HANDOUT NINE: THE CHANGE OF VARIABLES FORMULA

PETE L. CLARK

The change of variables formula is based on the u-substitution in single variable
calculus, or more precisely on the “inverse substitution”: say we have [* g(x)dz,
and we want to make the substitution z = f(u). Then dz = f'(u)du and

/ g(x)de = / g(f(U))%du.

m m

Here we must change the z-limits to u-limits. Since x = f(u), u = f~!(z), the
inverse function to x. So the substitution gives:

TM f @m)
[ o@de= 7 gl /dud
« f= (@m)

But notice that it would not necessarily be correct to write u, = f~1(2,,), Uy =
f~Y(xar): that is, it may be that after the change of variables the lower limit is
actually a larger number than the upper limit. Indeed, this happens exactly when
the function u = f~!(x) is decreasing: for instance, suppose [z, 2] = [1,2] and
¢ = 1/u, so u = 1/z. Then u(l) = 1 and u(2) = i, so the upper and lower
endpoints are reversed. But recall that a function is decreasing if and only if its
derivative is negative, and that the derivative of f~! is negative if and only if the
derivative of f is negative, since f~1/(z) = W Therefore, letting u,, be the
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smallest u-value — i.e., whichever of f~!(z,,) and f~!(x) is smaller — and uy; be
the largest u-value, the substitution can also be written as

[ @ = [ gL jau

the reason being that if f is increasing, \%| = % and upy; = f(xar), so the
integral is the same as before, whereas if f is decreasing, \%| = —% but uy =
f~Y(x), so in switching the upper and lower limits to put u,; on top and replacing
% with |%|, we introduce two minus signs, which is as good as no minus signs at all.

All this is to explain why the change of variables formula in several variables is
a generalization of the u-substitution.

Indeed, supppose we have a double integral [ [}, g(x,y)dzdy and we want to change
to new variables u, v realted to x,y by

T = fl(uaq))a Yy= f2(u7v).

We define the Jacobian J (“’) to be the two-by-two determinant
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Then the change of variables formula reads

//Rg(x,y)dxdyz//ng(f1(u,v),f2(u,v))|J (2:3) \dudv.

Note first that we have taken the absolute value of the Jacobian, and second that the
region R’ means “R written in the (u,v)-variables”: technically, R’ is the set of all
points (u,v) such that (fi(u,v), fo(u,v)) is a point of R, but this is an unhelpfully
abstract way of thinking about things: we would only change to (u, v)-variables in
the first place if R had a nice(r), simple(r) description in terms of the new variables.

It works the same in three variables, namely if

Tr = fl(U,U,U}), Y= fg(u,v,w), = fg(u,v,w),

then
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Example (Polar coordinates): We have
x=rcosh = fi(r,0),y =rsind = fo(r,0).
Thus we compute

cos —rsinf

Ty,
J( )= sinf rcosf

r,0

and we’ve recovered the fact that in polar coordinates dA = rdrdf.

=rcos?f =rsin?6 =r,

Example (spherical coordinates): We have
x = pcosOsiny, y = psinpsinb, z = pcos .

We will calculate

x? y’ z
J( )
p,0, ¢
cosfsinp —psinfsing pcosb cosp
= | sinfsiny pcosfsing sin 6 cos =
cos ¢ 0 —sing
cos p(—p? sin? O sin ¢ cos p—p? cos? O sin p cos ) —psin @ (p cos O sin? p—sin psin? @)
= —p?sing.
Thus [J ()] = p?sin ¢, as was claimed earlier in the course.

Note that your textbook gets p?sing as a Jacobian rather than with a minus
sign. This is correct, since it computes the Jacobian with the variables in a differ-
ent order: (p, p,0), rather than our (p, 6, ). (In general, switching two columns of
a matrix multiplies the determinant by —1.) Since we can order the new variables
however we want, we definitely need to take absolute values when applying the
change of variables formula.
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Example (Volume of an ellipsoid): Let V be the space region bounded by the

ellipsoid i—z + z—j + z—z = 1. We will find the volume of V' by changing variables and

using the fact that the volume of the region bounded by the unit sphere is %71’.

Indeed, consider the change of variables
r=au, y=>bv, z=cw.

Under this change of variable the equation of the boundary surface becomes u? +
v? +w? = 1, which is just the unit sphere in (u, v, w)-variables. Therefore

vol(V):/// 1dV:/// (2, 2) (u, v, w)|dudvdw = |J(2L29))] vol(V')
V V/ U7U7w
4 T,Y, 2
=3 G w

LU:2) — ghe, so that the volume of the

u,v,W

We leave it for you to compute that J(
region V is 4?’Tabc.



