ Ln−1b11 = Ln−1m(f).

Applying this result with (F, f) in place of (f, F ) gives

m(f)n−1 ≤ Ln−1m(F ).

Combining these last two inequalities gives

m(F )(n−1)2

≤ Ln−1
n−1m(f)n−1 ≤ Lnn−1m(F ),

so

M(F )(n−1)2−1 ≤ Lnn−1

and thus

m(F )n ≤
(
Lnn−1

) n
(n−1)2−1 = L

n
n−2

n−1 .

Since this holds for all F with discF = 1, we get

Ln ≤ L
n

n−2

n−1 ,

or equivalently

γn ≤ γ
n−1
n−2

n−1 .

b) For now, see [C, X.3.2]. �
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As Oppenheim notes in [Op46], given the finiteness of γ2 (whose easy proof was
given in Theorem 9.13 above), this argument in fact gives an inductive proof of the
finitness of γn for all n ≥ 3.

Comparing with the known Hermite constants of §8.3, we see that Mordell’s in-
equality is an equality in at least two cases:9

√
2 = γ4 ≤ γ

3
2
3 = (2

1
3 )

3
2 =
√

2,

2 = γ8 ≤ γ
7
6
7 = (64

1
7 )

7
6 = 2.

10.4. Computation of γ3 and γ4.

Here we will give Mordell’s elementary proof that γ3 = 2
1
3 [Mor48]. Then, by

Mordell’s Inequality (Theorem 10.4a)) we have γ4 ≤
√

2. Since for the form

q4(x, y, z, w) = . . . we have γ(q4) =
√

2, we deduce that γ4 =
√

2.

Theorem 10.5. (Gauss) Let q(x, y, z) be a positive definite real quadratic form.

Then γ(q) ≤ 2
1
3 , with equality iff q is H-equivalent to q3(x, y, z) = x2 + y2 + z2 +

xy + xz + yz.

Proof. ([Mor48]) Let q(x, y, z) be positive definite with minimum m(q) = 1. We
must show disc q ≥ 1

2 , with equality iff q is H-equivalent to q3.
• By Hermite’s Lemma (Lemma 1.16), by replacing q with an integrally equiva-

lent form we can assume that the minimum value of 1 is taken at (1, 0, 0) and thus
the coefficient of x2 is 1. We may then write q in the form

q = (x+ µy + νz)2 + by2 + 2fyz + cz2,

so disc q = bc − f2. Let m be the minimum of the positive definite binary form
q′(y, z) = by2 +fyz+cz2. Applying Lemma 9.12, after a SL2(Z) change of variables
we can put q′ in the form my2 + f ′yz + c′z2 with |f ′| ≤ m ≤ c′. By making the
GL2(Z) change of variables (y, z) 7→ (−y, z) if necessary, we may thus assume that
(in our original notation) 0 ≤ 2f ≤ b ≤ c.
• By making a substitution

x = x′ + py + qz, p, q ∈ Z,
we may – and shall – assume that |µ|, |ν| ≤ 1

2 .
• We record some inequalities obtained by plugging in particular values and using
that q is positive definite with minimum 1. Namely, plugging in

(x, y, z) = (0, 1, 0), (0, 0, 1), (ε, 1,−1) for ε ∈ Z,
we get

b+ µ2 ≥ 1,

c+ ν2 ≥ 1,

b+ c− 2f + (ε+ µ− ν)2 ≥ 1.

• Put b = β + f , c = γ + f , so that the following inequalities hold:

β, γ, f ≥ 0,

|µ|, |ν| ≤ 1

2
,

9So far as I know, whether there are any further instances of equality is an open question.
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β + f + µ2, γ + f + ν2 ≥ 1,

β + γ + (ε+ µ− ν)2 ≥ 1.

We must show

disc q = bc− f2 = (β + f)(γ + f)− f2 = βγ + f(β + γ) ≥ 1

2
.

Fix ε ∈ {−1, 0, 1} such that |ε+ µ− ν| ≤ 1
2 . Then

β + γ ≥ 1− (ε+ µ− ν)2 ≥ 3

4
.

Case 1: Suppose that either f + µ2 ≥ 1 or f + ν2 ≥ 1. Then f ≥ 3
4 , so

disc q ≥ f(β + γ) ≥ 9

16
>

1

2
.

Case 2: Suppose that f + µ2, f + ν2 < 1, so that 1 − f − µ2, 1 − f − ν2 > 0. It
follows that

βγ ≥ (1− f − µ2)(1− f − ν2),

so

disc q ≥ βγ + f(β + γ) ≥ (1− f − µ2)(1− f − ν2) +
(
1− (ε+ µ− ν)2

)
f.

Taking ε = 0, we get

disc q ≥ (1− f − µ2)(1− f − ν2) + f(1− (µ− ν)2)

= (1− µ2)(1− ν2) + f(−1 + 2µν) + f2

(1− µ2)(1− ν2)− (µν − 1

2
)2 + (f + µν − 1

2
)2

=
3

4
− µ2 − ν2 + µν + (f + µν − 1

2
)2 ≥ 3

4
− ν2 − v2 + µν.

Case 2a: Suppose µν ≥ 0. Then after replacing x by −x if necessary, we may
assume µ, ν ≥ 0, and then

µ2 + ν2 − µν = µ2 − ν(µ− ν) = ν2 − µ(ν − µ) ≤ 1

4
.

It follows that disc q ≥ 1
2 . Further, if equality holds then

µν(µ− ν) = f + µν − 1

2
= (µ− 1

2
)(ν − 1

2
) = 0.

These imply that (µ, nu) ∈ {(1/2, 1/2), (1/2, 0), (0, 1/2)}.
• If µν 6= 0, then µ = ν = 1

2 , f = 1
4 , β = 1− f − µ2 = 1

2 = γ, b = c = 3
4 , so

q = (x+
1

2
y +

1

2
z)2 +

3

4
y2 +

1

2
yz +

3

4
z2 = x2 + y2 + z2 + xy + xz + yz = q3.

• If (µ, ν) = ( 1
2 , 0), then f = 1

2 , β = 1 − f − µ2 = 1
4 , γ = 1 − f − ν2 = 1

2 ,

b = β + f = 3
4 , c = γ + f = 1, so

q = (x+
1

2
y)2 +

3

4
y2 + yz + z2 = x2 + y2 + z2 + xy + yz.

The change of variables (x, y, z) = (X,Y + Z,−Z) takes us back to q3.
• If (µ, nu) = (0, 1

2 ), then interchanging y and z takes us back to the previous case.

Case 2b: Suppose µν < 0 and |µ− ν| ≤ 1
2 . Then we have

disc q ≥ 3

4
− ν2 − v2 + µν ≥ 3

4
− (µ− ν)2 ≥ 1

2
,
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and equality cannot arise since µ and ν have different signs. Case 2c: Suppose
µν < 0 and |µ − ν| > 1

2 , and thus that |µ| + |ν| > 1
2 . Taking ε to be −1 if µ > 0

and −1 if µ < 0, we get

disc q ≥ (1− µ2 − f)(1− ν2 − f) + (1− (1− |µ| − |ν|)2)f

= (1− µ2)(1− ν2) + (−2 + 2|µ|+ 2|ν| − 2|µ||ν|)f + f2

= (1− µ2)(1− ν2)− (1− |µ|2)(1− |ν|)2 + (f − (1− |µ|)(1− |ν|)2

≥ 2(1− |µ|)(1− |ν|)(|µ|+ |ν|).

Put

|µ| = 1

2
−m, |ν| = 1

2
− n,

so

0 ≤ m,n ≤ 1

2
, m+ n <

1

2
.

Then

disc q ≥ 2(
1

2
+m)(

1

2
+ n)(1−m− n)

≥ 1

2
(1 + 2m+ 2n)(1−m− n)

=
1

2
(1 + (m+ n)− 2(m+ n)2) ≥ 1

2
.

If equality holds then m = n = 0. Adjusting the sign on x so that µ > 0, this gives
µ = 1

2 , ν = −1
2 , f = 1

4 , β = γ = 1
2 , b = c = 3

4 , so

q = (x+
1

2
y − 1

2
z)2 +

3

4
y2 +

1

2
yz +

3

4
z2 = x2 + y2 + z2 + xy − xz,

The change of variables (x, y, z) = (−X,−Y, Z) gets us back to the form considered
in Case 2a, hence to the critical form q3. �

Theorem 10.6. We have γ4 =
√

2.

Proof. By Theorem 10.5, γ3 = 2
1
3 . By Mordell’s Inequality (Theorem 10.4), γ4 ≤

γ
3
2
3 =

√
2. On the other hand, the form

q4 = x2 + y2 + z2 + w2 + xz + xw + yz + yw + zw

has m(q4) = 1 and disc q4 = 1
4 hence

γ(q4) =
m(q4)

(disc q4)
1
4

=
√

2.

It follows that γ4 =
√

2. �

Remark 6. The form q4 is, up to H-equivalence, the unique extremal form, but
the approach we have taken does not yield this (as far as I can see).
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10.5. Computation of γ2,1 and γ2,2.

Theorem 10.7. Let q(x, y, z) ∈ R[x, y, z] be an indefinite nondegenerate ternary

quadratic form. Then γ(q) ≤
(

2
3

) 1
3 , with equality holding iff q is H-equivalent to

x2
1 + x1x2 − x2

2 − x2x3 + x2
3. In particular, γ2,1 =

(
2
3

) 1
3 .

Proof. See [C, pp. 45-51]. �

Corollary 10.8. We have Γ2,2 = 3
2 and thus γ2,2 =

√
2
3 .

Proof. Combining Theorem 10.4b) and Theorem 10.7 we get

Γ2
2,2 ≥ min Γ4

1,2,Γ
4
2,1 = (

3

2
)2,

so Γ2,2 ≥ 3
2 and γ2,2 ≤

√
2
3 . On the other hand, the form

q = x2
1 + 2x1x2 − x2

2 − x2
3 − x2

4 + 2x1x3 + x1x4 + x2x4 + x3x4

is anisotropic of discriminant 9
4 , so γ(q) ≥ ( 9

4 )
−1
4 =

√
2
3 . �

11. Applications of GoN: Algebraic Number Theory

11.1. Basic Setup.

Let K be a number field of degree n, that is a field extension of Q which is n-
dimensional as a Q-vector space. Let ZK be the ring of integers of K, i.e., the
set of all elements of K satisfying a monic polynomial with integer coefficients. In
other words, ZK is the integral closure of Z in the finite dimensional field extension,
and thus by [CA, §18.1] ZK is a Dedekind domain: a Noetherian domain in which
every nonzero prime ideal is maximal. Because K/Q is separable, ZK is a finitely
generated torsionfree Z-module; since Z is a PID, ZK is therefore isomorphic as
a Z-module to Zn. A choice of x1, . . . , xn ∈ ZK generating ZK as a Z-module is
called an integral basis.

Given an n-tuple x1, . . . , xn of elements ofK, we define the discriminantD(x1, . . . , xn)
as the determinant of the n×nmatrix with (i, j) entry TrK/Q(xixj). If (x1, . . . , xn) ∈
ZK , then D(x1, . . . , xn) ∈ Z. Further, the discriminant scales under a linear change
of variables as follows: if (y1, . . . , yn)T = A(x1, . . . , xn)T for A ∈Mn(K), then

D(y1, . . . , yn) = (detA)2D(x1, . . . , xn).

Since any two integral bases of ZK are related via A ∈ GLn(Z), this shows that
any two integral bases have the same discriminant: we define this common value
(an integer) to be the discriminant d(K) of K.

Further, if σ1, . . . , σn are the n field homomorphisms from K ↪→ C, then for
x1, . . . , xn ∈ K,

D(x1, . . . , xn) = det(σi(xj))
2.

From this and Dedekind’s linear independence of characters we get d(K) 6= 0.
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11.2. The Lattice Associated to an Ideal.

Let K/Q be a number field of degree n. Concretely, K ∼= Q[t]/(P (t)), where P (t)
is an irreducible polynomial. It has r real roots and s pairs of complex roots, say,
with r + 2s = n. Let us organize the corresponding field embeddings: σ1, . . . , σr
will be the real ones, and σr+1, . . . , σr+s will be pairwise nonconjugate complex
embeddings. Define

σ : K → Rr × Cs, x 7→ (σ1(x), . . . , σr+s(x)),

the canonical embedding. Since r + 2s = n, we may identify Rr × Cs with Rn.

Proposition 11.1. a) Let M ⊂ K be a free Z-submodule with basis x1, . . . , xn.
Then σ(M) is a lattice in Rn, with covolume

CovolM = 2−s| det
1≤i,j≤n

σi(xj)|.

b) Let a be a nonzero integral ideal of ZK . Then σ(a) is a lattice, with covolume

Covol a = 2−s
√
|d(K)||a|

Proof. a) The image of xi under σ with respect to the canonical basis of Rn is

vi = (σ1(xi), . . . , σr(xi),<σr+1(xi),=σr+1(xi), . . . ,<σr+s(xi),=σr+s(xi)).

Clearly then σ(M) = 〈v1, . . . , vn〉. To check that σ(M) is a lattice we need to show
that v1, . . . , vn are R-linearly independent, and to compute the volume we need to
compute the absolute value of the determinant of the matrix whose ith column is
vi. Thus the second task will imply the first as long as we get a nonzero volume.
In fact it is easy to see that the determinant of the matrix is (2i)−s det(σj(xi)),
which has absolute value 2−s|detσi(xj)|. Since x1, . . . , xn form a K-base over Q,
the determinant is nonzero.
b) If we chose M = ZK , then since (detσi(xj))

2 = d(K), the result follows in this
case. In general, if a is an ideal of R, then |a| = #ZK/a. Thus σ(a) is an index |a|
sublattice of σ(ZK), hence Covolσ(a) = |a|Covolσ(ZK). The result follows. �

11.3. A Standard Volume Calculation.

Proposition 11.2. Let r, s ∈ N, n = r + 2s, t ∈ R, and let

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑
i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Then for all t ≥ 0,

VolBt = 2r
(π

2

)s tn
n!
.

Proof. . . . �

As long as we are hiding – I mean, keeping – our volume calculations in a separate
section, here is one more.

Proposition 11.3. Let r, s ∈ N, n = r + 2s, d ∈ R. In Rr × Cs ∼= Rn, consider
the following set:

• If r > 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ Rn such that |y1| ≤ 2n−1
(
π
2

)−s√|d|,
|yi| ≤ 1

2 for 2 ≤ i ≤ r, and |zj | ≤ 1
2 for 1 ≤ j ≤ s.
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• if r = 0, B = (y1, . . . , yr, z1, . . . , zs) ∈ Rn such that |z1 − z1| ≤ 2n
(
π
2

)1−s√|d|,
|z1 + z1| ≤ 1

2 and |zj | ≤ 1
2 for 2 ≤ j ≤ s. Then

VolB = 2n−s
√
|d|.

Exercise: Prove Proposition 11.3.

11.4. Finiteness of the Class Group.

For a number field K of degree n = r + 2s, we define the Minkowski constant

M(K) =

(
4

π

)s
n!

nn
|d(K)| 12 .

Theorem 11.4. Let a be a nonzero integral ideal of ZK . Then a contains a nonzero
element x such that

|NK/Q(x)| ≤M(K)N(a).

Proof. Let σ : K → Rr × Cs be the canonical embedding. Let t ∈ R>0, and as in
Proposition 11.2 put

Bt = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑
i=1

|yi|+ 2

s∑
j=1

|zj | ≤ t}.

Bt is a compact, symmetric convex body. Choose t such that

2r
(π

2

)s tn
n!

= VolBt = 2n Covol a = 2n2−s
√
|d(K)|N(a),

i.e., such that

tn = 2n−rπ−sn!
√
|d(K)|N(a).

By Minkowski’s Convex Body Theorem, there is x ∈ a• such that σ(x) ∈ Bt, so

|NK/Q(x)| =
r∏
i=1

|σi(x)|
r+s∏
j=r+1

|σj(x)|2 ≤

 1

n

r∑
i=1

|σi(x)|+ 2

n

r+s∑
j=r+1

|σj(x)|

n

≤ tn

nn

=

(
4

π

)s
n!

nn

√
|d(K)|N(a) = M(K)N(a);

the first inequality uses the AGM Inequality and the second the definition of Bt. �

Lemma 11.5. Let K be a number field of degree n, and let r ∈ Z+. Then

#{a ∈ FracZK | a ⊃ ZK , [a : ZK ] = r} ≤ 2r
n

<∞.

Proof. If a ⊃ ZK and [a : ZK ] = r, then ra ⊂ ZK and thus

ZK ⊂ a ⊂ 1

r
ZK .

Since
1
rZK

ZK

∼= (Z/rZ)n, there are at most as many choices of a as there are subsets

of an rn-element set (of course this is a ridiculously crude upper bound). �

Corollary 11.6. Let K be a number field. There is a finite set I1, . . . , Ic of frac-
tional ideals of ZK such that: for every nonzero ideal a of ZK , there is 1 ≤ i ≤ c
and α ∈ K× such that a = αIi.
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Proof. Let a be a nonzero ideal of ZK . By Theorem 11.4, there is a nonzero element
α ∈ a such that

[ZK : αZK ] = |NK/Q(α)| ≤M(K)N(a) = M(K)[ZK : a],

and thus we have [
1

α
a : ZK

]
= [a : αZK ] ≤M(K).

By Lemma 11.5, the set of fractional ideals containing ZK with index at most M(K)
is finite, and we are done. �

11.5. Non-maximal orders.

Let K be a degree n number field. An order in K is a subring O of K for which
there exists a Z-basis x1, . . . , xn for O which is also a Q-basis for K.

The most important example of an order is the ring of integers ZK . In fact this is
the unique maximal order: that is, every order O is contained in ZK , necessarily
(just by virtue of its Z-module structure) of some finite index f . We omit the de-
tailed proof, but here is the basic idea: since O is finitely generated as a Z-module,
every element satisfies a monic polynomial with Z-coefficients, i.e., is integral over
Z. But ZK is nothing else than the set of all elements of K which are integral over Z.

The maximal order ZK has an important property that any non-maximal order
lacks: it is integrally closed in K and thus is a Dedekind domain. Dedekind
domains are characterized among all integral domains by the following fact: for
every nonzero fractional ideal a, there is a fractional ideal b such that ab = ZK : in
other words, FracZK forms a group under multiplication. Letting PrinZK denote
the subgroup of principal fractional ideals αZK , we may form the quotient

PicZK = FracZK/PrinZK ,

the ideal class group of ZK .

Exercise: Show that an equivalent restatement of Corollary 11.6 is that for any
number field K, PicZK is a finite abelian group.

Now we consider the case of a non-maximal order O. In this case FracO is a
monoid under multiplication which is not a group: some elements have no inverse.
We may still consider the quotient

C(O) = FracO/PrinO

of fractional ideals modulo principal ideals, the ideal class monoid of O. Every
element of C(O) is represented by a nonzero integral ideal a of R and two ideals
a, b determine the same element of C(O) iff there are nonzero elements α, β ∈ R
such that αa = βb.

Here is the point: we claim that the proofs of the previous section have been
crafted so as to be easily modified to establish the following result.

Theorem 11.7. For any order O in a number field K, C(O) is finite.
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Exercise: Let O be an order in a number field K, and put f = [ZK : O].
a) Show that for any nonzero ideal a of O, σ(a) is a lattice in Rn of covolume

2−sf
√
|d(K)|[O : a].

b) Show that for any nonzero ideal a, ∃ α ∈ a• with |NK/Q(x)| ≤ fM(K)[O : a].
c) Prove Theorem 11.7.

Remark: For an arbitrary order O, there is still a Picard group PicO: it is the
group of units of the monoid C(O). In other words, to form PicO we consider only
invertible fractional ideals (which, tautologically, form a group under multiplica-
tion) and quotient out by the subgroup of principal ideals. Because PicO ⊂ C(O),
we immediately deduce the following result.

Corollary 11.8. For any order O in a number field, PicO is a finite abelian group.

One of the most important and deep problems in algebraic number theory is to
understand the structure of the finite abelian group PicZK as K ranges over all
number fields. One might think then that the study of Picard groups of nonmaximal
orders O ⊂ ZK would be even worse, but in fact there is a natural surjection
PicO → PicZK with an explicitly understood kernel.

11.6. Other Finiteness Theorems.

Theorem 11.9. (Hermite-Minkowski) Let K be a number field of degree n ≥ 2.

a) We have |d(K)| ≥ π
3

(
3π
4

)n−1
.

b) In particular |d(K)| > 1.

Proof. a) By Corollary 11.6, there is a nonzero integral ideal b with

1 ≤ N(b) ≤M(K) =

(
4

π

)s
n!

nn
|d(K)| 12 .

Thus

|d(K)| ≥
(π

4

)2s n2n

(n!)2
≥
(π

4

)n n2n

(n!)2
= an,

say. Note a2 = π2

4 and an+1

an
= π

4 (1 + 1
n )2n ≥ 3π

4 by the binomial theorem. Thus
for n ≥ 2,

|d(K)| ≥ π2

4

(
3π

4

)n−2

=
π

3

(
3π

4

)n−1

.

b) If n ≥ 2, |d(K)| ≥ π
3 ·

3π
4 = π2

4 > 1. �

Remark: Actually the proof shows that if n > 1, |d(K)| > 2! Perhaps this re-
sult is not more widely advertised because of a theorem of Stickelberger that the
discriminant of any number field must be congruent to 0 or 1 modulo 4.

Theorem 11.10. (Hermite) There are up to isomorphism only finitely many num-
ber fields with a given discriminant d ∈ Z.

Proof. By Theorem 11.9, it suffices to show that for any fixed r, s ∈ N, there
are only finitely many number fields with r real places, s complex places, degree
n = r+ 2s and discriminant d. Let B ⊂ Rr ×Cs be as defined in Proposition 11.3.
B is compact, convex and centrally symmetric, with VolB = 2n−s|

√
d|. Applying

Proposition 11.1 with a = ZK and Minkowski’s Convex Body Theorem, we get
x ∈ Z•K such that σ(x) ∈ B. We claim x is a primitive element of K, i.e., K = Q(x).
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Suppose first that r > 0, so |σi(x)| ≤ 1
2 for i 6= 1. Since |N(x)| =

∏n
i=1 |σi(x)| ∈ Z+,

we have |σ1(x)| 6= 1 and thus σ1(x) 6= σi(x) for some i > 1. It follows that x is

primitive. Similarly, if r = 0, then |σ1(x)| = |σ1(x)| ≥ 1, so σ1(x) 6= σj(x) when
σj 6= σ1, σ1. It follows that the real part of σ1(x) is at most 1

4 in absolute value.

Since |σ1(x)| ≥ 1, this implies σ1(x) is not real, and thus σ1(x) 6= σ1(x) and thus x
is primitive.

The inequalities defining B show that all the conjugates σi(x) are bounded, hence
coefficients of the minimal polynomial of x, being elementary symmetric functions
in the σi(x)’s, are also bounded, and this gives finitely many choices for x and thus
finitely many choices for K. �

11.7. The Dirichlet Unit Theorem.

Let K be a number field. We wish to study the structure of the unit group Z×K .

Lemma 11.11. For x ∈ ZK , the following are equivalent:
(i) x ∈ Z×K .
(ii) |N(x)| = 1.

Proof. If x ∈ Z×K , there is y ∈ Z×K such that xy = 1, and then 1 = |N(1)| =
|N(xy)| = |N(x)|N(y)|. Since |N(x)|, |N(y)| ∈ Z+, this forces |N(x)| = 1. Con-
versely, if |N(x)| = 1, the minimal polynomial of x over Q is xn+an−1x

n−1 + . . .+
a1x± 1 = 0, so x · (xn−1 + an−1x

n−2 + . . .+ a1) = ±1, so x ∈ Z×K . �

Theorem 11.12. Let K be a number field of degree n = r + 2s. Then Z×K is a
finitely generated abelian group, with free rank r + s − 1 and torsion subgroup the
group µ(K) of roots of unity in K.

Proof. Step 0: We define a homomorphism L : Z×K → Rr1+r2 , a variant of the
canonical embedding:

L : x 7→ (log |σ1(x)|, . . . , log |σr+s(x)|).

Step 1: We claim that for any compact subset B ⊂ Rr1+r2 , B′ = L−1(B) is finite.
Because B is bounded, there is α > 1 such that for all x ∈ B′, 1

α ≤ |σi(x)| ≤ α.
From this it follows that the elementary symmetric functions of the σi(x)’s are
bounded; because they take integer values, their values are therefore restricted to
lie in a finite set. It follows that there are only finitely many possible characteristic
polynomials for x ∈ B′ and hence only finitely many possible values for such x.
Step 2: It follows from Step 1 that L−1(0) = KerL is finite. In particular, each
element of KerL has finite order, i.e., is a root of unity. Conversely, every root of
unity in K is a unit of ZK lying in the kernel of L, so KerL = µ(K), a finite group.
Step 3: It also follows from Step 1 that L(Z×K) is a discrete subgroup of Rr+s, hence

free abelian of rank at most r+ s. Moreover, for x ∈ Z×K , by Lemma 11.11 we have

±1 = N(x) =

n∏
i=1

σi(x) =

r∏
i=1

σi(x)

r+s∏
j=r+1

σj(x)σj(x),

hence L(x) lies in the hyperplane

W :

r∑
i=1

yi + 2

r+s∑
j=r+1

= 0.



64 PETE L. CLARK

Thus L(Z×K) ⊂W ∼= Rr+s−1, so is free abelian of rank at most r + s− 1.

Step 4: The last, most delicate part of the argument, is to show that L(Z×K) has
rank r + s − 1. We show this by a duality argument: for any nonzero linear form
f : W → R, we claim there exists u ∈ Z×K such that W (L(u)) 6= 0. Notice that this

shows that 〈L(Z×K)〉R = W , which implies L(Z×K) ∼= Zr+s−1.
Put N = r+ s− 1. The projection of W onto RN is an isomorphism, so we may

write, for any y = (y1, . . . , yN+1) ∈W ,

f(y) = c1y1 + . . .+ cNyN , ci ∈ R.

Fix a real number α ≥ 2n
(

1
2π

)s√|d(K)|. For any λ = (λ1, . . . , λN ) with λi > 0
for all i, take λN+1 > 0 such that

r∏
i=1

λi

r+s∏
j=r+1

λ2
j = α.

In Rr × Cs, the set B of elements (y1, . . . , yr, z1, . . . , zs) with |yi| ≤ λi and |zj | ≤
λr+j is a compact, symmetric convex set of volume

r∏
i=1

2λi

r+s∏
j=r+1

πλ2
j = 2rπsα ≥ 2n−s|

√
d(K)|.

By MCBT and Proposition 11.1 there is xλ ∈ Z•K such that σ(xλ) ∈ B. Thus
|σi(xλ)| ≤ λi for all i (for j ≥ s+ 1, we put λj = λj−s). Thus

1 ≤ |N(xλ)| =
n∏
i=1

|σi(xλ)| ≤
r∏
i=1

λi

r+s∏
j=r+1

λ2
j = α.

Moreover, for all 1 ≤ i ≤ n,

|σi(xλ)| = |N(xλ|
∏
j 6=i

|σj(xλ)|−1 ≥
∏
j 6=i

λ−1
j = λiα

−1

so

λiα
−1 ≤ |σi(xλ)| ≤ λi,

hence

0 ≤ log λi − log |σi(xλ)| ≤ logα.

Applying the linear form f we get

|f(L(xλ))−
N∑
i=1

ci log λi| ≤

(
N∑
i=1

|ci|

)
logα = γ,

say. Let β > γ be a constant, and for each h ∈ Z+, choose positive real numbers

λ1,h, . . . , λN,h such that
∑N
i=1 ci log λi,h = 2βh. Put λ(h) = (λ1,h, . . . , λN,h) and

let xh = xλ(h) be the corresponding element of Z•K . Then |f(L(xh))− 2βh| < β, so

(2h− 1)β < f(L(xh)) < (2h+ 1)β.

It follows that the f(L(xh)) are all distinct. But since |N(xh)| ≤ α, there are only
finitely many principal ideals xhZK , so there exists h 6= h′ with (xh) = (xh′) and
thus xh = uxh′ with u ∈ Z×K . Thus f(L(u)) = f(L(xh))− f(L(xh′)) 6= 0. �
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11.8. The Lattice Associated to an S-Integer Ring.

Let K be a number field, and let S be a finite set of places of K containing all
the Archimedean places. We write ΣK for the set of all places of K, ΣK,f =
MaxSpecZK for the set of all finite places, Σ∞K for the set of all infinite places, and
Sf for the set of finite places in S. Let ZK,S denote the ring of S-integers of K,
i.e., the set of all elements x ∈ K such that |x|v ≤ 1 for all v /∈ S. Most of the basic
finiteness theorems of algebraic number theory are classically stated in terms of the
rings ZK but can be extended to the rings ZK,S . In fact, doing so is a matter of
pure commutative algebra. For instance:

• Because PicZK is finite and ZK,S is a ring intermediate between ZK and its
fraction field K – an overring – PicZK,S is also finite. More precisely,

PicZK,S = PicZK/〈[pv] | v ∈ Sf 〉.

• Because Z×K is finitely generated and S is finite, Z×K,S is finitely generated. Because
PicZK is torsion, we can be more precise:

Z×K,S ∼= Z×K ⊕ Z#Sf .

Nevertheless, for certain nefarious purposes (not yet attained in these notes) it is
desirable to extend the lattice perspective to rings of S-integers ZK,S . At first
glance this seems unlikely: consider the simplest nontrivial case, Z[ 1

p ] for some

prime p. The additive group of this ring is not finitely generated, so it cannot be
realized as a full lattice in any Euclidean space.

However, a more ambitious approach does work: namely, each ring ZK,S can be
naturally embedded in a locally compact topological ring in such a way that it is
discrete and with compact quotient.

Coming back to our simple example Z[ 1
p ], we need a ring in which the sequence

1
pn does not converge to 0. For those who know about p-adic numbers – and those

who do not may as well stop reading this section here: fair warning! – the natural
choice to solve that problem is Qp. However, it is still not the case that Z[ 1

p ] is

discrete in Qp because even its subring Z is not discrete in Qp: if so it would be
closed, but its closure is Zp. A little thought shows that the desired embedding is

∆ : Z[
1

p
] ↪→ Qp × R, x 7→ (x, x).

Indeed, if we take on Qp × R the metric which is the maximum of the standard
metric on R and the standard (p-adic) metric on Qp, then B(0, 1) ∩∆(Z[ 1

p ]) = 0.

It is also easy to see that every element of the quotient (Qp × R)/∆(Z[ 1
p ]) has a

representative in Zp × [0, 1], hence the quotient is compact. Thus it is reasonable
to view ∆(Z[ 1

p ]) as a lattice in the locally compact group Qp × R.

We now return to the general case of ZK,S . This time there is a natural diago-
nal embedding

∆ : ZK,S ↪→ KS :=
∏
v∈S

Kv.
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We claim that the image is discrete and the quotient KS/∆(ZK,S) is compact. We
will show this following some notes of B. Conrad.

Lemma 11.13. Let K ′/K be a finite extension of number fields, and let S be a
finite set with Σ∞K ⊂ S ⊂ ΣK . Let S′ be the set of places of K ′ lying over some
place of S. Then the integral closure of ZK,S in K ′ is ZK′,S′ .

Proof. By [CA, Cor. 22.6], we may write ZK,S = ZK [ 1
a ] for some a ∈ Z•K , and we

are reduced to showing that the integral closure of ZK [ 1
a ] in K ′ is ZK′ [ 1

a ]. This
holds because integral closure commutes with localization [CA, Thm. 14.9]. �

Lemma 11.14. Let G1, G2 be topological groups, with G1 Hausdorff and G2 quasi-
compact. Let Γ be a discrete subgroup of G1×G2 such that π1 : Γ→ G1 is injective.
Then π1(Γ) is discrete in G1.

Proof. If π1(Γ) is not discrete in G1, there is a net x• : I → π1(Γ) \ e1 such that
π1(x•)→ e1. Now consider the net π2(x•) in G2: since G2 is quasi-compact, after
passing to a subnet (we will not change the notation) we get π2(x•) → g2 ∈ G2.
But then it follows that x• → (e1, g2). Since Γ is discrete in G1×G2, this net must
be ultimately constant, and hence its image in G1 is ultimately constant. Since
G1 is Hausdorff, the unique limit of the net π(x•) is the eventually constant value
which lies in π1(Γ) \ e1: contradiction. �

Theorem 11.15. Let K be a number field, S a finite set of places of K containing
all Archimedean places. Then the diagonal embedding

∆ : ZK,S → KS :=
∏
v∈S

Kv

has discrete and cocompact image.

Proof. Step 1: Let S′ ⊃ S be a finite subset of ΣK . We show that if ∆(ZK,S′) is
discrete and cocompact in KS′ then ∆(ZK,S) is discrete and compact in KS .

�

The locally compact group KS carries a Haar measure, which we can take as the
product of the Haar measures on the factors, and normalize the Haar measure on
each non-Archimedean Kv by taking the one which gives the valuation ring unit
measure.

Exercise: Compute the covolume of ∆(ZK,S) in KS .

12. Applications of GoN: Linear Forms

12.1. Vinogradov’s Lemma.

Here is an elementary but ridiculously useful result, apparently first proved by
I.M. Vinogradov [Vi27] (and later, presumably independently, by A. Scholz [Sc39]).

Theorem 12.1. (Vinogradov’s Lemma) Let a, b, n ∈ Z+ with n > 1 and gcd(ab, n) =
1, and let α ∈ R>0. There are integers x, y, not both zero, such that:
(i) ax ≡ by (mod n),
(ii) |x| < α, |y| ≤ n

α .
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Proof. Since gcd(a, n) = 1, there exists c ∈ Z with ac ≡ b (mod n). Now consider

the linear system with defining matrix C =

[
c n
1 0

]
. Note that |detC| = n.

Taking ε1 = α, ε2 = n
α , we have

|detC|(CovolZ2) = n = ε1ε2,

and thus by the Linear Forms Theorem, there exists (X,Y ) ∈ (Z2)• such that

|L1(X,Y )| = |cX + nY | ≤ α,

|L2(X,Y )| = |X| ≤ n

α
.

Put x = L1(X,Y ) = cX + nY , y = L2(X,Y ) = X, so (x, y) ∈ (Z2)•, |x| ≤ α,
|y| ≤ n

α and ax = a(cX + nY ) ≡ bX ≡ by (mod n). Thus x, y satisfy the desired
conclusion except that we currently have |x| ≤ α and we want |x| < α.
Step 2: If α 6∈ Z, then |x| ≤ α ⇐⇒ |x| < α, and we are done. If α ∈ Z, then
take 0 < ε < α and apply the result of Step 1 with α− ε in place of α: there exist
integers x and y, not both zero, so that |x| ≤ α − ε < α and |y| ≤ n

α−ε . But for

sufficiently small ε we have b n
α−εc = bnαc and thus |y| ≤ bnαc ≤

n
α . �

Remark: Actually it is possible to prove Vinogradov’s Lemma using less technology
than the Convex Body Theorem: in fact, the Pigeonhole Principle suffices!

Proof. It’s enough to reprove Step 1 above, since Step 2 is thoroughly elementary.
Step 1: Consider {S = (i, j) ∈ Z2 | 0 ≤ i ≤ bαc, 0 ≤ j ≤ bnαc}. Since #S =

(bαc + 1)
(
bnαc+ 1

)
> α · nα = n, by the Pigeonhole Principle there are distinct

elements (i1, j1), (i2, j2) ∈ S such that

ai1 − bj1 ≡ ai2 − bj2 (mod n).

Put x = i1 − i2, y = j1 − j2: (x, y) 6= (0, 0), ax ≡ by (mod n), |x| ≤ α,|y| ≤ n
α . �

Brauer and Reynolds give the following partial generalization of Vinogradov’s Lemma
to the number field case.

Theorem 12.2. Let K be an algebraic number field with integer ring ZK , and
let m be a nonzero ideal of ZK of norm t. Assume condition (BR): for all rational
integers n ∈ m, t < n2. Then: for α, β ∈ ZK , the congruence αx−βy ≡ 0 (mod m)
has a solution in rational integers x and y, not both in m, such that |x|, |y| ≤

√
t.

Proof. By hypothesis, the integers 0, 1, . . . , b
√
tc are pairwise incongruent modulo

m. Letting x and y run through these integers, we get (b
√
tc+1)2 > t ordered pairs,

hence there exist (x′, y′) 6= (x′′, y′′) such that αx′−βy′ ≡ αx′′−βy′′ (mod m). Put
x = x′ − x′′ and y = y′ − y′′. �

Remark: As remarked in [BR51], condition (BR) holds when m =
∏r
i=1 pi is a

product of prime ideals whose norms are distinct rational primes. It also holds
when the norm of each pi is either pi or p2

i (for distinct primes pi) as long as at
least one of the norms is prime.

I am not aware of any Diophantine applications of Theorem 12.2.
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12.2. Improvements on Vinogradov: Brauer-Reynolds and Cochrane.

In a classic 1951 paper, A. Brauer and R.L. Reynolds used pigeonholing arguments
to prove a substantial (and useful) generalization of Vinogradov’s Lemma.

Theorem 12.3. (Brauer-Reynolds [BR51]) Let m,n, d ∈ Z+ with d > 1, m < n,
and let λ1, . . . , λn ∈ R>0 be such that λi < d for all i and λ1 · · ·λn > dm. Then
for any matrix A = (aij) ∈ Mm,n(Z), the system Ax ≡ 0 (mod d) has a solution
x = (x1, . . . , xn) ∈ (Zn)• with |xi| < λi for all 1 ≤ i ≤ n.

Proof. For 1 ≤ i ≤ m, put yi = yi(x1, . . . , xn) =
∑n
j=1 aijxj . For x ∈ R, we

denote by x∗ the largest integer which is strictly smaller than x. For 1 ≤ j ≤ n,
letting each xj take integer values from 0 to λ∗j gives

∏n
j=1 λ

∗
j + 1 sets of n-tuples

(x1, . . . , xn). Since
∏n
j=1 λ

∗
j +1 ≥

∏n
j=1 λj > dm, by the Pigeonhole Principle there

are x′ = (x′1, . . . , x
′
n) 6= (x′′1 , . . . , x

′′
n) = x′′ such that for all 1 ≤ i ≤ m,

y′i = yi(x
′) = ai1x

′
1 + . . .+ ainx

′
n ≡ ai1x′′1 + . . .+ ainx

′′
n = yi(x

′′) = y′′i (mod d).

For 1 ≤ i ≤ n, put xj = x′j − x′′j , Then for 1 ≤ i ≤ m,

yi(x1, . . . , xn) = ai1(x′1 − x′′1) + . . .+ ain(x′n − x′′n) ≡ 0 (mod d).

Since for all 1 ≤ j ≤ n, x′j , x
′′
j both lie in [0, λ∗j ], |xj | = |x′j − x′′j | ≤ λ∗j < λj . �

Corollary 12.4. (Diagonal Case) Under the hypotheses of the theorem, the system
Ax ≡ 0 (mod d) has a solution x ∈ (Zn)• with |xi| ≤ d

m
n for all 1 ≤ i ≤ n.

In 1987, T. Cochrane gives a result which improves upon the corollary.

Theorem 12.5. (Cochrane [Co87]) Let d,m, n ∈ Z+ with m ≤ n, and let A ∈
Mm,n(Z) with rank r and invariant factors d1, . . . , dr. There is a nonzero solution
to the congruence Ax ≡ 0 (mod d) with

max |xi| ≤
d

r
n∏r

i=1 gcd(d, di)
1
n

.

12.2.1. An improvement of Stevens and Kuty.

Inspired by work of Mordell [Mo51], H. Stevens and L. Kuty [SK68] gave a modest
– but useful – improvement of the Brauer-Reynolds Theorem. We present their
results (in a slightly different, and very slightly stronger) form here.

Theorem 12.6. (Linear Pigeonhole Principle) Let G1 and G2 be groups (not nec-
essarily commutative, but written additively), and let Φ : G1 → G2 be a homomor-
phism. Let S ⊂ G1 be a nonempty subset, and let D(S) = {s1 − s2 | s1, s2 ∈ S} be
its difference set. If for a cardinal number κ we have

#S > κ ·#G2,

then there are at least κ nonzero elements of D(S) ∩Ker Φ.

Proof. If y ∈ G2 we had #(Φ−1(y) ∩ S) ≤ κ, then #S ≤ κ ·#G2, a contradiction.
So there is a subset S′ ⊂ S of cardinality greater than κ such that for all s1, s2 ∈ S′,
Φ(s1) = Φ(s2). Fix s0 ∈ S, and let S′ = S \{s0}, so #S′ ≥ κ. As s runs through S′

the elements s−s0 are distinct in G1 and such that Φ(s−s0) = Φ(s)−Φ(s0) = 0. �

For α ∈ R, we denote by α∗ the largest integer which is strictly less than α.



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 69

Theorem 12.7. Let m,n ∈ Z+, d1, . . . , dm ∈ Z•, ε1, . . . , εn ∈ R>0, and suppose

(23)

n∏
j=1

εj ≥
m∏
i=1

|di|.

Let A = (aij) ∈Mm,n(Z) and j0 ∈ {1, . . . , n}. There is (x1, . . . , xn) ∈ (Zn)• with
(i)
∑n
j=1 aijxj ≡ 0 (mod di) for 1 ≤ i ≤ m and

(ii) |xj0 | ≤ εj0 , and |xj | < εj for all j 6= j0.

Proof. LetG1 = Zn, G2 =
∏m
i=1 Z/diZ. Let α : Zn → Zm be given by (x1, . . . , xn) 7→

A(x1, . . . , xn)t, let β : Zm →
∏m
i=1 Z/diZ be the product of the quotient maps, and

let Φ = β ◦ α : G1 → G2. Let

S = Zn ∩

[0, εj0)×
∏
j 6=j0

[0, ε∗j )

 .

Then

#S = (bεj0c+ 1)
∏
j 6=j0

(εj + 1) >

s∏
j=1

εj ≥
m∏
i=1

di = 1 ·#G2,

so by Theorem 12.6 there are s1 6= s2 ∈ S with Φ(s1−s2) = 0. Take v = s1−s2. �

Theorem 12.8. Let m,n ∈ Z+, let d1, . . . , dm ∈ Fq[t]•, ε1, . . . , εn ∈ N, and suppose

(24)

n∑
j=1

εj ≥
m∑
i=1

deg di.

Let A = (aij) ∈Mm,n(Fq[t]). There is v = (x1, . . . , xn) ∈ (Fq[t]n)• such that
(i)
∑n
j=1 aijxj ≡ 0 (mod di) for 1 ≤ i ≤ m and

(ii) deg xj0 ≤ εj0 , deg xj < εj for all j 6= j0.

Proof. Let G1 = Fq[t]n, G2 =
∏m
i=1 Fq[t]/(di). Let α : Fq[t]n → Fq[t]m be given by

(x1, . . . , xn) 7→ A(x1, . . . , xn)t, let β : Fq[t]m →
∏m
i=1 Fq[t]/(di) be the product of

the quotient maps, and let Φ = β ◦ α : G1 → G2.
Let S be the subset of Fq[t]n of n-tuples of polynomials (x1, . . . , xn) such that
deg xj0 ≤ εj0 and deg xj ≤ εj for all j 6= j0. Then

#S = (qεj0 ) ·
∏
j 6=j0

qεj+1 = q

n∏
j=1

qεj >
∏

1≤j≤n

qεj = 1 ·#G2,

so by Theorem 12.6 there are s1 6= s2 ∈ S with Φ(s1−s2) = 0. Take v = s1−s2. �

12.3. A Number Field Analogue of Brauer-Reynolds.

The results of this section are (at most) small variants of those of [Co87].

Lemma 12.9. Let K be a number field, N ∈ Z+, Λ ⊂ ZNK a finite index subgroup.

Let λ1, . . . , λN be positive real numbers such that
∏N
i=1 λi > M(K)N [Rn : Λ]. Then

there exists x = (x1, . . . , xN ) ∈ Λ• such that |N(xi)| ≤ λi for 1 ≤ i ≤ N .

Proof. Recall the canonical embedding σ : K ↪→ Rn. Using this we define a canon-
ical embedding σ̂ : KN ↪→ RNn, (x1, . . . , xN ) 7→ (σ(x1), . . . , σ(xN )). Arguing
exactly as in the N = 1 case we see that σ̂(ZNK) is a lattice in RNn with covolume
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(2−s|
√
d(K)|)N and thus σ̂(Λ) is a lattice with covolume [ZNK : Λ](2−s|

√
d(K)|)N .

We define S1(λ) = S(λ1, . . . , λN ) ⊂ RNn as the set of all x ∈ RNn satisfying

|xi1| · · · |xir||x2
i(r+1) + x2

i(r+2)| · · · |x
2
i(n−1) + x2

in| ≤ λi

for 1 ≤ i ≤ N . By the AGM inequality, S1(λ) contains the symmetric compact
convex body S2(λ) defined by

|xi1|+ . . .+ |xir|+ 2|x2
i(r+1) + x2

i(r+2)|
1
2 + . . .+ 2|x2

i(n−1) + x2
in|

1
2 ≤ nλ

1
n
i

for all 1 ≤ i ≤ N . By Proposition 11.2,

VolS2(Λ) =

(
2r−sπs

nn

n!

)N
(λ1 · · ·λN ).

Applying Minkowski’s Convex Body Theorem, there is a nonzero point of Λ in
S2(λ) (hence also in S1(λ) if

Vol(S2(λ)) ≥ 2Nn Covol σ̂(Λ),

i.e., iff

(λ1 · · ·λN ) ≥MN
K [ZNK : Λ].

Since a point in S1(λ) satisfies |N(xi)| ≤ λi for all i, the result follows. �

Proposition 12.10. (Cochrane [Co87]) Let R be a Dedekind domain. Let U ∈
Mm,n(R) have rank r. For a nonzero ideal a of R, set

Λ = {x ∈ Rn | Ux ≡ 0 (mod a)}.

Then [Rn : Λ] ≤ (#R/a)r.

Proof. Since the rank of a matrix can be defined in terms of vanishing of determi-
nants of minors, when we reduce modulo a, the rank of U will still be at most r.
Since R is a Dedekind domain, R/a is a principal ring (not necessarily a domain,
but it’s okay!) and the linear system can be taken to be in Smith Normal Form
over R/a (without changing the kernel, up to R/a-module isomorphism). Thus we
have at most r equations of the form aixi = 0 in R/a. Each of these equations
corresponds to a subgroup of Rn of index at most #(R/a) so the conjunction of
them gives a subgroup of index at most #(R/a)r. �

Here is a variant of Cochrane’s result which is actually easier to prove.

Proposition 12.11. Let R be a Dedekind domain and U = (aij) ∈Mm,n(R). Let
a1, . . . , am be nonzero ideals of R, and let

Λ = {x ∈ Rn |∀1 ≤ i ≤ m,
n∑
j=1

aijxj ≡ 0 (mod ai)}.

Then

[Rn : Λ] ≤
m∏
i=1

#(R/ai).

Exercise: Prove Proposition 12.11.
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Theorem 12.12. Let K be a number field.
a) Let d be a nonzero ideal of ZK , and let U ∈Mm,n(ZK) with rank r over K. Let
λ1, . . . , λn > 0 satisfy λ1 · · ·λn > M(K)n|d|r. There is a nonzero solution to the
congruence Ux ≡ 0 (mod d) with |N(xi)| ≤ λi for all 1 ≤ i ≤ n.
b) Let a1, . . . , am be nonzero ideals of ZK . Let λ1, . . . , λn > 0 such that

n∏
i=1

λi > M(K)n
m∏
i=1

|ai|.

Then there is a nonzero x ∈ ZnK such that

n∑
j=1

aijxj ≡ 0 (mod aj) ∀1 ≤ i ≤ m

and

|N(xi)| ≤ λi ∀1 ≤ i ≤ n.

Proof. a) Combine Proposition 12.10 and Lemma 12.9.
b) Combine Proposition 12.11 and Lemma 12.9. �

13. Applications of GoN: Diophantine Approximation

13.1. Around Dirichlet’s Theorem.

Minkowski’s Theorem on Linear Forms is closely related to Diophantine Ap-
proximation. The following is the most basic result in this area.

Theorem 13.1. (Dirichlet) Let α ∈ R and Q ∈ Z+. There are p, q ∈ Z with
1 ≤ p ≤ Q such that |α− p

q | ≤
1

q(Q+1) .

Proof. Consider the pair of linear forms

L1(x1, x2) = x1 − αx2.

L2(x1, x2) = x2.

The corresponding matrix C has determinant 1. Let Λ = Z2. For any ε1, ε2 > 0
such that ε1ε2 ≥ 1, by Theorem 9.3 there are p, q ∈ Z, not both zero, such that

|p− αq| ≤ ε1, |q| ≤ ε2.

Note that for ε1 < 1 the above inequalities imply q 6= 0. Fix θ ∈ (0, 1) and take
ε1 = 1

Q+θ , ε2 = Q + θ. Then |p − αq| ≤ 1
Q+θ and |q| ≤ bQ + θc = Q. But there

are only finitely many (p, q) ∈ Z2 \ {0} satisfying |q| ≤ Q + 1, |p − αq| ≤ 1
Q , so

if the above inequalities hold for all θ < 1, there must exist (p, q) ∈ Z2 such that
|p− αq| ≤ 1

Q+1 , |q| ≤ Q. These p and q satisfy the conclusion of the theorem. �

Corollary 13.2. If α ∈ R \ Q, then for infinitely many nonzero integers y, there
exists an integer x such that

(25)

∣∣∣∣α− x

y

∣∣∣∣ < 1

y2
.



72 PETE L. CLARK

Exercise: a) Prove Corollary 13.2.
b) Show that conversely, if α ∈ Q, there are only finitely many nonzero integers y
for which there exists an integer x such that (25) holds.

It is well known that Dirichlet’s Theorem can be proven by a simple Pigeonhole
Principle argument (indeed, this seems to be the first use of the Pigeonhole Princi-
ple to prove a nontrivial result, and in some circles one speaks of the Dirichlet Box
Principle instead of the Pigeonhole Principle). However, almost the same argument
can be used to prove the following result on simultaneous approximation.

For any real number α, we denote by ||α|| the distance to the nearest integer.

Theorem 13.3. Let M,N ∈ Z+, x = (x1, . . . , xN ) ∈ RN and let L1(x), . . . , LM (x)

be linear forms: Lm(x) =
∑N
n=1 amnxn. Let Q ∈ Z+. Then there exists v =

(v1, . . . , vN ) ∈ (ZN )• such that maxn |vn| ≤ Q and max1≤m≤M ||Lm(v)|| ≤ 1
(Q+1)N/M .

Proof. (Burger [Bu]) Let A = (amn) ∈MMN (R). Define C ∈ GLM+N (R) by

C =

[
1M −A
0 1N

]
,

so that detC = 1. Now we apply Minkowski’s Linear Forms Theorem in a context
directly generalizing the one in the proof of Theorem 13.1: fix θ ∈ (0, 1), take
Λ = ZM+N and

ε1 = . . . = εM =
1

(Q+ θ)
N
M

, εM+1 = . . . = εN = Q+ θ.

The remaining details are left to the reader. �

For later use, we record separately the result obtained by setting N = 1.

Corollary 13.4. Let M,n ∈ Z+, M > 1, θ1, . . . , θn ∈ R. Then there are integers
`1, . . . , `n,m with 0 < m < M and |mθj − `j | ≤ 1

M
1
n

for all 1 ≤ j ≤ n.

13.2. The Best Possible One Variable Approximation Result.

We begin with the following result, a version of Theorem 9.15 with an additional
linear condition.

Theorem 13.5. (Siegel) Let q(x, y) = L1(x, y)L2(x, y) be an indefinite real binary
quadratic form, of Discriminant ∆ > 0. We suppose that q is not H-equivalent to
q2 = x2 − xy − y2. Then for any ε > 0, there is (x, y) ∈ (Z2)• such that

|q(x, y)| <
√

∆

5

and
|L1(x, y)| < ε.

Proof. . . . �

Theorem 13.6. Let α ∈ R \Q. Then for infinitely many nonzero integers y, there
exists an integer x such that ∣∣∣∣α− x

y

∣∣∣∣ < 1√
5y2

.
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Proof. (Siegel) Let L1(x, y) = (x−αy), L2(x, y) = y, and put q(x, y) = L1(x, y)L2(x, y) =
xy−αy2. Then q is indefinite with Discriminant 1. Further, we claim that q is not
integrally equivalent to any scalar multiple of q2. Indeed, any scalar multiple of q2

has the following property: for all (x1, y1), (x2, y2) ∈ Z2 such that q(x2, y2) 6= 0,
q(x1,y1)
q(x2,y2) ∈ Q, but – since α is irrational – taking (x1, y1) = (1, 0) and (x2, y2) = (0, 1)

shows that q does not have this property. Thus Theorem 13.5 applies: for any ε > 0,
there are integers x, y, not both zero, such that

|q(x, y) = |y(x− αy)| < 1√
5

and |x− αy| < ε. Taking ε < 1 forces y 6= 0, so we may divide through by y to get∣∣∣∣xy − α
∣∣∣∣ < 1√

5y2
.

Since we may take ε as small as we like, there are infinitely many choices of y. �

Remark: Theorem 13.6 appears in many texts, but it is usually proved using con-
tinued fractions, e.g. [HW6ed, Thm. 193]. We are indebted to Siegel for allowing
us to maintain our “no continued fractions policy” so far inside enemy terrain.

The following simple result shows that Theorem 13.6 is sharp in the sense that
there are some irrational numbers α for which the constant 1√

5
cannot be improved.

Proposition 13.7. Let α = 1−
√

5
2 . For any A >

√
5, the inequality∣∣∣∣α− x

y

∣∣∣∣ < 1

Ay2

has only finitely many solutions.

Proof. (Hardy-Wright) Suppose not. Then there are infinitely many pairs (x, y)
with α = x

y + δ
y2 with |δ| < 1

A < 1√
5
. Then

δ

y
= yα− x, δ

y
−
√

5y

2
=
y

2
− x,

so

(26)
δ2

y2
−
√

5δ =
(y

2
+ x
)2

− 5y2

4
= x2 + xy − y2.

For sufficiently large y, the left hand side of (26) is less than one in absolute value,
whereas the right hand side is always an integer, hence x2 + xy − y2 = 0. But this
is impossible because the Discriminant of q(x, y) = x2 + xy − y2 is

√
5, which is

irrational, so q(x, y) = 0 has as its only integral solution x = y = 0. �

13.3. The Markoff Chain.

To do: State the main result of [Ca49].
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14. Applications of GoN: Euclidean Rings

Let R be a domain with fraction field K. Let | · | : R → N be a multiplicative
norm function: ∀x, y ∈ R,

(MN1) |x| = 0 ⇐⇒ x = 0;
(MN2) |x| = 1 ⇐⇒ x ∈ R×;
(MN3) |xy| = |x||y|.

Exercise: Show that a multiplicative norm extends uniquely to a map |·| : K → Q≥0

such that |xy | =
|x|
|y| .

A normed domain (R, | · |) is Euclidean if for all a, b ∈ R with b 6= 0, there
are q, r ∈ R with a = qb+ r and |r| < |b|.

Exercise: Show that the Euclidean condition is equivalent to: for all x ∈ K there
is y ∈ R with |x− y| < 1.

Exercise: We say two norms | · |1, | · |2 on a domain R are equivalent if there
is some α ∈ R>0 such that | · |2 = | · |α1 . Show that this is an equivalence relation
and that being Euclidean depends only on the equivalence class.

There are two classical cases:

Exercise: a) Let R = Z endowed with the standard norm (i.e., the usual abso-
lute value coming from R). Show that (R, | · |) is Euclidean.
b) Let Fq be a finite field, and let R = Fq[t]. For x ∈ Fq[t]•, put |x| = qdeg x. Show
that (R, | · |) is Euclidean.

For y ∈ K, we set
E(R, y) = inf

x∈R
|x− y|,

E(R) = sup
y∈K

E(R, y).

Now we make some basic observations:

• E(R, y) depends only on the class of y in K/R.
• R is Euclidean iff E(R, y) < 1 for all y ∈ K/R.
• R is Euclidean if E(R) < 1.
• R is not Euclidean if E(R) > 1.
• If E(R) = 1, R is Euclidean iff the supremum in the definition of E(R) is not
attained.

We also put
E1(R) = E(R),

C1(R) = {y ∈ K/R | E(R, y) = E1(R)}
and

E2(R) = sup{E(R, y) | y /∈ C1(R)},
C2(R) = {y ∈ K/R | E(R, y) = E2(R),
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E3(R) = sup{E(r, y) | y /∈ C2(R),

and so forth: we get a sequence

E(R) ≥ E2(R) ≥ E3(R) ≥ . . . .

If E2(R) < E1(R) we say E1(R) is isolated.

In this section we will restrict to an important classical case (though the author
is equally interested in other cases...) R = ZK , the ring of integers of a number
field K. As usual, let n = [K : Q] = r + 2s, where r is the number of real embed-
dings and s is the number of complex embeddings of K. Also put ru = r + s − 1,
the rank of the unit group Z×K . We take as a norm function |x| = |NK/Q(x)|,
where the norm on the right hand side is the usual absolute value on Q. In this
case, whether R is Euclidean is a GoN problem that can be studied via the em-
bedding of σ : K → Rn ∼= Rr × Cs in Euclidean space encountered in § 11. For
x = (x1, . . . , xn) ∈ Rn we put

|x| = |
n∏
i=1

xi|.

Thus if we choose a Q-basis α1, . . . , αn of K, we have

|(x1, . . . , xn) =

n∏
i=1

n∑
j=1

xjσi(αj).

Elements of Rn in the image of σ(K) are called rational points; the others are
irrational.

This leads to a “geometric approach” to showing that ZK is Euclidean. We define,
for all y ∈ Rn,

E(R, y) = inf
x∈R
|x− y|

and

E(R) = sup
y∈Rn

E(R, y).

Then clearly

E(R) ≤ E(R),

so if E(R) < 1, R is Euclidean. Here is an easy instance of this.

Proposition 14.1. Let D be a squarefree negative integer which is not congruent
to 1 modulo 4, and put K = Q(

√
D), R = ZK = Z[

√
D].

a) We have E(R) = E(R) = 1+|D|
4 .

b) Thus R is Euclidean iff D ∈ {−1,−2}.

Theorem 14.2. a) (Barnes-Swinnerton-Dyer, Cerri) For all number fields K,
E(R) = E(R).
b) (Cerri) If n ≥ 3 and ru ≥ 2, then there is y ∈ K such that

E(R) = R(R) = E(R, y).

In particular, in this case R is Euclidean ⇐⇒ E(R) < 1.
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15. Applications of GoN: Representation Theorems for Quadratic
Forms

15.1. Reminders on integral quadratic forms.

An integral quadratic form is a homogeneous polynomial of degree 2 with Z-
coefficients in N variables. Such a form may be written as

∑
1≤i≤j≤N aijxixj with

aij ∈ Z. We may also define a symmetric matrix M such that for x = (x1, . . . , xN ),

q(x) = xTMx.

There is a small twist here: in order for the bookkeeping to work out correctly, we
must take M(i, j) to be aij if i = j but

aij
2 if i 6= j. Thus the matrix M has integer

entries on the main diagonal, but off of the main diagonal the entries need only be
half-integers. The simplest example of this is the binary quadratic form

(27) q(x, y) = x2 + xy + y2,

with defining matrix [
1 1

2
1
2 1

]
.

We will restrict to nondegenerate quadratic forms here, i.e., ones for which the
determinant of the defining matrix is nonzero.

When the matrix M has Z-entries one says q is classically integral or an in-
teger matrix form, as opposed to being integral or integer valued.

A diagonal integral quadratic form – i.e., one with aij = 0 for all i 6= j – is necessar-
ily classically integral. For this and other reasons diagonal forms are especially nice
to work with, so our first examples (and theorems!) on quadratic forms concern
diagonal ones, although we certainly aspire to move beyond this case eventually.
Note also that we consider integral quadratic forms up to equivalence: we say q1

and q2 are integrally equivalent if we can get from one quadratic form to another
by a change of variables A ∈ GLN (Z). In terms of matrices this comes out not as
similarity but congruence:10

Mq2 = ATMq1A.

Among other things, this equivalence relation raises the prospect of replacing a
non-diagonal form with an equivalent diagonal form, or in a word, diagonalizing.
Recall the following elementary but important fact: any quadratic form with coeffi-
cients in a field of characteristic different from 2 may be diagonalized. In particular
any integral quadratic form q may be diagonalized over Q or over R. But in fact
“most” integral quadratic forms cannot be diagonalized over Z.

Exercise:
a) Let f(x1, . . . , xn), g(x1, ., . . . , xn) ∈ Z[x1, . . . , xn] be two integral quadratic forms.
Show: if f ∼ g and f is classically integral, then g is classically integral.
b) Show that f(x, y) = x2 + xy + y2 cannot be diagonalized over Z.

10Here congruence is just a name, somewhat old-fashioned at that. Other than that congru-

ence – like similarity! – of matrices is an equivalence relation, it has nothing much to do with
other notions of congruence studied in algebra.
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Let q = q(x1, . . . , xn) ∈ R[x1, . . . , xn] be a real quadratic form. We say q is positive
definite if for all x ∈ Rn, we have q(x) ≥ 0 and q(x) = 0 ⇐⇒ x = 0. (We say q
is negative definite if for all x ∈ Rn, we have q(x) ≤ 0 and q(x) = 0 ⇐⇒ x = 0.
But q is negative definite iff −q is positive definite, so negative definite forms need
not be studied for their own sake.) We say q is indefinite if there are x, y ∈ Rn
with q(x) > 0 and q(y) < 0.

Exercise: A real quadratic form q(x1, . . . , xn) is positive semidefinite if q(x) ≥ 0
for all x ∈ Rn. Show that a nondegenerate positive semidefinite quadratic form is
positive definite.

Exercise: Let q ∈ R[x1, . . . , xn] be an anisotropic real quadratic form such that
q(x) ≥ 0 for all x ∈ Zn. Show that q is positive definite.

From the geometric perspective, positive and negative definite quadratic forms are
very different.

Exercise: a) Show that a real quadratic form is positive definite iff it is R-equivalent
to a diagonal form a1x

2
1 + . . .+ anx

2
n with a1, . . . , an > 0.

b) Suppose you are given a non-diagonal integral quadratic form q. Part a) gives a
procedure for checking whether q is positive definite: diagonalize it, and see whether
the diagonal coefficients are all positive. Is this actually the fastest procedure in
practice?11

Exercise: Let q be a positive definite real quadratic form. Show that q : RN → R
is a symmetric, convex distance function whose level sets are ellipsoids.

Exercise: Let q be an indefinite real quadratic form. Show that q : RN → R is
a symmetric, non-convex pseudo-distance function with non-compact level sets.

An integral quadratic form q is sign universal if:
(i) q(RN ) = R≥0 and q(ZN ) = Z≥0, or
(ii) q(RN ) = R and q(ZN ) = Z, or
(iii) q(RN ) = R≤0 and q(ZN ) = Z≤0.

In particular, a positive definite integral quadratic form is sign universal iff it rep-
resents all non-negative integers, which is the largest subset of the integers it could
conceivably represent.

Here are three important facts about sign universal positive definite forms.

Theorem 15.1. Let q be a positive definite integral quadratic form in N variables.
a) If N ≤ 3 then q is not sign universal.
b) (Conway-Schneebeger [Con00], Bhargava [Bh00]) If q is classically integral, it is
sign universal iff it Z-represents all integers from 1 to 15.

11There is also a criterion due to Sylvester involving positivity of principal minors. I vaguely
suspect this may be faster than diagonalization, but I have never given it serious thought.
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c) (Bhargava-Hanke [BH]) If q is integral, it is sign universal iff it Z-represents all
integers from 1 to 290.

Proof. a) We will show a stronger result: no positive definite ternary quadratic
form q(x, y, z)/Q can Q-represent every positive integer. Note that if such a form

Q-represents all positive integers, then for all a, b ∈ Z+ it Q-represents ab and thus
also (b−1)2ab = a

b , i.e., it Q-represents every positive rational number.
We may diagonalize q over Q. Moreover, we may replace q by (disc q)q, giving a

positive universal definite form of discriminant (squareclass) 1. Thus

q = −ax2 − by2 + abz2

for some a, b ∈ Q×: that is, q = n0 is the ternary norm form of the quater-
nion algebra 〈a, b〉 in the sense of [NCA, §5.5]. Now q is positive definite, so it
is anisotropic over Q. By the Hasse-Minkowski theory it is also anisotropic over
Qp for at least one prime p. We claim that in fact q Qp-represents every nonzero
element of Qp. For this, it suffices to show that every square class in Qp contains a
positive rational number, which for instance holds by weak approximation. Now we
use the following fundamental fact [NCA, Thm. 94]: if q(x, y, z) is an anisotropic
ternary quadratic form with discriminant 1 over any field K of characteristic dif-
ferent from 2, then the quaternary quadratic form q′(x, y, z, w) = q(x, y, z) + w2

is also anisotropic. Applying this in our case we get a contradiction: since q is
universal over Qp, there exist (x, y, z) ∈ Q3

p such that q(x, y, z) = −1, and then
q′(x, y, z, 1) = 0, so q′ is isotropic over Qp.
b) This is the Conway-Schneeberger 15 Theorem. See [Bh00] for a proof.
c) This is the Bhargava-Hanke 290 Theorem. �

Remark 7. Part a) is a classical result. I don’t know how far back it goes, but
papers in (e.g.) the 1930’s mention the result without any citation or proof.

It is also interesting to consider universal ternary forms over rings of integers of
number fields K ) Q. For instance suppose K = Q(

√
d) with d > 0 and q(x, y, z)

is positive definite at both the real places of K. Then the above argument does not
quite succeed in showing that q cannot K-rationally represent all totally positive
elements of K: the conic q(x, y, z) may be anisotropic only at the two real places of
K and at no finite place. And in fact there are known examples of K and ternary
quadratic forms q/ZK

which ZK-represent every totally positive element of ZK ! This
is an active research area.

Part b) was proven in a graduate course taught by J.H. Conway at Princeton in
1993 (see [Con00]) but only written up by M. Bhargava about ten years later. The
original proof required some nontrivial computer calculations, but Bhargava’s proof
[Bh00] is beautifully conceptual.

The result of part c) was announced by M. Bhargava and J.P. Hanke in 2005.

Exercise: Let n ∈ Z+ and consider the form

q4,n = x2 + y2 + nz2 + nw2.

a) Show that q4,n Z-represents 3 iff 1 ≤ n ≤ 3.
b) Use Theorem 15.1 to show that for 1 ≤ n ≤ 3, the form q4,n is sign universal.

Exercise: Let 1 ≤ a ≤ b ≤ c ≤ d ∈ Z+, and consider the quadratic form

q = ax2 + by2 + cz2 + dw2.
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Suppose that q is sign universal.
a) Explain why Theorem 15.1a) shows, without any explicit calculation, that the
number of tuples (a, b, c, d) such that q is sign universal must be finite.
b) (Ramanujan [Ra17]) Complete the following steps to obtain an explicit upper
bound on the set of (a, b, c, d) such that q is sign universal.
(i) Show a = 1.
(ii) Show b ≤ 2.
(iii) If (a, b) = (1, 1), show c ≤ 2.
(iv) If (a, b, c) = (1, 1, 1), show d ≤ 7.
(v) If (a, b, c) = (1, 1, 2), show d ≤ 14.
(vi) If (a, b) = (1, 2), show c ≤ 5.
(vii) If (a, b, c) = (1, 2, 2), show d ≤ 7.
(viii) If (a, b, c) = (1, 2, 3), show d ≤ 10.
(ix) If (a, b, c) = (1, 2, 4), show d ≤ 14.
(x) If (a, b, c) = (1, 2, 5), show d ≤ 10.
c) For each of the finitely many forms permitted by part b), apply Theorem 15.1b)
to determine whether or not they are universal. You should arrive at the following
Ramanujan-Dickson list of 54 forms:

[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [11, 1, 5], [1, 1, 1, 6], [1, 1, 1, 7], [1, 1, 2, 13],

[1, 1, 2, 2], [1, 1, 2, 3], [1, 1, 2, 4], [1, 1, 2, 5], [1, 1, 2, 6], [1, 1, 2, 7], [1, 1, 2, 8],

[1, 1, 2, 9], [1, 1, 2, 10], [1, 1, 2, 11], [1, 1, 2, 12], [1, 1, 2, 14], [1, 1, 3, 3], [1, 1, 3, 4], [1, 1, 3, 5],

[1, 1, 3, 6], [1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2, 4], [1, 2, 2, 5], [1, 2, 2, 6], [1, 2, 2, 7], [1, 2, 3, 3],

[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 3, 8], [1, 2, 3, 9], [1, 2, 3, 10], [1, 2, 4, 4],

[1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 4, 11], [1, 2, 4, 12],

[1, 2, 4, 13], [1, 2, 4, 14], [1, 2, 5, 10], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 5, 9].

Remark: The above list is Dickson’s list [Dic27]. Ramanujan’s list [Ra17] included
the above 54 forms together with the quadratic form [1, 2, 5, 5]. However this form
does not represent 15! Interestingly, neither Ramanujan nor Dickson characterized
their results in terms of representation up to 15. However, this characterization
does appear in a paper of P. Halmos [Ha38].12

The 15 Theorem leads to a complete enumeration of sign universal positive def-
inite classically integral quaternary forms: there are precisely 204 such forms (up
to Z-equivalence). Such a classification was done in the 1948 thesis of M. Willerd-
ing but was never published. In fact Willerding’s thesis seems not to have been
carefully read: although the methods employed are in principle correct, the final
tabulation is off by quite a lot: as described in [Bh00] she tallied 178 such forms,
and in fact missed 36 universal forms, listed one universal form twice, and listed 9
non-universal forms. Similarly, the 290 Theorem leads to an enumeration of all sign
universal positive definite integral quaternary forms: there are 6436 such forms.

12Halmos’s first paper. I learned about by reading his Automathography: highly recommended!
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15.2. An application of Hermite’s Bound.

Following Gerstein [G, §7.6] we give a useful application of the Hermite constant
to quadratic form theory.

Theorem 15.2. Let 1 ≤ n ≤ 7, and let q(x1, . . . , xn) be an anisotropic classically
integral quadratic form with det q ∈ {±1}. Then q is integrally equivalent to either
x2

1 + . . .+ x2
n or −x2

1 − . . .− x2
n.

Proof. By Theorem 10.2, since n ≤ 7 we have γn < 2. (We note in passing that
Hermite’s own estimate gives this for n ≤ 5. That it holds for n = 6 and n = 7 are
classical, but deep, results of Blichfeldt.) It follows that q represents ±1, so

q ∼ a11x
2
1 + 2a12x1x2 + . . .+ 2a1nx1xn + . . .+ a22x

2
2 + . . .+ annx

2
n,

with |a11| = 1. The change of variables yj = xj − a1j

a11
– note first that this is really

just completing the square and second that the fact that f is classically integral is
being used here – gives

f ∼ a11x1 ⊕ f2(x2, ..., xn),

and f2 is anisotropic with det f2 ∈ {±1}. By induction we get

f ∼ ε1x2
1 + . . .+ εnx

2
n

with ε1, . . . , εn ∈ {±1}. Since f is anisotropic, all of the signs must be the same. �

Remark 8. a) The hypothesis that f is anisotropic is needed here: e.g. f(x, y) =
2xy is classically integral, has determinant −1 and is clearly not of the form ax2 +
by2: we would have to have |a| = |b| = 1 and then f would represent ±1.
b) Since γ8 = 2, the proof does not go through for n ≥ 8. Indeed, starting in
dimension 8 there are quadratic forms q which are positive definite, have disc q = 1
and have q(Zn) ⊂ 2Z, namely we have the E8-lattice.

15.3. The Two Squares Theorem.

Here we present a geometry of numbers proof of the Two Squares Theorem with
the minimal possible number theoretic background (which is quite minimal indeed).

First, 2 = 12 + 12. So we may, and shall, restrict our attention to primes p > 2.

Lemma 15.3. (Quadratic character of −1)
Let p > 2 be a prime number. The following are equivalent:

(i) There exists u ∈ Z such that u2 ≡ −1 (mod p).
(ii) p ≡ 1 (mod 4).

Proof. Although we could get away with even less, let us make use the following
standard fact from undergraduate algebra: the group of units U(p) = (Z/pZ)× of
the finite field Fp = Z/pZ is cyclic [A2.5, Cor. 10]. Moreover #U(p) = #F•p = p−1
is even, so there is a unique element of order 2, namely −1.

An element u ∈ U(p) = F×p with u2 = −1 has order 4 in the group U(p), and

conversely for any element u of order 4, u2 has order 2 so u2 = −1. Thus the
existence of an element squaring to −1 is equivalent to the existence of an element
of order 4 in the cyclic group of order p−1, and for this it is necessary and sufficient
that p− 1 be divisible by 4, i.e., p ≡ 1 (mod 4). �
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Lemma 15.4. No prime number p ≡ 3 (mod 4) is a sum of two integer squares.

Proof. Indeed, suppose p = x2 + y2 with x, y ∈ Z. Reducing modulo 4 we get
3 ≡ x2 + y2 (mod 4). Since 02 ≡ 22 ≡ 0 (mod 4) and 12 ≡ 32 ≡ 1 (mod 4), the
squares modulo 4 are 0 and 1, and thus the sums of two squares are 0 + 0 = 0,
0 + 1 = 1, 1 + 1 = 2. So 3 is not a sum of two squares in Z/4Z, contradiction. �

Theorem 15.5. (Two Squares Theorem for Primes)
A prime number p is a sum of two integer squares iff p = 2 or p ≡ 1 (mod 4).

Proof. It remains to show: a prime p ≡ 1 (mod 4) is a sum of two squares. For
such a p, by Lemma 15.3 there is u ∈ Z with u2 ≡ −1 (mod p). Let

M :=

[
p u
0 1

]
.

We have det(M) = p, so Λ := MZ2 defines a lattice in R2 with

Covol(Λ) = det(M) Covol(Z2) = p.

If (t1, t2) ∈ Z2 and (x1, x2)t = M(t1, t2)t, then

x2
1 + x2

2 = (t1p+ t2u)2 + t22 ≡ (u2 + 1)t22 ≡ 0 (mod p).

Now let

Ω = B0(
√

2p) = {(x, y) ∈ R2 | x2 + y2 < 2p}
be the open ball of radius 2

√
p about the origin in R2. We have

Vol Ω = π(
√

2p)2 = 2πp > 4p = 22 Covol Λ,

so by Minkowski’s Theorem Mark II there exists (x1, x2) ∈ Λ with

0 < x2
1 + x2

2 < 2p.

Since p | x2
1 + x2

2, the only possible conclusion is

x2
1 + x2

2 = p.

�

Lemma 15.6. (Brahmagupta-Fibonacci Identity) For any integers a, b, c, d we have

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

Proof. An immediate application of Littlewood’s Principle: all algebraic identities
are trivial to prove (though not necessarily to discover).13 �

Lemma 15.7. a) For any field F , TFAE:
(i) There exist x, y ∈ F , not both zero, such that x2 + y2 = 0.
(ii) There exists i ∈ F with i2 = −1.
b) For a prime number p, the equivalent conditions of part a) hold for the field Fp
iff p = 2 or p ≡ 1 (mod 4).

Proof. a) (i) =⇒ (ii): Without loss of generality y 6= 0, and then −1 =
(
x
y

)2

.

(ii) =⇒ (i): If i2 = −1 then i2 + 1 = 0.
b) This is immediate from the proof of Lemma 15.3. �

13Of course the sufficiently learned reader will know more insightful proofs, e.g. using the
multiplicativity of the norm function on the ring of Gaussian integers.
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Lemma 15.8. Let p ≡ 3 (mod 4) be a prime number. Then for any integers x and
y – not both zero – ordp(x

2 + y2) is even: i.e., the largest power of p which divides
x2 + y2 is even.

Proof. Since zero is even, we may assume that p | x2 + y2. Reducing mod p and
applying Lemma 15.7 we deduce that there are X,Y ∈ Z such that x = pX, y = pY ,
so x2 + y2 = p2(X2 + Y 2). An evident induction argument finishes the proof. �

Combinig the above results, one deduces the following theorem.

Theorem 15.9. (Full Two Squares Theorem) For a positive integer n, TFAE:
(i) n is a sum of two integer squares.
(ii) For all primes p ≡ 3 (mod 4), ordp(n) is even.

15.4. Binary Quadratic Forms.

An integral binary quadratic form is a polynomial

q(x, y) = Ax2 +Bxy + Cy2

with A,B,C ∈ Z. This form corresponds to a matrix[
A B

2
B
2 C

]
with determinant AC − B2

4 . Elsewhere in these notes we call this determinant the
discriminant of the quadratic form q. But here we run afoul of the variation in ter-
minology and notation in this subject: for binary quadratic forms, it is traditional
to call the quantity B2 − 4AC the “discriminant”. To get around this, we denote
the determinant of the matrix by disc q and call it the discriminant of q, whereas
we denote B2−4AC by ∆(q) and call it the Discriminant (i.e., with a capital D).
Note that

∆(q) = −4 disc(q).

Theorem 15.10. (Hagedorn) Let n ∈ Z+ and let p be an odd prime. If (−np ) = 1,

then there exist k, x, y ∈ Z such that x2 + ny2 = kp and

1 ≤ k ≤ b4
√
n

π
c.

Proof. The argument follows the n = 1 case rather closely. By assumption −n is a
square modulo p, so there exists u ∈ Z with u2 ≡ −n (mod p). Let

M :=

[
p u
0 1

]
.

We have det(M) = p, so Λ := MZ2 defines a lattice in R2 with

Covol(Λ) = det(M) Covol(Z2) = p.

If (t1, t2) ∈ Z2 and (x1, x2)t = M(t1, t2)t, then

x2
1 + nx2

2 = (t1p+ t2u)2 + nt22 ≡ (u2 + n)t22 ≡ 0 (mod p).

For R > 0, let

ΩR = {(x, y) ∈ R2 |x2 + ny2 ≤ R2}.
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Then ΩR is a compact, symmetric convex body with

Vol ΩR =
1√
n

VolB2 =
πR2

√
n
,

so by Minkowski’s Convex Body Theorem we have Λ• ∩ ΩR 6= ∅ when

Vol ΩR =
πR2

√
n
≥ 22 Covol Λ = 4p,

so when

R2 ≥ 4
√
n

π
p.

If v = (x, y) ∈ Λ• ∩ ΩR, then (x, y) ∈ Z2,

q(x, y) = x2 + ny2 ≡ 0 (mod p)

and

0 < q(x, y) ≤ 4
√
n

π
p.

The result follows, since q(x, y), being a positive integer multiple of p which is at

most 4
√
n
π p, must in fact be at most b 4

√
n
π cp. �

We can slightly improve Hagedorn’s result by using the sharp value of the lattice

constant of B2, namely ∆(B2) =
√

3
2 and the fact that the unique critical lattice

for B2 is the root lattice A2. By definition of the lattice constant we may take

R2 ≥ ∆(B2)
−2
2 (disc q)

1
2 (Covol Λ)2/2 =

2√
3
·
√
np.

In other words, in the above result we may replace the constant 4
π ≈ 1.273 with

2√
3
≈ 1.1547, a small improvement! Moreover, let A be the linear transformation

(x, y) 7→ (x, y√
n

), which maps the R-ball to the level set ΩR. Then if the lattice AΛ

is not homothetic (i.e., equal up to dilation) to the root lattice A2, then we may
take the inequality to be strict.

Exercise: Show that for all n, p as above the lattice AΛ is not homothetic to A2.

Thus we get:

Theorem 15.11. Under the hypotheses of Theorem 15.10, there are x, y, k ∈ Z+

with

x2 + ny2 = kp

and

1 ≤ k ≤ b2
√
n

3
c,

k < 2

√
n

3
.

The inequalities on k in Theorem 15.11 force k = 1 iff 1 ≤ n ≤ 3, so in addition to
Theorem 15.5 we get two more (very classical) representation theorems.
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Corollary 15.12. a) Suppose that p is a prime number such that (−2
p ) = 1 – i.e.,

p ≡ 1, 3 (mod 8). Then there are integers x, y such that p = x2 + 2y2.
b) Suppose that p is an odd prime number such that (−3

p ) = 1, i.e., p ≡ 1 (mod 3).

Then there are integers x, y such that p = x2 + 3y2.

Note that Hagedorn’s Theorem is enough to deduce Corollary 15.12a) but to get
Corollary 15.12b) in this way we really needed the full theory of lattice constants
and critical lattices. This seems bad, because it suggests that we are stuck when
n ≥ 4. However, this is very far from the case!

Example: Consider x2 +3y2 again. Using Hagedorn’s bound we see that if (−3
p ) = 1

then either x2 + 3y2 = p or x2 + 3y2 = 2p. However it turns out that the second
alternative can be easily ruled out using elementary congruence arguments. To
wit: as above, by Quadratic Reciprocity, (−3

p ) = 1 ⇐⇒ p ≡ 1 (mod 3). Reducing

x2 + 3y2 = 2p modulo 3 gives x2 ≡ 2 (mod 3), a blatant contradiction.

In fact one can take matters much further: the main result of [Ha11] is a de-
scription of which primes p (with gcd(p, 2n) = 1) are represented by x2 +ny2 for 65
different positive integer values of n, the largest such being 1865. In most of these
cases the form of the result is mildly different: one finds that there are auxiliary
congruence conditions necessary (and, for these 65 forms, sufficient!) for p to
be of the form x2 + ny2. Let us look at the simplest example of this.

Example: Consider p = x2 + 5y2. As ever, reducing modulo 5 shows that (−5
p ) = 1.

But now suppose reduce modulo 4: we get p ≡ x2 + 5y2 ≡ x2 + y2 (mod 4), and
as we have seen, 3 is not a sum of two squares modulo 4. Thus we get the auxil-
iary congruence p ≡ 1 (mod 4). A little elementary work with congruences show
that these two congruence conditions taken together amount to requiring p ≡ 1, 9
(mod 20). Miraculously, these easy necessary conditions are sufficient.

Theorem 15.13. Let p be an odd prime number such that (−5
p ) = 1.

a) The following are equivalent:
(i) There are x, y ∈ Z such that x2 + 5y2 = p.
(ii) p ≡ 1 (mod 4).
b) The following are equivalent:
(i) There are x, y ∈ Z such that x2 + 5y2 = 2p.
(ii) p ≡ 3 (mod 4).

Proof. Step 1: Since (−5
p ) = 1 and b2

√
5
3c = 2, Theorem 15.11 tells us that there

are integers x, y such that either

x2 + 5y2 = p

or

x2 + 5y2 = 2p.

Our task is now to show that the first alternative holds iff p ≡ 1 (mod 4) and the
second alternative holds if p ≡ 3 (mod 4).
Step 2: Observe that 1 = (−5

p ) = (−1
p )( 5

p ). Therefore, if p ≡ 1 (mod 4), then

(−1
p ) = ( 5

p ) = 1, whereas if p ≡ 3 (mod 4) then (−1
p ) = ( 5

p ) = −1.
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Case 1: p ≡ 1 (mod 4). Then by Quadratic Reciprocity, ( 5
p ) = (p5 ) = 1, so p is a

square modulo 5. In this case we can rule out x2 + 5y2 = 2p by reducing modulo 5:
we get x2 ≡ 2p (mod 5). But since p ≡ y2 (mod 5), this gives (xy )2 ≡ 2 (mod 5),

i.e., 2 is a square mod 5: which it isn’t! Therefore we must have x2 + y2 = p.
Case 2: p ≡ 3 (mod 4). In this case Quadratic Reciprocity gives −1 = ( 5

p ) = (p5 ),

so p is not a square modulo 5. Therefore if x2 + 5y2 = p then reducing modulo 5
gives a contradiction, so we must have x2 + 5y2 = 2p. �

This was a rather innocuous case. To derive the congruence conditions under which
a prime p is of the form, say, x2 + 1848y2 takes rather more work.

The quadratic forms treated by Hagedorn are precisely the known principal pos-
itive definite binary forms of Discriminant −4n such that the Picard group of the
imaginary quadratic order Z[

√
−n] has exponent dividing 2. Specifically, there are

65 discriminants, as follows:

∆ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33,

37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133,

165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462,

520, 760, 840, 1320, 1365, 1848.

A similar case is left open by Hagedorn’s work: namely the principle positive def-
inite binary quadratic forms of Discriminant ∆ ≡ 1 (mod 4) such that the Picard

group of Z[ 1+
√

∆
2 ] has exponent dividing 2. More precisely, for ∆ ≡ 1 (mod 4) the

principal form of Discriminant ∆ is

q1(x, y) = x2 + xy +
1−∆

4
y2,

and the list of idoneal ∆ ≡ 1 (mod 4) is as follows:

First the squarefree discriminants:

∆ = −3,−7,−11,−15,−19,−35,−43,−51,−67,−91,−115,−123,−163,−187,

−195,−235,−267,−403,−427,−435,−483,−555,−595,−627,−715,−795,

−1155,−1435,−1995,−3003,−3315.

Finally, the non-squarefree discriminants:

∆ = −27,−75,−99,−147,−315.

There should be 65 + 31 + 5 = 101 such discriminants altogether: please check!

In order to make progress on these nondiagonal forms we need a version of The-
orem 15.11 which applies to not necessarily diagonal positive definite forms. The
following is a reasonable first guess as to what GoN methods should yield.

Conjecture 15.14. Let q(x, y) = Ax2 +Bxy+Cy2 be a primitive, positive definite
integral quadratic form. Put ∆(q) = B2 − 4AC. Let p be an odd prime with

(∆(q)
p ) = 1. Then there exist x, y ∈ Z and k ∈ Z+ with

q(x, y) = kp
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and

1 ≤ k ≤ b2
√

4AC −B2

12
c = b

√
4 disc(q)

3
c.

Conjecture 15.14 would immediately solve the representation problem for ∆ =
−3,−7,−11 since in these cases we would have k = 1. (And with any luck the
larger values of ∆ listed above can be treated in roughly the same way we handled
x2 + 5y2 above, i.e., as Hagedorn does in [Ha11].)

Update: Conjecture 15.14 has been proven by Hans Parshall and the author.

Also one can try moving beyond idoneal quadratic forms – to see that there is
some chance at saying something here, see [Ha11, p. 13, proof of Prop. 3]. In fact,
though I don’t have the time to properly elaborate on this at present, this is closely
connected to the concept of bi-idoneal form of Jagy and Kaplansky [JK].

For later use, we include the following additional representation theorem.

Theorem 15.15. A prime p different from 2 and 5 is of the form 2x2 + 5y2 iff
(−10
p ) = 1 and p ≡ 2, 3 (mod 5) iff p ≡ 7, 13, 23, 27 (mod 40).

Proof. Necessity: Suppose p = 2x2 + 5y2. Reducing modulo p gives 2x2 + 5y2 ≡ 0
(mod p). If x ≡ 0 (mod p), then p = 2x2 + 5y2 shows y ≡ 0 (mod p) and thus
p = 2x2 +5y2 is divisible by p2, a contradiction. Therefore 2, 5, x, y are all invertible
modulo p, and 2x2 + 5y2 ≡ 0 =⇒ −5

2 ≡ X2 (mod p), which holds iff −10 ≡ X2

(mod p), i.e., iff (−10
p ) = 1. Similarly, reducing modulo 5 gives p ≡ 2x2 (mod 5),

so p is not a square modulo 5 and hence p ≡ 2, 3 (mod 5). Thus

1 =

(
−10

p

)
=

(
−2

p

)(
5

p

)
= −

(
−2

p

)
,

so
(
−2
p

)
= −1, and thus p ≡ 5, 7 (mod 8). A Chinese Remainder Theorem calcula-

tion gives p ≡ 2, 3 (mod 5) and p ≡ 5, 7 (mod 8) ⇐⇒ p ≡ 7, 13, 23, 27 (mod 40).
Sufficiency: Suppose p > 5 satisfies the necessary congruence conditions. In par-
ticular p is prime to 10 and such that (−10

p ) = 1, so by Thue’s Lemma there are

x, y, k ∈ Z with 2x2 + 5y2 = kp and 1 ≤ k < |2| + |0| + |5|, i.e., 1 ≤ k ≤ 6.14 If
k = 1, we’re done.
• Suppose 2x2 +5y2 = 2p. Reducing modulo 5 gives p ≡ x2 (mod 5), contradiction.
• Suppose 2x2 +5y2 = 3p. Reducing modulo 5 gives p ≡ x2 (mod 5), contradiction.
• Suppose 2x2 + 5y2 = 4p. Then y is even, and reducing modulo 4 shows x is even.
So we may put x = 2X, y = 2Y to get 2X2 + 5Y 2 = p.
• Suppose 2x2 + 5y2 = 5p. Put x = 5X to get 10X2 + y2 = p. Reducing mod 5
shows (p5 ) = 1, contradiction.

• Suppose 2x2 + 5y2 = 6p. Put y = 2Y to get x2 + 10Y 2 = 3p. Reducing modulo 3
gives x2 + 10Y 2 ≡ x2 + Y 2 ≡ 0 (mod 3), which forces x and Y both to be divisible
by 3, contradiction. �

14The bound of the (now proven) Conjecture 15.14 would give 1 ≤ k ≤ 3, but it is not much
more trouble to consider values of k up to 6, so we do so.
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15.5. The Four Squares Theorem.

Lemma 15.16. (Euler’s Identity) For any integers a1, . . . , a4, b1, . . . , b4, we have

(a2
1 + a2

2 + a2
3 + a2

4)(b21 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2+

(a1b2+a2b1+a3b4−a4b3)2+(a1b3−a2b4+a3b1+a4b2)2+(a1b4+a2b3−a3b2+a4b1)2.

Proof. Again we apply Littlewood’s Principle. �

Thus the set of sums of four integer squares is closed under multiplication. Since
1 = 12 + 02 + 02 + 02 is a sum of four squares, it suffices to show that each prime p
is a sum of four squares. Since 2 = 12 + 12 + 02 + 02, we may assume p > 2.

Lemma 15.17. For a prime p > 2 and a ∈ Z, there exist r, s ∈ Z such that

r2 + s2 ≡ a (mod p).

Proof. There are p−1
2 nonzero squares mod p and hence p−1

2 + 1 = p+1
2 squares

mod p. Rewrite the congruence as r2 ≡ a − s2 (mod p). Since the map Fp → Fp
given by t 7→ a− t is an injection, as x ranges over all elements of Fp both the left

and right hand sides take p+1
2 distinct values. Since p+1

2 + p+1
2 > p, these subsets

cannot be disjoint, and any common value gives a solution to the congruence. �

Theorem 15.18. (Lagrange) Every positive integer is a sum of four integral
squares.

Proof. By Lemma 15.17, there are r, s ∈ Z such that r2 + s2 + 1 ≡ 0 (mod p).
Define

M =


p 0 r s
0 p s −r
0 0 1 0
0 0 0 1

 .
We have det(M) = p2, so Λ := MZ4 defines a lattice in R4 with

Vol(Λ) = det(M) Covol(Z4) = p2.

If (t1, t2, t3, t4) ∈ Z4 and (x1, x2, x3, x4) := M(t1, t2, t3, t4) then

x2
1 + x2

2 + x2
3 + x2

4 = (pt1 + rt3 + st4)2 + (pt2 + st3 − rt4)2 + t23 + t24

≡ t23(r2 + s2 + 1) + t24(r2 + s2 + 1) ≡ 0 (mod p).

Now let

Ω = B0(
√

2p) = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 < 2p}
be the open ball of radius

√
2p about the origin in R4. Using Lemma ?? we have

Vol(Ω) =
π2

2
(
√

2p)4 = 2π2p2 > 16p2 = 24 Covol Λ,

so by Minkowski’s Theorem Mark II there exists (x1, . . . , x4) ∈ Λ with

0 < x2
1 + x2

2 + x2
3 + x2

4 < 2p.

Since p | x2
1 + x2

2 + x2
3 + x2

4, the only possible conclusion is

x2
1 + x2

2 + x2
3 + x2

4 = p.

�
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15.5.1. A Linear Forms Approach to the Four Squares Theorem. In their paper
[BR51], Brauer and Reynolds give a variant of the above proof which is interesting
in that it replaces the appeal to Minkowski’s Convex Body Theorem with the
more elementary Brauer-Reynolds Theorem on linear forms. As above, we put
q(x1, x2, x3, x4) = x2

1 + x2
2 + x2

3 + x2
4 and show that q Z-represents every odd prime

p. And again, by Lemma 15.17, there are a, b ∈ Z such that a2+b2+1 ≡ 0 (mod p).
Now consider the system of linear equations

x1 ≡ ax3 + bx4 (mod p),

x2 ≡ bx3 − ax4 (mod p).

Here we have r = 2 equations in s = 4 unknowns. For 1 ≤ i ≤ 4, take λi =√
p+ ε. Then

∏s
i=1 λi > p2, so we get v = (x1, x2, x3, x4) ∈ Z4 satisfying the above

congruences and having |xi| ≤
√
p+ ε. Thus of course we also have |xi| ≤ b

√
p+ εc,

and since
√
p is not an integer, for sufficiently small ε we have |xi| ≤ b

√
p+εc < √p.

Moreover,

x2
1 + x2

2 ≡ (a2 + b2)x2
3 + (a2 + b2)x2

4 ≡ −x2
3 − x2

4 (mod p),

so x2
1 + x2

2 + x2
3 + x2

4 = kp for k ∈ Z+. Further, x2
1 + x2

2 + x2
3 + x2

4 < 4
√
p2 = 4p, so

k ∈ {1, 2, 3}.
If k = 1, great. Suppose k = 2, so

x2
1 + x2

2 + x2
3 + x2

4 = 2p.

Without loss of generality x1 ≡ x2 (mod 2) and x3 ≡ x4 (mod 2), so(
x1 + x2

2

)2

+

(
x1 − x2

2

)2

+

(
x3 + x4

2

)2

+

(
x3 − x4

2

)2

= p.

Suppose k = 3, so

x2
1 + x2

2 + x2
3 + x2

4 = 3p.

Without loss of generality 3 | x1, and by adjusting the signs on x2, x3, x4 if necessary,
we assume x2 ≡ x3 ≡ x4 (mod 3). Then(
x2 + x3 + x4

3

)2

+

(
x1 + x3 − x4

3

)2

+

(
x1 − x2 + x4

3

)2

+

(
x1 + x2 − x3

3

)2

= p.

15.5.2. A Variant.

Theorem 15.19. The integral quadratic form

q(v) = x2 + y2 + z2 + 4w2

is positive universal.

Proof. Step 1: Suppose n is not divisible by 4. By the Four Squares Theorem there
exist x, y, z, w ∈ Z such that n = x2 + y2 + z2 + w2. Since 4 - n, x, y, z, w cannot
all be odd. Without loss of generality w = 2W for W ∈ Z and thus

n = x2 + y2 + z2 + (2W )2 = x2 + y2 + z2 + 4W 2.

Step 2: Any n ∈ Z+ may be written as n = 4am with m ∈ Z, m not divisible by 4.
By Step 1, there are x, y, z, w such that m = x2 + y2 + z2 + 4w2, and thus

n = 4am = (2ax)2 + (2ay)2 + (2az)2 + 4(2aw)2.

�
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15.6. The Quadratic Form x2
1 + ax2

2 + bx2
3 + abx2

4.

The following theorem summarizes our application of the Convex Body Theorem
to positive definite forms and the computation of the Hermite constant γ4.

Theorem 15.20. Let q(x, y, z, w) be a positive definite real quaternary quadratic
form. For positive R, let

ΩR = {x ∈ R4 | q(x) ≤ R2}.

a) We have Vol(ΩR) = π2R4

2
√

disc q
.

b) By Minkowski’s Convex Body Theorem, for any lattice Λ ⊂ R4, there exists

v ∈ Λ• with q(v) ≤ 4
√

2
π (disc q)

1
4

√
Covol Λ.

c) Since γ4 =
√

2, for Λ ⊂ R4, there is v ∈ Λ• with q(v) ≤
√

2|disc q| 14
√

Covol Λ.
d) Suppose the lattice Λ is given as AZ4 for A ∈M4(R), and let qA be the quadratic
form x 7→ q(Ax). Then unless qA is H-equivalent to

q4 = x2 + xz + y2 − yz + z2 − zw + w2,

there exists v ∈ Λ• with q(v) <
√

2|disc q| 14
√

Covol Λ.

Lemma 15.21. (Twisted Euler Identity) Let a, b, x1, x2, x3, x4, y1, y2, y3, y4 ∈ R.
Then:

(x2
1 + ax2

2 + bx2
3 + abx2

4)(y2
1 + ay2

2 + by2
3 + aby2

4) = (x1y1 − ax2y2 − bx3y3 − abx4y4)2

+a(x1y2 + x2y1 + bx3y4 − bx4y3)2 + b(x1y3 − ax2y4 + x3y1 + ax4y2)2

+ab(x1y4 + x2y3 − x3y2 + x4y1)2.

Proof. As usual, Littlewood’s Principle suffices. �

The statement and proof given above are rather disingenuous: one does not sim-
ply pluck identities like this from thin air. I used the following MAGMA code (a
trivial variant of code supplied to me by Jim Stankewicz) to find the above identity:

> K<a,b> := FunctionField(Rationals(),2);

L<x1,x2,x3,x4,y1,y2,y3,y4> := FunctionField(K,8);

> Q<i,j,k> := QuaternionAlgebra<L|-a,-b>;

> alpha := x1 + i*x2 + j*x3 + k*x4;

> beta := y1 + i*y2 + j*y3 + k*y4;

> alpha*beta;

(x1*y1 - a*x2*y2 - b*x3*y3 - a*b*x4*y4) + (x1*y2 + x2*y1 + b*x3*y4 - b*x4*y3)*i

+ (x1*y3 - a*x2*y4 + x3*y1 + a*x4*y2)*j + (x1*y4 + x2*y3 - x3*y2 + x4*y1)*k

> Norm(alpha);

x12 + a*x22 + b*x32 + a*b*x42

> Norm(beta);

y12 + a*y22 + b*y32 + a*b*y42

> Norm(alpha)*Norm(beta) - Norm(alpha*beta);

0

Question 15.22. According to Ramanujan’s theorem, pairs (a, b) ∈ Z2 for which
qa,b(x) = x2

1 + ax2
2 + bx2

3 + abx2
4 is positive universal are:

(a, b) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (2, 5).
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We have seen the very classical GoN argument that leads to a proof of the positive
universality for (1, 1). How many of the other 6 quaternary forms listed above can
be shown to be positive universal by similar GoN methods?

Theorem 15.23. The integral form x2 + y2 + 2z2 + 2w2 is positive universal.

Proof. (Sketch) We apply the method for q1,1 and the sharp bound for the lattice
constant of B4 – including showing that the forms in question are not homothetic to
the critical form. Details still be to written by one of the students in the group! �

Although it is interesting and instructive to see that the sharp bound for ∆(B4)
gives the result to us with no additional work, it is also instructive – even more so,
perhaps – to see that one can get away with the weaker Minkowski bound using
some elementary descent arguments. So here is a second proof.

Proof. Step 1: Certainly x2 + y2 + 2z2 + 2w2 Z-represents 1 and 2, so by Lemma
15.21 it suffices to deal with the case of an odd prime p. Moreover, if p ≡ 1 (mod 4),
then by XX p = x2 +y2 +2 ·02 +2 ·02, so we may assume p ≡ 3 (mod 4). Applying
the Minkowski bound as in the proof of Theorem XX, we get integers k, x, y, z, w
with 1 ≤ k ≤ b 8

π c = 2 such that

x2 + y2 + 2z2 + 2w2 = kp.

If k = 1, we’re done, so suppose x2 + y2 + 2z2 + 2w2 = 2p. Then x ≡ y (mod 2).
Case 1: x and y are both even. So we may take x = 2X, y = 2Y to get

2X2 + 2Y 2 + z2 + w2 = p.

Case 2: x and y are both odd. Then

p =
1

2
(x2 + y2) + z2 +w2 =

(
x+ y

2

)2

+

(
x− y

2

)2

+ z2 +w2 = X2 +Y 2 + z2 +w2.

Since p ≡ 3 (mod 4), exactly 3 of X,Y, z, w are odd: without loss of generality
suppose y and z are odd. Then

p = X2 + Y 2 + 2

(
z + w

2

)2

+ 2

(
z − w

2

)2

= X2 + Y 2 + 2Z2 + 2W 2.

�

Theorem 15.24. The integral quadratic form

q(v) = x2 + y2 + 2z2 + 8w2

is positive universal.

Proof. Step 0: We may assume n is squarefree, so in particular n 6≡ 0 (mod 4).
Step 1: We claim that every n ≡ 3 (mod 4) is Z-represented by q. Indeed, by
Theorem 15.23 there are x, y, z, w ∈ Z such that

(28) n = x2 + y2 + 2z2 + 2w2.

If w is even, we may substitute w = 2W to get

n = x2 + y2 + 2z2 + 8W 2,

and similarly if z is even. Thus we may assume z, w are both odd. Reducing (28)
modulo 4 gives n ≡ x2 + y2 (mod 4), so n 6≡ 3 (mod 4).
Step 2: Suppose n1 and n2 are odd positive integers both represented by q. We
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claim that n1n2 is also represented by q.
Indeed, if

n1 = x2
1 + x2

2 + 2x2
3 + 2(2x4)2, n2 = y2

1 + y2
2 + 2y2

3 + 2(2y4)2,

then by Lemma 15.21 we have

(29) n1n2 = z2
1 + z2

2 + 2z2
3 + 2(2x1y4 + x2y3 − x3y2 + 2x4y1)2.

with z1, z2, z3 ∈ Z. Equation (29) exhibits n1n2 in the form q(v) iff x2y3 − x3y2 is
even. Now if n1 is odd, then x2

1 + x2
2 is odd and thus exactly one of x1, x2 is even.

By interchanging x1 and x2 if necessary, we may assume that x2 is even. In exactly
the same way we may assume that y2 is even and thus that x2y3 − x3y2 is even.
Step 3: Every odd n ∈ Z+ is Z-represented by q. Indeed, by Step 2 it is enough to
show that every odd prime number p is Z-represented by q. If p ≡ 1 (mod 4), then
already p = x2

1 + x2
2, whereas if p ≡ 3 (mod 4) then q Z-represents p by Step 1.

Step 4: Suppose n = 2n′ ≡ 2 (mod 4). Since n′ is odd, by Step 3, there are integers
y1, y2, y3, y4, with y2 = 2Y2, such that n′ = y2

1 + y2
2 + 2y2

3 + 2(2y4)2. Then

n = 2 · n′ = (02 + 02 + 2 · 12 + 2(2 · 0)2)(y2
1 + y2

2 + 2y2
3 + 2(2y4)2)

= z2
1 + z2

2 + z2
3 + 2(−y2)2 = z2

1 + z2
2 + z2

3 + 8Y 2
2 .

�

Theorem 15.25. The integral form q = x2 + y2 + 3z2 + 3w2 is positive universal.

Proof. Clearly q Z-represents 1 and 2, so by Lemma 15.21 it is enough to show that
q represents every odd prime p. As above, there is an index p2 sublattice Λp of Z4

such that for all v ∈ Λp, q(v) ≡ 0 (mod p). Since disc(q) = 9, by Theorem 15.20

there exists (x, y, z, w) ∈ Z4 and k ∈ Z, 0 < k ≤ b
√

2 · 3c = 2 such that

x2 + y2 + 3z2 + 3w2 = kp.

In other words, either x2 + y2 = 3z2 + 3w2 = p – and we’re done – or x2 + y2 +
3z2 + 3w2 = 2p. If so,

0 ≡ 2p ≡ x2 + y2 + 3z2 + 3w2 ≡ x+ y + z + w (mod 2).

Case 1: x+ y, z + w are both even. Then x±y
2 , z±w2 ∈ Z, so(

x+ y

2

)2

+

(
x− y

2

)2

+ 3

(
z + w

2

)2

+ 3

(
z − w

2

)2

=
2p

2
= p,

and we have found a Z-representation of p.
Case 2: x+ y and z +w are both odd. Without loss of generality x and z are odd
and z and w are even, so

2p ≡ x2 + y2 + 3z2 + 3w2 ≡ 1 + 3 ≡ 0 (mod 4),

and thus p is even: contradiction! �

Remark: Here we used the sharp bound for ∆(B4), a nontrivial theorem of Korkine-
Zolotareff (the proof of which does not appear in these notes). It would be nice if
we could get away with the bound afforded by the convex body theorem. In this
case, this involves entertaining also k = 3. Someone should try this!

Theorem 15.26. The integral form q = x2 + 2y2 + 2z2 + 4w2 is positive universal.
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Proof. The same opening strategy as in the proof of Theorem 15.26 reduces us to
showing that every odd prime p is Z-represented by q and shows that there are
integers x, y, z, w, k with x2 + 2y2 + 2z2 + 4w2 = kp and 1 ≤ k ≤ b

√
2 · 4c = 2. If

k = 1 we’re done, so suppose

x2 + 2y2 + 2z2 + 4w2 = 2p.

Then x is even, so taking x = 2X and simplifying gives

2X2 + y2 + z2 + 2w2 = p.

Since p is odd, so is y2 + z2, so exactly one of y and z is even – without loss of
generality, suppose y is even. Thus we may write y = 2Y to get

z2 + 2X2 + 2w2 + 4Y 2 = p.

�

Remark: As above, to use MCBT one needs also to look at k = 3. Try it!

Theorem 15.27. The integral form q = x2 + 2y2 + 3z2 + 6w2 is positive universal.

Proof. (Mordell-Hicks-Thompson-Walters)
Step 1: First consider the identity

x2 + (y + z + w)2 + (y − z − w)2 + (z − 2w)2 = x2 + 2y2 + 3z2 + 6w2,

and the inverse identity

x2 + y2 + z2 + w2 = x2 +

(
y + z

2

)2

+

(
y − z + w

3

)2

+

(
y − z − 2w

6

)2

.

Let n ∈ Z+. By Theorem 15.18, there are x, y, z, w ∈ Z with n = x2 +y2 + z2 +w2,
so

n = x2 +

(
y + z

2

)2

+

(
y − z + w

3

)2

+

(
y − z − 2w

6

)2

.

This gives an integral representation of n by q provided all the following congruence
conditions are satisfied:

y + z ≡ 0 (mod 2),

y − z + w ≡ 0 (mod 3),

y − z − 2w ≡ 0 (mod 6).

Step 2: By Lemma 15.21, it suffices to show that q integrally represents 1 and all
prime numbers. Certainly q Z-represents 1, 2 and 3, so it suffices to show that
q Z-represents all primes p > 3. Thus p ≡ 1, 5 (mod 6). Since x2 + 3y2 already
represents all primes p ≡ 1 (mod 3), we may assume p ≡ 5 (mod 6).
Step 3: Let p ≡ 5 (mod 6) be a prime. As above there are x, y, z, w ∈ Z such that

(30) p = x2 + y2 + z2 + w2.

Now we consider (30) as a congruence modulo 6. The squares modulo 6 are 0, 1, 3, 4.
Without loss of generality we may take the congruence classes of x, y, z, w in non-
decreasing order, and then there are four ways for x2 + y2 + z2 +w2 ≡ 5 (mod 6):

0 + 0 + 1 + 4 ≡ 0 + 1 + 1 + 3 ≡ 0 + 3 + 4 + 4 ≡ 1 + 3 + 3 + 4 ≡ 5 (mod 6).
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Case 1: By adjusting the signs on x, y, z, w we may assume x ≡ y ≡ 0 (mod 6),
z ≡ 1 (mod 6), w ≡ 2 (mod 6) and write

p = y2 + 2

(
w + x

2

)2

+ 3

(
w − x+ z

3

)2

+ 6

(
w − x− 2z

6

)2

.

Case 2: We may assume x ≡ 0 (mod 6), y ≡ z ≡ 1 (mod 6), w ≡ 3 (mod 6). Then

p = x2 + 2

(
y + z

2

)2

+ 3

(
y − z + w

3

)2

+ 6

(
y − z − 2w

6

)2

.

Case 3: We may assume x ≡ 0 (mod 6), y ≡ 3 (mod 6), z ≡ w ≡ 4 (mod 6). Then

p = x2 + 2

(
z + w

2

)2

+ 3

(
z − w + y

3

)2

+ 6

(
z − w − 2y

6

)2

.

Case 4: We may assume x ≡ 1 (mod 6), y ≡ z ≡ 3 (mod 6), w ≡ 4 (mod 6). Then

p = z2 + 2

(
y + x

2

)2

+ 3

(
y − x+ w

3

)2

+ 6

(
y − x− 2w

6

)2

.

�

Theorem 15.28. The integral form q = x2 + 2y2 + 4z2 + 8w2 is positive universal.

Proof. Certainly q Z-represents 1 and 2. By Lemma 15.21 it is enough to show that
q Z-represents every odd prime. Moreover, by our work on binary forms, we know
that every p ≡ 1 (mod 4) is Z-represented by x2 + 4z2, so we may assume p ≡ 3
(mod 4). By Theorem 15.26 there are x, y, z, w ∈ Z such that

(31) p = x2 + 2y2 + 2z2 + 4w2.

If y is even, we may put y = 2Y to get p = x2 + 2z2 + 4w2 + 8Y 2, and similarly
if z is even. Finally, suppose that y and z are both odd. Certainly x is odd, so
reducing (31) modulo 4 gives

p ≡ x2 + 2y2 + 2z2 + 4w2 ≡ 1 + 2 + 2 ≡ 1 (mod 4).

�

15.7. Beyond Universal Forms.

A positive definite integral quadratic form q(x) is called almost universal if it
Z-represents all but finitely many positive integers. The recent paper [BO09] gives
definitive results on almost universal forms. Here of course we are interested in
results which can be proved by our elementary GoN methods.

For instance Halmos showed [Ha38] that there are precisely 88 diagonal positive
definite quadratic forms (a, b, c, d) = ax2 + by2 + cz2 + dw2 which represent all
positive integers with exactly one exception. By the Ramanujan-Dickson Theorem
this exceptional integer must be at most 15. Here is Halmos’s list:

Forms representing all positive integers except 1:

(2, 2, 3, 4), (2, 3, 4, 5), (2, 3, 4, 8).

Forms representing all positive integers except 2:

(1, 3, 3, 5), (1, 3, 5, 6).
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Forms representing all positive integers except 3:

(1, 1, 4, 5), (1, 1, 4, 6), (1, 1, 5, 5), (1, 1, 5, 6), (1, 1, 5, 10), (1, 1, 5, 11),

(1, 1, 6, 7), (1, 1, 6, 8), (1, 1, 6, 10), (1, 1, 6, 11).

Exercise: Why are there no forms representing all positive integers except 4? Except
8? Except 9? Except 12?
Forms representing all positive integers except 5:

(1, 2, 6, 6), (1, 2, 6, 10), (1, 2, 6, 11), (1, 2, 6, 12), (1, 2, 6, 13),

(1, 2, 7, 8), (1, 2, 7, 10), (1, 2, 7, 11), (1, 2, 7, 12), (1, 2, 7, 13).

Forms representing all positive integers except 6:

(1, 1, 3, 7), (1, 1, 3, 8), (1, 1, 3, 10), (1, 1, 3, 11), (1, 1, 3, 13), (1, 1, 3, 14), (1, 1, 3, 15).

Forms representing all positive integers except 7:

(1, 1, 1, 9), (1, 1, 1, 10), (1, 1, 1, 12), (1, 1, 1, 14), (1, 1, 1, 15),

(1, 2, 2, 9), (1, 2, 2, 10), (1, 2, 2, 12), (1, 2, 2, 14), (1, 2, 2, 15).

Forms representing all positive integers except 10:

(1, 2, 3, 11), (1, 2, 3, 12), (1, 2, 3, 13), (1, 2, 3, 15), (1, 2, 3, 17), (1, 2, 3, 19),

(1, 2, 3, 20), (1, 2, 3, 21), (1, 2, 3, 22), (1, 2, 3, 23), (1, 2, 3, 24), (1, 2, 3, 5), (1, 2, 3, 26),

(1, 2, 5, 11), (1, 2, 5, 12), (1, 2, 5, 13), (1, 2, 5, 14).

Exercise: Why are there no forms representing all positive integers except 11? Ex-
cept 13? (The previous exercise has an easy answer. At the moment it is not clear
to me that this one does.)

Forms representing all positive integers except 14:

(1, 1, 2, 15), (1, 1, 2, 17), (1, 1, 2, 18), (1, 1, 2, 19), (1, 1, 2, 20), (1, 1, 2, 21),

(1, 1, 2, 22), (1, 1, 2, 23), (1, 1, 2, 24), (1, 1, 2, 25), (1, 1, 2, 27), (1, 1, 2, 28),

(1, 1, 2, 29), (1, 1, 2, 30), (1, 2, 4, 15), (1, 2, 4, 17), (1, 2, 4, 18), (1, 2, 4, 19),

(1, 2, 4, 20), (1, 2, 4, 21), (1, 2, 4, 22), (1, 2, 4, 23), (1, 2, 4, 24), (1, 2, 4, 25),

(1, 2, 4, 27), (1, 2, 4, 28), (1, 2, 4, 29), (1, 2, 4, 30).

Forms representing all integers except 15:

(1, 2, 5, 5).

Of the above, the easiest to deal with are those of square discriminant:

(1, 1, 1, 9), (1, 1, 5, 5), (1, 2, 6, 12), (1, 2, 2, 9), (1, 2, 3, 24).
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15.8. Wójcik’s Proof of the Three Squares Theorem.

Theorem 15.29. (Legendre-Gauss) A positive integer is a sum of three squares of
integers iff it is not of the form 4a(8k + 7).

Lemma 15.30. Let n be an integer of the form 4a(8k+ 7) for some a ∈ N, k ∈ Z.
Then n is not the sum of three rational squares.

Proof. Step 0: Suppose 4a(8k+ 7) is a sum of three rational squares. We may take
our rational numbers to have a common deminator d > 0 and thus(x

d

)2

+
(y
d

)2

+
(z
d

)2

= 4a(8k + 7).

Clearing denominators, we get

x2 + y2 + z2 = d24a(8k + 7).

Write d = 2bd′ with d′ odd. Since 12, 32, 52, 72 ≡ 1 (mod 8), d′2 ≡ 1 (mod 8), so

d24a(8k + 7) = (2b)2(d′2)4a(8k + 7) = 4a+b(8k′ + 7).

In other words, to show that no integer of the form 4a(8k+7) is a sum of 3 rational
squares, it suffices to show that no integer of the form 4a(8k + 7) is a sum of three
integral squares. So let us now show this.
Step 1: We observe that x2 + y2 + z2 ≡ 7 (mod 8) has no solutions. Indeed, since
the squares mod 8 are 0, 1, 4, this is a quick mental calculation. (In particular this
disposes of the a = 0 case.)
Step 2: we observe that if n ≡ 0, 4 (mod 8) then the congruence

x2 + y2 + z2 ≡ n (mod 8)

has no primitive solutions, i.e., no solutions in which at least one of x, y, z is odd.
Indeed, since the squares mod 8 are 0, 1, 4, so in particular the only odd square is 1.
Since 4 and 0 are both even, if x, y, z are not all even, then exactly one two of them
must be odd, say x and y, so x2 ≡ y2 ≡ 1 (mod 8) and thus z2 ≡ 4− 2 (mod 8) or
z2 ≡ 8− 2 (mod 8), and neither 2 nor 6 is a square modulo 8.
Step 3: Now suppose that there are integers x, y, z such that x2+y2+z2 = 4a(8k+7).
If a = 0 then by Step 1 reducing modulo 8 gives a contradiction. If a = 1, then
4a(8k + 7) ≡ 4 (mod 8), so by Step 2 any representation x2 + y2 + z2 = 4(8k + 7)
must have x, y, z all even, and then dividing by 4 gives (x2 )2 +(y2 )2 +( z2 )2 = (8k+7),
a contradiction. If a ≥ 2, then 4a(8k + 7) ≡ 0 (mod 8), and again by Step 2 in
any representation x2 + y2 + z2 = 4a(8k + 7) we must have x, y, z all even. Thus
writing x = 2X, y = 2Y , z = 2Z we get an integer representation X2 + Y 2 +Z2 =
4a−1(8k+7). We may continue in this way until we get a representation of 4(8k+7)
as a sum of three integral squares, which we have just seen is impossible. �

Lemma 15.31. Suppose that every squarefree positive integer n 6≡ 7 (mod 8) is a
sum of three integral squares. Then every positive integer n 6= 4a(8k + 7) is a sum
of three integral squares.

Proof. Let n be a positive integer which is not of the form 4a(8k + 7). Write n as
n = 2an2

1n2, where a ≥ 0, n1 is odd and n2 is odd and squarefree.
Case 1: 0 ≤ a ≤ 1, n2 6≡ 7 (mod 8). Then 2an2 is squarefree and not 7 (mod 8),
so by assumption there exist x, y, z ∈ Z such that x2 + y2 + z2 = 2an2, and thus
(n1x)2 + (n1y)2 + (n1z)

2 = 2an2
1n2 = n.

Case 2: n2 6≡ 7 (mod 8). In such a case n is of the form (2b)2 times an integer n
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of the type considered in Case 1. Since such an integer n is a sum of three integral
squares, so is any square times n.
Case 3: n2 ≡ 7 (mod 8). For n not to be of the form 4a(8k + 7), the power of
a must be odd; in other words, we may write n as a square times 2n2 where n2

is squarefree and of the form 8k + 7. Thus 2n2 is squarefree and not of the form
8k + 7, so by assumption 2n2 is a sum of three squares, hence so is n. �

Lemma 15.32. Let x, y, z ∈ Q be such that x2 + y2 + z2 ∈ Z. Then there exist
a, b, c ∈ Q such that a2 + b2 + c2 = 1 and ax+ by + cz ∈ Z.

Proof. Let x = x1

d , y = y1

d , z = z1
d , with gcd(x1y1z1, d) = 1. Let

Λ̃ = {(u+ tx, v + ty, w + tz) | x, y, t ∈ Z, t ∈ [0, d− 1]}.
and

Λ = {(u+ tx, v + ty, w + tz) ∈ Λ̃ | ux+ vy + wz ∈ Z}.
Then Λ̃ = Z3 + 〈(x, y, z)〉, so [Λ̃ : Z3] = d. Further, ux + vy + wz ∈ Z ⇐⇒
ux1 + vy1 + wz1 ≡ 0 (mod d), so [Λ̃ : Λ] ≤ d. It follows that Covol Λ ≤ 1.
Let

Ω = {(a, b, c) ∈ R3 | a2 + b2 + c2 < 2}.
Then

Vol(Ω) =
4π

3
· (
√

2)3 > 8 > 8 CovolM,

so by MCBT, there exists (a, b, c) ∈M such that

(a, b, c) = (u+ tx, v + ty, w + tz), 0 < a2 + b2 + c2 < 2.

Since

a2 + b2 + c2 = u2 + v2 + w2 + 2t(ux+ vy + wz) + t2(x2 + y2 + z2) ∈ Z,
we must have

a2 + b2 + c2 = 1

and
ax+ by + cz = ux+ vy + wx+ t(x2 + y2 + z2) ∈ Z.

�

Lemma 15.33. The integral quadratic form q(x, y, z) = x2 + y2 + z2 is an ADC-
form: every integer which is Q-represented by q is Z-represented by q.

Proof. Let x, y, y ∈ Q be such that x2 +y2 +z2 ∈ Z. Let a, b, c ∈ Q be as in Lemma
15.32. We may assume b2 + c2 6= 0. Then

x2 + y2 + z2 = (ax+ by + cz)2 + U2 + V 2,

where

U = bx− ab+ c2

b2 + c2
y +
−abc+ bc

b2 + c2
z,

V = cx+
−abc+ bc

b2 + c2
y − ac2 + b2

b2 + c2
z.

The integer U2 + V 2 is a sum of two squares of rational numbers hence a sum of
two squares of integers. �

Lemma 15.34. Let m ∈ Z+, n ≡ 3 (mod 8), and write m = p1 · · · pr. Then the
number of i such that pi ≡ 3, 5 (mod 8) is even.
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Exercise: Prove Lemma 15.34. (Suggestion: use the Jacobi symbol
(−2
m

)
.)

Proposition 15.35. Let n be a squarefree integer, n 6≡ 7 (mod 8). Then n is a
sum of three rational squares.

Proof. To fix ideas we will first give the argument under certain additional con-
gruence conditions and then explain how to modify it to deal with the other cases.
Filling in the details for these latter cases is a good exercise for the interested reader.
Case 1: Let us suppose that m = p1 · · · pr is squarefree and m ≡ 1 (mod 4). Thus
each pi is odd and the number of pi ≡ 3 (mod 4) is even. By Dirichlet’s Theorem
on Primes in Arithmetic Progressions, there is a prime number q such that

•
(
q
pi

)
=
(
−1
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 1 (mod 4).
(Indeed, each of the first conditions restricts q to a nonempty set of congruence
classes modulo the distinct odd primes pi, whereas the last condition is a condition
modulo a power of 2. By the Chinese Remainder Theorem this amounts to a set of
congruence conditions modulo 4p1 · · · pr and all of the resulting congruence classes
are relatively prime to 4p1 · · · pr, so Dirichlet’s Theorem applies.)
It follows that for all 1 ≤ i ≤ r,(

−q
pi

)
=

(
−1

pi

)(
q

pi

)
= 1,

and (
m

q

)
=

(
p1

q

)
· · ·
(
pr
q

)
=

(
q

p1

)
· · ·
(
q

pr

)
=

(
−1

p1

)
· · ·
(
−1

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 3 (mod 4), which as observed above is an even number.
since −q is a square modulo each of the distinct primes pi, by the Chinese Remain-
der Theorem it is also a square modulo m = p1 · · · pr. Therefore by the Chinese
Remainder Theorem there is an integer x such that

x2 ≡ −q (mod m)

x2 ≡ m (mod q).

But according to Legendre’s Theorem, these are precisely the congruence conditions
necessary and sufficient for the homogeneous equation

qu2 + z2 −mt2 = 0

to have a solution in integers (u, z, t), not all zero. Indeed, we must have t 6= 0,
for otherwise qu2 + z2 = 0 =⇒ u = z = 0. Moreover, since q ≡ 1 (mod 4),
by Fermat’s Two Squares Theorem there are x, y ∈ Z such that qu2 = x2 + y2.
Therefore

mt2 − z2 = qu2 = x2 + y2,

so

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2

and m is a sum of three rational squares, completing the proof in this case.
Case 2: Suppose m = 2m1 = 2p1 · · · pr with m1 = p1 · · · pr squarefree and odd. In
this case we may proceed exactly as above, except that we require q ≡ 1 (mod 8).
Case 3: Suppose m = p1 · · · pr is squarefree and m ≡ 3 (mod 8). By Lemma 15.34,
the number of prime divisors pi of m which are either 5 or 7 modulo 8 is even. By
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Dirichlet’s Theorem there exists a prime q such that

•
(
q
pi

)
=
(
−2
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 5 (mod 8).
It follows that for all 1 ≤ i ≤ r,(

−2q

pi

)
=

(
−2

pi

)(
q

pi

)
= 1,

and (
m

q

)
=

(
p1

q

)
· · ·
(
pr
q

)
=

(
q

p1

)
· · ·
(
q

pr

)
=

(
−2

p1

)
· · ·
(
−2

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 5, 7 (mod 8), which as observed above is an even number.
Therefore there is an integer x such that

x2 ≡ −2q (mod m)

x2 ≡ m (mod q),

so by Legendre’s Theorem the equation

2qu2 + z2 −mt2 = 0

has a solution in integers (u, z, t) with t 6= 0. Since q ≡ 1 (mod 4), there are
x, y ∈ Z such that 2qu2 = x2 + y2, so

mt2 − z2 = 2qu2 = x2 + y2,

and thus once again

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2

.

�

Remark 9. Let us emphasize that the GoN contribution of Wójcik’s argument is
precisely to establish that q = x2 + y2 + z2 is an ADC form: that is, for every
n ∈ Z, if there exist rational numbers (x, y, z) such that q(x, y, z) = n, then there
exist integers (x, y, z) such that q(x, y, z) = n. My own recent work on quadratic
forms has centered around the study of ADC-forms: see [Cl11].

The name “ADC-form” comes from the following obervation of Aubry and Davenport-
Cassels: suppose an anisotropic integral quadratic form q(x) = q(x1, . . . , xn) has
the following Euclidean property: for every x = (x1, . . . , xn) ∈ Qn, there exists
y = (y1, . . . , yn) ∈ Z such that |q(x− y)| < 1. Then it is necessarily an ADC-form.
In particular – and indeed this was exactly the case treated by Aubry – the form
q = x2

1 + x2
2 + x2

3 is a Euclidean form, as is easily seen: approximating a rational
triple x = (x1, x2, x3) by a nearest integer triple y = (y1, y2, y3) we clearly have

|q(x− y)| ≤
(

1

2

)2

+

(
1

2

)2

+

(
1

2

)2

=
3

4
< 1.

This provides a “geometric argument”, of some sort, that the sum of three squares
form is an ADC form, which to me seems simpler than Wójcik’s. W.C. Jagy and
I have classified all positive definite ternary Euclidean forms over Z and also all
positive definite ADC forms [ADCII], and there are about ten times as many ADC
forms as Euclidean forms. I would be very interested to know whether GoN methods
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such as Wójcik’s above can be used to show the ADC property for any ternary forms
which are not Euclidean.

15.9. Ankeny’s Proof of the Three Squares Theorem.

In view of what has already been done – especially Lemma 15.31 – we may safely
construe the “three squares theorem” to be the assertion that every positive square-
free integer m 6≡ 7 (mod 8) is a sum of three integral squares. The argument will
require different computations depending on the congruence class of m modulo 8.
We will treat first the case m ≡ 3 (mod 8) and then afterwards discuss modifica-
tions necessary to treat m ≡ 1, 2, 5, 6 (mod 8).

Case 1: Let m ≡ 3 (mod 8) be positive and squarefree: put

m = p1 · · · pr.
By Dirichlet’s Theorem there is a prime q such that

(32)

(
−2q

pj

)
= 1, 1 ≤ j ≤ r,

(33) q ≡ 1 (mod 4).

By (32) and (33) we have

1 =

r∏
j=1

(
−2q

pj

)
=

r∏
j=1

(
−2

ph

)(
q

pj

)

=

(
−2

m

) r∏
j=1

(
pj
q

)
=

(
−2

m

)(
m

q

)
=

(
−2

m

)(
−m
q

)
=

(
−m
q

)
,

since m ≡ 3 (mod 8). Thus there is an integer b such that b2 ≡ −m (mod q).
Replacing b by b+m if needed, we may assume b is odd. There is h1 ∈ Z such that

(34) b2 − qh1 = −m.
Considering (34) modulo 4 shows h1 = 4h for h ∈ Z, so

(35) b2 − 4qh = −m.
Since m is squarefree, (32) implies there is t ∈ Z such that

(36) t2 ≡ −1

2q
(mod m).

Now we consider the ellipsoid

(37) Ω = {(R,S, T ) ∈ R3 | R2 + S2 + T 2 < 2m}
where

R = 2tqx+ tby +mz, S =
√

2qx+
b√
2q
y, T =

√
m

2q
y.

Thus (R,S, T )t = MA(x, y, z)t where

MA =

 2tq tb m√
2q b√

2q
0

0
√

m
2q 0

 .
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By Lemma 9.5 we have Vol Ω = 4π
3 (2m)3/2. Since detMA = m3/2, the ellipsoid

M−1
A Φ (as Ankeny says, the body “in (x, y, z)-space”) has volume

27/2π

3
≈ 11.847687835 > 8.

So by Minkowski’s Convex Body Theorem, there is (x1, y1, z1) ∈ (Z3)• satisfying
(37). Let (R1, S1, T1)t = MA(x1, y1, z1)t. Now for some unpleasant algebra:

R2
1 + S2

1 + T 2
1 = (2tqx1 + tby1 +mz1)

2
+

(
(
√

2qx1 +
b√
2q
y1

)2

+

(√
m

2q
y1

)2

≡ t2(2qx1 + by1)2 +
1

2q
(2qx1 + by1)2 ≡ 0 (mod m).

Moreover

R2
1 + S2

1 + T 2
1 = R2

1 +

(
(
√

2qx1 +
b√
2q
y1

)2

+

(√
m

2q
y1

)2

= R2
1 +

1

2q
(2qx1 + by1)2 +

m

2q
y2

1 = R2
1 + 2(qx2

1 + bx1y1 + hy2
1).

Put

(38) v = qx2
1 + bx1y1 + hy2

1 .

Certainly v ∈ Z. Moreover, the binary quadratic form qx2 + bxy + hy2 has deter-
minant b2 − 4qh = −m < 0 so is positive definite. Thus v ∈ N, and v = 0 only if
x1 = y1 = 0, so z1 6= 0 and upon plugging back in we would get

R2 + S2 + T 2 = m2z2
1 < 2m,

and thus mz2
1 < 2. Since m ≥ 3, this is a contradiction and thus v ∈ Z+. Also

R1 ∈ Z and the unpleasant algebra gives m | R2
1 + 2v, whereas by (37) we have

0 < R2
1 + 2v < m. It follows that

(39) R2
1 + 2v = m.

It suffices to show that 2v = X2 + Y 2 is a sum of two integer squares, for then
m = R2

1 +X2 + Y 2. By Fermat’s Theorem it is sufficient to show that for all p > 2
with ordp(v) odd, we have p ≡ 1 (mod 4). So let p > 2 be such that ordp(v) is odd.
◦ Suppose p - m. Then by (39) we have

(40)

(
m

p

)
= 1.

By (38) we get (recall that b2 +m = 4qh):

4qv = (2qx1 + by1)2 +my2
1 .

If p | q then
(
−m
p

)
= 1.

If p - q then ordp((2qx1 + by2
1 +my2

1)) is odd, which implies
(
−m
p

)
= 1. Either way(

−m
p

)
= 1,
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which combined with (40) yields
(
−1
p

)
= 1, i.e., p ≡ 1 (mod 4).

◦ Suppose p | v, p | m. Then

(41) m = R2
1 + 2v = R2

1 +
1

2q
((2qx1 + by1)2 +my2

1),

so p | R1 and p | (2qx1 + by1). Since m is squarefree we have gcd(mp , p) = 1 and

then dividing both sides of (41) by p we get

1

2q

m

p
y2

1 ≡
m

p
(mod p)

and thus

y2
1 ≡ 2q (mod p),

so
(

2q
p

)
= 1. Combining this with (32) we get

(
−1
p

)
= 1, i.e., p ≡ 1 (mod 4).

This shows that for every odd prime p with ordp(v) is odd we have p ≡ 1 (mod 4).
The same holds for 2v, so we get that there are X,Y ∈ Z such that 2v = X2 + Y 2.
Substituting back in (39) we get

m = R2
1 + 2v = R2

1 +X2 + Y 2,

establishing the result in this case.
Case 2: Let m ≡ 1, 2, 5, 6 (mod 8) be positive and squarefree. We alter the above

argument as follows: choose a prime q ≡ 1 (mod 4) such that
(
−q
pj

)
= 1 for all odd

prime divisors pj of m and such that, if m is even we have

m = 2m1,

(
−2

q

)
= (−1)

m1−1
2 , t2 ≡ −1

q
(mod pj),

t odd, b2 − qh = −m
and

R = tqx+ tby +mz, S =
√
qx+

b
√
q
y, T =

√
m

q
y.

The proof then proceeds identically to that of Case 1.

15.10. Mordell’s Proof of the Three Squares Theorem.

As above, it will suffice to show that every positive squarefree integer n 6≡ 7 (mod 8)
is a sum of three integral squares. It is this result for which Mordell gives a new
proof, which is in some ways a streamlining of Ankeny’s proof.

Step 1: Let a, b, h ∈ Z. Put

(42) m = ab− h2

and

ϕ(x, y) = ax2 + 2hxy + by2,

so

discϕ = ab− h2 = m.

Further, let A,B ∈ Z and define a ternary quadratic form f(x, y, z) ∈ Q[x, y, z] by

(43) mf(x, y, z) = (Ax+By +mz)2 + ϕ(x, y).
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Notice that when a, b,m > 0, ϕ is positive definite and thus so is f . The symmetric
matrix corresponding to the right hand side of (43) is

(44)

 A2 + a AB + h Am
AB + h B2 + b Bm
Am Bm m2

 ,
so

m3 det f = det(mf) = m2(ab− h2) = m3

and thus

det f = 1.

We claim that we can choose these parameter values so as to make f classi-
cally integral, i.e., such that the matrix of (44) has integral entries. This holds
if A,B, a, b, h,m ∈ Z and

(45) A2 + a ≡ B2 + b ≡ AB + h ≡ 0 (mod m).

We will establish this in Step 2. Assuming it for now: since γ3 = 21/3 < 2, we have
that f integrally represents 1. By Hermite’s Lemma, there is a Z-basis e1, e2, e3

such that f(e1) = 1. Moreover, being classically integral is coordinate-invariant – it
means that the corresponding symmetric bilinear form Bf = q(x+ y)− q(x)− q(y)
is defined over Z – so up to GL3(Z)-equivalence we have

f ∼ x2 + 2fxy + ny2 + 2gxz + 2kyz + `z2.

Because the coefficients of xy and xz are even, we can complete the square to
eliminate them, getting

f ∼ x2 + n′y2 + 2k′yz + `′z2.

(Compare with Theorem 15.2!) The binary form n′y2 + 2k′yz + `z2 is positive
definite and has discriminant 1 hence Discriminant ∆ = −4, and by Proposition
9.16 there is only one such form up to SL2(Z)-equivalence: x2+y2. (Hence a fortiori
there is only one such form up to integral equivalence.) Thus altogether we find

f ∼ x2 + y2 + z2 =: g.

Since m = f(0, 0, 1), m ∈ f(Z3), hence also m ∈ g(Z3).
Step 2: Let m ∈ Z+ be squarefree and m 6≡ 7 (mod 8). For a ∈ Z, there are
b, h ∈ Z satisfying (42) iff −m is a square modulo a. We will take a = δa1 with
δ ∈ {1, 2} and a1 an odd prime. In this case, (42) is solvable for b, h ∈ Z iff

(46)

(
−m
a1

)
= 1.

Suppose (46) holds. Since b = h2+m
a , we can still find b ∈ Z which satisfies ab−h2 =

m after adding any multiple of a to h, and thus – since gcd(a,m) = 1 – we may
assume h ≡ 0 (mod m) hence also b ≡ 0 (mod m). If we take B ≡ 0 (mod m)
then B2 + b ≡ AB + h ≡ 0 (mod m). This gives two of the conditions of (45); the
last is A2 + a ≡ 0 (mod m). Such an A ∈ Z exists iff −a is a square modulo m.

To sum up: fix m ∈ Z+. If we can find an odd prime number a1 and δ ∈ {1, 2}
such that for a = δa1 we have that −a is a square modulo m and that −m is a
square modulo a1, then a is a sum of three integral squares. We have thus reduced
to an exercise in quadratic reciprocity, which we solve by considering various cases.
Case 1: Supposem ≡ 1 (mod 4). We take δ = 1 so a1 = a. By Dirichlet’s Theorem
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on primes in arithmetic progressions there is a prime a with a ≡ 1 (mod 4) and
a ≡ −1 (mod m). Then −a is a square modulo m. Moreover(

−m
a1

)
=

(
−m
a

)
=
(m
a

)
=
( a
m

)
=

(
−1

m

)
= 1.

Case 2: Suppose m ≡ 2 (mod 8), so m ≡ 2m1 with m1 ≡ 1 (mod 4). We take
δ = 1, so a1 = a. By Dirichlet’s Theorem there is a prime a with a ≡ 1 (mod 8)
and a ≡ −1 (mod m). Then −a is a square modulo m. Moreover(

−m
a1

)
=

(
−m
a

)
=
(m1

a

)
=

(
a

m1

)
=

(
−1

m1

)
= 1.

Case 3: Suppose m ≡ 6 (mod 8), so m ≡ 2m1 with m1 ≡ 3 (mod 4). We take
δ = 1 so a1 = a. By Dirichlet’s Theorem there is a prime a with a ≡ 3 (mod 8)
and a ≡ −1 (mod m1). Then −a is a square modulo m. Moreover(

−m
a1

)
=

(
−m
a

)
=
(m1

a

)
= −

(
a

m1

)
=

(
−a
m1

)
=

(
1

m1

)
= 1.

Case 4: Suppose m ≡ 3 (mod 8). We take δ = 2, so a = 2a1. By Dirichlet’s
Theorem, there is a prime a1 with a1 ≡ 1 (mod 4) and a = 2a1 ≡ −1 (mod m).
Then −a is a square modulo m. Moreover(

−m
a1

)
=

(
m

a1

)
=
(a1

m

)
=

(
−2a1

m

)
=

(
1

m

)
= 1.

15.11. Some applications of the Three Squares Theorem.

Knowing which integers are represented by x2 + y2 + z2 is a powerful weapon
for analyzing representation of integers by certain quaternary quadratic forms.

Proposition 15.36. The three squares theorem implies the four squares theorem.

Proof. In order to show the Four Squares Theorem it suffices to show that every
squarefree positive integer m is a sum of four integer squares. By the Three Squares
Theorem, m is even a sum of three integer squares unless m = 8k + 7. But if
m = 8k+7, then m−1 = 8k+6. Now ord2(8k+6) = 1, so 8k+6 is not of the form
4a(8k + 7), hence 8k + 6 = x2 + y2 + z2 and m = 8k + 7 = x2 + y2 + z2 + 12. �

More generally:

Theorem 15.37. For any 1 ≤ d ≤ 7, the quadratic form q = x2 + y2 + z2 + dw2

integrally represents all positive integers.

Proof. As above it is enough to show that q represents all squarefree positive inte-
gers. Moreover, if m 6= 8k+ 7 is a squarefree positive integer then m is represented
already by x2 + y2 + z2 so certainly by q. It remains to dispose of m = 8k + 7.
Case 1: Suppose d = 1, 2, 4, 6. Then m− d · 12 = m− d is:
• m− 1 = 8k + 6, if d = 1. This is a sum of 3 squares.
• m− 2 = 8k + 5, if d = 2. This is a sum of 3 squares.
• m− 4 = 8k + 3, if d = 3. This is a sum of 3 squares.
• m− 5 = 8k + 2, if d = 5. This is a sum of 3 squares.
• m− 6 = 8k + 1, if d = 6. This is a sum of 3 squares.
Case 2: If d = 3, then

m− d · 22 = m− 12 = 8k − 5 = 8(k − 1) + 3.
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Thus, so long as m− 12 is positive, it is a sum of three squares. We need to check
separately that positive integers less than 12 are still represented by q, but this is
easy: the only one which is not already a sum of 3 squares is 7 = 22 +02 +02 +3 ·12.
Case 3: If d = 7, then

m− d · 22 = m− 28 = 8(k − 3) + 5.

Thus, so long as m − 28 is positive, it is a sum of three squares. Again we must
separately check that positive integers less than 28 are represented by q, and again
this comes down to checking 7: 7 = 02 + 02 + 02 + 7 · 12. �

If we are looking for quaternary quadratic forms q = x2 + y2 + z2 + dw2 which
represent all positive integers, then we have just found all of them: if d > 7, then
such a q cannot integrally represent 7. Nevertheless we can still use the Gauss-
Legendre Theorem to analyze these forms. For instance.

Proposition 15.38. For a positive integer n, TFAE:
(i) There are integers x, y, z, w such that n = x2 + y2 + z2 + 8w2.
(ii) n 6≡ 7 (mod 8).

Proof. (i) =⇒ (ii): For any integers x, y, z, w, reducing n = x2 + y2 + z2 + 8w2

modulo 8 gives n ≡ x2 + y2 + z2 (mod 8), and we already know that this has no
solutions when n ≡ 7 (mod 8).
(ii) =⇒ (i): Write n = 2am with m odd. If m is not of the form 8k + 7 then
both m and 2m are sums of three integer squares, and since n is an even power
of 2 times either m or 2m, n must be a sum of three integer squares. So we are
reduced to the case n = 2a(8k + 7) with a ≥ 1. If a = 1 then ord2(n) = 1 and
again n is a sum of three integer squares. Suppose a = 2, so n = 32k + 28 and
thus n − 8 · 12 = 32k + 20 = 4(8k + 5) is of the form x2 + y2 + z2 and thus
n = x2 + y2 + z2 + 8w2. If a ≥ 3 is odd, then n is a sum of three squares. If a ≥ 4

is even, then n = (2
a−2

2 )2(4 · (8k + 7)) is a square times an integer represented by
q, so n is also represented by q. �

Exercise: Prove or disprove the following claims:
a) If d is a positive integer which is not divisible by 8, then the quadratic form
x2 + y2 + z2 + dw2 integrally represents all sufficiently large positive integers.
b) If d = 8d′ is a positive integer, then the quadratic form x2 + y2 + z2 + dw2

integrally represents all sufficiently large positive integers which are not 7 (mod 8).

15.12. The Ramanujan-Dickson Ternary Forms.

Consider the following seven positive definite ternary quadratic forms:

qA(x, y, z) = x2 + y2 + z2.

qB(x, y, z) = x2 + y2 + 2z2.

qC(x, y, z) = x2 + y2 + 3z2.

qD(x, y, z) = x2 + 2y2 + 2z2.

qE(x, y, z) = x2 + 2y2 + 3z2.

qF (x, y, z) = x2 + 2y2 + 4z2.

qG(x, y, z) = x2 + 2y2 + 5z2.
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These forms are the key to the proof of the Diagonal Fifteen Theorem men-
tioned above. Indeed, above we used Theorem 15.29 to prove the universality of
the forms (1, 1, 1, d) for 1 ≤ d ≤ 7. Ramanujan’s proof of the universality of the
other 54− 7 diagonal forms is similar, but also uses the forms qB through qG.

The Three Squares Theorem was proven by Legendre and Gauss at the beginning
of the 19th century. The representation theorem for qC was proved by Dirichlet
in 1850. I don’t know about the history of the representation theorems for the
other five forms: Ramanujan states these results but does not prove or reference
them in his paper. Concerning this, in the introduction to [Dic27], Dickson makes
the following rather uncharitable comment “He gave no proofs for these forms and
doubtless obtained his results empirically.” Dickson takes it upon himself to give
proofs of the other six representation theorems,15 and in so doing completes the
proof of the Diagonal Fifteen Theorem.

The evident challenge here is to give proofs of the other six representation the-
orems by GoN methods. In fact, for three of these forms this is not necessary, since
the proofs that Dickson gives are by reducing them to qA.

Theorem 15.39. For n ∈ Z+, the following are equivalent:
(i) n is not of the form 22a+1(8k + 7).
(ii) n is integrally represented by qB = x2 + y2 + 2z2.

Proof. [Dic27] (i) =⇒ (ii): Suppose first that n = 2k + 1 is odd. By Theorem
15.29, there exist x, y, z ∈ Z such that x2 + y2 + z2 = 4k + 2 = 2n. Reduction
modulo 4 shows that exactly two of x, y, z are odd: say x, y are odd and z = 2Z is
even. Then X = x+y

2 , Y = x−y
2 ∈ Z, so

2n = (X + Y )2 + (X − Y )2 + (2z)2 = 2X2 + 2Y 2 + 4Z2,

and thus n = X2 + Y 2 + 2Z2. Next suppose m 6= 22a(8k + 7). By Theorem 15.29,
there exist x, y, z ∈ Z such that X2 + Y 2 + z2 = m, so

2m = 2X2 + 2Y 2 + 2z2 = (X + Y )2 + (X − Y )2 + 2z2,

and every even positive integer not of the form 22a+1(8k+ 7) is represented by qB .
(ii) =⇒ (i): Suppose x2 +y2 +2z2 = n. We need to show n 6= 22a+1(8k+7): this is
clear if n is odd. Otherwise, if n = 2m = x2 +y2 + 2z2, then x and y have the same
parity so we may put X = x+y

2 , Y = x−y
2 to get 2m = (X+Y )2 +(X−Y )2 +2z2 =

2X2 + 2Y 2 + 2z2, so m = X2 + Y 2 + Z2. By Theorem 15.29 m is not of the form
22a(8k + 7), so n = 2m is not of the form 22a+1(8k + 7). �

Theorem 15.40. For n ∈ Z+, the following are equivalent:
(i) n is not of the form 4a(8k + 7).
(ii) n is integrally represented by qD = x2 + 2y2 + 2z2.

Proof. [Dic27] (i) =⇒ (ii): Suppose first that n is odd and not of the form 8k+ 7.
By Theorem 15.29 there are x, y, z ∈ Z such that n = x2 + y2 + z2. Since n is odd,
at least one of x, y, z is odd: without loss of generality suppose x is odd; then y

15Our labelling of the seven forms is the same as Dickson’s, except we have interchanged

qB and qC from [Dic27]. Our (lexicographic) ordering seems more straightforward and easier to
remember.
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and z have the same parity. Thus we may define Y = y+z
2 , Z = y−z

2 , so y = Y +Z,
z = Y − Z, and then

n = x2 + y2 + z2 = x2 + (Y + Z)2 + (Y − Z)2 = x2 + 2Y 2 + 2Z2 = qD(x, Y, Z).

Next suppose n = 2r is not of the form 4a(8k + 7). Then r is not of the form
22a+1(8k+7), so by Theorem 15.39 there are x, y, z ∈ Z such that r = x2 +y2 +2z2,
and thus

n = 2r = 2x2 + 2y2 + 4z2 = (2z)2 + 2x2 + 2y2 = qD(2z, x, y).

(ii) =⇒ (i): x2 + 2y2 + 2z2 = x2 + (y+ z)2 + (y− z)2. Apply Theorem 15.29. �

Theorem 15.41. For n ∈ Z+, the following are equivalent:
(i) n is not of the form 22a+1(8k + 7).
(ii) n is integrally represented by qF = x2 + 2y2 + 4z2.

Proof. [Dic27] (i) =⇒ (ii): Let n be a positive integer not of the form 22a+1(8k+7).
Suppose first that n is odd, so by Theorem 15.39 there are x, y, z ∈ Z such that
n = x2 + y2 + 2z2. Then x and y have opposite parity, so without loss of generality
x = 2X is even, and thus n = y2 +2z2 +4X2 = qF (y, z,X). Next suppose n is even,
so n = 2m with m not of the form 4a(8k+7). By Theorem 15.40 there are x, y, z ∈ Z
such that m = x2 + 2y2 + 2z2, so n = 2m = (2x)2 + 2y2 + 4z2 = qF (2x, y, z).
(ii) =⇒ (i): Suppose n = x2 + 2y2 + 4z2. If n is odd it is obviously not of the
form 22a+1(8k+ 7), so suppose n = 2m is even. Then n = 2m = x2 + 2y2 + 4z2, so
we may write x = 2X to get

m = y2 + 2z2 + 2X2.

By Theorem 15.40 m 6= 4a(8k + 7), so n = 2m 6= 22a+1(8k + 7). �

The significance of the next result lies in the “global” method of proof. It uses a re-
sult – the Aubry-Davenport-Cassels Lemma – that we have not described here (but
see e.g. [Cl11]), but I want to record it here and now because it was communicated
to me orally by Allan Lacy, and I don’t want to forget it.

Theorem 15.42. The form qB = x2 + y2 + 2z2 is an ADC-form.

Proof. (Lacy) The form q is boundary-Euclidean: for all v ∈ Q3, there exists
w ∈ Z3 such that q(v − w) < 1 unless v = (x, y, z) with x, y, z ∈ 1

2 + Z, in which

case the nearest integer approximation gives q(v−w) = 1. However, if x = x0 + 1
2 ,

y = y0 + 1
2 , z = z0 + 1

2 are half-integers such that

d = q(x, y, z) = (x0 +
1

2
)2 + (y0 +

1

2
)2 + 2(z0 +

1

2
)2,

so
4d = (2x0 + 1)2 + (2y0 + 1)2 + 2(2z0 + 1)2 ≡ 4 (mod 8),

so d is odd. But by Theorem 15.39, q Z-represents d anyway, so the implication “q
Q-represents d =⇒ q Z-represents d” certainly holds for all odd d! �

Anyway, this leaves us with the task of proving representation theorems for qC , qE
and qG using GoN methods. Dickson proves them using reduction theory, which
in truth is regarded as a main branch of GoN, but it is a tool that we have not
yet used in our study of quadratic forms. Given that such proofs already exist, the
open problem seems here is the existence of reduction-less proofs. For instance,
someone should at least try to adapt Wójcik’s proof of Theorem 15.29.
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16. Applications of GoN: Isotropic Vectors for Quadratic Forms

16.1. Cassels’s Isotropy Theorem.

For v = (x1, . . . , xn) ∈ Rn, we put

||v|| = max
i
|xi|.

Similarly, for a matrix A = (aij) ∈Mn(R), we put

||A|| = max
i,j
|aij |.

Finally, for an n-ary quadratic form q with coefficients in R, we put

||q|| = ||A||,
where A ∈Mn(K) is the corresponding symmetric matrix, i.e., q(t) = tTAt.

Now let q be an integral n-ary quadratic form. An isotropic vector v for q is
a nonzero vector v ∈ Zn such that q(v) = 0. We say that q is isotropic if it has
an isotropic vector; otherwise we say q is anisotropic.

Theorem 16.1. (Cassels [Ca55]) Let q be an n-ary quadratic form with coefficients
in Z, q 6≡ 0. If q is isotropic, there is an isotropic vector v for q with

||v|| ≤ (3||q||)
n−1

2 .

Proof. Let a = (a1, . . . , an) ∈ Zn be a nonzero anisotropic vector for q with ||a||
minimal. By relabelling the variables if necessary, we may assume ||a|| = |a1|.
Further, we may assume |a1| ≥ 2: if ||a|| = |a1| = 1, then ||a|| = 1 ≤

√
3

n−1
2 ≤

(3||q||)
n−1

2 . For v, w ∈ Qn, we define the associated bilinear form

〈v, w〉 =
q(v + w)− q(v)− q(w)

2
.

For all v ∈ Qn, 〈v, v〉 = q(v).
Step 1: We claim that for all b ∈ Zn with q(b) 6= 0 and all c ∈ K,

||q||
−1
2 ≤

√
3||b− ca||.

Let

a∗ = q(b)a− 2〈a, b〉b.
Then a∗ = q(b)τb(a), where τb ∈ O(q) is reflection through the anisotropic vector
b. It follows that since q(a) = 0, q(a∗) = 0. Or, if you like, just calculate directly:

q(a∗) = 〈a∗, a∗〉 = 〈q(b)a− 2〈a, b〉b, q(b)a− 2〈a, b〉b〉

= q(b)2〈a, a〉 − 4〈a, b〉2q(b) + 4〈a, b〉2q(b) = 0,

since q(a) = 0. By the minimality of a, we have

(47) ||a|| ≤ ||a∗||.
Now put d = b− ca, so b = d+ ca. Then

a∗ = q(d+ ca)a− 2〈a, d+ ca〉(d+ ca)

= (q(d) + 2c〈a, d〉+ c2q(a))a− 2〈a, d(d+ ca)

= q(d)a− 2〈a, d〉d.
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Using the Archimedean property of the standard absolute value on Z, we get

(48) ||a∗|| = ||q(d)a− 2〈a, d〉d|| ≤ |q(d)|||a||+ 2|〈a, d〉|||d|| ≤ 3||q||||a||||d||2.
Combining (47) and (48) and dividing through by ||a||, we get

1 ≤ 3||q|| · ||b− ca||2,
or equivalently

(49) ||q||
−1
2 ≤

√
3||b− ca||.

Step 2: We claim there is b ∈ Zn and c ∈ Q with q(b) 6= 0 and

(50) ||b− ca|| ≤ ||a||
−1
n−1 .

Apply Corollary 13.4 with n − 1 in place of n, M = |a1|, θi = ai
a1

. Then there is

0 < b1 < |a1| and b2, . . . , bn ∈ Z such that |bi − b1
a1
ai| ≤ ||a||

−1
n−1 . If we take c = b1

a1

this defines b ∈ Zn with ||b− ca|| ≤ ||a||
−1
n−1 . Further, for all 2 ≤ i ≤ n, we have

|bi| ≤ |
b1
a1
ai|+ |a1|

−1
n−1 < |b1|+ 1,

so ||b|| = |b1| < |a1| = ||a||. By minimiality of ||a||, this forces q(b) 6= 0.
Step 3: Combining (49) and (50) we get

||q||
−1
2 ≤

√
3||a||

−1
n−1 ,

or
||a|| ≤ (3||q||)

n−1
2 .

�

16.2. Legendre’s Theorem.

Let q(x, y, z) be a nondegenerate quadratic form over Z. Is q isotropic? This
depends only on the Q-isomorphism class of q, so we may diagonalize and take

q(x, y, z) = ax2
1 + bx2

2 + cx2
3 = 0,

with a, b, c nonzero squarefree integers. Now if a, b, c are all positive, then q is pos-
itive definite, hence certainly anisotropic over Z; similarly q is anisotropic if a, b, c
are all negative. Up to relabeling and multiplying through by −1, we may – and
shall – assume that a is positive and b and c are negative.

Finally, we may reduce to the case in which a, b, c are coprime in pairs, or equiv-
alently that abc is squarefree. We leave this as a simple but enlightening exercise
for the reader. Thus we are led to consider the Legendre equation

(51) ax2 + by2 + cz2 = 0,

with a > 0, b, c < 0 and abc squarefree.

Thus we are led to consider the Legendre equation

(52) ax2 + by2 + cz2 = 0,

with a > 0, b, c < 0 and abc squarefree.

We claim that if q(x, y, z) is isotropic, then −bc is a square modulo a, −ac is
a square modulo b, and −ab is a square modulo c. Indeed, suppose there are
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x, y, z ∈ Q, not all zero, such that ax2 + by2 + cz2 = 0. By rescaling, we may
assume that (x, y, z) ∈ Z3 and gcd(x, y, z) = 1.

Let p be a prime dividing a. Reducing 52 modulo a gives

by2 + cz2 ≡ 0 (mod p).

If y and z were both divisible by p, then since ax2 + by2 + cz2 = 0, p | ax2. Since
p | a and gcd(a, c) = 1, p | x2 and thus p | x, contradicting gcd(x, y, z) = 1. So we
may assume that at least one of y and z is invertible modulo p; with no real loss of
generality we assume y is invertible modulo p. Then by2 ≡ −cz2 (mod p), so

−bc ≡
(
cz

y

)2

(mod p),

i.e., −bc is a square modulo p. Since this argument holds for every prime dividing
the squarefree integer a, by the Chinese Remainder Theorem −bc is a square mod-
ulo a. And of course a perfectly symmetrical argument shows that −ac is a square
modulo b and that −ab is a square modulo c.

Remarkably, these easy necessary conditions and also sufficient.

Lemma 16.2. Let m ∈ Z+ and let ε1, ε2, ε3 ∈ R>0 be such that ε1ε2ε3 ≥ m. Let
`(x, y, z) = αx + βy + γz ∈ Z[x, y, z] be any linear polynomial. Then there are
(x, y, z) ∈ (Z3)• such that

(53) `(x, y, z) ≡ 0 (mod m)

and |x| ≤ ε1, |y| ≤ ε2, |z| ≤ ε3.

Exercise: Prove Lemma 16.2. (Suggestion: show that (53) defines a sublattice
Λ ⊂ Z3 of index dividing m, and apply Minkowski’s Linear Forms Theorem.)

Theorem 16.3. (Legendre) The Legendre Equation has a nontrivial integer solu-
tion iff −bc is a square mod a, −ac is a square mod |b| and −ab is a square mod
|c|.
Proof. We may assume that b and c are not both −1. Indeed, if b = c = −1, then
the condition −bc is a square modulo a gives that −1 is a square modulo a and thus
a is a sum of two integer squares, yielding a nontrivial solution to ax2−y2−z2 = 0.

We claim that our congruence conditions force q(x, y, z) are necessary and suffi-
cient for the existence of linear forms L1(x, y, z), L2(x, y, z) ∈ Z[x, y, z] such that

q(x, y, z) ≡ L1(x, y, z)L2(x, y, z) (mod abc).

Since a, b, c are coprime in pairs, it is sufficient to show the factorization of q into
linear forms modulo a, modulo b and modulo c; then by the Chinese Remainder
Theorem we may choose L1, L2 ∈ Z[x, y, z] which reduce modulo a, b and c to the
linear factors of q. So: let r be such that r2 ≡ −bc (mod a), and let c′ be such that
cc′ ≡ 1 (mod a). Then16

q(x, y, z) = ax2 + by2 + cz2 ≡ by2 + cz2 ≡ cc′(by2 + cz2) ≡ c′(bcy2 + c2z2)

16That these congruence conditions imply factorizations of binary forms is not a new phe-
nonemon for us: it was established in some generality in Proposition 9.10. Unfortunately for us,
the generality of that result is not the “right generality” for the current application: Proposition

9.10 concerns quadratic forms over domains of characteristic not 2, whereas we are looking at
quadratic forms over rings Z/(a), which may have zero-divisors...including 2.



110 PETE L. CLARK

≡ c′(c2z2 − r2y2) ≡ c′(cz + ry)(cz − ry) ≡ L1(x, y, z)L2(x, y, z) (mod a).

By symmetry similar arguments can be made modulo b and c. So we get

q(x, y, z) ≡ L1(x, y, z)L2(x, y, z) = (αx+ βy + γz)(α′x+ β′y + γ′z) (mod abc).

Now apply Lemma 16.2 with m = abc, ε1 =
√
|bc|, ε2 =

√
|ac|, ε3 =

√
|bc|: there

are (x1, y1, z1) ∈ (Z3)• with

(54) |x1| ≤
√
bc, |x2| ≤

√
ac, |x3| ≤

√
ab

and
L1(x1, y1, z1) ≡ 0 (mod abc).

Since q ≡ L1L2 (mod abc), this implies

q(x1, y1, z1) ≡ 0 (mod abc).

Note that we have

(55) x2
1 ≤ bc y2

1 ≤ −ac, z2
1 ≤ −ab.

In fact, since bc is squarefree and greater than 1, we must have x2
1 < bc. Similarly,

if y2
1 = −ac then a = 1 and c = −1, and if z2

1 = −ab then a = 1 and b = −1, so at
least one of the two inequalities must be strict and thus

−2abc < by2
1 + cz2

1 ≤ ax2
1 + by2

1 + cz2
1 ≤ ax2

1 < abc.

Thus either q(x1, y1, z1) = 0 – great! – or q(x1, y1, z1) = −abc. In the latter case,
the ternary form q represents −disc(q) hence is isotropic by [NCA, Cor. 95].17

If one wants to avoid this nontrivial result of quadratic form theory, here is a
completely elementary finish: put

x2 = −by1 + x1z1,

y2 = ax1 + y1z1,

z2 = z2
1 + ab.

Then

q(x2, y2, z2) = ab(ax2
1 + by2

1 + cz2
1) + z2

1(ax2
1 + by2

1 + cz2
1) + abcz2

1 + a2b2c

= ab(−abc)− abcz2
1 + abcz2

1 + a2b2c = 0,

so (x2, y2, z2) is a solution. If z2 = z2
1 + ab = 0 then a = 1, b = −1, and (1, 1, 0) is

a nontrivial solution. �

Now let us make some remarks and further inquiries about this proof.

First, the argument begins in a similar way to our study of numbers represented
by binary and quaternary forms, but instead of choosing a (suitable) number d
and constructing a sublattice of index some power of d, here we are constructing
once and for all a sublattice Λabc of index abc based upon properties of q modulo
singular primes, i.e., primes dividing disc q = abc.

Further, the proof is cast in terms of factorization of q into linear forms, but it
is possible to recast it in the (by now) more familiar language of magic lattices.
Namely, we can more directly construct the magic lattice Λ of index abc as follows:
a Chinese Remainder Theorem argument reduces us to constructing a lattice Λp
for all p | abc of index p such that q|Λp

≡ 0 (mod p). When p is an odd prime, this

17I am indebted to Danny Krashen for pointing out this simplification of the end of the proof.
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can be established easily as follows: by hypothesis, p divides exactly one of a, b,
c, so without loss of generality suppose p | c; then the reduction of q modulo p is
the ternary form ax2 + by2 + 0z2. Thus q = q′ ⊕ R(q), the orthogonal direct sum
of a nondegenerate binary quadratic form q′ = ax2 + by2 and a one-dimensional
isotropic subspace R(q). Under the reduction map Z3 → (Z/pZ)3, the index p
sublattices correspond to the codimension one – hence dimension 2 – subspaces of
(Z/pZ)3, and we are looking for a codimension one subspace on which q is identi-
cally zero (modulo p). Of course R(q) gives a one-dimensional isotropic subspace,
so we need one more dimension. We can get this iff q′ = ax2 +by2 is itself isotropic,
iff its discriminant is minus a square modulo p. But we have assumed that −ab is
a square modulo c, so in particular it is a square modulo p. This shows that not
only does the required two-dimensional subspace exist, it is unique.

We need to make a separate argument when p = 2, since quadratic form the-
ory works quite differently in charateristic 2. Fortunately this is a very simple
situation: we may assume a and b are odd and c is even, so modulo 2 we have
q(x, y, z) = x2 + y2 + 0z2, and we can see right away that q vanishes identically on
the subspace {0, (1, 1, 0), (0, 0, 1), (1, 1, 1)}.18

The idea of applying Minkowski’s Linear Forms Theorem is a clever one. From
our perspective it would be more natural to apply the Convex Body Theorem.
But we have a homogeneous indefinite quadratic equation – so where is our convex
body?? Here is one simple, classical idea: majorization. Namely, let us consider
the quadratic form |q|(x, y, z) = |a|x2 + |b|y2 + |c|z2. Evidently this form is positive
definite and bears some relation to the indefinite form q: more precisely it majorizes
q in the sense that for all (x, y, z) ∈ R3,

|q(x, y, z)| ≤ |q|(x, y, z).
We are therefore free to apply the Convex Body Theorem to the level sets ΩR =
{v ∈ R3 | |q|(v) ≤ R2} and the lattice Λabc. If there exists R2 < abc and v ∈
ΩR ∩ Λabc 6= {0}, |q(v)| ≤ |q|(v) < abc and q(v) ≡ 0 (mod abc), so q(v) = 0.

Unfortunately it does not quite work: we have disc |q| = Covol Λabc = abc, so
applying Theorem 9.6 we get v ∈ Λ•abc with

|q|(v) ≤ 4(disc |q|) 1
3

V
2
3

3

(Covol Λabc)
2
3 =

4

(4π/3)2/3
abc = (1.5393 . . .)abc.

Too bad – we needed the coefficient of abc to be less than one! Note that even
if we replaced the Minkowski constant M3 by the 3-dimensional Hermite constant
γ3 = 2

1
3 , we still don’t quite get what we want:

|q|(v) ≤ γ3abc = (1.25992 . . .)abc.

Thus it seems that the trick of switching from (x1, y1, z1) to the pulled-out-of-
thin-air (x2, y2, z2) is necessary to complete the argument. This is disappointing,
because we had a beautiful upper bound on the size of (x1, y1, z1) with respect to
a weighted `∞-norm on R3, which passage to (x2, y2, z2) ruins completely (we can
still get an explicit upper bound, but a much worse one).

18In fact, over F2 we have x2 = x, so q is “really” the nonzero linear form x + y, so without
any calculation it is clear that it has a codimension one kernel.
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16.2.1. Transcription of [DH48].

Let a, b, c be integers, and suppose that (i) not all of a, b, c have the same sign,
and none of them is zero, (ii) a, b, c are relatively prime in pairs. A famous theorem
of Legendre asserts that if the congruences

(56) A2 ≡ −bc (mod a), B2 ≡ −ac (mod b), C2 ≡ −ab (mod c)

are all soluble, then the equation

(57) ax2 + by2 + cz2 = 0

has a solution in integers x, y, z, not all zero. If the additional hypothesis is made
that a, b, c are squarefree, then the above condition is necessary as well as sufficient,
for the solubility of (57). In this note we give a simple proof of Legendre’s theorem
by using the methods of the geometry of numbers. The idea of the proof is the
natural one of determining x, y, z so that ax2 + by2 + cz2 is both divisible by abc
and numerically less than |abc|.

The points (x, y, z), where x, y, z are any integers satisfying

(58) Ay ≡ cz (mod a), Bz ≡ ax (mod c), Cx ≡ by (mod c),

form a lattice in three-dimensional space, since the sum or difference of two such
points is again such a point. Three particular lattice points are

(bc, 0, 0), (x1, a, 0), (x2, y2, 1)

for appropriate values of x1, x2, y2. Moreover every solution of (58) is expressible
in the form

(x, y, z) = λ(bc, 0, 0) + µ(x1, a1, 0) + ν(x2, y2, 1)

with integral λ, µ, ν, as one easily sees by determining ν, µ, λ successively. Since
the determinant of the coordinates of the three points is abc, it follows that the
determinant of the lattice is |abc|. All points of the lattice satisfy

(59) ax2 + by2 + cz2 ≡ 0 (mod abc).

For

c(b2 + cz2) ≡ −A2y2 + c2z2 ≡ 0 (mod a)

by (56) and (58), whence (59) follows as a congruence to modulus a and similarly
to moduli b and c.

supppose, as we may after (i), that a > 0, b > 0, c = −c′ < 0. The real lin-
ear transformation

(60) x = X
√
bc′, y = Y

√
ac′, z = Z

√
ab

transforms the lattice in (x, y, z)-space into a lattice in (X,Y, Z)-space whose de-
terminant is 1. For every point of this new lattice,

X2 + Y 2 − Z2 = (ax2 + by2 + cz2)/(abc′),

and so is an integer. To complete the proof of Legendre’s theorem, it will suffice to
prove that every lattice of determinant 1 contains a point, other than the origin 0,
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which satisfies19

(61) |X2 + Y 2 − Z2| < 1.

Let M denote the lower bound of |X2 + Y 2 −Z2| for all points of the lattice other
than 0. If M < 1, the desired conclusion holds, so we may suppose that M ≥ 1.
There exists a lattice point (X1, Y1, Z1) for which

(62) X2
1 + Y 2

1 − Z2
1 = ±M1,

where M1 either equals M ,, or differs from m by an arbitrarily small amount.

(Comment by PLC: They seem to have forgotten that X2 + Y 2 − Z2 is integer-
valued on the lattice. We can thus take M1 = M .)

Case 1. Suppose first that the lower sign holds in (62). We can find a real inear
transformation which will leave X2 +Y 2−Z2 invariant, and transform (X1, Y1, Z1)

into (0, 0,
√
M1). For we can first transform (X1, Y1, Z1) into (0,

√
X2

1 + Y 2
1 , Z1)

by a trnasofrmation of X,Y only, leaving X2 + Y 2 invariant, and then trans-
form (0,

√
X2

1 + Y 2
1 , Z1) into (0, 0,

√
M1) by a transformation of Y,Z only, leaving

Y 2 − Z2 invariant.

(Comment by PLC: alternately, X2 + Y 2 − Z2 is a nondegenerate quadratic form,
so by Witt’s isometry extension theorem, the orthogonal group of this form acts
transitively on the set of all vectors taking a given nonzero value.)

We now have a lattice in (X,Y, Z)-space, of determinant 1, such that (0, 0,
√
M1)

is a lattice point, and such that

(63) |X2 + Y 2 − Z2| ≥M
for every lattice point except 0. The points (X,Y, 0) obtained by projecting all
lattice points on the plane Z = 0 form a two-dimensional lattice of determinant
1/
√
M1. We apply the well-known theorem that any plane lattice of determinant

∆ contains a lattice point, other than O, in the circle X2 + Y 2 ≤ 2∆/
√

3. Thus
there is a point of the three-dimensional lattice satisfying

(64) X2 + Y 2 ≤ 2/
√

3M1.

We can suppose, without loss of generality, by subtracting a multiple of (0, 0,
√
M1)

and changing signs throughout if necessary, that

(65) 0 ≤ Z ≤ 1

2

√
M1.

Thus X2 + Y 2 −Z2 ≥ − 1
4M1, and since M1, is approximately M , (63)implies that

(66) X2 + Y 2 − Z2 ≥M.

Another lattice point is (X,Y, Z −
√
M1), and by (64) and (65),

X2 + Y 2 − (Z −
√
M1)2 ≤ 2/

√
3M1 −

1

4
M1.

19In fact, by a theorem of Markoff, this is true with any number greater than
√

2/3 in place of

1 on the right of 61). For an elementary proof of Markoff’s theorem, see Davenport, J. of London
Math. Soc. 22 (1947), 96-9.
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Since M1 is approximately M , and M ≥ 1, the number on the right is less than M .
Hence (63) gives

(67) X2 + Y 2 − (Z −
√
M1)2 ≤ −M.

On subtraction, (66) and (67) imply

2Z
√
m1 ≤M1 − 2M ≤ 0,

contrary to (65).
Case 2. Supose now that the upper sign holds in (62). We can suppose also that
there are no values of X2 + Y 2 − Z2 arbitrarily near to −M , since that possibility
has been settled in Case 1. We can find (in the same way as befoe) a real linear
transformation which leaves X2 + Y 2 − Z2 invariant and transforms (X1, Y1, Z1)
into (

√
M1, 0, 0). Thus we have a lattice in (X,Y, Z)-space of determinant 1 such

that (
√
M1, 0, 0) is a lattice point, and such that (63) holds for all lattice points

except 0. The points (0, Y, Z) obtained by projecting the lattice points on the plane
X = 0, form a lattice of determinant 1/

√
M1. We use the well-known theorem that

a plane lattice of determinant ∆ has a point, other than O, in the rectangle

|Y | < λ, |Z| < µ

if λ, µ are positive numbers satisfying λµ > ∆. Hence there is a point of the
three-dimensional lattice satisfying

|Y | < (M − 1

4
M1)

1
2 , |Z| < M +M1.

For, since M1 is approximately M and M ≥ 1, the product of the numbers on the
right is greater than 1/

√
M1. We can suppose without loss of generality that this

lattice point has

(68) 0 ≤ X ≤ 1

2

√
M1.

Now X2 + Y 2 − Z2 < 1
4M1 + (M − 1

4M1) = M ; hence (63) implies

(69) X2 + Y 2 − Z2 ≤ −M.

Another lattice point is (X +
√
M1, Y, Z) and

(X +
√
M1)2 + Y 2 − Z2 > M1 − (M +M1) = −M.

Hence (63) gives

(70) (X +
√
M1)2 + Y 2 − Z2 ≥M.

By (69) and (70), 2X
√
M1 ≥ 2M −M1. So, by (68), X is nearly 1

2

√
M . Also

M − (X +
√
M1)2 ≤ Y 2 − Z2 ≤ −M −X2.

So Y 2−Z2 is nearly − 5
4M . But then X2 +Y 2−Z2 is nearly −M , which contradicts

the hypothesis made earlier.
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16.2.2. Notes on [Mo51].

Several authors have improved the endgame of the proof of Legendre’s Theorem
so as to recover not the full bound (55) but something which is weaker only by a
constant factor. Of these, the one which we find the most interesting and thematic
is due to Mordell [Mo51], and we present Mordell’s argument in detail here.20

Now we give Mordell’s modification of the GoN proof of Legendre’s Theorem.
We will follow Mordell’s setup, which is to write the Legendre Equation as

f(x, y, z) = ax2 + by2 − cz2 = 0

with a, b, c ∈ Z+, abc squarefree.

Theorem 16.4. (Mordell [Mo51]) Assume the Legendre Conditions. There is
(x0, y0, z0) ∈ (Z3)• with

f(x0, y0, z0) ≡ 0 (mod 4abc)

and

|x0| ≤
√

2bc, |y0| <
√

2ac, |z0| < 2
√
ab.

Before giving the proof, we remark that Theorem 16.4 implies Legendre’s Theorem:
since f(x0, y0, z0) ≡ 0 (mod 4abc) and

|f(x0, y0, z0)| = |ax2
0 + by2

0 − cz2
0 | ≤ max(ax2

0 + by2
0 , cz

2
0) < 4abc,

we must have f(x0, y0, z0) = 0. Further – and this is really the point – we also get
a bound on the coefficients of an isotropic vector that is within a factor of 2 of the
bound (54) obtained – and then lost! – in our first proof of Legendre’s Theorem.

Proof. The basic strategy of the proof is to use Theorem 12.7 with m = 5, n = 3,
ε1 =

√
2bc, ε2 =

√
2ac, ε3 = 2

√
ab. We write out the Legendre Conditions: there

are integers A,B,C such that

(71) bA2 ≡ c (mod a), cB2 ≡ a (mod b), aC2 ≡ −b (mod c).

Case I: Suppose abc is odd. As the first three out of five congruences, we take

(72) y −Az ≡ 0 (mod a), z −Bx ≡ 0 (mod b), x− Cy ≡ 0 (mod c).

Then

by2 − cz2 ≡ b(y2 −A2z2) ≡ 0 (mod a),

ax2 + by2 ≡ a(x2 − C2y2) ≡ 0 (mod c),

ax2 − cz2 ≡ c(B2x2 − z2) ≡ 0 (mod b),

so that all (x, y, z) ∈ Z3 satisfying (72) also satisfy

(73) f(x, y, z) ≡ 0 (mod abc).

(This part of the argument is, of course, familiar to us: it is equivalent to the
construction of the lattice Λabc.) Since abc is odd, to get f(x, y, z) ≡ 0 (mod 4abc)
it suffices to impose congruence conditions which imply f(x, y, z) ≡ 0 (mod 4), and
this will be done by quite elementary means.

20In [Mo69], Mordell comments that essentially the same approach as his was taken indepen-
dently by Skolem in the slightly later paper [Sk52].
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First we claim that we cannot have a ≡ b ≡ −c (mod 4), as we show by the
following Jacobi symbol calculation: using (71) we find(

−ab
c

)
=

(
(−b)(−b)

c

)
= 1,(

bc

a

)
=

(
b2

a

)
= 1,(ac

b

)
=

(
c2

b

)
= 1,

so

1 =

(
−1

c

)((a
b

)( b
a

))((
b

c

)(c
b

))(( c
a

)(a
c

))
.

• If c ≡ 3 (mod 4) – so a ≡ b ≡ 1 (mod 4) – then
(−1
c

)
= −1 and by Quadratic

Reciprocity for the Jacobi symbol the rest of the product evaluates to 1, giving
1 = −1, a contradiction.
• If c ≡ 1 (mod 4) – so a ≡ b ≡ 3 (mod 4) – then(

−1

c

)
=

(
b

c

)(
b

c

)
=
( c
a

)(a
c

)
= 1,

while (a
b

)( b
a

)
= −1,

contradiction. Thus two of a, b,−c are incongruent modulo 4.
• Suppose a 6≡ b (mod 4). Then a ≡ −b (mod 4) and we take as our last two
congruences

x ≡ y (mod 2), z ≡ 0 (mod 2),

so that f(x, y, z) ≡ ax2 + by2 − cz2 ≡ a(x2 − y2) ≡ 0 (mod 4).
• Suppose a ≡ −c (mod 4). Then a ≡ c (mod 4) and we take as our last two
congruences

x ≡ z (mod 2), y ≡ 0 (mod 2).

• Suppose b ≡ −c (mod 4). Then b ≡ c (mod 4) and we take as our last two
congruences

y ≡ z (mod 2), x ≡ 0 (mod 2).

In all three cases we apply Theorem 12.7 with d1 = a, d2 = b, d3 = c, d4 = d5 = 2,
to get the desired result.
Case II: Suppose 2 | a. We take now as our first three congruences

(74) y −Az ≡ 0 (mod
a

2
), z −Bx ≡ 0 (mod b), x− Cy ≡ 0 (mod c),

which as above imply

(75) f(x, y, z) ≡ 0 (mod
abc

2
).

We now wish to impose congruences modulo 2 and modulo 4 which imply f(x, y, z) ≡
0 (mod 8) and apply Theorem 12.7 with d1 = a

2 , d2 = b, d3 = c, d4 = 4, d5 = 2.
First we observe, as above, that(

bc

a/2

)
=

(
b2

a/2

)
= 1,

(ac
b

)
= 1,

(
−ab
c

)
= 1,
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so

(76) 1 =

(
−1

c

)(
2

bc

)((
a/2

bc

)(
bc

a/2

))((
b

c

)(c
b

))
.

Case 1: Suppose a+ b− c ≡ 0 (mod 8). Then we impose

x ≡ y (mod 2), z ≡ y (mod 4),

and

f(x, y, z) = ax2 + by2 − cz2 ≡ ax2 + by2 − (a+ b)y2 ≡ a(x2 − y2) ≡ 0 (mod 8).

Case 2: Suppose b− c ≡ 0 (mod 8). Then we impose

x ≡ 0 (mod 2), z ≡ y (mod 4),

and

f(x, y, z) = ax2 + by2 − cz2 ≡ ax2 + by2 − cy2 ≡ ax2 ≡ 0 (mod 8).

Case 3: Suppose b− c ≡ 4 (mod 8), so bc ≡ ±3 (mod 8).
• If b ≡ c ≡ 1 (mod 4), then all factors in (76) are 1, except

(
2
bc

)
= 1, contradiction.

• If b ≡ c ≡ 3 (mod 4), all factors in (76) are −1 except
((

a/2
bc

)(
bc
a/2

))
= 1,

contradiction.
Case 4: Suppose a ≡ b− c (mod 8), so b ≡ ±1 (mod 4) and c ≡ ∓1 (mod 4).

Case 4a): Suppose a ≡ 2 (mod 8). Then
((

a/2
bc

)(
bc
a/2

))
=
((
b
c

) (
c
b

))
= 1, whereas

an examination of the four possible cases

(b, c) ≡ (3, 1), (5, 3), (7, 5), (1, 7) (mod 8)

shows that we always have
(−1
c

) (
2
bc

)
= −1, contradiction.

Case 4b): Suppose a ≡ 6 (mod 8). A similar examination of all four possible cases

(b, c) ≡ (3, 5), (5, 7), (7, 1), (1, 3) (mod 8)

leads to a contradiction.
Case III: Suppose 2 | b. This case follows from the 2 | a case by symmetry.
Case IV: Suppose 2 | c. We leave this case as an exercise, as did Mordell. �

Exercise: Fill in the details of Cases II4b) and IV.

Exercise: a) Show that Mordell’s proof yields the existence of a sublattice Λ′ ⊂ Z3,
of index 4abc, such that q ≡ 0 (mod 4abc) on Λ′.
b) Use part a) and Theorem 9.6 to deduce Legendre’s Theorem.

16.3. Holzer’s Theorem.

Theorem 16.5. (Holzer [Ho50]) Let a, b, c ∈ Z• be such that abc is squarefree. If
the Legendre form q = ax2 + by2 + cz2 = 0 admits an isotropic vector, it admits an
isotropic vector v = (x, y, z) with

|x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab|.

Remark: Holzer’s bound implies the existence of an isotropic vector v with

|v| = max |x|, |y|, |z| ≤ max |a|, |b|, |c|.
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It is natural to compare this to the bound given by the Cassels Isotropy Theorem:
applying that result to q, we get an isotropic vector v = (x, y, z) with

|v| ≤ 3(|a|+ |b|+ |c).

Thus when both apply, Holzer’s bound is an improvement of Cassels’s bound.

Holzer’s own proof of Theorem 16.5 used rather advanced algebraic number theory,
including results of Hecke generalizing Dirichlet’s Theorem on primes in arithmetic
progressions to the case of number fields.

For some years after Holzer’s work various well known mathematicians gave el-
ementary proofs of bounds slightly weaker than Holzer’s bound: see e.g. [Mo51],
[Sk52], [C, p. 102]. Finally, in one of his last works, Mordell gave in 1969 a rea-
sonably short, completely elementary (but rather tricky) proof of Holzer’s bound
[Mo69]. Mordell’s argument has been found confusing by some, but a nice exposi-
tion of it was given by L.M. Nunley [Nu10, §2.4].

Note well that the Holzer bound is precisely the bound we were getting in the
GoN proof of Legendre’s Theorem, until we lost it at the very end by making
a mysterious change of variables. This suggests the goal of giving an alternate
endgame to this proof which yields a proof of Legendre’s Theorem and Holzer’s
Theorem in one fell swoop. Exactly this was done by Cochrane and Mitchell: we
present their argument in the next section. Here we content ourself with further
remarks, examples and strengthenings.

Example ([Nu10, p. 14]): Let p be a prime, and consider the Legendre equation

x2 + y2 − pz2 = 0.

The Legendre Conditions hold iff −1 is a square modulo p iff p = 2 or p ≡ 1
(mod 4). (From this we deduce that all such primes are sums of two rational
squares. Since x2 + y2 is a Euclidean form, it is an ADC form, and thus we recover
the Two Squares Theorem.) Here the Holzer bound is

|x| ≤ p, |y| ≤ p, |z| ≤ 1.

This shows that the Holzer bound cannot be improved to

|x| ≤ C
√
|bc|, |y| ≤ C

√
|ac|, |z| ≤ C

√
|ab|

for any constant C < 1: indeed, such an improvement would in the above examples
force z = 0 and thus x = y = 0.

There are also infinitely many cases where the Holzer bound is not sharp.

Theorem 16.6. ([Nu10, p. 17]) For any C > 0, there are infinitely many Legendre
equations ax2 + by2 + cz2 = 0 admitting an isotropic vector v = (x, y, z) with

|x| ≤ C
√
|bc|, |y| ≤ C

√
|ac|, |z| ≤ C

√
|ab|.

To the best of my knowledge, the only published work which seriously explores
going beyond the Holzer bound under suitable conditions is a 1959 paper of Kneser
[Kn59]. Kneser’s paper has no mathscinet citations: I learned of it through [Wi88].
I have not yet gotten hands on Kneser’s paper, and to add injury to that insult it is
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written in German, so it would be difficult for me to understand. Perhaps someone
would like to tell me what’s in it?

Corollary 16.7. Let a, b, c ∈ Z•, and put d = gcd(a, b, c). Suppose

q = ax2 + by2 + cz2 = 0

is an isotropic form. Then q has an isotropic vector v = (x, y, z) satisfying

(77) |x| ≤
√
|bc|
d

, |y| ≤
√
|ac|
d

, |z| ≤
√
|ab|
d

.

Proof. We go by strong induction on N = |abc|.
Step 0 (Base Case): When N = 1, then |a| = |b| = |c| = 1; this is a trivial case.

Henceforth we assume N > 1 and, inductively, that the result holds for all
isotropic forms a′x2 + b′y2 + c′z2 = 0 with |a′b′c′| < N .
Step 1: Suppose d = gcd(a, b, c) > 1. Let q′ = a

dx
2 + b

dy
2 + c

dz
2. Since q = dq′, q

and q′ have the same isotropic vectors. In particular, since q is isotropic, so is q′,
and by induction there is an isotropic vector v = (x, y, z) for q′ with

|x| ≤

√∣∣∣∣ bd
∣∣∣∣ ∣∣∣ cd ∣∣∣ =

√
|bc|
d

,

|y| ≤
√∣∣∣a

d

∣∣∣ ∣∣∣ c
d

∣∣∣ =

√
|ac|
d

,

|z| ≤

√∣∣∣a
d

∣∣∣ ∣∣∣∣ bd
∣∣∣∣ =

√
|ab|
d

.

Since v is also an isotropic vector for q, we’re done in this case.
Step 2: Suppose d = 1 and that a, b and c are not all squarefree; without loss of
generality, suppose a = p2a′ for some prime number p. Then

0 = q(v) = p2a′x2 + by2 + cz2 = a′(px)2 + by2 + cz2,

so the form q′(x, y, z) = a′x2 + by2 + cz2 is isotropic. Since |a′bc| = N
p2 < 1, by

induction there are x0, y0, z0 ∈ Z, not all 0, such that a′x2
0 + by2

0 + cz2
0 = 0 and

|x0| ≤
√
|bc|, |y0| ≤

√
|a′c| =

√
|ac|
p

, |z0| ≤
√
|a′b| =

√
|ab|
p

.

Take v = (x0, py0, pz0) is an isotropic vector for q satisfying (77).
Step 3: Suppose d = 1, a, b, c are all squarefree, but that they are not pairwise
coprime; without loss of generality, a = pa′, b = pb′ for some prime number p. If
v = (x, y, z) is an isotropic vector for q then p | z. Thus we may take z = pz′. Since

q(v) = pa′x2 + pb′y2 + p2cz′2 = 0,

we find
0 = a′x2 + b′y2 + pcz′2 = q′(v′),

where q′(x, y, z) = a′x2 + b′y2 + c′z2, c′ = pc, and v′ = (x, y, zp ). Since |a′b′c′| =

|abcp | < N , by induction there are x0, y0, z0 ∈ Z, not all zero, such that

a

p
x2

0 +
b

p
y2

0 + cpz2
0 = 0,

|x0| ≤
√
|bc|, |y0| ≤

√
|ac|, |z0| ≤

√
|ab|p.
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Then v = (x0, y0, pz0) is an anisotropic vector for q satisfying (77).
Step 4: Suppose a, b, c are squarefree and pairwise coprime. Then q is in Legendre
Form and Theorem 16.9 applies. �

Corollary 16.7 appears in [Wi88]: therein, Williams modifies the proof of [Mo69] to
go through without the reduction to Legendre form. (For those who are tracking
down the reference, the bound given there is superficially different, but equivalent
via Proposition 16.8 of the next section.) However, as Cochrane and Mitchell ex-
plain in [CoMi98], one may simply deduce the result from Holzer’s Theorem by
tracking through the isotropic vector through the reduction process. This is of
course the strategy followed in the above proof (with a slightly different implemen-
tation).

In view of Corollary 16.7 one may wonder why we bother to reduce diagonal ternary
quadratic forms into Legendre form. There is a good answer to this: for arbitrary
nonzero integers a, b, c ∈ Z•, not all of the same sign, the Legendre conditions

• −ab is a square modulo c,
• −ac is a square modulo b,
• −bc is a square modulo a

are insufficient to force isotropy. For example, let p be a prime number and consider

px2 + py2 − z2 = 0.

In this case the Legendre conditions are satisfied for any prime p. However, the
corresponding Legendre form is

x2 + y2 − pz2 = 0,

which is anisotropic if p ≡ 3 (mod 4): indeed, applying the Legendre Conditions
to the Legendre form we get that −1 needs to be a square modulo p.

16.4. The Cochrane-Mitchell Theorem.

The above goal of giving a simultaneous proof of Legendre’s Theorem and the
Holzer bound was attained in a beautiful relatively recent work of Cochrane and
Mitchell [CoMi98]. Their key idea is to refine the lattice Λ to a suitable sublattice
Λ′. Suppose for the sake of argument that we can find, for some n > 1, an index n
sublattice Λ′ of Λ with q|Λ′ ≡ 0 (mod abcn). Then there exists v ∈ Λ′• with

|q(v)| ≤ |q|(v) ≤ 2
1
3 (disc |q|) 1

3 (Covol Λ′)
2
3 = 2

1
3n

2
3 abc.

When n = 2 we have |q(v)| ≤ 2abc, and is this right on the boundary: if we can also
show that q|Λ′ is not H-equivalent to q3 = x2 +y2 + z2 +xy+xz+yz, then Gauss’s
Theorem asserts that there exists v ∈ (Λ′)• with |q(v)| ≤ |q|(v) < 2abc, and since
by construction q(v) ≡ 0 (mod 2abc), we must then have q(v) = 0, and thus we
have found a solution with an explicit upper bound on the size of the coefficients.

On the other hand, if n > 2, then things work more strongly in our favor: there
exists v ∈ (Z3)• with q(v) ≡ 0 (mod abcn) and |q(v)| ≤ 2

1
3n

2
3 abc < nabc, and

we deduce that q(v) = 0 without having to compare q with the extremal form
q3. In fact, for sufficiently large n we can make the argument go through using
Minkowski’s Theorem 9.6 rather than the optimal constant γ3. (I invite you to
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calculate how large n needs to be for this.)

Cochrane and Mitchell take the former route: they show that one can take n = 2
and check the non-H-equivalence of |q|Λ′ with the extremal form q3. Let’s check
the second part first: put

M|q| =

 a 0 0
0 b 0
0 0 c

 ,
and let A ∈ M3(Z) be such that Λ′ = AZ3. For this part of the computation we
use only that detA = [Z3 : Λ′] = 2abc. Then

disc |q|Λ′ = disc(|q|(Av)) = det(AtM|q|A) = 4(abc)3.

Now if λ ∈ R>0 is such that |q|Λ′ ∼=GL3(Z) λq3, then

4(abc)3 = disc |q|Λ′ = λ3 discλq3 =
λ3

2
,

and thus we must have

λ = 2abc.

From this it would follow that for all (x, y, z) ∈ Λ′ we would have

|q|(x, y, z) = |a|x2 + |b|y2 + |c|z2 ≡ 0 (mod 2abc),

whereas we also have

q(x, y, z) = |a|x2 − |b|y2 − |c|z2 ≡ 0 (mod 2abc),

so 2|a|x2 ≡ 0 (mod 2abc), and thus x2 ≡ 0 (mod bc), so bc | x2. But it is easy to see
that the x-coordinate of an element of Λ can be arbitrarily prescribed modulo bc,
so this restriction on Λ′ is only possible if |bc| = 2, so without loss of generality only
if b = −2, c = −1. But then the equation is ax2− 2y2− z2 = 0 and the congruence
conditions imply that −2 is a square modulo a, so by our work on the binary form
x2 + 2y2 we find that there is a solution with x = 1, and any such solution is small
in the sense that |x| ≤

√
bc =

√
2, |y| ≤

√
|ac| =

√
a, |z| ≤

√
|ab| =

√
2a. So |q|Λ

is not H-equivalent to q3.

Finally, we must build the index 2 sublattice Λ′ ⊂ Λ. The easiest case is when abc
is odd: then we get Λ′ by intersecting with the kernel of q(x, y, z) ≡ x2 + y2 + z2 =
x+y+z : F2 → F2. When abc is even, we need to consider q(x, y, z) modulo 4, and
then (up to relaballing the variables) we have q(x, y, z) ≡ 2x2 + by2 + cz2 (mod 4)
with b and c odd. By a modest amount of brute force one can find a codimension
one – i.e., index 4 – subspace of (Z/4Z)3 on which q vanishes identically. For in-
stance, when a ≡ b ≡ 1 (mod 4), then 〈(1, 1, 1), (1, 3, 3)〉 is such a subspace. We
leave the other cases to the reader.

Thus we have shown that if the necessary congruence conditions of Theorem 16.3
hold, there is (x, y, z) ∈ (Z3)• such that

(i) ax2 + by2 + cz2 = 0 and
(ii) |a|x2 + |b|y2 + |c|z2 < 2abc.
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Inequality (ii) immediately gives

|x| <
√

2
√
|bc|, |y| <

√
2
√
|ac|, |z| <

√
2
√
|ab|.

In fact, by combining (i) and (ii) we can deduce a sharper inequality. We state this
curious fact in a slightly more general form due to L.M. Nunley [Nu10, Prop. 18].

Proposition 16.8. Let a1, . . . , aN ∈ Z+ be pairwise coprime and squarefree. Con-
sider the following two norms on RN :

|x| = |(x1, . . . , xN )| = max
i

|xi|√
a1 · · · ai−1ai+1 · · · aN

,

||x|| = ||(x1, . . . , xN )|| =
√
a1x2

1 + . . .+ aNx2
n.

Suppose x = (x1, . . . , xN ) ∈ RN satisfies

(78) a1x
2
1 + . . .+ aN−1x

2
N−1 − aNx2

N = 0.

Then

||x|| =
√

2a1 · · · aN |x|.

Proof. Since x = (x1, . . . , xN ) satisfies (78) we have

a1x
2
1 + . . .+ aN1

x2
N−1 = aNx

2
N ,

and thus (√
2a1 · · · aN |x|

)2
= 2a1 · · · aN

(
x2
N

a1 · · · aN−1

)
= 2aNx

2
N

= aNx
2
N + aNx

2
N = (a1x

2
1 + . . .+ aN−1x

2
N−1) + aNx

2
N = ||x||2.

�

Applying Proposition 16.8 to our nonzero v = (x, y, z) ∈ Z3 with ax2 +by2−|c|z2 =

0 and ax2 + by2 + |c|z2 ≤ 2abc, we find that since ||v|| ≤
√

2abc, |v| ≤ 1, and thus

|x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab|.

Summing up, we have completed the proof of the following result.

Theorem 16.9. (Cochrane-Mitchell [CoMi98]) Let a, b, c ∈ Z with a > 0, b, c < 0
and abc squarefree. The following are equivalent:
a) We have that −ab is a square modulo c, −ac is a square modulo b and −bc is a
square modulo a.
b) There exists a nonzero solution (x, y, z) to the Legendre equation

ax2 + by2 + cz2 = 0.

c) There exists a nonzero solution (x, y, z) to the Legendre equation which is small
in the sense that |q|(x, y, z) = |a|x2 + |b|y2 + |c|z2 ≤ 2abc; or equivalently (among

solutions to the Legendre equation) for which |x| ≤
√
bc, |y| ≤

√
ac, |z| ≤

√
ab.

Question: Is there any n > 2 for which there exists an index abcn sublattice Λ′

of Z3 such that q|Λ′ ≡ 0 (mod abcn)?
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16.5. Nunley’s Thesis.

In [Nu10], Laura Nunley studied the Extended Legendre Equation

a1x
2
1 + . . .+ an−1x

2
n−1 − anx2

n,

with a1, . . . , an ∈ Z+, a1 · · · an squarefree. She showed that the Cochrane-Mitchell
argument goes through to give small solutions provided there exists a sublattice Λ
of Zn with [Zn : Λ] = a1 · · · an and q|Λ ≡ 0 (mod a1 · · · an). Then she showed that
– as long as a1 · · · an > 2; in the other cases she exhibits small solutions by easy
arguments – such a sublattice Λ does not exist !

At the time, I found this negative result very surprising. In fact the idea that
much of the meat of these GoN arguments is finding the magic sublattice of Zn
was one that became clear to us over the course of her thesis work, and it has
informed much of the work in these notes and the corresponding VRG. Using some
quadratic form theory, it is actually rather clear that these lattices cannot exist
under the above hypotheses: namely they ensure that upon reducing modulo any
odd prime p dividing disc q = a1 · · · an, q becomes degenerate but not degenerate
enough! Namely, modulo such a p q is the direct sum of a one-dimensional identi-
cally zero quadratic space R(q) together with an n− 1-dimensional nondegenerate
quadratic space q′. A nondegenerate quadratic form q′ over a field of characteris-
tic not 2 cannot possibly have a totally isotropic subspace of dimension any larger

than dim q′

2 , and equality occurs iff q′ is a direct sum of hyperbolic planes. Thus, the

dimension of the largest totally isotropic subspace of q is at most 1 + dim q′

2 = n+1
2 ,

so its codimension is at least n− n+1
2 = n−1

2 , which is greater than 1 for all n > 3.

Thus I am rather convinced that this GoN argument cannot be extended to prove
the local-global principle for quadratic forms in more than three variables over Q.
But conceivably it can be extened in another way: the local-global principle holds
not only over Q but – suitably formulated – for quadratic fields over an arbitrary
global field K, i.e., a finite separable extension of either Q or Fp(t).

My feeling at the moment is that, after Q, the most tractable case should be a
rational function field Fq(t) (with q an odd prime power). In this regard we note
that a linear forms theorem over function fields appears in §12.2.

17. GoN Applied to Diophantine Equations Over Number Fields

17.1. Reminders on quadratic forms over number fields.

For a number field K, we let ZK be the ring of integers of K. Recall that a
number field K with [K : Q] = d has r real embeddings and s conjugate pairs of
complex embeddings, with r + 2s = n. We denote these embeddings by | · |∞i

for
1 ≤ i ≤ r+s, it being understood that the first r are real and the last s are complex.
An element x ∈ K is totally positive if ι(x) > 0 for every real embedding.

There is a canonical norm function | · | : ZK → N having the following basic
properties: for all x, y ∈ ZK ,

• |x| = 0 ⇐⇒ x = 0.
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• |x| = 1 ⇐⇒ x ∈ Z×K .
• |xy| = |x||y|.

We extend the norm function to a function from K to Q≥0 by multiplicativity:

|ab | =
|a|
|b| . (Clearly we still have |x| = 0 ⇐⇒ x = 0. But for x ∈ K, |x| = 1 need

not imply x ∈ Z×K .

Okay, but what is the definition of the norm function? It turns out that there
are three useful definitions of one and the same norm function. Here we just give
the deinitions. A proof of their equivalence is a good exercise for a student of alge-
braic number theory, or see

http://math.uga.edu/∼pete/GoNLinearForms.pdf

where the equivalence is spelled out in gory detail.

First Definition: Of course put |0| = 0. For x ∈ Z•K ,

|x| = #R/(x).

Second Definition: For x ∈ K, put

|x| =
r+s∏
i=1

|x|∞i
.

Third Definition: For x ∈ K, put

|x| = |NK/Q(x)|.
Given a quadratic form q(x) = q(x1, . . . , xn) defined over K, for each real embed-
ding ι of K we may extend scalars ι : K ↪→ R and get a real quadratic form. Thus
it makes sense to describe a quadratic form as positive definite, positive semidef-
inite, indefinite, etc. with respect to any given real embedding ι. We say that q
is totally positive definite if it is positive definite with respect to all real places.21

Exercise: Suppose q(x) ∼= a1x
2
1 + . . . + anx

2
n with a1 · · · an 6= 0. Show that q is

totally positive definite iff for 1 ≤ i ≤ n, ai is totally positive. In particular, for
any n ∈ Z+, the sum of squares form x2

1 + . . .+ x2
n is totally positive definite.

If q(x) = q(x1, . . . , xn) is totally positive definite, then it represents only totally
positive elements of K. Conversely, it follows from the Hasse-Minowski theory that
if n ≥ 4, a totally positive definite form q K-represents all totally positive elements
of K. In particular, if K has no real places then every quadratic form in n ≥ 4
variables is universal.

Although the theory of quadratic forms over a number field K is every bit as
complete and satisfactory as the special case K = Q, the study of quadratic forms
over the ring of integers ZK of an arbitrary number field is much less developed
than the corresponding theory over Z.

21In particular, if K has no real places, then every quadratic form over K is trivially totally
positive definite.
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Let q(t1, . . . , tN ) ∈ K[t1, . . . , tn] be a quadratic form which is nondegenerate:
disc q 6= 0. Directly generalizing the K = Q case, we define the Hermite in-
variant

γ(q) =
infx∈(ZK)N• |q(x)|
|disc q| 1

N

.

We define the Hermite constant

γN (ZK) = sup γ(q)

as q ranges over all nondegenerate N -ary quadratic forms. Similarly we define
the positive Hermite constant γ+

N (ZK) by restricting the supremum to totally
positive definite forms.

17.2. Sums of Two Squares in Integral Domains.

Let R be a domain with fraction field K. We say that R is imaginary if there
exists i ∈ K with i2 = −1. Otherwise R is non-imaginary.

Lemma 17.1. Suppose R is integrally closed in K. Then R is imaginary iff there
exists i ∈ R such that i2 = −1.

Exercise: Prove Lemma 17.1.

Lemma 17.2. Suppose R has characteristic 2.
a) Then R is imaginary.
b) For any n ∈ Z+, an element of R is a sum of n squares iff it is a square.

Exercise: Prove Lemma 17.2.

Lemma 17.3. Let F be a finite field of order pa (with p a prime number). Then F
is imaginary iff p = 2, p ≡ 1 (mod 4) or a is even.

Exercise: Prove Lemma 17.3.

If R is non-imaginary, put R[i] := R[t]/(t2 + 1). Then every z ∈ R[i] has a
unique expression of the form a + bi with a, b ∈ R. The fraction field of R[i] is
K[i] = K[t]/(t2 +1), K[i]/K is a separable quadratic extension of fields and R[i]/R
is an integral extension of domains. We denote by z 7→ z the unique nontrivial
automorphism of K[i]: explicitly x+ iy = x − iy. This automorphism stabilizes
R[i]. Let N : K[i]→ K denote the norm map:

N(x+ iy) = (x+ iy)(x+ iy) = (x+ iy)(x− iy) = x2 + y2.

This is a multiplicative map which restricts to a multiplicative map R[i]→ R.

Let x be an element of a domain R. We say that x is a sum of two squares
up to a unit if there exist a, b ∈ R and u ∈ R× such that x = u(a2 + b2). For a
prime element p of R, let Fp be the fraction field of the domain R/pR. We say p is
imaginary (resp. nonimaginary) if Fp is imaginary (resp. nonimaginary).

The following is a small result I proved in the summer of 2010. I later learned
that similar results (including a proof of part c)) were attained quite a while ago
by Choi, Lam, Resnick and Rosenberg [CLRR80].
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Theorem 17.4. Let R be a non-imaginary domain, and let ρ ∈ R be a prime
element. Consider the following two assertions:
(i) ρ is a sum of two squares up to a unit.
(ii) The field Fρ is imaginary.
a) In all cases (i) =⇒ (ii).
b) Suppose R[i] is a UFD. Then (ii) =⇒ (i).
c) Suppose R is a UFD. Then an element f ∈ R\{0} is a sum of two squares up to
a unit iff for every prime element ρ such that Fρ is non-imaginary, ordρ(f) is even.

Proof. a) Let ρ be a prime element of R; suppose there are a, b ∈ R, u ∈ R× with

(79) ρ = u(a2 + b2).

We will write the composite homomorphism R→ R/ρR→ Fρ as z ∈ R 7→ z ∈ Fρ.
Applying this map to both sides of (79), we get

0 = u(a2 + b2).

Since ring homomorphisms send units to units, u ∈ F×ρ , and thus

a2 + b2 = 0.

If a = 0, then ρ | a and thus from (79), ρ | b. Writing a = ρA, b = ρB for A,B ∈ R,
substituting into (79) and cancelling ρ, we get 1 = uρ(A2 + B2) and thus ρ is a
unit, contradiction. So a ∈ F×ρ and Fρ is imaginary.

b) Suppose that Fρ is imaginary: there exists r ∈ Fρ with r2+1 = 0. Then there are

x, y ∈ R \ ρR such that r = x
y , so

(
x
y

)2

+ 1 = ρz for z ∈ R. Clearing denominators

and working in R[i] we get

y2ρz = x2 + y2 = (x+ iy)(x− iy).

We claim that ρ is not a prime element of R[i]. Indeed, if it were, then since
ρ | (x+ iy)(x− iy), we would have ρ | (x± iy), i.e., xρ ± i

y
ρ ∈ R[i]. But this implies

ρ | y, contradiction. Since ρ is a nonprime element in the UFD R[i], there exist
nonzero nonunit elements α, β ∈ R[i] such that ρ = αβ. Taking norms gives

ρ2 = N(ρ) = N(αβ) = N(α)N(β).

Now the prime element ρ of R divides N(α)N(β), so it divides one of the factors.
It is no loss of generality to assume that ρ | N(α):

ρ =

(
N(α)

ρ

)
N(β).

Thus either ρ | N(α)
ρ or ρ | N(β). If the former occurs, then we get an equation

1 =

(
N(α)

ρ2

)
N(β),

so N(β) ∈ R×. But this cannot be: β is not a unit in R[i] and N(β) = ββ, so N(β)
is not a unit in R[i] and thus, a fortiori, not a unit in R. Thus we have

1 =

(
N(α)

ρ

)(
N(β)

ρ

)
,

so there are u1, u2 ∈ R× such that ρ = u1N(α) = u2N(β). Put α = a + bi; then
N(α) = a2 + b2 and ρ = u1(a2 + b2).



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 127

c) Suppose R is a UFD, and let f ∈ R \ {0}; we may assume f /∈ R×. By unique
factorization, we may write f = f2

1 f2 with f2 not divisible by the square of any
prime element of R. Write f2 = p1 · · · pk a product of nonassociate prime elements.

Suppose that ordp(f) is even for all imaginary prime elements p; then each prime
element pi dividing f2 is imaginary. By part a), for all i there exist ai, bi ∈ R an
ui ∈ R× such that pi = ui(a

2
i + b2i ). Moreover, the multiplicativity of the norm

map N : Z[a, b, c, d][i]→ Z[a, b, c, d] gives rise to the identity

(80)
(
a2 + b2

) (
c2 + d2

)
= (ac− bd)

2
+ (ad+ bc)

2

(alternate proof: direct calculation!), which shows that in any integral domain, the
set of sums of two squares is closed under multiplication, so all in all we have

f = u1 · · ·un(A2 +B2) = u(A2 +B2).

Thus f is a sum of two squares up to a unit.
Conversely, suppose there exist a, b ∈ R and u ∈ R× such that f = u(a2 + b2),

and let p be a non-imaginary prime divisor of f . Reducing modulo p gives

0 = u(a2 + b2),

and thus, as above,

(a)2 + (b)2 = 0.

But in the non-imaginary field Fp this forces a = b = 0, i.e., there are A,B ∈ R
such that a = pA, b = pB and thus f = p2u(A2 +B2). So f

p2 is again a sum of two

squares up to a unit. We may continue this process, but not infinitely many times,
since ordp(f) is finite. Eventually it must end, showing that ordp(f) is even. �

Theorem 17.4 represents a sort of “rival” to Geometry of Numbers methods. Here
are some of its immediate applications.

Corollary 17.5. (Full Two Squares Theorem) A nonzero integer n is a sum of two
integer squares iff n ≥ 0 and ordp(n) is even for all p ≡ 3 (mod 4).

Proof. Since Z is a nonimaginary domain such that Z[i] is a UFD (indeed the
standard norm function is Euclidean), Theorem 17.4b) applies. By Lemma 17.3, a
prime p in Z is imaginary iff p ≡ 3 (mod 4), so Theorem 17.4b) says that n ∈ Z\{0}
is a sum of two squares up to a unit iff ordp(n) is even for all p ≡ 3 (mod 4). The
units in Z are ±1, so if n = u(x2 + y2) we have u = 1 ⇐⇒ n > 0. �

Corollary 17.6. (Two Squares Theorem in R[t]) For a polynomial f ∈ R[t], TFAE:
(i) There exist a, b ∈ R[t] such that f(t)2 = a(t)2 + b(t)2.
(ii) For all t ∈ R, f(t) ≥ 0.

Exercise: Prove Corollary 17.6 using Theorem 17.4. (Hint: recall that every poly-
nomial with real coefficients factors into a product of linear factors and irreducible
quadratic factors. Show that the first type of prime element is nonimaginary and
the second type of prime element is imaginary. Use high school algebra to relate
the factorization of p(t) into prime elements to the condition f(t) ≥ 0 for all t ∈ R.)

Corollary 17.7. (Leahey’s Theorem)
Let F be a finite field of order pa, and let R = F[t].

a) If p = 2, then f ∈ R is a sum of two squares iff it is a square.
b) If pa ≡ 1 (mod 4), then every f ∈ R is a sum of two squares.
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c) If pa ≡ 3 (mod 4), then f ∈ R• is a sum of two squares iff ordp(f) is even for
every irreducible polynomial p of odd degree.

Exercise: Use Theorem 17.4 to prove Corollary 17.7.

17.3. Sums of two squares in ZK , K = Q(
√

5).

The goal of this section is to prove the following result of J.I. Deutsch [De02].

Let ε = 1+
√

5
2 , the fundamental unit of ZK . Also ZK = Z[ε] = Z · 1⊕ Z · ε.

Theorem 17.8. (Deutsch [De02]) Let K = Q(
√

5). For a prime element ρ of the
PID ZK , the following are equivalent:
(i) −1 is a square in ZK/ρ.
(ii) ρ is a sum of two squares in ZK , up to a unit: there exist x, y ∈ ZK and u ∈ Z×K
such that x2 + y2 = uρ.

Proof. Step 0: Since
√
−1 /∈ K, ZK is not imaginary and Theorem 17.4a) gives (ii)

=⇒ (i).22 For the proof proper, let p be the prime of Z lying below ρ, i.e., the
characteristic of ZK/ρ. Reasonably enough, the argument will treat separately the
three possibilities for the splitting of p in K.
Step 1: Suppose p ramifies in ZK . Since the discriminant of ZK is 5, this holds iff
p = 5, in which case ρ = v

√
5 for v ∈ Z×K . In this case we may proceed by brute

force: ε
√

5 = 12 + ε2, so ρ = (vε )(ε
√

5) is a sum of two squares up to a unit.

Step 2a: Suppose p splits in ZK . Let λ ∈ ZK be such that λ2 ≡ −1 (mod ρ). We
consider the lattice Λρ = MρZ4, with

Mρ =


1 ε 0 0
1 ε 0 0
λ λε ρ ερ

λ λε ρ ερ.


We have Covol Λρ = |detMρ| = |5ρρ| = 5p. By Minkowski’s Convex Body Theo-
rem, the R-ball in R4 contains a nonzero point of Λρ iff

Vol(B4(r)) =
π2R4

2
≥ 24 · (5p)

⇐⇒ R2 ≥
√

160p

π
≤ 4.1

√
p.

Now general element of Λρ is of the form

(α, α, λα+ µρ, λα+ µρ)

for arbitrary α, µ ∈ ZK . In particular any element of Λρ is of the form (α, α, β, β)
for some α, β ∈ ZK such that α2 + β2 ≡ 0 (mod ρ) (this follows from the relation
λ2 ≡ −1 (mod ρ) exactly as for the Two Squares Theorem over Z). Therefore,
taking 0 6= v ∈ Λρ with v · v ≤ 4.1

√
p, we get v = (α, β, α, β) with

α2 + β2 = κρ,

and since α2 + α2 + β2 + β
2
< 4.1

√
p,

κρ+ κρ < 4.1
√
p.

22In [De02], Deutsch actually proves the implication (i) =⇒ (ii) only. This is certainly the
more interesting direction, and probably he was aware of (ii) =⇒ (i) as well.
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Since κρ is a sum of squares, it is totally positive. The AGM Inequality gives

2
√

(κρ)(κρ) ≤ κρ+ κρ < 4.1
√
p,

so

(κρ)(κρ) ≤ 4.12

4
p

and thus

|κκ| ≤ b4.1
2

4
c = 4.

Step 2b: Write κ = a+ bε for a, b ∈ Z. We have

κκ = (a+ bε)(a+ bε) = a2 + ab(ε+ ε) + b2εε = a2 + ab− b2

≡ −4a2 − 4ab− b2 ≡ −(2a+ b)2 (mod 5).

Since the squares mod 5 are 0,±1, it follows that N(κ) = κκ cannot equal ±2,±3.
Since v 6= 0, N(κ) 6= 0, so the alternatives are N(κ) = ±1 – so κ is a unit and we
are done – or N(κ) = ±4. Since 2 is inert in ZK , if κκ = ±4, then 2 | κ or 2 | κ,
and if one of these divisibilities holds they both hold. So we may wite κ = 2µ with
N(µ) = ±1 so µ ∈ Z×K and thus α2 + β2 = κρ = 2µρ. Therefore

0 ≡ α2 + β2 ≡ (α+ β)2 (mod 2).

Since 2 is a prime element, this gives 2 | α+β. Of course mod 2 we have α2 +β2 =
α2−β2, so also 2 | (α−β). We may therefore divide through to get a representation
of µρ as a sum of two squares:(

α+ β

2

)2

+

(
α− β

2

)2

=
α2 + β2

2
= µρ.

Step 3: Finally, we suppose that p is inert in ZK , i.e., is a prime element of ZK : in
terms of quadratic symbolswe are assuming ( 5

p ) = −1. If p = 2 then we are okay:

2 = 12 + 12. Indeed if p ≡ 1 (mod 4) we are also okay because then – as we have
already proven by GoN methods – p is already a sum of two integral squares. We
need then to consider the case p ≡ 3 (mod 4). Note that in this case we have(

−5

p

)
=

(
−1

p

)(
5

p

)
= (−1) · (−1) = 1.

So Theorem 15.13 applies: there are x, y ∈ Z and 1 ≤ k ≤ 2 such that

kp = x2 + 5y2 = x2 + (
√

5y)2.

If k = 1, then the above identity shows that we have represented p as a sum of 2
squares in ZK . (In fact the equation p = x2 +5y2 is impossible if p ≡ 3 (mod 4), as
one sees by reducing modulo 4. We proceed on to the remaining case.) Reducing
2p = x2 + 5y2 modulo 2 shows that x and y have the same parity, and we may thus
write x = y + 2a, a ∈ Z. Then

(a+ yε)2 + (a+ yε)2 = 2a2 + 2ay(ε+ ε) + y2(ε2 + ε2) = 2a2 + 2ay + 3y2

=
4a2 + 4ay + 6y2

2
=

(2a+ y)2 + 5y2

2
=
x2 + 5y2

2
=

2p

2
= p.

�
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Remark: The implication (i) =⇒ (ii) would follow from Theorem 17.4b) if the
ring S = ZK [

√
−1] were a UFD. In fact S is not a UFD, but for a rather superficial

reason: it is not integrally closed in L = Q(
√
−1,
√
−5). The following MAGMA

code shows that S is a proper subring of ZL and that ZL is a UFD.

> K1<i> := QuadraticField(-1);

> i2;
-1

> K2<s> := QuadraticField(-5);

> s2;

-5

> L := Compositum(K1,K2);

> P := MinimalPolynomial(i+s);

> P;

.14 + 12 ∗ .12 + 16
> Discriminant(P);

1638400

> Factorization(1638400);

[ <2, 16>, <5, 2> ]

ClassNumber(L);

1

> Factorization(Discriminant(MaximalOrder(L)));

[ <2, 4>, <5, 2> ]

So ZL is a UFD and S = ZK [
√
−1] sits inside ZL with index 26. S is close to

satisfying the hypotheses of Theorem 17.5b), and I suspect that by comparing S
with the UFD ZL one should be able to prove (i) =⇒ (ii) of Deutsch’s Theorem.

17.4. Sums of Squares in Z[i].

Let Z[i] = Z[
√
−1] be the ring of Gaussian integers. Which elements of Z[i] are

sums of two squares? There is an interesting arithmetic limitation.

Lemma 17.9. Let z = x+ yi ∈ Z[i].
a) If there are x1, . . . , xn ∈ Z[i] with z = x2

1 + . . .+ x2
n, then y is even.

b) If z = u+ vi with u ≡ v (mod 2), then 1± i | z.

Proof. Left as an easy exercise. �

Thus we should ask which Gaussian integers of the form a+2bi are sums of squares.

Theorem 17.10. For a, b ∈ Z, let z = a+ 2bi ∈ Z[i].
a) (Niven [Ni40]) The following are equivalent:
(i) Either a 6≡ 2 (mod 4) or b ≡ 0 (mod 2).
(ii) There are u, v ∈ Z[i] such that z = u2 + v2.
b) (Niven-Joly [Ni40] [Jo70]) There are a, b, c ∈ Z[i] such that z = a2 + b2 + c2.

Proof. a) ([Le65]) (i) =⇒ (ii): We’ll explicitly write z as a sum of two squares.
Case 1: Suppose a is odd. Then

z = a+ 2bi =

(
z + 1

2

)2

+ i2
(
z − 1

2

)2

.
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Case 2: Suppose a = 2a′ with a′ odd and b is even. Put z′ = a′ + bi. Then

z =

(
z′ + i

1 + i

)2

+ i2
(
z′ − i
1 + i

)2

.

Case 3: Suppose a = 4a′ and b is odd. Put z′ = b− 2a′i. Then

z =

(
z′ + 1

1− i

)2

+ i2
(
z′ − 1

1− i

)2

.

Case 4: Suppose a = 4a′ and b = 2b′. Put z′ = 2a′ + 2b′i. Then

z =

(
z′ + 2

2

)2

+ i2
(
z′ − 2

2

)2

.

(ii) =⇒ (i): Suppose

a+ 2bi = (x+ yi)2 + (z + wi)2

and a = 2a′ with a′ ≡ 1 (mod 2) and b ≡ 1 (mod 2). Then

2(a′ + bi) = a+ 2bi = (x+ yi)2 + (z + wi)2 = x2 − y2 + z2 − w2 + 2(xy + zw)i,

so

(81) a = 2a′ = x2 − y2 + z2 − w2,

(82) b = xy + zw.

Since b is odd, (82) implies that exactly two or exactly three of x, y, z, w are odd, and
(81) rules out the latter possibility. Furthermore, (82) implies that either (x ≡ y ≡ 1
(mod 2) and z ≡ w ≡ 0 (mod 2)) or (x ≡ y ≡ 0 (mod 2) and z ≡ w ≡ 1 (mod 2)).
Either way, 4 | x2 − y2 + z2 − w2, contradicting the hypothesis that a′ is odd.
b) Let z = a + 2bi ∈ Z[i]. If b ≡ 0 (mod 2), then by part a) z is a sum of two
squares. If b ≡ 1 (mod 2), then by part a) there are x, y ∈ Z[i] such that

z − (1 + i)2 = a+ 2(b− 1)i = x2 + y2,

so

z = x2 + y2 + (1 + i)2.

�

Exercise: Show: z = a+2bi is a sum of two squares in Z[i] iff (1+i)3 - z or (1+i)4 | z.

This exercise is used to give another simple proof of Theorem 17.10 in [Wi73].
G. Pall gave a formula for the number of representations of z ∈ Z[i] by x2 + y2

[Pa51]. Williams gave a simple, short proof of Pall’s formula in [Wi71].

Exercise: a) Show that the form x2 + y2 + z2 + iw2 is universal over Z[i]: i.e.,
represents every Gaussian integer.
b) Show that there are infinitely many nonisomorphic diagonal quaternary univer-
sal forms over Z[i].
c)* Is there an anisotropic diagonal quaternary universal form over Z[i]?

Exercise (F. Sidokhine): Show that x2 + y2 + iz2 + iw2 is universal over Z[i].
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17.5. Hermite constants in number fields.

Theorem 17.11. (Icaza [Ic97]) Let K/Q be a totally real of degree d. For all
n ∈ Z+,

γ+
N (ZK) ≤ 4dV

−2d
N

N |d(K)|,

where VN = 2π
N
2

NΓ( N
2 )

is the volume of the unit ball in Euclidean N -space.

Proof. Let σ1, . . . , σd : K ↪→ R be the real embeddings. Let q ∈ Q(K,N) be totally
positive. For 1 ≤ i ≤ d, we put qi = σi(qi) ∈ R[t1, . . . , tn]: we apply σi to each
coefficient of qi, getting a positive real form. Then for all x ∈ KN ,

|q(x)| =
d∏
i=1

|qi(x)| =
d∏
i=1

qi(x)

and similarly

|disc q| = |NK/Q disc q| =
d∏
i=1

disc qi,

so

γ(q) = inf
x∈ZN•

K

d∏
i=1

qi(x)

(disc qi)
1
N

.

Each qi, being a positive real form, defines a Minkowski functional with level sets

Ω(qi, R) = {x ∈ RN | qi(x) ≤ R2}

which are ellipsoids. For y1, . . . , yd ∈ RN we also define

Q : RdN → R, Q(y1, . . . , yd) = max
1≤i≤d

qi(yi).

The associated level sets are polyellipsoids, i.e., Cartesian products of ellipsoids:

Ω(Q,R) = {x ∈ RN | Q ≤ R2} =

d∏
i=1

Ω(qi, R).

By Lemma 9.5 we have

Vol Ω(Q,R) =

d∏
i=1

Vol Ω(qi, R) =

d∏
i=1

VN√
disc qi

RN =
V dNR

dN√
|disc q|

.

Let Λ = ZNK ⊂ RdN ; Λ is the Cartesian product of N copies of the usual lattice ZK
in Rd, so by Proposition 11.1, Covol Λ =

√
|d(K)|

N
. We choose R such that

V dNR
dN√

|disc q|
= Vol Ω(Q,R) = 2dN Covol Λ = 2dN |d(K)|N2 .

Thus

R = 2|d(K)| 1
2d |disc q| 1

2dN V
−1
N

N .

By MCBT there is v ∈ Ω(Q,R) ∩ Λ•. Then qi(v) ≤ R2 for all i, so

|q(v)| =
d∏
i=1

qi(v) ≤ R2d = 4d|d(K)||disc q| 1
N V

−2d
N

N
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and thus

γ(q) ≤ |q(v)|
|disc q| 1

N

≤ 4dV
−2d
N

N |d(K)|.

�

18. Geometry of Numbers Over Function Fields

18.1. No, seriously.

It sounds weird, but give it a chance.

If you don’t know what a “function field” is, here is a good example of one: let k
be any field, and let K = k(t) be the field of rational functions with coefficients in
k. Inside K we have R = k[t], the polynomial ring.

Algebraists and number theorists have long appreciated the following analogy:

Z : Q :: k[t] : k(t).

In particular Z and k[t] are both principal ideal domains. In fact, they are both
principal ideal domains because they admit a Euclidean norm function | |: for Z it
is the usual Archimedean absolute value; for k[t] we can fix any real number e > 1
and put |f | = edeg f .

The analogies become sharper when k = Fq is a finite field...

18.2. Tornheim’s Linear Forms Theorem.

In 1941, L. Tornheim gave an analogue of Minkowski’s Linear Forms theorem in
the function field case: let k be any field, let R = k[t] and let K = k(t).

First let’s try to set this up: in the usual linear forms theorem we have a ma-
trix C = (cij) ∈MN (R) and a lattice Λ ⊂ RN . But as we saw in the proof, taking
an arbitrary lattice does not actually result in a more general theorem, so let’s
restrict to Λ = ZN . Then the theorem says that for any ε1, . . . , εN ∈ R>0 such that

|detC| ≤
N∏
i=1

εi,

there exists x ∈ (ZN )• such that for all 1 ≤ i ≤ N ,

(83) |Li(x)| = |
N∑
j=1

cijxj | ≤ εi.

Just for kicks, let’s consider the equivalent version of the Linear Forms Theorem
resulting from taking the logarithm of both sides of (83):

log |Li(x)| ≤
N∑
i=1

log εi.

Here we take the convention that log 0 = −∞. And let’s touch this up a little bit:
since the εi’s are arbitrary positive numbers, the log εi’s are arbitrary real numbers,
so we can restate the theorem as follows.
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Theorem 18.1. (Massaged Minkowski’s Linear Forms Theorem) Let C = (cij) ∈
MN (R); for 1 ≤ i ≤ N , put Li(x) =

∑N
j=1 cijxj. Let e1, . . . , eN ∈ R be such that

log |detC| ≤
N∑
i=1

ei.

Then there is x ∈ (ZN )• such that for all 1 ≤ i ≤ N ,

log |Li(x)| ≤ ei.

Now it is straightforward to write down a function field analogue: we replace Z by
R = k[t], we replace R by K = k(t), and – most crucially of all – we replace the
function log | | : R→ [−∞,∞) by deg : k(t)→ [−∞,∞).

Lemma 18.2. Let k be a field and put R = k[t]. Let C ∈ Mn(R) ∩GLn(K), and
let Λ = CRn. Then Λ is an R-submodule of Rn, so we may form the quotient
R-module Rn/Λ. Then

dimk(Rn/Λ) = deg detC.

Proof. The R-module Rn/Λ is unchanged if we replace C by ACB for any A,B ∈
GLn(R). Since R is a PID, Smith Normal Form applies: there are A,B ∈
GLn(R) such that ACB is a diagonal matrix with diagonal entries d1, . . . , dn ∈ R•.
Since A,B ∈ GLn(R), (detC)R = (detACB)R, and thus

deg detC = deg detABC = deg

n∏
i=1

di.

Moreover, Λ =
⊕n

i=1 diR, Rn/Λ =
⊕n

i=1R/(di), so

dimk R
n/Λ = dimk

n⊕
i=1

R/(di) =

n∑
i=1

deg di = deg

n∏
i=1

di = deg detC.

�

Theorem 18.3. (Tornheim [To41]) Let k be a field; let C = (cij) ∈Mn(k[t]) with
detC 6= 0. For 1 ≤ i ≤ n, put Li(x) =

∑n
j=1 cijxj. Let e1, . . . , en ∈ N be such that

(84) deg detC <

n∑
i=1

(ei + 1).

Then there exists x ∈ (RN )• such that for all 1 ≤ i ≤ N ,

degLi(x) ≤ ei.

Proof. The key idea is to work backwards, i.e., with the inverse transformation.
Let R = k[t], K = k(t), consider the linear transformation

L : Kn → Kn, x 7→ Cx,

and put Λ = L(Rn) ⊂ KN . Since detC 6= 0, we have

L−1 : Kn → Kn.

By definition of Λ,

L−1|Λ : Λ
∼→ Rn.

Let
B = {(x1, . . . , xn) ∈ Rn | ∀1 ≤ i ≤ n, deg xi ≤ ei}.
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Thus B is a k-subspace of Rn with

dimk B =

n∑
i=1

(ei + 1).

By Lemma 18.2, dimk R
n/Λ = deg detC. Then (84) can be restated as

dimk B > codimk Λ.

Thus there is a nonzero vector y ∈ Λ ∩ B. Taking x = L−1y does the job. �

Exercise: a) Show that Theorem 18.3 holds verbatim for matrices C ∈ GLn(k(t)).
b) State and prove a version of Theorem 18.3 for C ∈ GLN (k((t))).

There is a version of Lemma 18.2 valid over any Dedekind domain R. In this case,
Rn/Λ is a finite length R-module, and so admits a Serre invariant χ(Rn/Λ).
Indeed, let M be a finite length R-module and consider a composition series

0 = M0 ⊂M1 ⊂ . . . ⊂MN = M.

Each successive quotient Mi+1/Mi is a simple R-module hence of the form R/pi
for some maximal ideal pi of R. We put χ(M) =

∏N
i=1 pi. The Jordan-Hölder

Theorem implies that χ(M) is independent of the chosen composition series.

Exercise: With notation as above, show that χ(Rn/Λ) = (detC)R. (Suggestion:
reduce to the case in which R is a DVR and use Smith Normal Form.)

Suppose now we have a function | · | which associates to each nonzero ideal I
of R a positive integer |I| such that |I| = 1 ⇐⇒ I = R and |IJ | = |I||J | for all I
and J . (Such functions are not mysterious: they are all gotten by assigning to each
nonzero prime ideal an integer greater than 1 and extending by multiplicativity.)
For instance on Z we take the usual absolute value. On k[t], we take |x| = edeg x.

Given such an ideal norm, we may define the covolume of a lattice Λ ⊂ Rn as

Covol(Rn/Λ) = |χ(Rn/Λ)|.

If as above Λ = CRn for some C ∈Mn(R) ∩GLn(K), then we get

Covol(Rn/Λ) = |detC|.

This is most of the content of the proof of Tornheim’s Linear Forms Theorem.

Corollary 18.4. Let n ∈ Z+, M ∈ R with degM ≥ 1, θ1, . . . , θn ∈ K. Then there
are `1, . . . , `n ∈ R, m ∈ R• such that
• degm < degM and
• For 1 ≤ i ≤ n, deg(mθi − `i) ≤ − degM

n .

Proof. Let

C =


−1 0 . . . 0 θ1

0 −1 . . . 0 θ2

...
...

0 0 . . . −1 θn
0 0 . . . 0 1

 .
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Then detC = (−1)n, so deg detC = 1. Take

ε1 = . . . = εn = b− degM

n
c,

εn+1 = degM − 1.

We have

n+ 1 +

n+1∑
i=1

εi = n+ 1 + (degM)− 1 + nb−degM
n

c

≥ n+ degM + n

(
−degM

n
− 1 +

1

n

)
= 1 > 0,

so Tornheim’s Linear Forms Theorem applies: there is x ∈ (Rn+1)• such that

deg xn+1 < degM and for all 1 ≤ i ≤ n, deg(θxn+1 − xi) ≤ −degMn . Put m = xn+1

and, for 1 ≤ i ≤ n, `i = xi.
It remains to check that xn+1 6= 0. If xn+1 = 0, then deg(−xi) ≤ −degMn < 0, and

since xi ∈ R this would force x1 = . . . = xn = 0 and thus x = 0, contradiction. �

18.3. Eichler’s Linear Forms Theorem.

We continue to denote by k an arbitary field, R = k[t] and K = k(t). Further,
we put K∞ = k(( 1

t )), the completion of K with respect to the discrete valuation
v∞(f) = −deg f . In this section we wish to present a profound strengthening of
Tornheim’s linear forms theorem due to M. Eichler.

Theorem 18.5. (Eichler’s Linear Forms Theorem) Let M = (mij) ∈ GLn(K∞),
let M∗ = (m∗ij) = (M t)−1, and let e1, . . . , en ∈ Z. For 1 ≤ i ≤ n, put e∗i = −2− ei.
Denote by V and V ∗ the finite-dimensional k-vector spaces consisting of solutions
to the systems

(85) deg

n∑
j=1

mijxj ≤ ei, ∀1 ≤ i ≤ n

and

(86) deg

n∑
j=1

m∗ijx
∗
j ≤ e∗i , ∀1 ≤ i ≤ n.

a) We have

dimk V − dimk V
∗ =

n∑
i=1

(ei + 1)− deg detM.

b) For all v = (x1, . . . , xn) ∈ V and v∗ = (x∗1, . . . , x
∗
n) ∈ V ∗, we have

n∑
i=1

xix
∗
i = 0.

Proof. If M ∈ GLn(K∞), we put M∗ = (M t)−1. Also put degM = min degmij :
or, really, degM = max(−degmij).
a) Step 1: We assume that M ∈ GLn(K). . . .
Step 2: We assume that the result holds for all M ∈ GLn(K) and show that it
holds for all M ∈ GLn(K∞). Set

y∗i =
∑
j

m∗ijxj ,
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so that

x∗j =
∑
i

y∗imij .

Conisder instead of (86) the equivalent system

(87) deg y∗i ≤ −2− ej ,
∑
i

y∗imij ∈ k[x].

We appoximate each mij by a Laurent polynomial:

mij = m
(v)
ij + r

(v)
ij ,−deg r

(v)
ij ≥ v.

Thus, in matrix notation, M = M (v) +R(v). We apply the matrix identity

M−1 −N−1 = M−1(N −M)N−1

to get

M∗ = M (v)∗ −M (v)∗(R(v))tM∗ = M∗ + S(v),

say. We have limv→∞ degS(v) = limv→∞ deg(R(v))t = −∞, so limv→∞M (v)∗ =
M∗. Let V (v) and V (v)∗ be the dimensions of the solution spaces to (85) and (87)
with M (v) and M (v)∗ in place of M and M∗. Now observe: • Since deg det :
GLn(K∞ → Z is continuous, it is eventually constant, ,and thus deg detM (v) =
deg detM for all sufficiently large v.
• For sufficiently large v we have V v = V and V (v)∗ = V ∗. (We leave this to the
reader for now.) Thus from the truth of the theorem for all matrices M ∈ GLn(K)
the result follows.
b) Because M∗ is the inverse transpose of M , we have

n∑
i=1

xix
∗
i = xtInx

∗ = xt(M∗)tMx = (M∗x∗)tMx.

Since v ∈ V , v∗ ∈ V ∗, it follows that

deg

n∑
i=1

xix
∗
i = deg((M∗x∗)tMx) ≤ max

i
(ei − 2− ei) = −2.

But only the zero polynomial has negative degree, so
∑n
i=1 xix

∗
i = 0. �

Exercise: Deduce Tornheim’s Linear Forms Theorem from Theorem 18.5.

18.4. Function Field Vinogradov Lemma.

Theorem 18.6. Let k be a field, and let R = k[t]. Let a, b, n ∈ R• with deg n ≥ 1
and gcd(ab, n) = 1. Let e1, e2 ∈ N be such that

(88) e1 + e2 ≥ deg n− 1.

Then there are x, y ∈ R, not both zero, such that
(i) ax ≡ by (mod n), and
(ii) deg x ≤ e1, deg y ≤ e2.

Proof. Since gcd(b, n) = 1, there exists a′ ∈ R with ba′ ≡ a (mod n). Now consider

the linear system with defining matrix C =

[
a′ n
1 0

]
. Note that deg detC =

deg n. Thus if e1, e2 ∈ N satisfy (88), then we have

deg detC = deg n = (deg n− 1) + 1 ≤ e1 + e2 + 1 < e1 + e2 + 2,



138 PETE L. CLARK

so by Theorem 18.3 there are X,Y ∈ R, not both zero, such that

degL1(X,Y ) = deg a′X + nY ≤ e1,

degL2(X,Y ) = degX ≤ e2.

Put x = L1(X,Y ) = a′X + nY , y = L2(X,Y ) = X, so (x, y) ∈ (R2)•, deg x ≤ e1,
deg y ≤ e2 and ax = a( baX + nY ) ≡ bX ≡ by (mod n). �

Remark: The result is trivial when deg n = 0: for then n ∈ R× and the congruence
(i) holds for all x and y. Thus deg n > 0 is analogous to the requirement n > 1 in
Vinogradov’s Lemma over Z.

Exercise: When deg n = 1, Theorem 18.6 says that we may take x and y to be
constant polynomials. Prove this directly.

18.5. Prestel’s Isotropy Theorem.

Let k be a field, of characteristic different from 2 but otherwise aribtrary. Put
R = k[t] and K = k(t). Fix a positive integer q ≥ 2. (When k is finite, in
some sense the best choice is q = #k, but the choice of q will be absolutely im-
material for the results of this section.) We define a function | · | : R → N, by
f ∈ R 7→ |f | = qdeg f . Our convention is that the zero polynomial has degree −∞
and that q−∞ = 0, i.e., |0| = 0. It is immediate to see that | · | satisfies the following
properties:

(N1) For x ∈ R, |x| = 0 ⇐⇒ x = 0.
(N2) For x ∈ R, |x| = 1 ⇐⇒ x ∈ R×.
(N3) For x, y ∈ R, |xy| = |x||y|.

We extend | · | to a function from K to Q≥0 by multiplicativity:

|x
y
| = |x|
|y|
.

Lemma 18.7. The norm function defines an ultrametric on K. In particular, for
all x, y ∈ K we have |x+ y| ≤ max |x|, |y|.

Proof. Exercise. �

For v = (x1, . . . , xn) ∈ Kn, we put

|v| = max
i
|xi|.

Similarly, for a matrix A = (aij) ∈Mn(K), we put

||A|| =
∑
i,j

|aij |.

Finally, for an n-ary quadratic form q with coefficients in K, we put

||q|| = ||A||,

where A ∈Mn(K) is the corresponding symmetric matrix, i.e., q(t) = tTAt.

By an isotropic vector v for a quadratic form q, we mean a nonzero vector



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 139

v ∈ Rn such that q(v) = 0. We say that q is isotropic if it has an isotropic vector;
otherwise we say q is anisotropic.

Theorem 18.8. (Prestel [Pr87]) Let q = q(t1, . . . , tn) be an n-ary quadratic form
with coefficients in R, q 6≡ 0. If q is isotropic, there is an isotropic vector v with

0 ≤ ||v|| ≤ ||q||
n−1

2 .

Proof. Let a = (a1, . . . , an) ∈ Rn be a nonzero anisotropic vector for q with ||a||
minimal. By relabelling the variables if necessary, we may assume ||a|| = |a1|.
Further, we may assume |a1| ≥ 2: if ||a|| = |a1| = 1, then ||a|| = 1 ≤ (||q||n−1

2 . For
v, w ∈ Kn, we define the associated bilinear form

〈v, w〉 =
q(v + w)− q(v)− q(w)

2
.

For all v ∈ Kn, 〈v, v〉 = q(v).
Step 1: We claim that for all b ∈ Kn with q(b) 6= 0 and all c ∈ K,

||q||
−1
2 ≤ ||b− ca||.

Let
a∗ = q(b)a− 2〈a, b〉b.

Then a∗ = q(b)τb(a), where τb ∈ O(q) is reflection through the anisotropic vector
b. It follows that since q(a) = 0, q(a∗) = 0. Or, if you like, just calculate directly:

q(a∗) = 〈a∗, a∗〉 = 〈q(b)a− 2〈a, b〉b, q(b)a− 2〈a, b〉b〉
= q(b)2〈a, a〉 − 4〈a, b〉2q(b) + 4〈a, b〉2q(b) = 0,

since q(a) = 0. By the minimality of a, we have

(89) ||a|| ≤ ||a∗||.
Now put d = b− ca, so b = d+ ca. Then

a∗ = q(d+ ca)a− 2〈a, d+ ca〉(d+ ca)

= (q(d) + 2c〈a, d〉+ c2q(a))a− 2〈a, d(d+ ca)

= q(d)a− 2〈a, d〉d.
Using the ultrametric property of the norm on K, we get

(90) ||a∗|| = ||q(d)a− 2〈a, d〉d|| ≤ ||q||||a||||d||2.
Combining (89) and (90) and dividing through by ||a||, we get

1 ≤ ||q|| · ||b− ca||2,
or equivalently

(91) ||q||
−1
2 ≤ ||b− ca||.

Step 2: We claim there is b ∈ Rn and c ∈ K with q(b) 6= 0 and

(92) ||b− ca|| ≤ ||a||
−1
n−1 .

Apply Corollary with n − 1 in place of n, M = a1, θi = ai
a1

. Then there is 0 <

b1 < |a1| and b2, . . . , bn ∈ Z such that |bi − b1
a1
ai| ≤ ||a||

−1
n−1 . If we take c = b1

a1
this

defines b ∈ Zn with ||b− ca|| ≤ ||a||
−1
n−1 . Further, for all 2 ≤ i ≤ n, we have

|bi| ≤ |
b1
a1
ai|+ |a1|

−1
n−1 < |b1|+ 1,
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so ||b|| = |b1| < |a1| = ||a||. By minimality of ||a||, this forces q(b) 6= 0.
Step 3: Combining (91) and (92) we get

||q||
−1
2 ≤ ||a||

−1
n−1 ,

or
||a|| ≤ ||q||

n−1
2 .

�

Of course our proof of Prestel’s Isotropy Theorem is a cut and paste of the proof
of Cassels’ Isotropy Theorem with some minor modifications (mostly coming from
the simpler inequalities afforded by an ultrametric norm). Indeed Prestel explicitly
models his proof after that of Cassels. But Prestel’s proof is presented slightly
differently and – we found – more cleanly than that of Cassels, so indeed the proof
we presented of the Cassels Isotropy Theorem is more immediately inspired by
Prestel than Cassels.

Also our proof of Step 2 is different from Prestel. Prestel first remarks that the
result can be proven using the non-Archimedean GoN of Mahler and Eichler. We
find that to be an intriguing remark, but since we have not developed that subject
here we have used Tornheim’s Linear Forms Theorem instead.

18.6. The Prospect of a GoN Proof for Ternary Hasse-Minkowski.

In this section we explore a test case of our “function field geometry of numbers”,
namely a function field analogue of the Cochrane-Mitchell Theorem.

For the moment, let K be any global field of characteristic different from 2, i.e., a
finite extension of either Q or Fq(t) for some odd prime power q. We will need (and
use without further comment here) the notion of places v of K: we denote the set
of all such places by ΣK .

Let q = q(x1, . . . , xn) be a quadratic form over K. For each v ∈ ΣK we may
consider the form qv = q/Kv

over the completion of K at v. Simply because Kv/K
is a field extension, it is clear that if q is isotropic, then qv is isotropic for all v.
What is remarkable is that the converse also holds.

Theorem 18.9. (Hasse-Minkowski) For a quadratic form q/K , TFAE:
(i) q is isotropic: there is x ∈ (Kn)• with q(x) = 0.
(ii) For all v ∈ ΣK , there is xv ∈ (Kn

v )• with qv(xv) = 0.

When n = 3 there is an extra relation between global and local forms.

Theorem 18.10. (Hilbert Reciprocity) Let q be a ternary quadratic form over K.
a) The places v of K such that qv is anisotropic form a finite set of even cardinality.
b) Let S ⊂ ΣK be a finite subset. Then there is a ternary quadratic form q over K
such that for all v ∈ ΣK , qv is anisotropic iff v ∈ S.

Remark: When K = Q, Theorem 18.10 is equivalent to the classical quadratic
reciprocity law together with the supplementary laws for (−1

p ) and ( 2
p ). Thus

Theorem 18.10 can be viewed as a reasonable analogue of quadratic reciprocity in
an arbitrary global field. Nowadays it is perhaps best viewed as a statement about
quaternion algebras over a global field; we do not intend to discuss these matters
here.



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 141

Corollary 18.11. Let q be a ternary form over a global field K. Let v0 be a place
of K. Suppose that for all v 6= v0, qv is isotropic. Then q is isotropic over K.

Let us denote by HM(K,n) the assertion of Hasse-Minkowski for the global field
K and for quadratic forms in n variables. The point is that Hasse-Minkowski is in
general a difficult theorem – the proof requires deep facts of the arithmetic of global
fields coming fom class field theory – and the standard proof is not constructive
or quantitative. It is a worthy goal to give more elementary, more constructive and
more quantitative proofs of the Hasse-Minkowski Theorem in various cases.

Indeed, Legendre’s Theorem is an explicit form of HM(Q, 3). Namely, any ternary
quadratic form over Q can be diagonalized and then by elementary reductions re-
duced to the case of Legendre Form

q = ax2 + by2 + cz2 = 0, a, b, c ∈ Z•, abc squarefree.

Lemma 18.12. For a Legendre Form q/Z, consider the following conditions:
(i) q is isotropic (over Z, or equivalently, over Q).
(ii) q satisfies the Legendre conditions:
• −ab is a square modulo c,
• −ac is a square modulo b,
• −bc is a square modulo a.
(iii) qp is isotropic for all odd primes p.
Then (i) =⇒ (ii) ⇐⇒ (iii).

The proof of this uses standard techniques (in particular, Hensel’s Lemma) and is
left to the reader. However, we wish to emphasize the following point: by a CRT
argument it is enough to consider congruence conditions modulo p for all primes
p | abc. However, when p = 2 asking for an integer to be a square modulo p is
vacuous, so the Legendre conditions do not yield any information on the isotropy
of q/Q2

. Neither are we getting any conditions on isotropy at Q∞ = R, of course.
Comparing with Theorem 18.10 we see that the Legendre Conditions are insuffi-
cient to force isotropy: we need to include a condition that forces isotropy either
at 2 or at ∞. In general the arithmetic of global fields at dyadic places (i.e., those
for which the residue field has cardinality 2) is unrewardingly complex, whereas
the condition for isotropy at an Archimedean place is very simple: we simply need
a, b, c to be neither all positive nor all negative. And indeed, Legendre’s Theo-
rem says that the Legendre conditions plus the (obviously necessary, equally well
in the 18th century as today) sign conditions at∞ are sufficient for q to be isotropic.

Now let K be any global field, and let R be a PID with fraction field K. Then
maximal ideals of R (which correspond to nonzero prime elements of R up to as-
sociates) give rise to places of K. To emphasize this, we write ΣR for the set of
maximal ideals of R (in somewhat more generality it is a good idea to let ΣR denote
the height one prime ideals of R, but never mind that for now). Let us consider
the prospect of proving HM(K, 3) via a Legendre Theorem over R. As usual, given
a ternary form q/K we may diagonalize it and clear denominators to get

q(x, y, z) = ax2 + by2 + cz2 = 0, abc ∈ R•;
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further, using the fact that R is a PID, we reduce to Legendre Form, the case in
which abc is squarefree.23 Now we have an analogue of Lemma 18.12:

Lemma 18.13. For a Legendre Form q/R, consider the following conditions:
(i) q is isotropic (over R, or equivalently, over K).
(ii) q satisfies the Legendre conditions:
• −ab is a square modulo c,
• −ac is a square modulo b,
• −bc is a square modulo a.
(iii) qv is isotropic for all nondyadic places v ∈ ΣR.
Then (i) =⇒ (ii) ⇐⇒ (iii).

It is natural to supplement the Legendre conditions with sign conditions at the real
Archimedean places of K (if any). When are these enough to imply isotropy of q?

Suppose first that K is a number field. Then we must have

ZK ⊂ R ⊂ K.
The number field K always has at least one dyadic place, and if there are at least
two dyadic places – i.e., if there is more than one prime of ZK lying above 2 – our
conditions are insufficient. Further, if ZK ( R then there will be non-Archimedean
places v ∈ ΣK\ΣR; if there is at least one non-dyadic such place, then our conditions
are insufficient. Thus (by using Hasse-Minkowski!) we deduce:

Lemma 18.14. Let K be a number field. Suppose that there is a unique prime ideal
p of ZK lying over 2, and suppose that ZK [ 1

p ] is a PID.24 Then a Legendre Form

q is isotropic over K iff it satisfies the Legendre conditions and the sign conditions
at the real Archimedean places of K, if any.

Suppose now that K is a finite extension of Fq(t) for an odd prime power q. In
this case there are neither Archimedean places nor dyadic places, so there is the
prospect for the Legendre conditions alone to force isotropy. Here though a different
phenomenon arises: there is no one choice of R such that every non-Archimedean
v ∈ ΣK comes from a maximal ideal of R; this amounts to the fact that R is an
affine coordinate ring and K is the function field of a projective curve which must
have at least one closed point “at infinity”.

18.7. Chonoles’s Geometry of Numbers in Fq(( 1
t )).

In this section we largely follow the 2012 Honors Thesis of Zev Chonoles [Ch12].

Let K be a field which is locally compact and not discrete. The locally com-
pact abelian group (K,+) admits a Haar measure, unique up to scaling. For any
automorphism f of (K,+), S 7→ µ(f(S)) is again a Haar measure on K, so there
is a unique scalar |f | ∈ R>0 such that for all measurable subsets S ⊂ K we have

µ(f(S)) = |f |µ(S).

23Note that this is the only place in which we use that R is a PID. It is thus not clear that

this is a crucial restriction.
24In general it is not possible to invert a prime ideal. To make sense of it here we use the basic

number theoretic fact that there is some d ∈ Z+ such that pd = (x) is principal. Then ZK [ 1
x

] kills

the prime ideal p and no other primes: this is what we really mean by ZK [ 1
p

].
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Note that |f | is independent of the chosen Haar measure µ. In particular, for
x ∈ K×, multiplication by x is an automorphism of K and this defines a real num-
ber |x|. It turns out that x 7→ |x| is a norm on K see e.g. [W, §I.2]. Further, using
this norm function one can show that K is either R, C, or the norm x 7→ |x| is
of the form c−v(x) for a discrete valuation v on K and some constant c > 1 [W, §I.3].

Exercise: a) If K = R, show that |x| is the usual absolute value on R.
b) If K = C, show that |x| is the square of the usual absolute value on C.
c) Suppose x 7→ |x| is the norm attached to a discrete valuation v on K, with
valuation ring R and finite residue field k. Show that |x| = (#k)−v(x).
d) In particular, if K = Fq(( 1

t )), show that |x| = qdeg x.

Fix n ∈ Z+ and put V = Kn. Using the above constructed norm on K we in-
troduce a norm on V , |(x1, . . . , xn)| = maxi |xi|. This norm endows V with the
structure of a locally compact topological group. Let µ be a Haar measure on V .
As above, for any matrix M ∈ GL(V ) there is a unique positive real number |M |
such that for all measurable subsets S ⊂ V we have

µ(MS) = |M |µ(S).

Proposition 18.15. ([W, p. 7]) With notation above, we have |M | = |detM |.

Proof. One reduces to verifying the result for each of the three types of elementary
matrices. This makes a good exercise. It is merely alluded to in [W] but done in
detail in [Ch12] in the (entirely representative) case K = Fq((t)). �

Let q be a prime power, A = Fq[t], and K = Fq(t). Let v∞ be the discrete valuation

on K given by v∞(f/g) = deg g−deg f , and let | · |v be defined by |h|∞ = q−v∞(h).
Let K∞ = Fq(( 1

t )) be the completion of K at the place v∞. This is a locally com-

pact, complete, discretely valued field with valuation ring R∞ = Fq[[ 1
t ]], maximal

ideal m∞ = 1
tR∞ and finite residue field Fq. Fix n ∈ Z+ and let V = Kn

∞ be an
n-dimensional vector space over K∞, with a standard basis (e1, . . . , en). Thus the
additive group of V is a locally compact abelian group so admits a Haar measure,
and indeed a unique Haar measure µ such that µ(mn∞) = 1. (The most standard
normalization would be to give unit mass to Rn∞, not to mn

∞. Thus this Haar mea-
sure is qn times the “most standard” one. It will soon become clear why Chonoles’s
normalization is a good one for geometry of numbers considerations.)

Let V = Kn
∞, and let e1, . . . , en denote the standard basis of V . An A-lattice

in V is the A-span of a K∞-basis of V . Since A is a PID and V is torsionfree, any
A-lattice is isomorphic as an A-module to An.

Any x ∈ K∞ can be uniquely written in the form f + g for f ∈ A and g ∈ m∞.
Thus for a lattice Λ = 〈v1, . . . , vn〉A, any v ∈ V can be uniquely expressed as

v =

n∑
j=1

fjvj +

n∑
j=1

gjvj , fj ∈ A, gj ∈ m∞.

It follows that if we put DΛ =
∑n
j=1 m∞vj , then

V = Λ⊕DΛ.
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Thus DΛ is a fundamental domain for Λ in V which is moreover an additive
subgroup (and even an R∞-module). Accordingly, we define

Covol Λ = µ(DΛ).

Let E =
∑n
i=1Aei be the “standard A-lattice” in V . Then DE = mn∞, so by our

normalization of the Haar measure we have Covol E = µ(DE) = 1.

Proposition 18.16. Let V =
∑n
i=1Avi be an A-lattice in V , write vi =

∑n
j=1mijej,

and put M = (mij) ∈ GLV . Then

Covol Λ = |detM |∞.

Proof. We have Λ = ME and thus DΛ = MDE . By Proposition 18.15,

Covol Λ = µ(DΛ) = µ(MDE) = |detM |∞ Covol E = |detM |∞.

�

Theorem 18.17. Let Λ be an A-lattice in V , and let B ⊂ V be a measurable subset
which is closed under subtraction and satisfies

µ(B) > Covol Λ.

Then B ∩ Λ• 6= ∅.

Proof. Since V =
∐
λ∈ΛDΛ + λ, we have

B =
∐
λ∈Λ

((DΛ + λ) ∩ B) .

By countable additivity – note Λ ∼= Fq[t]n is countable! – and translation invariance,

µ(B) =
∑
λ∈Λ

µ((DΛ + λ) ∩B) = µ((DΛ ∩ (B− λ)) + λ) = µ(DΛ ∩ (B− λ)).

If {DΛ ∩ (B− λ)}λ∈Λ were pairwise disjoint, we’d have

µ(B) =
∑
λ∈Λ

µ(DΛ ∩ (B− λ)) ≤ µ(DΛ) = Covol Λ,

contradicting our hypothesis. Thus there are c1, c2 ∈ B and λ1 6= λ2 ∈ Λ such that

c1 − λ1 = c2 − λ2 ∈ DΛ.

Since B is closed under subtraction, we deduce

c1 − c2 = λ1 − λ2 ∈ B ∩ Λ•.

�

We can easily deduce a new proof of Tornheim’s Linear Form in the case k = Fq.
In fact the argument works for matrices with coefficients in Fq(( 1

t )), not just Fq[t].

Corollary 18.18. (Finite Field Tornheim Theorem) Let q be a prime power; let
C = (cij) ∈Mn(Fq(( 1

t ))) with detC 6= 0. Let e1, . . . , en ∈ Z be such that

(93) deg detC <

n∑
i=1

(ei + 1).
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Then there exists x ∈ (Fq[t]n)• such that for all 1 ≤ i ≤ n,

(94) deg

 n∑
j=1

cijxj

 ≤ ei.
Proof. As above, let E = Fq[t]n be the standard A-lattice in V = Kn

∞ = Fq(( 1
t ))

n.
Let B be the set of x ∈ V satisfying (94). We are trying to show that B∩ E• 6= ∅.
Since B is closed under subtraction – indeed, it is an R∞-submodule of V – by
Theorem 18.17 it suffices to show that µ(B) > Covol E = 1. To see this, consider

b = {x = (x1, . . . , xn) ∈ V |deg xi ≤ ei ∀1 ≤ i ≤ n}.
The subset b is a Cartesian product of subsets bi = {x ∈ K∞ | v∞(x) ≥ ei} of K∞;
thus µ(bi) = qei+1 and

µ(b) = q
∑n

i=1(ei+1).

Further, B = C−1b, so

µ(B) = |detC|−1µ(b) = q
∑n

i=1(ei+1)−deg detC .

Thus by our hypothesis (93) we have µ(B) > 1 = Covol E , and the result follows.
�

18.8. Mahler’s non-Archimedean Geometry of Numbers.

Let K be a field, and let | · | : K → R≥0 be a non-Archimedean norm on K:

• ∀x ∈ K, |x| = 0 ⇐⇒ |x| = 0.
• ∀x, y ∈ K, |xy| = |x||y|∀x, y ∈ K.
• ∀x, y ∈ K, |x+ y| ≤ max |x|, |y|.

Let K̂ be the completion of (K, | · |); let R and R̂ be the corresponding valua-

tion rings. For any N ∈ Z+, we may view K̂N as a non-Archimedean normed

K̂-space by setting, for x = (x1, . . . , xN ) ∈ K̂N ,

|x| = max
i
|xi|.

We also define the “standard” (possibly isotropic) inner product on K̂N :

(x1, . . . , xN ) · (y1, . . . , yN ) =

N∑
i=1

xiyi.

All of the following are immediate:

∀x ∈ K̂N , |x| ≥ 0, |x| = 0 ⇐⇒ x = 0.

∀α ∈ K̂, x ∈ K̂N , |αx| = |α||x|.
∀x, y ∈ K̂N , |x+ y| ≤ max(|x|, |y|).
∀x, y ∈ K̂N , |x · y| ≤ |x||y|.

Now, as we did in Euclidean space, consider certain properties of f : K̂N → R:

(DF1′): f(0) = 0.

(DF1): ∀x ∈ K̂N , f(x) = 0 ⇐⇒ x = 0.
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(DF2) ∀α ∈ K̂, x ∈ K̂N , f(αx) = |α|f(x).

(DF3) ∀x, y ∈ K̂N , f(x+ y) ≤ max(f(x), f(y)).

A function f satisfying (DF1′), (DF2) and (DF3) is a pseudo-distance func-
tion, and a function f satisfying (DF1), (DF2) and (DF3) is a distance function.

For a pseudo-distance function f and τ ∈ R>0, we put

Ωf,τ = f−1([0, τ ]).

By definition, a subset Ω ⊂ K̂n is convex if it is of the form Ωf,τ for some pseudo-
distance function f and some τ > 0. If we may take f to be a distance function,
we say Ω is a convex body.

Condition (DF2) is analogous to the symmetry condition f(−x) = f(x) in the
classical case, but is much stronger. The following exercise drives this point home.

Exercise: Show that any convex subset Ω ⊂ K̂N is a R̂-submodule of K̂N .

Theorem 18.19. Let f : K̂N → R be a pseudo-distance function.

a) If Cf = max1≤i≤n f(ei), then for all x ∈ K̂N we have

f(x) ≤ Cf |x|.

b) If f is a distance function, there exists γf ∈ R>0 such that for all x ∈ K̂N ,

cf |x| ≤ f(x).

Corollary 18.20. For a convex subset Ω ⊂ K̂N , the following are equivalent:
(i) Ω is a convex body.
(ii) Ω is bounded.

Proof. (i) =⇒ (ii): Let Ω be a convex body, so Ω = f−1([0, R]) for a distance
function f . Then for x ∈ Ω, cf |x| ≤ f(x) ≤ R, so |x| ≤ R

cf
, so Ω is bounded.

¬ (i) =⇒ ¬ (ii): If Ω is a convex set but not a convex body, then Ω = f−1([0, R])
for a pseudodistance function f which is not a distance function, i.e., for which

there is 0 6= x ∈ K̂N such that f(x) = 0. Then by homogeneity f(αx) = 0 for all

α ∈ K̂, and thus Ω contains the entire line 〈x〉K̂ so is unbounded. �

Exercise: Let f1, f2 : K̂N → R be two pseudodistance functions. Show that
max(f1, f2) is a pseudodistance function.

Exercise: Let {Ωi}i∈I an indexed family of convex subsets of K̂N .
a) Show that Ω =

⋂
i∈I is a convex set.

b) Show that if at least one Ωi is a convex body, then Ω is a convex body.

As in the Archimedean case, the easiest pseudodistance functions come from linear

forms: if L : K̂N → K̂ is any linear form, then |L| is a pseudodistance function on

K̂N , which is not a distance function except in the trivial case N = 1. However,

if we are given a system L1, . . . , LN of linear forms – say Li(x) =
∑N
j=1 αijxj –

then by the exercises above P = maxNi=1 |Li| is a pseudodistance function, which
(by nothing else than elementary linear algebra) is a distance function iff the the
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corresponding matrix M = (αij) is invertible, and the associated convex bodies
P−1([0, R]) will be called parallelopipeds.

18.9. Normed Rings.

A norm on a ring R is a function | · | : R→ N such that
(N0) |x| = 0 ⇐⇒ x = 0,
(N1) ∀x, y ∈ R, |xy| = |x||y|, and
(N2) ∀x ∈ R, |x| = 1 ⇐⇒ x ∈ R×.

A normed ring is a pair (R, | · |) where | · | is a norm on R. A nonzero ring
admitting a norm is necessarily a domain. We denote the fraction field by K.

Let R be a domain with fraction field K. We say that two norms | · |1, ·| · |2
on R are equivalent – and write | · |1 ∼ |·|2 if for all x ∈ K, |x|1 < 1 ⇐⇒ |x|2 < 1.

Remark 3.1: Let (R, | · |) be a normed domain with fraction field K. By (N1)
and (N2), | · | : (R•, ·) → (Z+, ·) is a homomorphism of commutative monoids.
It therefore extends uniquely to a homomorphism on the group completions, i.e.,

| · | : K× → Q>0 via |xy | =
|x|
|y| . This map factors through the group of divisibility

G(R) = K×/R× to give a map K×/R× → Q>0.

Example 3.2: The usual absolute value | · |∞ on Z (inherited from R) is a norm.

Example 3.3: Let k be a field, R = k[t], and let a ≥ 2 be an integer. Then
the map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | · |a on R and the norms
obtained for various choices of a are equivalent. As we shall see, when k is finite,
the most natural normalization is a = #k. Otherwise, we may as well take a = 2.

Example 3.4: Let R be a discrete valuation ring (DVR) with valuation v : K× → Z
and residue field k. For any integer a ≥ 2, we may define a norm on R, | · |a : R• →
Z>0 by x 7→ av(x). (Note that these are the reciprocals of the norms x 7→ a−v(x)

attached to R in valuation theory.) Using the fact that G(R) = K×/R× ∼= (Z,+)
one sees that these are all the norms on R. That is, a DVR admits a unique norm
up to equivalence.

Example 3.5: Let R be a UFD. Then Prin(R) is a free commutative monoid on the
set ΣR of height one primes of R. Thus, to give a norm map on R it is necessary
and sufficient to map each prime element π to an integer nπ ≥ 2 in such a way that
if (π) = (π′), nπ = nπ′ .

A norm | · | on a ring R is metric if for all x, y ∈ R, |x + y| ≤ |x| + |y|. A
norm is ultrametric if for all x, y ∈ R, |x+ y| ≤ max |x|, |y|.

Example 18.21. The standard norm (Euclidean absolute value) on Z is metric.

Example 18.22. For any field k and any a ≥ 2, on the ring R = k[t] the norm
f ∈ R 7→ adeg f is ultrametric: indeed, for f, g ∈ R,

|f + g| = adeg(f+g) ≤ amax deg f,deg g = max adeg f , adeg g = max |f |, |g|.
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Example 18.23. Let R be a discrete valuation ring which is not a field, with
valuation v : R• → Z, v(0) = −∞. Then for any a ≥ 2 and x ∈ R, putting
|x| = av(x) gives a norm on R. But beware: this norm is not ultrametric nor even
metric. Indeed, let π be a uniformizing element x = π2 − 1, y = 1. Then

av(x+y) = av(π2) = a2 > 1 + 1 = av(π2−1) + av(1).

Notice in particular that our definition of the norm attached to a discrete valuation
is the reciprocal of the usual definition, and thus the metric properties are lost.

In fact among all normed rings, examples of metric norms – and still more, ultra-
metric norms – seem to be quite rare. We get a slightly larger class of examples by
relaxing the metric condition, as follows.
Let | · | be a norm on a ring R. Define

A(R) = inf{A ∈ R>0 | ∀x, y ∈ R, |x+ y| ≤ A(|x|+ |y|)},
C(R) = inf{A ∈ R>0 | ∀x, y ∈ R, |x+ y| ≤ C max |x|, |y|}.

The following result connects some simple facts about these quantities.

Lemma 18.24. a) If A(R) <∞, then for all x, y ∈ K, |x+ y| ≤ A(R)(|x|+ |y|).
b) If C(R) <∞, then for all x, y ∈ K, |x+ y| ≤ C(R) max |x|, |y|).
c) We have A(R) ≤ C(R) ≤ 2A(R).
d) In particular, A(R) <∞ ⇐⇒ C(R) <∞.

Proof. Exercise. �

We call a norm almost metric if A(R) < ∞ (equivalently by Lemma 18.24, if
C(R) <∞). Note that a norm is metric if A(R) ≤ 2 and ultrametric iff C(R) = 1.

Theorem 18.25. Let K0 denote either Q or Fp(t). Let K/K0 be a finite separable
extension of degree d. Let S be a finite, nonempty set of places of K containing all
Archimedean places (if any), and let R be the ring of S-integers of K. TFAE:
(i) #S = 1.
(ii) The unit group R× is finite.
(iii) The canonical norm function x ∈ R• 7→ #R/(x) is almost metric.
(iv) C(R) = 2d.

Proof. . . . �

Corollary 18.26. Let R be an S-integer ring in a number field K.
a) The canonical norm on R is almost metric iff
(i) K = Q and R = Z, or
(ii) K is imaginary quadratic and R = ZK is the full ring of integers.
b) In case (i) above, C = 2. In case (ii) above, C = 4.

For a normed Dedekind domain (R, | · |), we define the Euclideanity

E(R) = sup
x∈K

inf
y∈R
|x− y|.

As usual, we say that | · | is a Euclidean norm on R if for all x ∈ K there exists
y ∈ R with |x − y| < 1. Thus in particular R is Euclidean if E(R) < 1 and is not
Euclidean if E(R) > 1. Because of the supremum in the definition of E(R), the
case E(R) = 1 is ambiguous: a priori it is possible for a ring with E(R) = 1 to be
Euclidean, but in every example I know with E(R) = 1, the norm is not Euclidean.
In any case, we really will want to use the stronger condition E(R) < 1 in our work
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below, so this distinction is not really relevant for us.

As is well-known, in a Euclidean ring every ideal is generated by each element
of minimal norm, so a Euclidean ring is a PID.

Example 18.27. Let R = Z endowed with the standard absolute value. Then
E(R) = 1

2 , so Z is Euclidean.

Example 18.28. Let k be any field, R = k[t], and let a ≥ 2 be an integer. Endow
R with the nom |f |a = adeg f . Then E(R) = 1

a , so R is Euclidean.

Note that we may have E(R) =∞; we say R is E-finite if E(R) <∞.

Lemma 18.29. Let R be a PID with fraction field K, and let | · | be a metric
norm on R. Let L/K be a finite separable field extension, and let S be the integral
closure of R in L, endowed with its extended norm. Then S is an E-finite Dedekind
domain.

Proof. Let n = [L : K]. It is a standard result in algebraic number theory that S is a
Dedekind domain (this does not use the hypothesis of separability) and that S ∼= Rn

(this does!). Let σ1, . . . , σn : L ↪→ K be the n-distinct K-algebra embeddings into
an algebraic closure, so for x ∈ L, |x| = |

∏n
i=1 σi(x)|. Let x1, . . . , xn be an R-basis

for S, hence also a K-basis for L. Therefore, for any x ∈ L, there are unique
α1, . . . , αn ∈ L such that x =

∑
i αixi. Fix ε > 0, and choose for all i an element

βi ∈ R such that |αi − βi| ≤ E(R) + ε. Then

|x−
n∑
i=1

βixi| ≤
n∑
i=1

|αi − βi||xi| ≤ (E(R) + ε)

n∑
i=1

|xi|.

Thus S is E-finite. �

18.10. Gerstein-Quebbemann.

The following result is an abstraction of Hermite’s proof of Theorem 10.1.

Theorem 18.30. Let (R, | · |) be an almost metric normed ring with E(R) < 1.
a) Suppose A(R)E(R)2 < 1. Then for all n ≥ 2,

γn(R) ≤
(

A(R)

1−A(R)E(R)2

)n−1
2

.

b) Suppose C(R)E(R)2 < 1. Then for all n ≥ 2,

γn(R) ≤ C(R)
n−1

2 .

c) If R is ultrametric, γn(R) ≤ 1 for all n ∈ Z+.

Proof. The greater part of the argument involves deriving the inequality (95) below.
Combining this with |x+ y| ≤ A(R)(|x|+ |y|) we deduce part a); combining it with
|x+ y| ≤ C(R) max |x|, |y|, we deduce part b).

Since E(R) < 1, R is Euclidean and thus a PID, so Hermite’s Lemma applies.
Let q =

∑
ij aijtitj : Kn → K be an anisotropic quadratic form. By Hermite’s

Lemma, after making a unimodular change of variables we may assume that the
minimum of q on Rn is attained at the first standard basis vector e1.

Let ϕ : Kn → Kn be the K-linear map given by e1 7→ e′1 = e1, ej 7→ e′j = ej− a1j

a11
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for 2 ≤ j ≤ n, so e1 is orthogonal to the subspace 〈e′2, . . . , e′n〉. Note also that
detϕ = 1. Let

q′(t) = q(ϕ(t)) = a11t
2
1 + q2(t2, . . . , tn).

Then disc q2 = disc q′

a11
= disc q

a11
. Now for λ1, . . . , λn ∈ R, write

w = (λ1 +
a12

a11
λ2 + . . .+

a1n

a11
λn)e1 + λ2e

′
2 + . . .+ λne

′
n = γe1 + z,

say. Suppose z is chosen so as to be minimal for q2 on
⊕n

i=2Re
′
i. Then

|q(z)| = |q2(λ2, . . . , λn)| ≤ γn−1(R)|disc q2|
1

n−1 = γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 .

Let ε > 0 be small enough so that E(R) + ε < 1. By definition of E(R), there is
λ1 ∈ R with |γ| ≤ E(R) + ε < 1. Thus we have

(95) min(q) = |a11| ≤ |q(w)| = |γ2a11 + q2(λ2, . . . , λn)|.
a) By definition of A(R), we have

|a11| ≤ |γ2a11 + q2(λ2, . . . , λn)| ≤ A(R)
(
|γ2||a11|+ |q2(λ2, . . . , λn)|

)
≤ A(R)(E(R) + ε)2|a11|+A(R)γn−1(R)|a11|

−1
n−1 |disc q|

1
n−1 .

Since this inequality holds for all sufficiently small ε, it also holds for ε = 0:

|a11| ≤ A(R)E(R)2|a11|+A(R)γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 .

Multiplying through by |a11|
1

n−1 gives

|a11|
n

n−1 ≤ A(R)E(R)2|a11|
n

n−1 +A(R)γn−1(R)|disc q|
1

n−1 ,

and thus
|a11|n

|disc q|
≤
(

A(R)

1−A(R)E(R)2

)n−1

γn−1(R)n−1.

This implies

γn(R)n ≤
(

A(R)

1−A(R)E(R)2

)n−1

γn−1(R)n−1

and thus

γn(R) ≤
(

A(R)

1−A(R)E(R)2

)n−1
n

γn−1(R)
n−1
n .

Using γ1(R) = 1, an easy induction argument gives

γn(R) ≤
(

1

1−A(R)E(R)2

)n−1
2

,

completing the proof of part a). As for part b), starting again from (95) we get

|a11| ≤= |γ2a11 + q2(λ2, . . . , λn)| ≤ C(R) max(|γ|2|a11|, |q2(λ2, . . . , λn)|)
and thus (inserting and then removing an ε > 0 as above) we get

|a11| ≤ C(R) max(E(R)2|a11|, γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 ).

But by our hypothesis, |a11| > C(R)E(R)2|a11|, so we must have

|a11| ≤ C(R)γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 ).

Thus
|a11|

n
n−1 ≤ C(R)γn−1(R)|disc q|

1
n−1
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and hence
|a11|n

|disc q|
≤ Cn−1γn−1

n−1(R).

Taking nth roots gives

γn(R) ≤ C
n−1
n γ

n−1
n

n−1 .

Exactly as in part a), an easy induction argument gives γn(R) ≤ C n−1
2 .

c) Since | · | is ultrametric iff C(R) = 1, this follows immediately from part b). �

Exercise: Check that Theorem 18.30 implies Theorem 10.1.

Corollary 18.31. Let R = Z[ 1+
√
−3

2 ] be the ring of integers of the imaginary

quadratic field K = Q(
√
−3). Then for all n ∈ Z+, we have

γn(R) ≤
(

36

5

)n−1
2

.

Proof. For the ring of integers ZK of an imaginary quadratic field K we have

E(ZK) =
|m|+ 1

4
, ZK = Z[

√
−m],

E(ZK) =
(|m|+ 1)2

16m
, ZK = Z[

1 +
√
−m

2
].

By Lemma 18.24 and Theorem 18.25, A(R) ≤ C(R) = 4. Since A(R)E(R)2 < 1,
Theorem 18.30a) applies. �

Remark: Rather disappointingly, it turns out that R = Z and R = Z[ 1+
√
−3

2 ] are
the only two S-integer rings to which the hypotheses of Theorem 18.30 apply!

Corollary 18.32. (Gerstein [Ge73], Quebbemann) Let k be a field of characteristic
different from 2. Let a ≥ 2 be an integer. Endow R = k[t] with the norm |f |a =
adeg f . Then γn(k[t]) ≤ 1 for all n ∈ Z+.

Proof. Since E(R) = 1
a , C(R) = 1, C(R)E(R)2 < 1, and Theorem 18.30c) applies.

�

Remark 4.11: A field k of characteristic not 2 admits an ordering iff for all n ∈ Z+

the quadratic form qn = 〈1, . . . , 1〉 = t21 + . . . + t2n is anisotropic. Such a field k
is necessarily infinite, and then an easy specialization argument shows that any
anisotropic form q over k remains anisotropic upon base extension to k[t]. So let
k be a field admitting an ordering – e.g. k = R or any of its subfields. Then for
all n ∈ Z+, |disc qn| = 1 and m(qn) = 1, so γ(qn) = 1 and thus γn(k[t]) = 1. This
shows that the bound of Corollary 18.32 is best possible without further restrictions
on k. On the other hand, if k = Fq then every quadratic form in at least 5 variables
over k[t] is isotropic, and thus γn(Fq[t]) = 0 for all n ≥ 5.

Theorem 18.33. (Samuel [?]) Suppose that X is a curve of genus zero. Then
S = k[X] is Euclidean with respect to the extended norm iff the projective closure
X of X is isomorphic to P1 and the gcd of the degrees of the points at infinity is 1.
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19. Abstract Blichfeldt and Minkowski

We wish to develop an “abstract” version of Blichfeldt’s Lemma. This begins with a
measured group (G,+,A, µ): a group (G,+) – not assumed to be commutative,
though we write the group law additively – and a measure (G,A, µ) which is right
invariant: for all A ∈ A and x ∈ G, µ(A + x) = µ(A). To avoid trivialities, we
assume µ(G) > 0.

Let Γ be a subgroup of G. A fundamental domain F for Γ in G is a mea-
surable subset F ⊂ G such that
(FD1)

⋃
g∈Γ F + g = Γ, and

(FD2) Fo all g1, g2 ∈ Γ, µ((F + g1) ∩ (F + g2)) = 0.

Lemma 19.1. If F1 and F2 are both fundamental domains for a countable subgroup
Γ in G, then µ(F1) = µ(F2).

Proof. Observe that if {Si}i∈I is a countable family of subsets such that µ(Si∩Sj) =
0 for all i 6= j, then

µ(
⋃
i∈I

Si) =
∑
i∈I

µ(Si).

Now we have

F1 ⊃ F1 ∩ (
⋃
g∈Γ

F2 + g) =
⋃
g∈Γ

µ(F1 ∩ (F2) + g),

so, using the above observation,

µ(F1) ≥
∑
h∈H

µ(F1 ∩ (F2 + g)) =
∑
g∈Γ

µ(F1 ∩ (F2 − g)) =
∑
g∈Γ

µ((F1 + g) ∩ F2)

= µ(
⋃
g∈Γ

(F1 + g) ∩ F2) = µ(F2).

Interchanging F1 and F2 we get the result. �

Example: Let G be a Lie group, and let Γ be a discrete subgroup of G. Then Γ is
countable, and there is a fundamental domain F for Γ in G, which can moreover
be taken to be regular-closed, i.e., equal to the closure of its interior.

We say a subgroup Λ of a measured group G is a lattice if it is countable and
admits a measurable fundamental domain of finite measure. We define the covol-
ume Covol Λ to be the measure of any such fundamental domain.

Exercise: Show that for a lattice Γ in a measured group G, Covol Λ > 0. (Hint:
recall our assumption that µ(G) > 0.)

Theorem 19.2. (Abstract Blichfeldt Lemma) Let Λ be a lattice in a measured
group G, and let M ∈ Z+. Let Ω ⊂ G be measurable, and suppose

(96)
µ(Ω)

Covol Λ
> M.

There are distinct w1, . . . , wM+1 ∈ Ω such that for all 1 ≤ i, j ≤M+1, wi−wj ∈ Λ.
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Proof. Let F be a measurable fundamental domain for Λ in G. For x ∈ Λ, let

Ωx = Ω ∩ (F + x).

Then Ω =
⋃
x∈Γ Ωx: this is a countable union which is essentially pairwise disjoint

– for all x 6= y ∈ Γ, µ(Ωx ∩ Ωy) = 0 – so

(97)
∑
x∈Γ

µ(Ωx − x) =
∑
x∈Λ

µ(Ωx) = µ(Ω) > M Covol(Λ) = Mµ(F).

We apply the Measure Theoretic Pigeonhole Principle with X = F , I = Λ, Sx =
Ωx − x: there is v ∈ F and x1, . . . , xM+1 ∈ Λ such that

v ∈
M+1⋂
i=1

Ωxi
− xi.

Thus for 1 ≤ i ≤M + 1 there is wi ∈ Ωxi
– so w1, . . . , wM+1 are distinct – with

∀1 ≤ i ≤M + 1, wi − xi = v.

It follows that for all 1 ≤ i, j ≤M+1, wi−wj = (xi+v)−(xj+v) = xi−xj ∈ Λ. �

A measured ring is a ring endowed with a measure such that the additive group
of R is a measured group. Again we assume µ(R) > 0 to avoid trivialities.

Theorem 19.3. (Abstract Minkowski Theorem) Let M ∈ Z+, (R,+, ·,A, µ) be a
measured ring, and let Λ ⊂ RN be a countable subgroup. Let Ω ⊂ R be measurable
and symmetric: x ∈ Ω =⇒ −x ∈ Ω.
a) We suppose 2 ∈ R• and all of the following:
• Ω is midpoint closed: x, y ∈ Ω =⇒ x+y

2 ∈ Ω.
• 2Λ is a lattice in R.
• µ(Ω)

Covol 2Λ > M .
Then #(Ω ∩ Λ•) ≥M .
b) We suppose all of the following:
• Ω is closed under subtraction: x, y ∈ Ω =⇒ x− y ∈ Ω.
• Λ is a lattice in R.
• µ(Ω)

(Covol Λ > M .

Then #(Ω ∩ Λ•) ≥M .

Proof. a) Apply the Abstract Blichfeldt Lemma with G = (R,+) and 2Λ in place
of Λ. We get distinct elements w1, . . . , wM+1 ∈ Ω such that for all 1 ≤ i, j ≤M+1,
wi−wj

2 ∈ Λ. Since Ω is symmetric and midpoint closed, −wj ∈ Ω and thus
wi−wj

2 ∈
Ω for all 1 ≤ i, j ≤M + 1. Fixing i = 1 and letting j run from 2 to M + 1 gives us
M nonzero elements of Ω ∩ Λ.
b) This is exactly the same as part a) except we use Λ instead of 2Λ and use the
fact that Ω is closed under subtraction. �

Remark: Suppose R is a locally compact topological ring, µ is a Haar measure
on (R,+) and Λ ⊂ R is a discrete subring. Then in every “natural example” I
know Λ will necessarily be countable and there will be a measurable set of coset
representatives for Λ in R. Because Haar measures are Radon measures and hence
finite on compact subsets, Λ will be a lattice if it admits a compact fundamental
domain. Note also that our fundamental Blichfeldt conditions depend only on the
ratio of the volume of Ω and the volume of a fundamental domain for 2Λ or Λ,
hence is independent of the choice of Haar measure.
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Example: Take R = RN and Λ ⊂ RN a (full) lattice in the usual sense: we re-
cover Minkowski’s Convex Body Theorem.

Example: Let q be a prime power. Take R = Fq(( 1
t ))

N and Λ a Fq[t]-lattice in
R. We recover Chonoles’s Convex Body Theorem.
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Théor. Nombres Bordeaux 22 (2010), 209-217.

[Th96] J.L. Thunder, An adelic Minkowski-Hlawka theorem and an application to Siegel’s
lemma. J. Reine Angew. Math. 475 (1996), 167-185.

[Th00] J.L. Thunder, Remarks on adelic geometry of numbers. Number theory for the millen-

nium, III (Urbana, IL, 2000), 253-259, A K Peters, Natick, MA, 2002.
[To41] L. Tornheim, Linear forms in function fields. Bull. Amer. Math. Soc. 47 (1941), 126-

127.

[OW00] Z.M. Ou and K.S. Williams, Small solutions of φ1x21+ · · ·+φnx2n = 0. Canad. J. Math.
52 (2000), no. 3, 613–632.



GEOMETRY OF NUMBERS WITH APPLICATIONS TO NUMBER THEORY 159

[Pa51] G. Pall, Sums of two squares in a quadratic field. Duke Math. J. 18 (1951), 399-409.
[Va10] S. Vance, A Mordell inequality for lattices over maximal orders. Trans. Amer. Math.

Soc. 362 (2010), 3827-3839.

[Va11] S. Vance, Improved sphere packing lower bounds from Hurwitz lattices. Adv. Math.
227 (2011), 2144-2156.

[Ve13] A. Venkatesh, A note on sphere packings in high dimension. Int. Math. Res. Not.

IMRN 2013, 1628-1642.
[vHC06] M. van Hoeij and J. Cremona, Solving conics over function fields. J. Théor. Nombres
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