
HANDOUT SIX: LINE INTEGRALS

PETE L. CLARK

1. Introduction to Line Integrals: the need for work

One of the most fundamental concepts of physics is the notion of energy, de-
fined (enigmatically enough, as usual in the subject) as “the ability to do work.”
Work in turn is defined as the quantity that results when a force is exerted over a
distance. This notion, however, admits descriptions at various levels of sophistica-
tion, as we now recall:

If the force is constant and our motion is in a straight line, then indeed the work is
defined as just the product of the force times the distance: if we move a 100 pound
weight over a distance of 10 feet, then indeed the work done is 1000 foot pounds.
This is the presentation typically given in a high school physics class.

But this is not real life! Suppose next that we are still moving in a straight line but
the force is variable: indeed, the typical example of this is that of a spring: sup-
pose we have a mass M on a spring, and we stretch the mass a distance of x units
from its equilibrium position. The spring will pull back in the opposite direction,
and the early British scientist Robert Hooke formulated a simple rule describing
the force: it is simply proportional to the distance: F (x) = −kx, where the k is
called the spring constant since it emphasizes the strength of the spring.1 Now the
definition of work you would learn in a freshman physics class is that

W =

∫

Fdx.

So in our example, the work required to move a spring d units from equilibrium

position is
∫ d

0
−kx = −1/2kx2|d0 = −1/2kd2. Note the minus sign, which has an

important physical meaning: if we move opposite the direction of the force, nega-
tive work is done, whereas if we move in the direction of the force, positive work is
done. This makes sense in terms of energy: the minus sign means we must exert
energy to stretch the spring.

As a quick aside, I cannot resist mentioning that this is also a good example of New-
ton’s Second Law: F = ma. Since a = x′′ and F = −kx, this gives −kx = mx′′,
or

x′′ = −k/mx.

1By the way, as engineers you doubtless know to be suitably wary of the fact that this simple
law must at best be an approximation which is reasonable only under certain conditions: suppose

that your Slinky pulls back with one pound of force when stretched one foot. Then Hooke’s Law
says that if we stretch the Slinky one mile it will pull back with a force of 5280 pounds, which is
enough to move your car. I hope you don’t actually believe this!
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This is a second-order differential equation, whose general solution is

x(t) = A cos(ωt) + B sin(ωt),

where ω =
√

k
m

. That is, Newton’s Law implies that the motion of a particle on the

end of a spring will be periodic with period 2π
ω

, i.e., we get the so-called simple

harmonic motion.

However even one-variable calculus is not enough to really understand the notion of
work, because we are missing a key element: it is only the tangential component
of the force that counts, i.e., only the force in the direction of the motion. In other
words, if a particle moves in such a way so that its only acceleration is normal
acceleration – the best example being a particle moving in a circle with constant
speed! – then the work is zero. This makes sense, since after a particle travels
around in a complete circle no energy is gained or lost.

If the particle happens to be moving in a straight line, and the force is given
by a vector field F (x, y, z), then we can still write down an expression for the work
using the tools we already have: indeed, say the particle is moving from initial point
(x0, y0, z0) to final point (x1, y1, z1); we parameterize this as

L(t) = (x0, y0, z0)+t(x1−x0, y1−y0, z1−z0) = (x0+t(x1−x0), y0+t(y1−y0), z0+t(z1−z0).

Note that L(0) = (x0, y0, z0) and L(1) = (x1, y1, z1), and the direction of the line
is v := (x1 − x0, y1 − y0, z1 − z0). Then the following integral gives the work:

W =

∫ 1

0

F (L(t)) · vdt.

On the other hand, if the particle is moving along a curved path – like a circle –
then we need some way to integrate the dot product of the force and the velocity
vector along the curve. That is, we need to be able to integrate a function defined
on a curved line, which brings us to the notion of a line integral.

2. Line integrals of scalar functions

We begin by figuring out how to integrate a scalar function over a curve. For
instance, suppose C is a curve in the plane or in space, and ρ(x, y, z) is a function
defined on C, which we view as a density. For example, imagine C is a thin wire
and ρ(x, y, z) gives the mass density of the wire at the point (x, y, z). To get the
total mass of the wire we should perform some integral

∫

C
ρ, whatever that means.

To get a hint, imagine the density is identically equal to one. Recalling that density
is mass over volume, if the density is one, the mass should be the volume. Since the
“volume” of a one-dimensional object is its length, the hint that we get in trying
to define the line integral is that

∫

C
1 should be the arc length of C.

Aha – we already know how to compute the arclength! Let r(t) = (x(t), y(t), z(t))
be a parameterization of the curve. Then the speed of the curve is v = ||v(t)|| =
√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2 and the arclength is the integral of the speed, so
∫ tmax

tmin

vdt =
∫ tmax

tmin

√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2, where r(tmin) and r(tmax) are

the initial and final points of the curve.
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If this is how we integrate 1 on the curve, one can guess that the correct defi-
nition of

∫

C
ρ is

∫ tmax

tmin

ρ(r(t))v(t)dt =

∫ tmax

tmin

ρ(r(t))
√

x′2 + y′2 + z′2dt.

This is indeed correct; let’s check it by a Riemann sum calculation. Indeed, if we
want to integrate the function ρ over a straight line L(t) = (x0, y0, z0) + vt, then

L′(t) = v, a constant function, and the speed is just v = ||v|| =
√

v2
x + v2

y + v2
z .

As mentioned above, we know how to do the integral in this case: it would just be
∫ tmax

tmin

F (r(t))vdt, and this integral itself comes from dividing the interval [tmin, tmax]
up into very small subintervals ∆t and approximating the function as being con-
stant on each of these subintervals.

In the general case, we will approximate ρ(r(t)) by a constant function and ap-
proximate the path r(t) by a polygonal path: i.e., we will approximate the velocity
on each subinterval ∆ti as being a constant. Suppose we divide the entire interval
[tmin, tmax] up into n pieces, and on each piece we approximate the speed by

√

(
∆xi

∆ti
)2 + (

∆yi

∆ti
)2 + (

∆zi

∆ti
)2.

Since the speed is the derivative of arclength with respect to time, we can write
this as ∆si

∆ti

, i.e., we put

∆si :=
√

(∆xi)2 + (∆yi)2 + (∆zi)2,

and regard ∆si as a small change in arclength. Having made these approximations,
we form the Riemann sum

n
∑

i=1

ρ(r(t⋆i ))

(

∆si

∆ti

)

∆ti,

where t⋆i is some value in the subinterval [ti1 , ti]. Now as the length of each subin-

terval goes to zero,
(

∆si

∆ti

)

→ ds/dt = v(t) =
√

x′(t)2 + y′(t)2 + z′(t)2, and the sum

becomes
∫ tmax

tmin

ρ(r(t))v(t)dt =

∫ tmax

tmin

ρ(r(t))(ds/dt)dt.

We may abbreviate ds = (ds/dt)dt and we arrive at the definition of the scalar

line integral
∫

C

ρ ds =

∫ tmax

tmin

ρ(r(t))||r′(t)||dt.

Again, note that if ρ ≡ 1, then we will just be integrating the speed to get the
arclength; this is a check that the preceding Riemann sum argument is reasonable.

Example: Find the line integral of the function ρ(x, y) = xy on the unit circle.

Solution: We use the parameterization r(t) = (cos t, sin t), with tmin = 0, tmax =
2π. Note that r′(t) = (− sin t, cos t), so v(t) = ||r′(t)|| = 1: this parameterization
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has unit speed. Thus the line integral is
∫ tmax

tmin

ρ(r(t))||r′(t)||dt =

∫ 2π

0

(cos t sin t)dt =

∫ 2π

0

1/2 sin(2t)dt =

−1/4 cos(2t)|2π
0 = −1/4(cos(2π) − cos(0)) = −1/4(1 − 1) = 0.

In hindsight we could have seen this geometrically by noting that the contribution
of the line integral from the first and third quadrants will be positive, the con-
tribution from the second and fourth quadrants will be negative, and these two
contributions will cancel each other precisely.

Now we must admit that there is a technical point that we slid under the rug:
our definition of a line integral of ρ along C used a particular parameterization of
C, whereas in the example we just said “take the line integral along the unit circle.”
Indeed we want the line integral to be – like the curvature – a function which is
independent of the chosen parameterization of the curve: for instance, if we are
interpreting it as the mass of a wire with density function ρ(x, y, z), then of course
the mass should be independent of the parameterization.2 We will not prove this
independence of parameterization in class, but it is recorded in an appendix.

3. Line integrals over vector fields: work

We now return to the problem that motivated the discussion: suppose a particle
moves through a field of forces F via path C. The work done is supposed to be
the integral of the tangential component of the force over the curve. This now
makes sense in terms of line integrals, as follows: let r(t) = (x(t), y(t), z(t)) be a
parameterization of C, so that v(t) = r′(t) is the velocity vector. Then at any time
t, the tangential component of the force is F (r(t)) · T (t), where T (t) = v(t)/v is
the unit tangent at time t. (We assume as usual that the curve has nonzero speed

at every point.) Thus the work done is
∫ tmax

tmin

F (r(t)) · T (t)v(t)dt. But since the

unit tangent times the speed is precisely the velocity vector v(t), this expression
simplifies to

W =

∫ tmax

tmin

F (r(t)) · v(t)dt =

∫

C

F (r) · dr.

We note that because this is a special case of a line integral of a scalar function,
this too is independent of the parameterization. However, it is NOT independent
of the orientation of the curve: since we are taking F · T (t), if we traversed the
path in the opposite direction, T (t) would be multiplied by −1, hence the entire
line integral would be multiplied by −1. This makes sense physically: since work
represents a change in energy, if we reverse time, what was formerly a gain in energy
will now be a loss of energy, and vice versa.

2Imagine the merchandise of a shop is stored in a winding tunnel underneath the shop. The

shop is visited by a conscientious insurance company, who wants to record for itself the total
value of the merchandise. The company is so conscientious that it hires two different surveyors to
perform this job. If the two surveyors take inventory at two different rates, one dawdling at certain

points and the other speeding through, then the functions “ dollars of merchandise recorded per
second” will be completely different for these two workers, but in the end the total dollar amount
will be the same.
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Finally we introduce a piece of notation: if F (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z))
is a vector field and r(t) = (x(t), y(t), z(t)) is a path, then the line integral

∫

C
F (r) ·

dr comes out as
∫ tmax

tmin

(P (x(t), y(t), z(t)), Q(x(t), y(t), z(t)), R(x(t), y(t), z(t))·(x′(t), y′(t), z′(t))dt =

∫ tmax

tmin

(P (x(t), y(t), z(t))
dx

dt
+ Q(x(t), y(t), z(t))

dy

dt
+ R(x(t), y(t), z(t))

dz

dt
)dt.

By change of variables it is acceptable – and more efficient – to write this as
∫ tmax

tmin

P (x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz.

One sometimes says of the above expression that the line integral is written in dif-

ferential form.

Let us now look at some examples of line integrals; we will use the same vector
fields we considered in Handout 5.

Example: Let F = −Fa = (−x/ra,−y/ra), where a is some number and r =
√

x2 + y2: recall that this vector field points radially outward at every point. We
will compute the line integral of Fa around the circle centered at the origin and of
radius r. But before we do we will predict the answer! Indeed, since this vector
field points radially outward and our path is circular, we have that the force is
always perpendicular to the direction of motion, so the work done had better be
zero. Indeed, since ||(−x/ra,−y/ra)|| = r−a||(−x,−y)|| = r1−a, when a = 3 this is
just the planar form of Newton’s inverse square law, so we are confirming the fact
that a planet in circular motion neither gains nor loses energy.

Okay, let’s do it: r(t) = (r cos t, r sin t), so v(t) = (−r sin t, r cos t), so

F (r) · v = (−r/ra cos t,−r/ra sin t) · (−r sin t, r cos t) =

r2/ra sin t cos t − r2/ra sin t cos t = 0,

so W =
∫ 2π

0
0 = 0, which is a relief.

By the way, planetary orbits are elliptical, and not necessarily circular. In particu-
lar, Kepler’s second law implies that the tangential component of the acceleration is
usually not zero in an elliptical orbit, so that the force is not usually perpendicular
to the direction of motion, and the function F · v is not identically zero. Still, we
feel that since the orbits are periodic, there can be no loss of energy: after all, one
does not need to “fuel” the planets’ motion around the sun. We will see in the next
section that this vector field Fa has a certain property implying that line integrals
around all closed curves are zero. Such vector fields are called conservative for
precisely this region: energy is conserved.

Example: The same discussion holds for the vector field Fa = (x/ra, y/ra), since
Fa is perpdendicular to the velocity at any point. (If F · v = 0, then (−F ) · v = 0.)
But now consider the vector field Ga = L(Fa) = (−y/ra, x/ra) obtained by turning
every vector in Fa 90 degrees to the left. Now the flow lines of the vector field are
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counterclockwise circles, so if we integrate the vector field around a counterclock-
wise circle, there must be positive work done: in other words, F and v are parallel

at every point, so there will be positive work done, a gain of energy.

Indeed, F (r(t)) = (−r/ra sin t, r/ra cos t), while v(t) = (−r sin t, r cos t), so

W =

∫ 2π

0

F (r(t)) · r′(t)dt =

∫ 2π

0

(−r/ra sin t, r/ra cos t) · (−r sin t, r cos t)dt =

∫ 2π

0

r2/ra(sin2 t + cos2 t)dt =

∫ 2π

0

r2/ra = 2πr2−a > 0.

Note that the amount of work done depends on a as follows: if a < 2, then r2−a is
a positive power of r, and as we allow r → 0 the amount of work done approaches
zero. (When a < 0, the vector field extends continuously to the origin, and the fact
that this limit is zero is automatic: if we integrate a bounded function over a curve
whose arclength goes to zero, the line integral must also go to zero. However when
a ≥ 0 the vector field Fa has a singularity at the origin, and when a > 1 you would
not want to be swimming near the origin: the speed of the current approaches
infinity!) When a > 2 limr→0 r2−a → +∞. However, at the special value a = 2 the
work is just 2π no matter what r is. Note when a = 2 Fa = F⋆ = −y

x2+y2 dx+ x
x2+y2 dy

is our “very special vector field” from Handout 5. In particular curl(Fa) = 0.

4. Normal line integrals in the plane

If r(t) is a parameterized plane curve and F is a vector field in the plane,
then instead of integrating the dot product of F and the velocity vector v, we can
integrate the dot product of F and the vector R(v) which is 90 degrees to the right
of the normal vector. If C is a simple closed curve oriented counterclockwise, the
normal line integral

∫

C

F (r(t)) · R(v(t))dt

measures the total flux through the boundary of the region R enclosed by C. On
the other hand, we showed in Handout 5 that if C is a rectangle, the divergence is
equal to the flux density, so that the total flux is the integral of the divergence. If
the notion of divergence has any physical meaning, then no matter what the shape
of the region is, the double integral of the flux density should give the divergence,
i.e., we should have the following equation:

(1)

∫ ∫

R

Div(F )dxdy =

∫

C

F · R(v(t))dt.

This equation is indeed true and is one formulation of one of the most important re-
sults of the course, Green’s Theorem. We will discuss Green’s Theorem in about
a week, and one of the things we will do is see why the “turning operator” business
of Handout 5 implies that we get another form of Green’s Theorem equating the
double integral of the curl of the vector field F on R to the usual (tangent) line
integral of F on the boundary of R.
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5. Appendix: Invariance of line integrals under reparameterization

Let r(t) = (x(t), y(t), z(t)) be a parameterized curve, let ρ(x, y, z) be a scalar
function defined on the curve, so that

I1 =

∫

C

ρ =

∫ tmax

tmin

ρ(r(t))||r′(t)||dt

gives the line integral of ρ along C using the parameterization r.

Let t 7→ u(t) be a change of parameterization: we assume that u′(t) > 0 for all
t (i.e., that u is an increasing function of t).3 We want to show that the line inte-
gral using the parameterization r(u(t)) is the same as the above line integral. That
is, with the new upper and lower limits u−1(tmin) and u−1(tmax), we have a second
expression

I2 =

∫ u−1(tmax)

u−1(tmin)

ρ(x(u(t)), y(u(t)), z(u(t)))||d(r ◦ u)/dt||dt,

and we want to show that I2 = I1. As in all such matters, this comes down to
a chain rule calculation: here we use that d(r ◦ u)/dt = (dr/du)(du/dt). Taking
norms, and recalling that du/dt > 0, we have ||d(r ◦ u)/dt|| = ||dr/du||du/dt, so

I2 =

∫ u−1(tmax)

u−1(tmin)

ρ(x(u), y(u), z(u))||dr/du||du/dtdt.

But now, performing the substitution u = u(t) on this definite integral and changing
the limits to u-limits – this is an application of the formula

∫ b

a

f(u)du/dxdx =

∫ u(b)

u(a)

f(u)du,

we get that

I2 =

∫ tmax

tmin

ρ(x(u), y(u), z(u))||dr/du||du = I1,

as we wanted to show.

Note the importance of the factor of ||r′(t)|| in the definition of the scalar line
integral – it is what makes the integral independent of the choice of parameteriza-
tion. If you like to think in terms of dimensional analysis, it also needs to be there
for dimensional reasons: suppose we are integrating a linear mass density func-
tion ρ, so the units of ρ are (say) kilograms per meter. The units of the integral
∫ tmax

tmin

ρ(r(t))dt are kilogram seconds per meter – this is not a unit of mass! Putting

in the ||r′(t)|| corrects this by multiplying by meters per second, so that the units
become kilogram seconds per meter times meters per second, or kilograms, as it
should be.

3The result remains true if u
′(t) < 0 for all t.


