
HANDOUT FIVE: VECTOR FIELDS

PETE L. CLARK

1. Introduction to Vector Fields in the plane and in space

We have already studied several kinds of functions of several variables: vector
valued functions of a scalar variable – i.e., parameterized curves in the plane and
in space; scalar-valued functions of two or more variables (the case of two variables
z = f(x, y) giving the graph of a surface in space; and functions from the plane
to space, parameterized surfaces. Here we consider functions V from the plane to
itself and from space to itself, which are called vector fields.

A vector field in the plane is given by a pair of functions of two variables, V (x, y) =
(P (x, y), Q(x, y). We picture it as follows: at each point (x0, y0) in the plane, we
get a vector (P (x0, y0), Q(x0, y0)) at that point. So in all every point in the plane
(or every point in a certain region of the plane) has a vector attached to it: overall
we get a “field” of vectors.

A similar story holds in space: a vector field gives a vector at every point of
space, so to describe it we need three functions of x, y and z: V (x, y, z) =
(P (x, y, z), Q(x, y, z, ), R(x, y, z)).

Example:

F (x, y, z) =
−(x, y, z)

||(x, y, z)||3
=

(

−x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

)

.

This vector field gives, up to a multiplicative constant, the force felt by a particle at
any point due to gravitational attraction to a mass centered at the origin, i.e., it is
a reformulation of Newton’s inverse square law. That is, at any point, the vector
at that point points in the direction of the origin, and its magnitude is inversely
proportional to the square of the distance from that point to the origin1. Note also
that the vector field is not defined at the origin, nor could it be extended to the
origin in a continuous manner, for two reasons: one the one hand the magnitude
of the vector field approaches infinity, and on the other hand therer are vectors in
the field arbitrarily close to the origin pointing in every direction, so the direction
of the vector field cannot be continuously extended to the origin either. In such
a situation – namely, when there is a point P0 = (x0, y0, z0) at which a vector
field is not defined and could not be defined in a continuous way – P0 is called a
singularity of the vector field.

We saw on p. 13 of handout four that if f(x, y, z) = (x2 + y2 + z2)−1/2, then

1Notice that the norm of the numerator is || − (x, y, z)|| = d, the distance to the origin, so the

norm of the entire expression is d

d3
= 1

d2
.

1
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V = ∇(f). We will see in the next unit that the existence of this function f leads
to a law of conservation of energy for a particle travelling through a gravita-
tional field: at any point, the sum of the kinetic energy 1/2mv2 and the potential
energy −f is a constant.

Other examples of vector fields modelling fields are V2 = (0, 0,−mg), the constant
downward vector field modelling the constant force due to gravity of a particle close

to the surface of the earth, and V3 = (x,y,z)
||(x,y,z)||3 – the same as Newton’s law except

without a minus sign, which models the situation in which we have a positive

charge at the origin and want the force felt by a positively charged particle at a
given point of space: this is a repulsive force, and that it also is inversely propor-
tional to the square of the distance is known as Coulomb’s Law.

On the other hand, when trying to picture a vector field in the plane or in space,
it is convenient to have a different physical interpretation in mind: we think of V
as the velocity field of some sort of fluid: that is, at any point P0, the field V (P0)
gives the velocity vector for the flow: i.e., it tells the fluid which way to go and how
fast.

Viewing a vector field V (x, y) or V (x, y, z) as a velocity field sets up a fundamen-
tal geometric problem: given a velocity field, place a particle at a certain initial

point P0 and release it: what is its trajectory? That is, we want to find a curve
r(t) = (x(t), y(t), z(t)) such that r(0) = P0 and with the property that for all t

(1) r′(t) = v(t) = V (r(t)).

Such a curve is called an integral curve and Equation (1) is called the flow equa-

tion: it is a system of ordinary differential equations in the variables x, y and z:
see Section 11.1 of your text.

We now give some examples of vector fields in the plane.

Example 1: V (x, y) = (x, y). That is, at any point in the plane, the vector at
that point is that point; otherwise put, it points in the same direction (i.e., away
from the origin) and has the same magnitude. Suppose we interpret this field as
a velocity field and want to find the trajectories. As we just said that at every
point a particle is pushed radially outward, the trajectories should be straight lines
emanating outward from the origin. In terms of equations we have

x′(t) = P (x, y) = x.

y′(t) = Q(x, y) = y.

Here (quite luckily) each of the two equations involves only one variable at a time,
so we just need to solve the differential equation df/dt = f both times: the solution
to this is f(t) = Cet, so x(t) = C1e

t, y(t) = C2e
t. Indeed x(0) = C1e

0 = C1

and y(0) = C2e
0 = C2, so the integral curve passing through the point (x0, y0)

is r(t) = (x0e
t, y0e

t). This is a straight line since y/x = y0et

x0et = y0/x0. Note the

special point (x0, y0) = (0, 0), at which the vector field is zero. If we start at a
point and the velocity vector is zero, then we never leave! For this reason a point
(x0, y0) where F (x0, y0) = (0, 0) is often called a stationary point.
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Example 2: V (x, y) = (−x,−y). This is exactly the opposite vector field. Ge-
ometrically, at any nonzero point we are getting pushed back towards the origin, so
we expect the integral curves to be straight lines converging to the origin. Indeed,
the system is (x′, y′) = (−x,−y) which boils down to dx/dt = −x, dy/dt = −y,
with solutions x(t) = C1e

−t, y(t) = C2e
−t, and again we have C1 = x0, C2 = y0

and y(t)/x(t) = y0/x0 a constant. But this time

lim
t→∞

r(t) = lim
t→∞

(x0e
−t, y0e

−t) = (0, 0),

so all the trajectories approach the origin (the one that starts at the origin doesn’t
go anywhere).

Example 3: VL(x, y) = (−y, x). Notice that (−y, x) · (x, y) = −yx + xy = 0,
so the velocity vector at a point P0 = (x0, y0) is perpendicular to the line segment
OP0 – indeed, testing the point (1, 0) 7→ V (1, 0) = (0, 1), it is 90 degrees to the
left of OP0. It thus seems plausible that the trajectories will be counterclockwise
circles centered at the origin. This time the system of differential equations we get
is

x′(t) = −y(t), y′(t) = x(t)

so that x = y′ = (−x′)′ = −x′′, and also y′′ = −y. A solution to this is
x(t) = R cos t, y(t) = R sin t. So the trajectories are counterclockwise circles of
radius R.

Example 4: VR(x, y) = (y,−x). Again (y,−x) · (x, y) = 0 so the velocity vec-
tor at a point P0 is perpendicular to the radial vector OP0, but this time (1, 0) 7→
V (1, 0) = (0,−1), which turns 90 degrees to the right. Going back through the
previous argument, we see that indeed the trajectories are clockwise circles.

Example 5: Put r =
√

x2 + y2, and consider the vector field Va(x, y) = (−y
ra , x

ra ),
where a is some constant. Since Va(x, y) = VL(x, y)/ra, we are just rescaling the
vector field of Example 3 so that at each point the vector field points 90 degrees
to the left of the radial vector OP0 but has norm ||(−y, x)/ra|| = ||(−y, x)||/ra =
r/ra = r1−a.

2. Divergence and Curl

Let V (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) be a vector field in space. We
view a vector field F (x, y) in the plane as a special case of this, with R ≡ 0. Here
are two different ways to, roughly speaking, “take a derivative” of a vector field:

The divergence:

Div(V ) = ∇ · V = (
∂

∂x
,

∂

∂y
,

∂

∂z
) · (P,Q,R) =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

The curl:

curl(V ) = ∇× V =

(

∂R

∂y
−

∂Q

∂z
,
∂P

∂z
−

∂R

∂x
,
∂Q

∂x
−

∂P

∂y

)

.

Note well that the divergence of a vector field is a scalar -valued function of three
variables, whereas the curl of a vector field is another vector field.
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Clearly it is no harder to compute the divergence or the curl of a vector field than
the gradient of a function: either way we’re just taking some partial derivatives.
On the other hand, the gradient has a useful geometric interpretation as the path
of steepest ascent. It would be nice to have some similar geometric and/or physical
intuition for the divergence and the curl. Let’s try to see what they are by looking
at some of our examples from the last section.

Before we do this, however, we note the special case of the curl of a planar vector
field V (x, y) = (P (x, y), Q(x, y), 0): the only terms in the definition of the curl in
which we are not either differentiating the z-component R – which is zero, or with
respect to z – which is 0 – is the last, so we get

curl(P (x, y), Q(x, y), 0) = (0, 0,
∂Q

∂x
−

∂P

∂y
) = (

∂Q

∂x
−

∂P

∂y
)k̂.

Thus, although the curl of a planar vector field is technically a vector-valued func-
tion, it always points in the same direction, so it is useful to think of the “scalar
curl” ∂Q

∂x − ∂P
∂y and remember that its direction is always perpendicular to the plane.

Example 1: V (x, y) = (x, y). Then Div(V ) = ∂P
∂x + ∂Q

∂y = ∂
∂x (x) + ∂

∂y (y) = 2.

Also curl(V ) = ∂Q
∂x − ∂P

∂y = ∂
∂x (y) − ∂

∂y (x) = 0. Thus, for this “radially outward”

vector field, the divergence is positive at every point and the curl is zero.

Example 2: V (x, y) = (−x,−y). Then Div(V ) = ∂
∂x (−x) + ∂

∂y (−y) = −2, whereas

curl(V ) = ∂
∂x (−y) − ∂

∂y (−x) = 0. This “radially inward” vector field has constant

negative divergence and zero curl.

Example 3: VL(x, y) = (−y, x). Now Div(V ) = ∂
∂x (−y) + ∂

∂y (x) = 0, whereas

curl(VL) = ∂
∂x (x)− ∂

∂y (−y) = 2. This “purely rotational” vector field has no diver-

gence but positive curl (and note that we are rotating in a positive direction).

Example 4: VR(x, y) = (y,−x) = −VL(x, y). Indeed Div(−V ) = −Div(V ) and
curl(−V ) = − curl(V ) for any vector field V , as you are invited to check, so this
clockwise rotational vector field has zero divergence and negative curl.

From these examples it seems that divergence is positive or negative according
to whether there is an outward or inward flow at a point, and the (scalar part of
the) curl is positive or negative according to whether there is a counterclockwise or
clockwise rotation about the point. This is the right idea, but we need to be careful
that we understand why the picture works for all points of these vector fields rather
than just at the origin. Indeed, we are saying that a point has positive divergence
if it is overall a “source” for a fluid: it has more fluid flowing out than flowing
in. This is clear at the origin for Example 1; why is it true at some other point
(x0, y0)? The answer is that the flow is purely radial, and the magnitude of the flow
is increasing with the distance from the origin. That is, consider the ray joining the
origin to (x0, y0). In between the origin and (x0, y0) the speed is smaller than it
is at (x0, y0), and beyond (x0, y0) the speed is larger than it is at that point. This
does mean that fluid is flowing out faster than it is flowing in, so the divergence is
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positive.

Divergence as flux density: We can argue more generally that divergence at a
point represents a “net flow” as follows: suppose we have a fluid flowing in three-
dimensional space and we draw an imaginary box around the fluid at a certain
point P0 = (x0, y0, z0). Then we have the notion of the flux through the surface of
the box, which is the total amount of fluid leaving the box minus the total amount
of fluid entering the box. Now imagine we do this with a variable box of volume V :
as V → 0 we are zooming in on the net flow about the point P0. Indeed, it makes
sense to define the flux density as the limit as V → 0 of the flux through a region
of surface area A divided by the surface area V .

We claim that the flux density at P0 is exactly the divergence at P0. Indeed
our box has six faces, so we need to compute the flux through each face, which is
approximately (F · n)∆S, where n is the outward normal vector for the face and
∆S is the surface area. Suppose our point (x0, y0, z0) is at the bottom-left corner
of the box, and the sides of the box have length ∆x, ∆y and ∆z. Then the surface
area of the top and bottom faces is ∆x∆y, the outward normal for the top face is k̂

and the outward normal for the bottom face is −k̂. So the flux along the top face
is approximately F · k̂ = Q(x0, y0, z0 + ∆z)∆x∆y.2 The flux through the bottom

face is F · (−k̂) = −Q(x0, y0, z0)∆y∆z, so the net flux through the top and bottom
faces is the difference of these, or:

Q(x0, y0, z0 + ∆z)∆x∆y − Q(x0, y0, z0)∆x∆y =

∆x∆y (Q(x0, y0, z0 + ∆z) − Q(x0, y0, z0)) = (∆x∆y∆z)

(

Q(x0, y0, z0 + ∆z) − Q(x0, y0, z0)

∆z

)

.

But (∆x∆y∆z) is the volume of the box, and as ∆z goes to zero the other factor ap-

proaches ∂Q
∂z , so we get lim∆x∆y∆z→0 (flux through top and bottom faces)/(volume

of the box) is /dz. Now we have also to compute the same limit using the left

and right faces, getting ∂P
∂x and through the front and back faces, getting ∂Q

∂y .

Now we have accounted for all six faces in the surface, so the total flux density is
∂P
∂x + ∂Q

∂y + ∂R
∂z = Div(V ), and we’ve shown that the flux density is equal to the

divergence!

Now that we have justified our phyiscal intuition about the divergence, we in-
troduce the terminology that a vector field whose divergence is identically zero is
incompressible.

Here is the corresponding physical intuition for the curl of a vector field: a curl
measures the rotation of a vector field about a point in the following sense. First
consider the case of a planar vector field: if we stuck a paddlewheel in the fluid at
the point P0, then it will turn in the direction of the curl: i.e., counterclockwise if
the curl is positive and clockwise if the curl is negative. It is understood that the
axis of rotation is the z-axis. If we now have a three-dimensional vector field, the

2It’s only approximately this because the x and y-coordinates are varying along this face, and we

are assuming they are constant. The exact value of the flux is given by a surface integral, which
we will see later in the course, and this argument will reappear in the form of the Divergence

Theorem.



6 PETE L. CLARK

curl captures the net rotation, which will have some axis: in other words, the axis
is such that if we orient the paddlewheel in the direction of curl(F ) it will turn with
maximum speed; if we orient it perpendicular to curl(F ) it will not turn at all, and
in general it will turn with a speed of || curl(F )|| sin θ, where θ is the angle between
the axis of the paddlewheel and curl(F ) (this comes from the cross product formula
||v × w|| = ||v|||||w|| sin θ).

In line with this interpretation, we say that a vector field F with curl(F ) ≡ 0
is irrotational.

It is worth asking how one could prove this statement: how does one give a rigor-
ous argument about a “paddlewheel”? (Indeed, when I took multivariable calculus,
more than ten years ago now, I regarded this statement about the curl measuring
rotation with great suspicion.) But it will turn out that at the very end of the
course we will be in a position to understand rigorously this geometric interpre-
tation of the curl, as well as to revisit the interpretation of the divergence as flux
density. Indeed, these statements are the geometry behind the two most important
results in the course, Stokes’ Theorem (for the curl) and the Divergence Theorem
(for the divergence, of course!).

We want to give another example to show that a vector field being irrotational
is actually quite subtle: we really cannot tell just by looking at a rough sketch of
it. For instance, on p. 484 of your text, it is pointed out that just because the
trajectories of a vector field are circles, it does not necessarily mean that there is
nonzero curl. This is because the curl measures the tendency to rotate locally about
that point, not the tendency for all trajectories to rotate about some central axis.
(The curl is defined in terms of partial derivatives at a point, so is a statement
about very small neighborhoods about that point; it could not “see” the long-term
behavior of rotation.) However from the arrows drawn in for the vector field in
Figure 9.42b one cannot conclude whether the vector field is irrotational or not.
We see explore this by considering the family of vector fields from the last section.

Example: For any number a, we put Fa(x, y) = (−y
ra , x

ra ), where r =
√

x2 + y2.
Note that all of these vector fields differ from the a = 0 case just by rescaling:
in particular all the trajectories are circles. We computed in the last section that
when a = 0 the curl was identically equal to 2. Let’s see what happens in general:
the scalar part of the curl is ∂Q

∂x − ∂P
∂y . Let us compute dr

dx and dr
dy in advance. We

have

dr

dx
=

2x

2
√

x2 + y2
=

x

r
,

and similarly

dr

dy
=

y

r
.

So

∂Q

∂x
= d(x/ra)/dx = 1/ra + x(d(r−a/dx) = r−a + x(−a)r−a−1dr/dx) =
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r−a − a(x)r−a−1(x/r) = r−a − ax2r−a−2 =
r2 − ax2

ra+2
.

Similarly

−
∂P

∂y
= −d(−y/ra)/dy = d(y/ra)/dy =

r2 − 2ax2

ra−1
.

So the scalar part of the curl is

2(r2 − a(x2 + y2))

ra+2
=

(2 − a)(x2 + y2)

ra+2
.

That is, when a < 2 the curl is positive – in particular this covers the case a = 0 –
when a > 2 the curl is negative: in other words, in this case, despite the fact that
any given particle travels around in a counterclockwise circle, a paddlewheel nailed
to any point will spin clockwise. Most of all, at the special value a = 2 we get an
irrotational vector field,

F⋆(x, y) =

(

−y

x2 + y2
,

x

x2 + y2

)

.

This very special vector field will come up again several times in the course.

Example: If f = f(x, y, z) is a function of three variables and F = ∇(f), then
curl(F ) = 0. That is, gradient vector fields are irrotational. We leave this calcula-
tion as an exercise (Exercise 29 in Section 9.7).

3. The turning operators L and R

In this section we expose a little secret about vector fields: for planar vector
fields, the curl and the divergence can be understood in terms of each other just by
turning the vector field. For this, we introduce the following two simple operators:

L(x, y) = (−y, x), R(x, y) = (y,−x).

As we saw above, for any vector in the plane v = (x, y), Lv just gives us the vector
which is rotated 90 degrees to the left, whereas Rv is the vector rotated 90 degrees
to the right.

L and R can also be applied to vector fields:

L : (P (x, y), Q(x, y) 7→ (−Q(x, y), P (x, y)).

R : (P (x, y), Q(x, y) 7→ (Q(x, y),−P (x, y)).

Geometrically, this just means that L(F ) is obtained from F just by spinning each
vector 90 degrees to the left, and similarly R(F ) is obtained by F just by spinning
each vector 90 degrees to the right. Note that this is not the same as spinning the en-
tire plane 90 degrees: for instance, the vector fields F1(x, y) and F2(y, x) = (−y, x)
are both symmetric about all rotations through the origin, but L(F1) = F2, and
R(F2) = F1.

Recall now that F1(x, y) = (x, y) has constant divergence 2 and constant curl
0, whereas F2(x, y) = (−y, x) has constant divergence 0 and constant curl 2. But
L(F1) = F2. This is an instance of the following simple but useful fact: For any
planar vector field F = (P (x, y), Q(x, y)),

curl(L(F )) = Div(F )
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Div(R(F )) = curl(F ).

This works in general for the same reason as the above example: F = (P,Q) implies

L(F ) = (−Q,P )

, so curl(L(F )) = ∂
∂x (P ) − ∂

∂y (−Q) = ∂P
∂x + ∂Q

∂y = Div(F ).Similarly, R(F ) =

(Q,−P ), so

Div(R(F )) =
∂

∂x
(Q) +

∂

∂y
(−P ) =

∂Q

∂x
−

∂P

∂y
= curl(F ).

Nothing like this works in space, since there are infinitely many different possible
axes for a rotation.

This observation is certainly not very deep: there is no more content than the
fact that (x, y) · (−y, x) = 0. Nevertheless it will prove useful late in the day: it will
help us to understand the relationship between Green’s Theorem, Stokes’ Theorem
and the Divergence Theorem.

4. Extra: Unit tangent vector fields on the sphere and the torus

If we have a surface S in space, then it makes sense to consider vector fields
F (x, y, z) defined on the surface. Indeed, the flux of a vector field through a closed
surface is obtained by adding up the contribution of the component of the vector
field which is normal to the surface at every point, a construction which is called
a surface integral and will be studied later in the course.

But consider now exactly “the opposite” kind of vector field on a surface: namely a
vector field which is tangent to the surface at every point. For instance F (x, y) =
(−y, x) is a tangent vector field to the unit circle at every point.

Suppose we look for tangent vector fields on a surface satisfying the additional
condition that every vector is a unit vector at any point: call this a unit tan-

gent vector field on the surface S. If we have a tangent vector field that is merely
nonzero at every point, then we can just divide by the norm to get a unit tan-
gent field: for instance, we can renormalize the above example to get FT = (−y

r , x
r ),

where as usual r =
√

x2 + y2. So FT is a unit tangent vector field on the unit circle.

But the circle is a curve, not a surface: what about a unit tangent vector field
on the unit sphere? We can visualize what we are asking for as follows: suppose
that the sphere is hairy: at each point we have a one inch hair emanating from
that point. We want to comb the hair on the sphere, meaning we want the hair
to lie flat against the surface of the sphere, and we want to do this in a continuous
manner – no parting of the hair!

Here’s a very simple vector field on the sphere: at each point, we go “north”
with unit speed, where north means the direction of the shortest path from our
starting point to the north pole3 At first it seems like this will give a “combing,”
but there are two problem points: at the north pole, where it is no longer possible

3Such a path will be an arc of a great circle, which is obtained by slicing the sphere through
the unique plane containing our starting point P , the north pole N and the center of the earth.
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to go north, and also at the south pole when all directions are north according to
the way we have defined it (because all the meridian lines of the sphere run through
the north and the south pole): we are off by two points from combing the sphere.

If you think a bit, you can reduce the number of problem points to one, because it
you remove just the north pole from the sphere, you can unfold what remains into a
surface which looks like the plane: this is the so-called stereographic projection,
which one way of passing from a map on the surface of the sphere (i.e., a globe) to a
flat map suitable for a textbook: there is a lot of distortion and the angles change,
but one can get from a nonvanishing tangent field on the plane to a nonvanishing
tangent field on the sphere minus the north pole in this way. And there are plenty
of nonvanishing vector fields in the plane, e.g. the constant vector field F (x, y) = î.
But no matter which vector field you choose, you will find yourself in trouble when
it comes to extending it to the north pole of the sphere.

In fact it is a theorem that you will never succeed: the No Combing Theo-

rem says that there just does not exist a continuously varying unit tangent vector
field on the unit sphere.4 The no-combing theorem has real-life consequences: for
instance, it implies the result that at any given time, there is at least one point on
the surface of the earth where there is no wind blowing! Less prosaically, the fact
that any unit vector field on the surface of the sphere must have a singularity will
come up whenever one tries to study the “global”5 behavior of differential equations
on the surface of the earth.

The situation is much different on the torus, which, recall, is given parametri-
cally as

R(u, v) = ((R + a cos u) cos v, (R + a cos u) sin v, a sin u),

with 0 < a < R. Here if we take the tangent vectors in the u and v directions, we
get

Tu = (R − a sin u) cos v, (R − a sin u) sin v, a cos u)

Tv = (−(R + a cos u) sin v, (R + a) cos v, 0)

In fact both Tu and Tv are nonvanishing for any value of u and v, so after dividing
them by their norms, we find that we not only have one unit tangent vector field on
the torus, we have two unit tangent vector fields which are moreover perpendicular
at every point: Tu · Tv = 0.

Thus the sphere and the torus are qualitatively different, as shown in the completely
different behavior of tangent vector fields on them. The branch of mathematics that
studies “qualitative differences” in surfaces (and other geometric objects) via the
behavior of vector fields is called differential topology.

4In more innocent times this was called the “hairy ball theorem,” but it is hard to say this
with a straight face.

5We see in this example where the word “global” comes from!


