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Let F [t] be the ring of polynomials in one indeterminate, with coefficients in F .

Introduction

We give a treatment of the theory of invariant subspaces for an endomorphism of
a vector space, up to and including the rational and Jordan canonical forms. Our
approach should be suitable for students of mathematics at the advanced under-
graduate level or beyond, although those who are sufficiently far beyond will find
certain aspects of our treatment a bit pedestrian. Here are some features:

• We do not impose the condition of finite-dimensionality at the very beginning,
but only towards the end of §1. Frankly this is pedagogically dubious – with the
single possible exception of Theorem 1.2, we have no significant results to offer in
the infinite-dimensional case – but we were unable to resist the lure of developing
certain basic definitions in their “natural generality”.

• We make use of quotient vector spaces. This places our exposition beyond the
level of most first courses in linear algebra. But the gains in efficiency and simplicity
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from making use of this technique are considerable. At one point we (momentar-
ily) performed the exercise of taking a proof using quotient spaces and rewriting it
without using them: it became longer and – worse! – considerably more obscure.

•We work over an arbitrary ground field F and develop most of the theory without
making reference to the algebraic closure of F . Until §8 we take the perspective
that a linear endomorphism need not have any eigenvalues at all. Thus for us it is
important that the minimal polynomial need not split into linear factors. However,
the split case is slightly easier and will be more familiar to many readers, so we give
many of the main results in the split case first before pursuing the general case,
even though it would be more efficient to develop the general case first and then
deduce the results in the split case (e.g. triangularization) as rather degenerate
cases of more general theorems.

• At the heart of this exposition lie prime vectors and primary vectors. These
are the appropriate analogues of eigenvectors and generalized eigenvectors over an
arbitrary ground field.

• We introduce early on the local minimal polynomials Pv along with the
“global” minimal polynomial P .

• We make a distinction between the characteristic polynomial and the Cayley-
Hamilton polynomial (though they turn out to be equal). Here we were inspired by
Axler’s text [A], which takes the philosophy that defining the eigenvalues in terms
of det(t − T ) introduces unnecessary opacity. Rather, our notion of the charac-
teristic polynomial is essentially that of the characteristic ideal of a finite-length
module over an integral domain, namely the product of all the maximal ideals mi
such that the Jordan-Hölder factors are the R/mi. We introduce what is essentially
the Jordan-Hölder uniqueness theorem in this context, but with a proof which is
simpler than the one needed for a finite-length module over an arbitrary ring.

•We do not take an explicitly module-theoretic perspective: e.g. we do not switch
from V to a different, but isomorphic, F [t]-module, even what that would simplify
matters: e.g. we do not identify the underlying space of a cyclic endomorphism
with F [t]/(p(t)). On the other hand, the techniques used here could be used, with
only minor modifications, to classify finite length modules over any PID.

• At the end of the notes we include a discussion of the induced endomorphism
T ∗ on the dual space V ∗ and show that it is similar to T .

• There are a number of exercises posed for the reader. They are meant to be
closely related to the development of the material in the various sections, which is
why they appear intertextually and not collected at the end. However almost all of
the results stated here are given complete proofs, as I feel that this burden should
fall on the writer/lecturer/instructor rather than the student.
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1. Invariant Subspaces

Let V be a nonzero F -vector space. Let T ∈ EndV be a linear endomorphism of
V . A T-invariant subspace of V is a subspace W ⊂ V such that T (W ) ⊂ W .
Actually though we will just say “invariant subspace”: throughout these notes
we work with only one endomorphism at a time, so the dependence on T in the
terminology and notation will usually be suppressed.

Remark 1.1. The invariant subspaces are precisely the subspaces W of V for which
it makes sense to restrict T to an endomorphism of W . This already gives some
insight into their importance.

{0} and V are invariant subspaces. We call them trivial and look for others.

We say V is simple if it has no nontrivial invariant subspaces. We say V is
semisimple if it is a direct sum of simple invariant subspaces. We say V is diago-
nalizable if there is a basis {ei}i∈I such that for all i ∈ I, Tei ∈ 〈ei〉: equivalently,
V is a direct sum of one-dimensional invariant subspaces. Thus diagonalizable
implies semisimple.

Theorem 1.2. The following are equivalent:
(i) V is semisimple.
(ii) If W ⊂ V is an invariant subspace, it has an invariant complement: i.e., there
is an invariant subspace W ′ such that V = W ⊕W ′.
(iii) V is spanned by its simple invariant subspaces.

Proof. Three times in the following argument we assert the existence of invariant
subspaces of V which are maximal with respect to a certain property. When V
is finite-dimensional it doesn’t matter what this property is: one cannot have an
infinite, strictly ascending chain of subspaces of a finite-dimensional vector space.
In the general case the claimed maximality follows from Zorn’s Lemma, which
we will not rehearse but rather trust that readers sufficiently sophisticated to care
about the infinite-dimensional case will know what this is and how to use it here.
(i) =⇒ (ii): Suppose V =

⊕
i∈I Si, with each Si a simple invariant. For each

J ⊂ I, put VJ =
⊕

i∈J Si. Now let W be an invariant subspace of V . There is a
maximal subset J ⊂ I such that W ∩VJ = 0. For i /∈ J we have (VJ ⊕Si)∩W 6= 0,
so choose 0 6= x = y + z, x ∈ W , y ∈ VJ , z ∈ Si. Then z = x− y ∈ (Vj +W ) ∩ Si,
and if z = 0, then x = y ∈W ∩ Vj = 0, contradiction. So (VJ ⊕W )∩Si 6= 0. Since
Si is simple, this forces Si ⊂ VJ ⊕W . It follows that V = VJ ⊕W .
(ii) =⇒ (i): The hypothesis on V passes to all invariant subspaces of V . We
claim that every nonzero invariant subspace C ⊂ V contains a simple invariant
subspace. proof of claim: Choose 0 6= c ∈ C, and let D be an invariant subspace
of C that is maximal with respect to not containing c. By the observation of the
previous paragraph, we may write C = D⊕E. Then E is simple. Indeed, suppose
not and let 0 ( F ( E. Then E = F ⊕ G so C = D ⊕ F ⊕ G. If both D ⊕ F
and D⊕G contained c, then c ∈ (D⊕ F ) ∩ (D⊕G) = D, contradiction. So either
D⊕F or D⊕G is a strictly larger invariant subspace of C than D which does not
contain c, contradiction. So E is simple, establishing our claim. Now let W ⊂ V be
maximal with respect to being a direct sum of simple invariant subspaces, and write
V = W ⊕ C. If C 6= 0, then by the claim C contains a nonzero simple submodule,
contradicting the maximality of W . Thus C = 0 and V is a direct sum of simple
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invariant subspaces.
(i) =⇒ (iii) is immediate.
(iii) =⇒ (i): There is an invariant subspace W of V that is maximal with respect
to being a direct sum of simple invariant subspaces. We must show W = V . If not,
since V is assumed to be generated by its simple invariant subspaces, there exists a
simple invariant subspace S ⊂ V that is not contained in W . Since S is simple we
have S ∩W = 0 and thus W + S = W ⊕ S is a strictly larger direct sum of simple
invariant subspaces than W : contradiction. �

What general methods do we have for producing invariant subspaces?

Proposition 1.3. Both the kernel and image of T are invariant subspaces.

Proof. If v ∈ KerT then Tv = 0, and then T (Tv) = T0 = 0, so Tv ∈ KerT . As for
the image T (V ) we have

T (T (V )) ⊂ T (V ). �

As a modest generalization of the invariance of T (V ), we observe that if W ⊂ V
is an invariant subspace, then T (W ) ⊂ W so T (T (W )) ⊂ T (W ) and thus T (W )
is also an invariant subspace. It follows that T 2(W ) = T (T (W )) is an invariant
subspace, and so forth: we get a descending sequence of invariant subspaces:

W ⊃ T (W ) ⊃ T 2(W ) ⊃ . . . ⊃ Tn(W ) ⊃ . . . .
If W is finite-dimensional, this sequence eventually stabilizes. In general it need not.

Similarly KerT k is an invariant subspace for all k ∈ N, as is easily checked. This
yields an increasing sequence of invariant subspaces

0 ⊂ KerT ⊂ KerT 2 ⊂ . . .
A toothier generalization is the following.

Proposition 1.4. Let f(T ) ∈ F [t]. Then Ker f(T ) and Image f(T ) are invariant
subspaces of V .

Proof. Suppose v, w ∈ Ker f(T ). Then for all α ∈ F we have

f(T )(αv + w) = αf(T )v + f(T )w = 0,

so Ker f(T ) is a subspace. If v ∈ Ker f(T ), then

f(T )(Tv) = T (f(T )v) = T0 = 0,

so Tv ∈ Ker f(T ). The argument for Image f(T ) is left to the reader. �

This construction need not give all invariant subspaces. For instance, suppose
T = 1V is the identity map. Then every f(T ) is a scalar map: if it is nonzero its
kernel is {0} and image is V ; and if it is zero its kernel is V and its image is {0}.
On the other hand in this case every subspace of V is invariant!

Lemma 1.5. Let W1,W2 ⊂ V be invariant subspaces. Then W1+W2 and W1∩W2

are invariant subspaces.

Exercise 1.1. Prove Lemma 1.5.

Let v ∈ V . The orbit of T on V is the set {T kv}∞k=0 (this is standard terminology
whenever we have a mapping from a set to itself); the linear orbit [v] of v is the
subspace spanned by the orbit of T on v.
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Proposition 1.6. For any v ∈ V , the linear orbit [v] of vis an invariant subspace
of V . Moreover it is the minimal invariant subspace containing v: if W ⊂ V is an
invariant subspace and v ∈W , then [v] ⊂W .

Exercise 1.2. Prove Proposition 1.6.

Exercise 1.3. Let S ⊂ V be any subset. Define the orbit of T on S as the union
of the orbits of T on s for all s ∈ S. Define the linear orbit [S] of T on S to be
the span of the orbit of T on S. Show that [S] is an invariant subspace of V and is
minimal in the sense of Proposition 1.6 above.

For v ∈ V , there is a natural linear map given by evaluation at v:

Ev : EndV → V, A 7→ Av.

For T ∈ EndV , there is a natural linear map given by evaluation at T :

ET : F [t]→ EndV, p(t) 7→ p(T ).

Consider the composition of these maps:

E = ET,v := Ev ◦ ET : F [t]→ V, p 7→ p(T )v.

Lemma 1.7. a) The image E(F [t]) of the map E is [v], the linear orbit of v.
b) The kernel K of E is an ideal of F [t].

Proof. a) This follows immediately upon unwinding the definitions.
b) Since E is an F -linear map, its kernel is an F -subspace of F [t]. However E is not
a ring homomorphism (e.g. because V is not a ring!) so we do need to check that
K is an ideal. But no problem: suppose p ∈ K and q ∈ F [t]. Then

E(qp) = (q(T )p(T ))v = q(T )(p(T )v) = q(T )0 = 0. �

Recall that every ideal I of F [t] is principal: this is clear if I = (0); otherwise I
contains a monic polynomial a(t) of least degree. Let b(t) ∈ I. By polynomial di-
vision, there are q(t), r(t) ∈ F [t] with deg r < deg a such that b(t) = q(t)a(t) + r(t).
But r(t) = b(t) − q(t)a(t) ∈ I. If r(t) 6= 0, then multiplying by the inverse of its
leading coefficient, we would get a monic polynmial in I of degree smaller than that
of a(t), contradicting the definition of a(t). So r(t) = 0 and I = (a(t)).

Consider the ideal K of F [t] defined in Lemma 1.7. There is a clear dichotomy:

• Case 1: K = 0. In this case E : F [t] ∼= [v], so every invariant subspace of V
containing v is infinite-dimensional. We put Pv(t) = 0 (the zero polynomial, which
generates K). In this case we say that the vector v is transcendental.

• Case 2: K = (Pv(t)) for some nonzero monic Pv(t). Then E : F [t]/K ∼→ [v],
so degPv = dim[v] are both finite. We say that the vector v is algebraic.

In either case we call Pv the local minimal polynomial of T at v, and we
will now study it in detail.

Exercise 1.4. Show that for v ∈ V , we have v = 0 ⇐⇒ Pv(t) = 1.

Exercise 1.5. Let v ∈ V .
a) Show that for all w ∈ [v], we have Pv(T )w = 0.
b) Deduce that for all w ∈ [v], we have Pw(t) | Pv(t).
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Lemma 1.8. Let v ∈ V be a transcendental vector.
a) For every monic polynomial f(t) ∈ F [t], f(T )[v] is an invariant subspace of V .
b) For distinct monic polynomials f1, f2, the invariant subspaces f1(T )[v], f2(T )[v]
are distinct. Thus [v] has infinitely many invariant subspaces and is not simple.
c) Every nonzero invariant subspace of [v] is of the form f(T )[v] for some monic
polynomial f(t) ∈ F [t].

Proof. a) Apply Proposition 1.4 with [v] in place of V .
b) We claim f1(T )v ∈ f2(T )[v] if and only if f2(t) | f1(t); if so, f1(T )[v] = f2(T )[v]
implies f1 | f2 and f2 | f1 so f1 = f2. If f2 | f1, write f1 = gf2 and then
f1(T )v = g(T )f2(T )v ∈ f2(T )[v]. Conversely, if f1(T )v ∈ f2(T )[v], then there is a
polynomial g(t) ∈ F [t] such that f1(T )v = f2(T )g(T )v, so (f1(T )− f2(T )g(T ))v =
0, and thus the local minimal polynomial of v divides f1(t) − f2(t)g(t). But since
v is transcendental, its local minimal polynomial is zero and thus 0 = f1 − f2g and
thus f2 | f1. The second sentence of part b) follows immediately.
c) Let W ⊂ [v] be a nonzero invariant subspace. It therefore contains a nonzero
vector, which may be written as f(T )v for a monic polynomial f ∈ F [t]. Among
all nonzero vectors choose one which may be written in this way with f(t) of least
degree: we claim W = f(T )[v]. Indeed, consider any nonzero w = g(T )v ∈ W .
By polynomial division there are q(t), r(t) ∈ F [t] with deg r < deg f such that
g(t) = q(t)f(t) + r(t), and thus w = q(T )f(T )v + r(T )v. Then r(T )v = w −
q(T )f(T )v ∈ W ; since deg r < deg q we get a contradiction unless r = 0, in which
case w = q(T )f(T )v = f(T )(q(T )v) ∈ f(T )[v]. �

Exercise 1.6. Consider the linear map F [t]→ EndV given by p(t) 7→ P (T ).
a) Show that its kernel M is an ideal of F [t], and thus of the form (P (t)) where
P (t) is either monic or zero. It is called the minimal polynomial of T on V .
b) Show that for all v ∈ V , Pv(t) | P (t).
c) Show that P (t) is the least common multiple of {Pv(t)}v∈V .
d) Suppose that V = [v] for some v ∈ v. Show that P (t) = Pv(t).

Exercise 1.7. This exercise requires some familiarity with functional analysis.
a) Suppose that dimV is uncountable. Show that V has a nontrivial invariant
subspace.
b) Let V be an infinite-dimensional real Banach space. Show that V has a nontrivial
invariant subspace.
c) Suppose that V is a real Banach space which is not separable. Show that V
admits a nontrivial closed invariant subspace.
d) Prove or disprove: every bounded linear operator on a separable complex Hilbert
space V of dimension greater than one has a nontrivial closed invariant subspace.
(Comment: This is one of the more famous open problems in all of mathematics.
At least we will be able to handle the finite-dimensional case later on!)

We say that V is locally algebraic if each vector v ∈ V is algebraic, i.e., that
for all v ∈ V , the local minimal polynomial Pv(t) is nonzero. We say that V is
algebraic if the minimal polynomial P is nonzero.

Proposition 1.9. a) If V is finite-dimensional, it is algebraic: PV 6= 0.
b) If V is algebraic, it is locally algebraic.

Proof. a) Let P be the minimal polynomial of V . By Exercise 1.6 we have an
injection F [t]/(P ) ↪→ EndV . Since V is finite-dimensional, so is EndV , hence so
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is F [t]/(P ), which implies P 6= 0.
b) This is immediate from the fact that Pv | P for all v ∈ V . �

Exercise 1.8. a) Show that PT (V ) | PV .
b) Suppose that T (V ) is finite-dimensional. Show that P is algebraic.
c) Exhibit an algebraic endomorphism T with infinite-dimensional image.

Exercise 1.9. Suppose B = {bi}i∈I is a basis for V . For each i ∈ I, let λi ∈ F .
Define T by T (bi) = λibi for all i.
a) Compute the local minimal polynomials of all v ∈ V .
b) Deduce from part a) that V is locally algebraic.
c) Show that V is algebraic iff {λi}i∈I is finite.

Exercise 1.10. Let V = F [t]; recall {tn | n ∈ N} is a basis.
Let D ∈ EndV be polynomial differentiation. Concretely,

D(1) = 0; ∀n ∈ Z+, D : tn 7→ ntn−1.

a) Compute the local minimal polynomials of all v ∈ V .
b) Show that V is locally algebraic but not algebraic.
c) Find all finite-dimensional invariant subspaces of V .

Exercise 1.11. Let V = F [t]. Let I ∈ EndV be polynomial integration with zero
constant term. Concretely,

∀n ∈ N, I(tn) =
tn+1

n+ 1
.

a) Show that every nonzero v ∈ V is a transcendental vector.
b) Deduce that V is not algebraic or locally algebraic.
c) Find all finite-dimensional invariant subspaces of V .

Exercise 1.12. Suppose V is locally algebraic.
a) Show that for all finite-dimensional subspaces W ⊂ V , [W ] is finite-dimensional.
b) For a subspace W ⊂ V , show that the following are equivalent:
(i) W is an invariant subspace.
(ii) W is union of finite-dimensional invariant subspaces.

Thus to find all invariant subspaces of a locally finite endomorphism it suffices to
study finite-dimensional invariant subspaces.

From now on we assume that V is nonzero and finite-dimensional.

Proposition 1.10. The degree of the minimal polynomial is at most dimV .

Proof. (Burrow [Bu73]) We go by induction on dimV , the case dimV = 1 being
handled, for instance, by the bound dimP ≤ (dimV )2. Now let dimV = d and
suppose the result holds in smaller dimension. Choose a nonzero v ∈ V , and let Pv
be the local minimal polynomial, so degPv > 0. Let W = KerPv(T ), so that W is
a nonzero invariant subspace. If W = V then Pv = P and we’re done. Otherwise
we consider the induced action of T on the quotient space V/W . Let PW and PV/W
be the minimal polynomials of T on W and V/W . By induction, degPW ≤ dimW
and degPV/W ≤ dimV/W , so degPWPV/W = degPW + degPV/W ≤ dimW +
dimV/W = dimV . Finally, we claim that PW (T )PV/W (T )V = 0. Indeed, for all
v ∈ V , PV/W (T )v ∈W so PW (T )PV/W (T )v = 0. �
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For an invariant subspace W ⊂ V , we let PW be the minimal polynomial of P |W .

Exercise 1.13. Let W ⊂ V be an invariant subspace.
a) Show that PW = lcmw∈W Pw.
b) Show that for all v ∈ V , P〈v〉 = Pv.

Proposition 1.11. Let W1, W2 be invariant subspaces of V ; put W = W1 + W2.
Then

PW = lcmPW1 , PW2 .

Proof. Put
P = PW1+W2

,

P1 = PW1
= pa11 · · · parr

P2 = PW2
= pb11 · · · pbrr

with ai, bi ∈ N, and then

P3 = lcmP1, P2 = pmax a1,b1
1 · · · pmax ar,br

r .

We may write P3 = f1P1 = f2P2. Then every vector w ∈ W1 + W2 is of the form
w = w1 + w2 for w1 ∈W1, w2 ∈W2 and

P3(T )w = P3(T )w1 + P3(T )w2 = f1(T )P1(T )w1 + f2(T )P2(T )w2 = 0,

so P | P3. To show that P3 | P , since P = lcmv∈W1+W2
Pv and lcm pc11 , . . . , p

cr
r =

pc11 · · · pcrr , it is enough to find for each 1 ≤ i ≤ r a vector vi ∈ W1 +W2 such that

pmax ai,bi
i | Pvi . But since paii | P1, there is wi,1 ∈W1 with paii | wi,1 and wi,2 ∈W2

with pbii | wi,2. One of these vectors does the job. �

For any polynomial f ∈ F [t], put

Vf := {v ∈ V | f(T )v = 0}.
Proposition 1.12. Let W be an invariant subspace of V , and let f | PV . Then

Wf = W ∩ Vf .
Proof. Although this is a distinctly useful result, its proof is absolutely trivial:

Wf = {v ∈W | f(T )v = 0} = W ∩ {v ∈ V | f(T )v = 0}. �

Note that V0 = V . Henceforth we restrict attention to nonzero polynomials.

Proposition 1.13. Let f ∈ F [t]•.
a) Vf is an invariant subspace of V .
b) Vf is the set of vectors v such that Pv | f .
c) If f | g, then Vf ⊂ Vg.
d) For α ∈ F×, we have Vαf = Vf .
e) We have Vf = VgcdP,f , where P is the minimal polynomial.

Proof. a) It is immediate to check that Vf is linear subspace of V . Further, if
f(T )v = 0, then f(T )(Tv) = T (f(T )v) = T0 = 0.
b) This follows from the fact that Pv is the generator of the ideal of all polynomials
g with g(T )v = 0.
c) If f | g then g = h(t)f(t), so if f(T )v = 0 then g(T )v = (h(T )f(T ))v =
h(T )(f(T )v) = h(T )0 = 0.
d) For any v ∈ V , f(T )v = 0 ⇐⇒ αf(T )v = 0.
e) Since gcd(P, f) | f , Vgcd(P,f) ⊂ Vf . Conversely, let v ∈ Vf . Then Pv | P and
Pv | f , so Pv | gcd(P, f), so gcd(P, f)(T )(v) = 0 and v ∈ VgcdP,f . �
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In view of Proposition 1.13e) there are only finitely many distinct spaces Vf , since
there are only finitely many monic polynomials dividing P .

If there is a vector v ∈ V with P = Pv, we say that the minimal polynomial P is lo-
cally attained. Since it was immediate from the definition that degPv ≤ dimV ,
if the minimal polynomial is locally attained then we get another, better, proof
that degP ≤ dimV . The next exercise gives many cases in which the minimal
polynomial is locally attained.

Exercise 1.14. a) Show that for each proper divisor f of P , Vf ( V .
b) Suppose F is infinite. Show that there is v ∈ V with Pv = P : we say that the
minimal polynomial is locally attained. (Hint: no nonzero vector space over
an infinite field is the union of finitely many of its proper subsapces: c.f. [Cl12].)
c) Use the main result of [Cl12] to show that if F is finite but #F is sufficiently
large with respect to dimV , then the minimal polynomial is locally attained.

Proposition 1.14. For n ≥ 2, let f1, . . . , fn ∈ F [t] be pairwise coprime. Then the
subspaces Vf1 , . . . , Vfn are independent and we have

⊕n
i=1 Vfi = Vf1···fn .

Proof. We go by induction on n.
Base Case (n = 2): let v ∈ Vf1 ∩ Vf2 . Since f1 and f2 are coprime, there are
a(t), b(t) ∈ F [t] such that af1 + bf2 = 1, and then

v = 1v = (a(T )f1(T ) + b(T )f2(T ))v = a(T )(f1(T )v) + b(T )(f2(T )v)) = 0,

which shows that W := Vf1 + Vf2 = Vf1 ⊕ Vf2 . It is easy to see that W ⊂ Vf1f2 :
every w ∈ W is a sum of a vector w1 killed by f1(T ) and a vector w2 killed by
f2(T ), so f1(T )f2(T )w = 0. Conversely, let v ∈ V be such that f1(T )f2(T )v = 0.
As above, we have v = a(T )f1(T )v + b(T )f2(T )v. Then a(T )f1(T )v ∈ Vf2 and
b(T )f2(T ) ∈ Vf1 , so v ∈ Vf1 ⊕ Vf2 .
Induction Step: Suppose n ≥ 3 and that the result holds for any n − 1 pairwise
coprime polynomials. Put W = Vf1 + . . .+ Vfn−1

. By induction,

W =

n−1⊕
i=1

Vfi = Vf1···fn−1
.

The polynomials f1 · · · fn−1 and fn are coprime, so applying the base case we get

W + Vfn =

n−1⊕
i=1

Vfi ⊕ Vfn =

n⊕
i=1

Vfi = Vf1···fn . �

Lemma 1.15. Let v ∈ V •. For any monic polynomial f | Pv, we have

Pf(T )v =
Pv
f
.

Proof. Write Pv = fg. Since Pv
f (T )f(T )v = Pv(T )v = 0, we have Pf(T )v | Pvf . If

there were a proper divisor h of g such that h(T )(f(T )v) = 0, then hf(T )v = 0.
That is, hf kills v but has smaller degree than gf = Pv, contradiction. �

Exercise 1.15. Show that for any f ∈ F [t], we have Pf(T )v = Pv
gcdPv,f

.

Theorem 1.16 (Local Attainment Theorem). Every monic divisor f of the mini-
mal polynomial is a local minimal polynomial: f = Pv for some v ∈ V .
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Proof. Step 1: Let P = pa11 · · · parr . Since P is the lcm of the local minimal polyno-
mials, there is wi ∈ V such that the exponent of pi in Pwi is ai. Let vi = P

p
ai
i

(T )wi.

By Lemma 1.15, Pvi = paii .
Step 2: Put v = v1 + . . . + vr. We claim that Pv = P . Indeed, since pa11 , . . . , p

ar
r

are pairwise coprime, the spaces Vpa11
, . . . , Vparr are independent invariant sub-

spaces. It follows that for all f ∈ F [t], the vectors f(T )v1, . . . , f(T )vr are lin-
early independent. In particular, if 0 = f(T )v = f(T )v1 + . . . + f(T )vr, then
f(T )v1 = . . . = f(T )vr = 0. This last condition occurs iff paii | f for all i, and again
by coprimality this gives P = pa11 · · · parr | f .
Step 3: Now suppose that we have monic polynomials f, g with fg = P . By Step
2, there is v ∈ V with Pv = P . By Lemma 1.15, Pg(T )v = P

g = f . �

Let W ⊂ V be an invariant subspace. Then T induces a linear endomorphism on
the quotient space V/W given by T (v + W ) = T (v) + W . Let’s check that this is
well-defined, i.e., that if v′ + W = v + W , then T (v) + W = T (v′) + W . There is
w ∈W such that v′ = v + w, so

T (v′) +W = T (v + w) +W = T (v) + T (w) +W = T (v) +W,

since T (W ) ⊂W . We call V/W an invariant quotient.

Exercise 1.16. Let W ⊂ V be an invariant subspace. For f(t) ∈ F [t], show that
the following are equivalent:
(i) f(T )V ⊂W .
(ii) f(T )V/W = 0.
(iii) PV/W | f .

Exercise 1.17. Let W1,W2 be subspaces of V , with W2 invariant. Define

IW1,W2
= {f ∈ F [t] | f(W1) ⊂W2}.

a) Show that IW1,W2
is an ideal of F [t].

b) Show that if W1 ⊂W ′1 then IW1,W2
⊃ IW ′1,W2

.
c) Show that if W2 ⊂W ′2 are invariant subspaces, then IW1,W2

⊂ IW1,W ′2
.

d) Deduce that IW1,W2
⊃ IV,0 = (P ). In particular IW1,W2

is nonzero so has a
unique monic generator PW1,W2

, the conductor polynomial of W1 into W2.
e) Show that these conductor polynomials recover as special cases: the minimal
polynomial, the local minimal polynomials, the minimal polynomial of an invariant
quotient, and the local minimal polynomials of an invariant quotient.

Proposition 1.17. Let W ⊂ V be an invariant subspace.
a) For v ∈ V , let v be its image in V/W . Then Pv | Pv.
b) For every v ∈ V/W , there is v′ ∈ V such that Pv = Pv′ .
c) PV/W | PV .

Proof. a) Since P (T )v = 0, also P (T )v ∈W ; the latter means P (T )v = 0.
b) Let v be any lift of v to V . By part a) we may write Pv(t) = f(t)Pv(t) for some
polynomial f . By Lemma 1.15, Pf(T )v = Pv.
c) Since PV (T ) kills every vector of V , it sends every vector of V into W . (One
could also use the characterizations of the global minimal polynomial as the lcm of
the local minimal polynomials together with part b).) �

Exercise 1.18. This exercise is for those who are familiar with antitone Galois
connections as in e.g. CITE. We consider the Galois connection between 2F [t] and
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2V induced by the relation (f, v) ∈ R ⊂ F [t]× V iff f(T )v = 0.
a) For a subset S ⊂ F [t], put

W (S) := {v ∈ V | ∀f ∈ S, f(T )v = 0}.

Let 〈S〉 be the ideal generated by S. Since F [t] is a PID, this ideal is principal, say
generated by the monic polynomial fS. Show:

W (S) = VfS = {v ∈ V | fS(T )v = 0}.

Deduce from the formalism of Galois connections that for polynomials f, g ∈ F [t],
if f | g then Vf ⊂ Vg.
b) For a subset U ⊂ V , put

I(U) := {f ∈ F [t] | ∀v ∈ U, f(T )v = 0}.

Let 〈U〉 be the subspace generated by U . Show:

I(U) = 〈P〈U〉〉.

Deduce from the formalism of Galois connections that for subspaces W1,W2 of V ,
if W1 ⊂W2 then PW1

| PW2
.

c) For S ⊂ F [t], show that the closure of S with respect to the Galois connection –
i.e., I(W (S)) – is the ideal generated by gcd(fS , PV ).
d) For U ⊂ V , the closure of U with respect to the Galois connection – i.e., W (I(U))
– is the the kernel of P〈U〉(T ). Is there a better description?

2. Eigenvectors, Eigenvalues and Eigenspaces

A nonzero vector v ∈ V is an eigenvector for T if Tv = λv for some λ ∈ F , and
we say that λ is the corresponding eigenvalue. A scalar λ ∈ F is an eigenvalue
of T if there is some nonzero vector v ∈ v such that Tv = v.

In fact this is a special case of a concept studied in the last section. Namely,
for v ∈ V , we have Tv = λv iff (T − λ)v = 0 iff v ∈ Vt−λ. Thus v is an eigenvector
iff the local minimal polynomial Pv is linear.

Exercise 2.1. Prove it.

Proposition 2.1. The following are equivalent:
(i) 0 is an eigenvalue.
(ii) T is not invertible.

Exercise 2.2. Prove it.

Proposition 2.2. Let P (t) be the minimal polynomial for T on V .
a) For λ ∈ F , the following are equivalent:
(i) λ is an eigenvalue of T .
(ii) P (λ) = 0.
b) It follows that T has at most dimV eigenvalues.

Proof. a) By Proposition 1.13e), we have Vt−λ = Vgcd(t−λ,P ). It follows that if
P (λ) 6= 0 then t − λ - P (t) and thus Vt−λ = V1 = {0}, so λ is not an eigenvalue.
If λ is an eigenvalue, there is v ∈ V with Pv = t − λ. Since Pv = t − λ | P , so
P (λ) = 0. b) By Proposition 1.9, P 6= 0, and by Proposition 1.11, degP ≤ dimV ,
so P has at most dimV roots. �



12 PETE L. CLARK

Exercise 2.3. Show that the following are equivalent:
(i) Every subspace of V is invariant.
(ii) Every nonzero vector of V is an eigenvector.
(iii) The minimal polynomial P has degree 1 and for all v ∈ V •, Pv = P .
(iv) There is α ∈ F such that T (v) = αv for all v ∈ V .
(v) The matrix representation of T (with respect to any basis!) is a scalar matrix.

Corollary 2.3. If F is algebraically closed, then there is an eigenvector for T .

Proof. Indeed P is a polynomial of positive degree, so by the very definition of being
algebraically closed, there is α ∈ F with P (α) = 0. Apply Proposition 2.2. �

For λ ∈ V , the λ-eigenspace of V is

Vλ = {v ∈ V | Tv = λv}.
In fact the eigenspace Vλ is precisely the subspace Vt−λ. In particular it is an
invariant subspace.

Exercise 2.4. Let λ ∈ F . Show that λ is an eigenvalue iff Vλ 6= {0}.

Proposition 2.4. Let λ1, . . . , λn be distinct eigenvalues for T on V . Then the
eigenspaces Vλ1

, . . . , Vλn are independent.

Proof. Because Vλi = Vt−λi , this is a special case of Proposition 1.14. �

Corollary 2.5. The following are equivalent:
(i) T is diagonalizable.
(ii) V is the sum of its nonzero eigenspaces Vλ.
(iii) V is the direct sum of its nonzero eigenspaces Vλ.

Exercise 2.5. Prove Corollary 2.5.

Corollary 2.6. a) If T is diagonalizable, it has an eigenvalue.
b) If T has exactly one eigenvalue α, the following are equivalent:
(i) T is diagonalizable.
(ii) Tv = αv for all v ∈ V .
(iii) The minimal polynomial of T is (t− α).
(iv) The matrix of T with respect to any basis is the scalar matrix αI.
c) If T has dimV distinct eigenvalues, it is diagonalizable.

Exercise 2.6. Prove Corollary 2.6.

Proposition 2.7. If T is diagonalizable with distinct eigenvalues λ1, . . . , λd then

the minimal polynomial P is
∏d
i=1(t− λi). In particular P is squarefree and split.

Proof. If T is diagonalizable then there is a basis {ei}ni=1 consisting of eigenvectors.

Then if p(t) :=
∏d
i=1(t− λi), we have that p(T )ei = 0 for all i and thus p(T ) = 0.

It follows that P (t) | p(t). We have already seen that every eigenvalue is a root of
P , so also p(t) | P (T ) and thus P (t) = p(t). �

It is natural to ask about the converse of Proposition 2.7. In fact it is true: if P
is squarefree and split then T is diagonalizable – this is one of the main results
of the theory. But the proof must lie deeper than anything we’ve done so far.
To see why, suppose dimV = 3 and P (t) = (t − λ1)(t − λ2) for λ1 6= λ2. Since
P is squarefree and split, we’d like to show that T is diagonalizable. We know
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that λ1 and λ2 are the only eigenvalues and that dimVλ1
≥ 1 and dimVλ2

≥ 1.
So to have a basis of eigenvectors it must be the case that either dimVλ1 = 2 or
dimVλ2 = 2. But since dimV = 3, it can’t be the case that both eigenspaces are
two-dimensional: it must be one or the other. Clearly we won’t figure out which
by staring at P (t) = (t− λ1)(t− λ2): we are not yet seeing the full picture.

A basis e1, . . . , en for V is triangular if for all 1 ≤ i ≤ n, Tei ∈ 〈e1, . . . , ei〉.
Equivalently, for all 1 ≤ i ≤ n, the subspace Vi = 〈e1, . . . , ei〉 is invariant. We say
that T is triangularizable if it admits a triangular basis.

Exercise 2.7. Show that the matrix M of T with respect to a triangular basis is
upper triangular: mij = 0 for all i > j.

The careful reader will have noticed that we have not used the observation that
the image of any f(T ) is an invariant subspace. We do so now: it is one of the key
ideas in the following proof.

Theorem 2.8. Suppose V admits a triangular basis e1, . . . , en with respect to T .
Let m11, . . . ,mnn be the diagonal entries of the corresponding matrix.
a) T is invertible iff mii 6= 0 for all 1 ≤ i ≤ n.
b) Each mii is an eigenvalue; each eigenvalue λ is equal to mii for at least one i.

Proof. a) If each diagonal entry is nonzero, it is easy to see by back substitution
that the only solution of the linear system Mv = 0 is v = 0, so T is invertible.
Conversely, if some mii = 0, then T : 〈e1, . . . , ei〉 → 〈e1, . . . , ei−1〉, so by the
Dimension Theorem T has a nonzero kernel: T is not invertible.
b) For λ ∈ F , the matrix M − λId represents the linear transformation T − λ with
respect to the basis e1, . . . , ed. Thus λ is an eigenvalue iff M −λId is not invertible
iff some diagonal entry mii − λ = 0 iff λ = mii for at least one i. �

Theorem 2.9. The following are equivalent:
(i) The minimal polynomial P of T is split.
(ii) T is triangularizable.

Proof. (i) =⇒ (ii): We go by induction on dimV . The case of dimV = 1 is clear,
so suppose dimV = d and the result holds in dimension less than d. Since P is
split, T has an eigenvalue α. Thus Ker(T − α) is nontrivial, so W = Image(T − α)
is a proper invariant subspace, say of dimension d′ < d. The minimal polynomial
PW of T |W is the lcm of the local minimal polynomials Pw for w ∈W , so it divides
P and is thus also split. By induction, T |W is triangularizable: let e1, . . . , ed′ be a
triangular basis. Extend this to a basis e1, . . . , ed of V in any way. We claim this
basis is upper triangular, i.e., that each Vi = 〈e1, . . . , ei〉 is an invariant subspace.
We already know this if i ≤ d′, so suppose d′ < i ≤ d and v ∈ Vi. Then

Tv = (T − α)v + αv ∈ Vd′ + Vi = Vi.

(ii) =⇒ (i): Let b1, . . . , bd be a triangular basis for V ; put V0 = {0}, and for
1 ≤ i ≤ d, put Vi = 〈b1, . . . , bi〉. Then Vi/Vi−1 is one-dimensional, so the minimal
polynomial of T on it is T−λi for some λi ∈ F . Thus for 1 ≤ i ≤ d, (T−λi)bi ∈ Vi−1.
It follows that for all 1 ≤ i ≤ d, (T − λ1) · · · (T − λi)Vi = 0. In particular, taking

i = d and putting Q(t) =
∏d
i=1(t− λi) we find that Q(T )V = 0. Thus the minimal

polynomial P divides the split polynomial Q so P is itself split. �
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Corollary 2.10. If F is algebraically closed, then every linear transformation on
a finite-dimensional F -vector space is triangularizable.

3. Cyclic Spaces

The local minimal polynomial of the zero vector is 1, and the local minimal poly-
nomial of an eigenvector is t − α. It’s less clear what to say about local mini-
mal polynomials of larger degree, and in fact a natural question is which monic
polynomials can arise as minimal polynomials of a linear transformation T on a
finite-dimensional F -vector space. The answer may be surprising: all of them!

Example 3.1. Let p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0 ∈ F [t]. Let V = Fn with

standard basis e1, . . . , en, and consider the following endomorphism Tp of V :

∀1 ≤ i ≤ n− 1, Tp(ei) = ei+1,

Tp(en) = −a0e1 − . . .− an−1en.
Then

p(Tp)e1 = (Tnp + an−1T
n−1
p + . . .+ a1T + a0)e1

= Tpen + an−1en + an−2en−1 + . . .+ a1e2 + a0e1 = 0.

Also p(Tp)e2 = p(Tp)Tpe1 = Tpp(Tp)e1 = 0, and similarly p(Tp)ei = 0 for all
3 ≤ i ≤ n. Thus the minimal polynomial P of Tp divides p. On the other hand
we have V = [e1], so the degree of the local minimal polynomial Pe1 is dimV = n.
Since Pe1 | P , we conclude that degP ≥ n and thus Pe1 = P = p. The matrix of
Tp with respect to the basis e1, . . . , en is

0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
0 0 1 . . . 0 −a3
...
0 0 0 . . . 1 −an−1


.

We call this the companion matrix C(p) of the monic polynomial p.

We say that V is cyclic if V = [v] for some v ∈ V . Consider the sequence of vectors

v, Tv, T 2v, . . . .

By definition of cyclic, they span the n-dimensional vector space V . Moreover, if
T iv lies in the span of v, Tv, . . . , T i−1v, then T i+1v lies in the span of Tv, . . . , T iv,
hence also in the span of v, Tv, . . . , T i−1v, and similarly for T jv for all j > i. It
follows that v, Tv, T 2v, . . . , Tn−1v is a basis for V , and we may write

Tnv = −a0v − a1Tv − . . .− an−1Tn−1v.
Then p(t) = tn + an−1t

n−1 + . . . + a1t + a0 is the minimal polynomial for T and
the matrix for T with respect to our basis is the companion matrix C(p). Thus the
above “example” is precisely the general case of a cyclic linear transformation.

We now quote from Paul Halmos’s Automathography :

“Given a linear transformation, you just choose a vector to start a basis with,
and keep working on it with the transformation. When you stop getting something
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new, you stop, and, lo and behold, you have a typical companion matrix. I didn’t
know what he [David Netzorg] meant then, but I do now, and it’s an insight, it’s
worth knowing.”

Theorem 3.2 (Cyclicity Theorem).
Suppose V = [v] is cyclic, with minimal polynomial P = pa11 · · · parr .
a) For each monic polynomial divisor f of P , we have

Vf = [(P/f)(T )v]

and

PVf = f.

b) Every invariant subspace of V is of the form Vf for some monic polynomial
f | P . In particular:
c) There are precisely

∏r
i=1(ai + 1) invariant subspaces of V .

d) Every invariant subspace of V is cyclic.
e) Every quotient of V by an invariant subspace is cyclic.

Proof. As seen above, we have P = Pv.
a) Step 1: Write fg = P . Since f(T )g(T )v = 0, we have [g(T )v] ⊂ Vf . By Lemma
1.15,

dim[g(T )v] = degPg(T )v = deg f

and similarly

dim[f(T )V ] = deg g.

Thus

dimVf = dim Ker f(T ) = dimV − dim f(T )V = degP − dim[f(T )v]

= degP − deg g = deg f = dim[g(T )v],

so [g(T )v] = Vf .
Step 2: By Step 1 and Lemma 1.15 we have

PVf = P(P/f)(T )v =
Pv
P
f

= f.

b) Let W be an invariant subspace. By the Local Attainment Theorem there is
w ∈W with Pw = PW . Write P = fPW . Using part a) we have

[w] ⊂W ⊂ VPW VPw = [f(T )v].

By Lemma 1.15, Pf(T )v = PW , so dim[f(T )v] = degPf(T )v = degPW = degPw =
[w]. It follows that W = [f(T )v] is cyclic.
Parts c) and d) follow immediately.
e) If W is an invariant subspace of V = [v], let v = v +W . Since every element of
V is of the form f(T )v for some f , every element of V/W is of the form f(T )v for
some f : V/W = [v]. �

Exercise 3.1. Show that the following are equivalent:
(i) V has infinitely many invariant subspaces.
(ii) F is infinite and V is not cyclic.
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Theorem 3.3. For a field F , the following are equivalent:
(i) F is algebraically closed.
(ii) Every endomorphism of a nonzero finite-dimensional F -vector space is trian-
gularizable.
(iii) Every endomorphism of a nonzero finite-dimensional F -vector space has an
eigenvalue.

Proof. (i) =⇒ (ii) is Corollary 2.10.
(ii) =⇒ (iii): the first vector in a triangular basis is an eigenvector.
(iii) =⇒ (i): We show the contrapositive: suppose F is not algebraically closed,
so there is a polynomial p(t) ∈ F [t] of positive degree with no root in F . Then p(t)
is the minimal polynomial P of the linear transformation Tp of Example 3.1, so by
Proposition 2.2, Tp has no eigenvalue. �

Theorem 3.3 raises the prospect of proving the Fundamental Theorem of Algebra –
that C is algebraically closed – by showing that every endomorphism of a nonzero
finite-dimensional C-vector space has an eigenvalue. This has indeed been done
by H. Derksen [De03]; see also [Co] for a moderately simplified exposition. The
argument is actually a bit more general: it shows that if R is a field in which every
odd degree polynomial has a root, and for all x ∈ R• exactly one of ±x is a square,
then R(

√
−1) is algebraically closed.

4. Prime and Primary Vectors

Proposition 1.14 leads us to factor the minimal polynomial P = pa11 · · · parr and
study the invariant subspaces Vpi and Vpaii

more closely. We do so now.

A vector v ∈ V is prime if its local minimal polynomial Pv(t) is irreducible. A
vector v ∈ V is primary if Pv(t) is a power of an irreducible polynomial. For a
prime (resp. primary) vector v, the local minimal polynomial p (resp. pa) is called
the prime value (resp. primary value) of v.

Exercise 4.1. Show that the zero vector is not primary.

Lemma 4.1. Let p(t) a prime polynomial. If v ∈ V •p , then Pv = p: v is a prime
vector with prime value p.

Exercise 4.2. Prove Lemma 4.1.

As the following exercises explore, prime vectors is that they are a suitable analogue
of eigenvectors when the ground field is not algebraically closed.

Exercise 4.3. Show that an eigenvector is a prime vector.

Exercise 4.4. Show that for a field F , the following are equivalent:
(i) For every linear transformation on a finite-dimensional F -vector space, every
prime vector is an eigenvector.
(ii) F is algebraically closed.

Proposition 4.2.
a) Let p(t)be a prime factor of the minimal polynomial T . Then Vp 6= {0}.
b) In particular every linear transformation admits a prime vector.

Proof. This is immediate from the Local Attainment Theorem (Theorem 1.16). �
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Proposition 4.3. a) It V is simple, then its minimal polynomial is prime.
b) If v ∈ V is a prime vector, then the invariant subspace [v] is simple.

Proof. a) If P (T ) were not prime, then it would have monic a monic divisor f /∈
{1, P}. By the Local Attainment Theorem (Theorem 1.16) there is w ∈ V such
that Pw = f and thus dim[w] = deg f /∈ {0,degP}, so [w] is a proper, nonzero
invariant subspace.
b) This is immediate from the Cyclicity Theorem (Theorem 3.2). �

For a prime polynomial p, we call Vp the p-isotypic subspace of V.

Proposition 4.4. For every prime p, the p-isotypic subspace Vp is semisimple.

Proof. Every nonzero vector v ∈ Vp lies in the simple invariant subspace [v], so Vp
is spanned by its simple invariant subspaces. Apply Theorem 1.2. �

We define the socle s(V ) to be the subspace spanned by the prime vectors of V .

Theorem 4.5 (Prime Decomposition Theorem).
a) We have s(V ) =

⊕
Vp, the sum extending over all prime factors of P .

b) The socle s(V ) is the largest semisimple invariant subspace of V .
c) In particular, the following are equivalent:
(i) The space V is semisimple.
(ii) The space V is its own socle: V = s(V ).
(iii) The space V admits a basis of prime vectors. (iv) The minimal polynomial P
is squarefree.

Proof. a) The independence of the spaces Vp follows from Proposition 1.14. More-
over we know that Vp = 0 unless p | P . The result follows.
b) Since each Vp is semisimple, so is

⊕
Vp = s(V ). Suppose W is a semisim-

ple invariant subspace properly containing s(V ). Since W is spanned by its simple
invariant subspaces and strictly contains s(V ), there must be a simple invariant sub-
space S of W and not contained in s(V ). Since S is simple, this gives S∩ s(V ) = 0.
But by the Local Attainment Theorem (Theorem 1.16), S admits a prime vector:
contradiction.
c) This follows immediately. �

Proposition 4.6.
a) The socle s(V ) consists of all vectors with squarefree local minimal polynomial.
b) The space V is semisimple iff its minimal polynomial is squarefree.

Proof. a) Let p1, . . . , pr be the distinct prime divisors of P , so s(V ) =
⊕r

i=1 Vpi =
Vp1···pr by Proposition 1.14. Since a divisor f of P is squarefree iff it divides p1 · · · pr,
this proves part a).
b) This is immediate from part a) and Theorem 4.5c). �

We can now give a description of all semisimple invariant subspaces.

Proposition 4.7 (Classification of Semisimple Invariant Subspaces). Let W ⊂ V
be a semisimple invariant subspace. Then:
a) For every prime divisor p of P , Wp = Vp ∩W .
b) We have W =

⊕
Wp.

c) If V is split semisimple, then we get an invariant subspace selecting for each
eigenvalue λ of T any subspace Wλ of the λ-eigenspace Vλ and putting W =

⊕
λWλ,

and every invariant subspace arises in this way.
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Exercise 4.5. Prove Proposition 4.7.

Now we go deeper by looking not just at prime vectors but primary vectors. Recall
that we have factored our minimal polynomial as

P = pa11 · · · parr .

The p-primary subspace of V is

V p = Vpaii
.

Theorem 4.8 (Primary Decomposition Theorem). We have V =
⊕
V p, the sum

extending over the distinct prime divisors of P .

Proof. Let the minimal polynomial be given by P = pa11 · · · parr . Since pa11 , . . . , p
ar
r

are pairwise coprime, by Proposition 1.14 we have

Vpa11
+ . . .+ Vparr =

n⊕
i=1

Vpaii
= Vpa11 ···p

ar
r

= VP = V. �

Proposition 4.9. Let p(t) be a prime, and let W ⊂ V be invariant. Then:
a) (V/W )p = (V p +W )/W .
b) dimV p = dimW p + dim(V/W )p.

Proof. a)Let v ∈ V/W , and let v be any lift of v to V . Then v is p-primary iff there
is some a ∈ Z+ such that p(T )av ∈W iff v ∈ V p +W .
b) We have

dimW p + dim(V/W )p = dimW p + dim(V p +W )/W

= dimW p + dim(V p +W )− dimW = dimW ∩ V p + dim(V p +W )− dimW

dimW ∩ V p + dimV p + dimW − dimW ∩ V p − dimW = dimV p. �

5. The Characteristic Polynomial

Theorem 5.1. For each prime divisor p of P , we have deg(p) | dimV p.

Proof. We may assume V = V p and go by induction on dimV . Since V is nonzero,
it has a prime vector [v] and thus dimV ≥ dim[v] = deg(p). We have dimV =
dim[v] + dimV/[v]. Since V is p-primary, so is V/[v], and since dimV/[v] < dimV ,
by induction we have dimV/[v] = k deg(p) for some k ∈ N, and thus

dimV = dim[v] + dimV/[v] = deg(p) + k deg(p) = (k + 1) deg(p). �

Corollary 5.2. If F = R and dimV is odd, then there is an eigenvalue.

Exercise 5.1. Prove Corollary 5.2.

In light of Theorem 5.1, for any prime divisor p of P we may define

χp(t) = p(t)
dimV p

deg p

and the characteristic polynomial

χ(t) =
∏
p|P

χp(t).
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Proposition 5.3. Let P and χ be the minimal and characteristic polynomials.
a) The polynomials P and χ have the same prime divisors.
b) We have degχ = dimV .
c) We have P | χ: equivalently, χ(T ) = 0.
d) We have degP ≤ dimV .

Proof. a) This is built into our definition of χ.
b) We have

degχ =
∑
p

degχp =
∑
p

deg p
dimVpa

deg p =
∑
p

dimVpa = dim
⊕

Vpa = dimV.

c) Let P = pa11 · · · parr . We must show that for all 1 ≤ i ≤ r, paii | χpi ; equivalently,
degχpi ≥ ai. For each 1 ≤ i ≤ r, there is vi ∈ V with Pvi = paii . Since V pi ⊃ [vi],
we have

degχpi = dimV pi ≥ dim[vi] = deg paii .

d) This is immediate from b) and c). �

Theorem 5.4. Let W ⊂ V be invariant. Let χ′ be the characteristic polynomial of
W and χ′′ be the characteristic polynomial of V/W . Then

χ(t) = χ′(t)χ′′(t).

Proof. Let P = pa11 · · · parr be the minimal polynomial of T on V . It is enough to
show that χp(t) = χ′p(t)χ

′′
p(t) for all p |P. By Proposition 4.9,

dimV p = dimW p + dim(V/W )p

and thus

χp(t) = p(t)
dimV p

deg p = p(t)
dimWp+dim(V/W )p

deg p = p(t)
dimWp

deg p p(t)
dim(V/W )p

deg p = χ′p(t)χ
′′
p(t).

�

We can now give an important interpretation of the characteristic polynomial. A
composition series in V is a maximal chain of invariant subspaces:

0 ⊂ V0 ( . . . ( Vn ⊂ V ;

that is, each Vi is an invariant subspace, and for all 0 ≤ i ≤ n − 1, Vi ⊂ Vi+1

and there is no invariant subspace properly in between them. We say that the
composition series has length n.

Example 5.5. If b1, . . . , bd is a triangular basis, then V0 = {0}, Vi = 〈b1, . . . , bi〉
is a composition series. Conversely, given a composition series with dimVi = i for
all i, then taking bi ∈ Vi \ Vi−1 gives a triangular basis.

However, triangular bases exist only in the split case. A composition series is a
suitable analogue in the general case.

Observe that the statement that there is no invariant subspace properly in between
Vi and Vi+1 is equivalent to the quotient Vi+1/Vi being simple. Thus Vi+1/Vi is
cyclic and prime and has minimal polynomial equal to its characteristic polyno-
mial equal to a prime polynomial pi: we call pi’s the composition factors of the
composition series. By induction on Theorem 5.4 we find that

χ(t) = p1(t) · · · pn(t).

We have proved an important result.
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Theorem 5.6 (Jordan-Hölder).
a) Any two composition series have the same composition factors up to order.
b) In particular any two composition series have the same length.
c) The product of the composition factors is equal to the characteristic polynomial.

A basis b1, . . . , bd is adapted to a composition series {Vi}ni=0 if for all i there are
dimVi − dimVi−1 basis vectors lying in Vi \ Vi−1.

Exercise 5.2. a) Show that any composition series admits a basis adapted to it.
b) Show that the matrix of T with respect to a basis adapted to a composition series
is in block upper triangular form: if χ(t) = p1 · · · pn, then such a matrix consists
of deg pi × deg pi square matrices along the diagonal and all zeros below and to the
left of these blocks.

Theorem 5.7. Let T be an endomorphism of a nonzero finite dimensional vector
space V , with minimal polynomial P =

∏r
i=1 p

ai
i .

a) (Semisimplicity Theorem) V is semisimple iff P is squarefree.
b) (Diagonalizability Theorem) V is diagonalizable iff P is squarefree and split.
c) (Simplicity Theorem) V simple iff χ is prime.

Proof. a) We have proved this already; we just repeat it for comparison.
b) By Proposition 2.7, if V is diagonalizable then P is squarefree and split. Con-
versely, suppose P is squarefree and split. By part a), V =

⊕
Vp is the direct

sum of its p-isotypic subspaces, and since P is split, each p has degree one and
thus Vp = Vt−λ = Vλ is an eigenspace. So V has a basis of eigenvectors and is
diagonalizable.
c) If V is simple then it is semisimple, so P = p1 · · · pr is squarefree and V =

⊕
Vpi .

Since V is simple r = 1, so P = p1 and thus χ = pa1 . But dimV = deg p1 = degχ so
a = 1 and χ = p1. Convesely, if χ = p is prime, this forces P = p to be squarefree
and thus V to be semisimple of dimension deg p, hence simple. �

Exercise 5.3. a) Let F = C, and suppose that the matrix M of T with respect to
some basis of V is “a root of unity”: Mn = I for some n ∈ Z+. Show that T is
diagonalizable.
b) Show that if instead F = R the result no longer holds.
c) Show that if instead F has positive characteristic the result no longer holds.

The following result gives a generalization.

Theorem 5.8. Let T be an endomorphism of a nonzero finite dimensional vector
space V , and let N ∈ Z+.

a) If T is diagonalizable, then so is TN .
b) Suppose moreover that F is algebraically closed of characteristic not dividing

N (e.g. F = C) and that T is invertible. If TN is diagonalizable, so is T .

Proof. a) If in a basis e1, . . . , en the transformation T is diagonal with diagonal
entries λ1, . . . , λn, then in the same basis the transformation TN is diagonal with
diagonal entries λN1 , . . . , λ

N
n .

b) If TN is diagonalizable, then by the Diagonalizability Theorem (Theorem 5.7b))
there are distinct λ1, . . . , λk ∈ F such that

k∏
i=1

(TN − λi) = 0.
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For each such i, let λ
1/N
i be any element of F such that (λ

1/N
i )N = λi. (Since F is

algebraically closed, such an element exists.) Moreover, since the characteristic of
F does not divide N , there is a primitive Nth root of unity ζN in F and thus the

roots of tn − λi in F are precisely ζjNλ
1/N
i for 0 ≤ j ≤ N − 1. This means that the

polynomial P (t) :=
∏K
i=1(tn−λi) ∈ F [t] is squarefree and split, and since P (T ) = 0,

the minimal polynomial of T divides P (t) and thus is itself squarefree and split.
Applying the Diagonalizability Theorem again shows that T is diagonalizable. �

Exercise 5.4. a) Show that for all n,N ≥ 2 there is M ∈Mn,n(C) such that MN

is diagonalizable but M is not.
b) Suppose F is algebraically closed of characteristic p > 0. Show that for all
positive integers N that are divisible by p, there is a finite-dimensional F -vector
space V and an invertible endomorphism T of V such that TN is diagonalizable but
T is not.

Exercise 5.5. Let p be a prime divisor of the minimal polynomial P : suppose
P = p(t)aQ(t) with p - Q. We define the algebraic multiplicity of p to be the
exponent of p in χ, i.e., the largest e such that pe | χ. We define the geometric

multiplicity of p to be
dimVp
deg p , i.e., the number of linearly independent p-simple

invariant subspaces.

a) Show that the algebraic multiplicity of P is equal to
dimVpa

deg p .

b) Show that the algebraic multiplicity of p is less than or equal to the geometric
multiplicity of p.
c) Show that V is semisimple iff the algebraic multiplicity of p is equal to the
geometric multiplicity of p for all primes p | P .

6. The Cyclic Decomposition Theorem

Lemma 6.1. Let p ∈ F [t] be a prime polynomial. Suppose that V is p-primary
and Vp is cyclic. Then V is cyclic.

Proof. By induction on dimV , the case of dimV = 1 being immediate. Let n =
dimV and suppose that the result holds for spaces of dimension less than n. The
result is clear if V = Vp so we may suppose Vp ( V . The quotient space V/Vp is
p-primary of dimension smaller than n. Further, V/Vp ∼= p(T )V , so

(V/Vp)p ∼= (p(T )V )p = p(T )V ∩ Vp
is a submodule of a cyclic module, hence cylic. By induction there is v ∈ V/Vp with
V/Vp = [v]. Lift v to v ∈ V ; then V = 〈Vp, [v]〉. Finally, since the p-isotypic space
Vp is cyclic, it is simple. Since [v] 6= 0 is p-primary, Vp ∩ [v] = [v]p 6= 0, and thus
Vp ⊂ [v]. We conclude V = 〈Vp, [v]〉 = [v]. �

An invariant subspace W ⊂ V is replete if the minimal polynomial PW is the
minimal polynomial of T on V .

Theorem 6.2 (Cyclic Decomposition Theorem).
a) Suppose V is primary, and let W ⊂ V be a replete, cyclic invariant subspace.
Then there is an invariant subspace W ′ ⊂ V such that V = W ⊕W ′.
b) Any V can be written as a direct sum of cyclic subspaces Wi in which each PWi

is a prime power.
c) Suppose V =

⊕m
i=1Wi =

⊕n
j=1W

′
j are two decompositions into direct sums of
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cyclic primary subspaces. Then m = n, and there is a permutation σ of {1, . . . , n}
such that for all i, PWi = PW ′

σ(i)
.

Proof. a) Let P = PV = pa. We go by induction on dimV , the case dimV = 1
being clear. If V is cyclic, then by the Cyclicity Theorem its only replete invariant
subspace is V itself, a trivial case. Thus we may assume V is not cyclic, hence by
Lemma 6.1 that Vp is not cyclic: dimVp > deg p. Since dimWp = p, there is a
prime invariant subspace K of dimension dim p such that W ∩K = 0.
We claim that W = (W +K)/K is cyclic and primary in the quotient space V/K.
proof of claim Let W = [w] and w = w+K. Then W = [w] is cyclic. Further, a
priori the minimal polynomial P = PV/K divides P = pa. We will show PW = pa,

which suffices. Indeed, if W = [w], then pa−1(T )w is a nonzero element of W and
hence does not lie in K since K ∩W = {0}, so pa−1(T )w 6= 0 and thus Pw = pa.
By induction, there is an invariant subspace U ⊂ V/K such that

(1) V/K = (W +K)/K ⊕ U.
Let W ′ = {v ∈ V | v+K ⊂ U} (in other words, W ′ is the subspace of V containing
K which corresponds to U). Then W ′ ⊃ K and W ′/K = U . From (1) we get

V = W +K +W ′ = W +W ′.

If v ∈ W ∩ W ′, then w + K ∈ (W + K)/K ∩ W ′/K = 0, so w ∈ K and thus
w ∈W ∩K = 0. It follows that V = W ⊕W ′.
b) Let V =

⊕
V p be its primary decomposition. Since a direct sum of a direct sum

of cyclic primary invariant subspaces is a direct sum of cyclic primary invariant
subspaces, it is enough to treat the case V = V p. This follows from part a).
c) As usual it suffices to consider the case that V = V p is primary. We go by
induction on dimV . We may suppose that

V =

r⊕
i=1

C(pai) =

s⊕
j=1

C(pbi)

with a1 ≥ . . . ≥ ar and b1 ≥ . . . ≥ bs, and our task is to show that r = s and
ai = bi for all i. We have

(2) p(T )V =
r⊕
i=1

C(pai−1) =
s⊕
j=1

C(pbi−1).

Since Vp 6= 0, dim p(T )V < dimV and thus the cyclic decomposition of p(T )V is
unique. We do need to be careful about one point: if ai = 1, then C(pai−1) is the
zero vector space so needs to be removed from the direct sum decomposition. To
take care of this, let I be such that aI > 1 but ai = 1 for i > I; and similarly let
J be such that aJ > 1 but aj = 1 for j > J . Then induction gives I = J and
ai − 1 = bi − 1 for all 1 ≤ i ≤ I, hence of course that ai = bi for all 1 ≤ i ≤ I.
Finally we must show that r−I = s−J , but this follows by comparing dimensions:

r − I = dimV −
I∑
i=1

deg paii = dimV −
J∑
j=1

deg pbii = s− J.

�

Write V =
⊕n

i=1Wi with each Wi a cyclic invariant subspace with prime power
minimal polynomial fi = PWi

. By Theorem 6.2c) the multiset of these polynomials
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– i.e., like a set but each element carries with it a certain positive integer, the
multiplicity – is invariant of the chosen decomposition. These polynomials are
called elementary divisors.

Proposition 6.3. a) The lcm of the elementary divisors is the minimal polynomial.
b) The product of the elementary divisors is the characteristic polynomial.

Exercise 5.1: Prove Proposition 6.3.

Exercise 5.2: a) Show that we may write V =
⊕n

i=1Wi such that: each Wi is
cyclic and for all 1 ≤ i ≤ n − 1, the minimal polynomial fi+1 of Wi+1 divides the
minimal polynomial fi of Wi.
b) Show that the sequence of monic polynomials fn | fn−1 | . . . | f1 of part a) is
unique. The polynomials in this sequence are called invariant factors.

7. Rational and Jordan Canonical Forms

Let T be a linear endomorphism of a finite-dimensional F -vector space V . By
Cyclic Decomposition we may write V =

⊕n
i=1Wi with each Wi a primary cyclic

invariant subspace. For each i, choose a vector wi ∈ Wi with Wi = [wi], let
pi = Pwi = PWi

, and let bi1 = wi, bi2 = Twi, . . . , bi deg pi = T deg pi−1wi. Then BR =
b11, . . . , b1 deg p1 , . . . , bn deg pn is an especially pleasant basis for V ; the corresponding
matrix for BR is

M =

n⊕
i=1

C(pi).

The matrix M is called the Rational Canonical Form, and it is uniquely asso-
ciated to T up to a permutation of the diagonal blocks comprising the companion
matrices.

An endomorphism T is nilpotent if there is some positive integer N such that
TN = 0. It follows that the minimal polynomial is ta for some a ≤ d = dimV –
thus T d = 0 – and T is primary with characteristic polynomial td. Further each
elementary divisor is of the form tb for some 1 ≤ b ≤ a. Notice that the companion
matrices C(tb) take an especially simple form: in particular they are all strictly
lower triangular (and conversely are the only strictly lower triangular companion
matrices) and indeed is identically zero except for having ones along the subdiag-
onal: the diagonal immediately below the main one.

Moreover, any split endomorphism has a canonical form which is almost as simple.
The Cyclic Decomposition Theorem reduces us to the cyclic primary case, in which
the minimal and characteristic polynomials are both of the form (t− λ)a for some
eigenvalue λ ∈ F . This means precisely that T − λ is nilpotent, so has a basis with
respect to which its matrix is also zero except having 1’s along the subdiagonal.
Adding back the scalar matrix λIn, we find that in this basis the matrix of T has
λ’s along the main diagonal, 1’s along the subdiagonal, and is otherwise 0. Such a
matrix is called a Jordan block J(n, λ). A matrix which is a direct sum of Jordan
blocks is said to be in Jordan canonical form.

Conversely, suppose that the matrix of T with respect to some basis b1, . . . , bn
is the Jordan block J(n, λ). Then T − λ is a cyclic endomorphism, so every v ∈ V
is of the form f(T −λ)v for some f ∈ F [t]. But f(T −λ) = g(T ) is a polynomial in
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T , so V is also cyclic for the endomorphism T . Further, (T −λ)n kills each bi hence
is zero, so the minimal polynomial of T divides (t− λ)n and thus χT (t) = (t− λ)n.
We conclude that T is cyclic and λ-primary.

Theorem 7.1. For a linear endomorphism T , the following are equivalent:
(i) T is split.
(ii) There is a basis of V such that the matrix of T is in Jordan canonical form.

Proof. (i) =⇒ (ii): We argued for this just above.
(ii) =⇒ (i): By the above, if M =

⊕n
i=1 J(ni, λi), then χ(t) =

∏n
i=1(t− λ)ni . �

8. Similarity

After having done so much work with a single linear endomorphism T of a finite-
dimensional F -vector space V , suppose now that we have two endomorphisms T1
and T2. We can ask when T1 and T2 are “essentially the same”: roughly, they are
the same transformation written in different linear coordinate systems. What does
this mean precisely? Here are two ways to construe it:

• There is an invertible linear endomorphism A ∈ GLV which carries the action of
T1 into the action of T2: AT1 = T2A.

• There are two bases B = (b1, . . . , bn) and B′ = (b′1, . . . , b
′
n) such that the ma-

trix of T1 with respect to B is equal to the matrix of T2 with respect to B′.

These conditions are in fact equivalent: to each other, and also to the condition that
there is A ∈ GLV such that AT1A

−1 = T2. That the first condition is equivalent
to this is clear: just compose AT1 = T2A on the right with A−1. As for the second:
we may view giving a basis B of V as giving a linear isomorphism B : V → Fn,
uniquely determined by sending bi 7→ ei, the ith standard basis vector. Then to
say that the matrix of T1 with respect to B is M is to say that BT1B

−1 = M .
Similarly, if B′ : V → Fn be the linear isomorphism corresponding to B′, then we
get also B′T2(B′)−1 = M , so

BT1B
−1 = B′T2(B′)−1

and thus

T2 = (B′)−1BT1B
−1B′ =

(
(B′)−1B

)
T1
(
(B′)−1B

)−1
.

Lemma 8.1. Suppose AT1A
−1 = T2. Let W ⊂ V be a T1-invariant subspace.

Then:
a) AW is a T2-invariant subspace.
b) If W = [v], then AW = [Av].
c) For any f ∈ F [t], Af(T1)A−1 = f(T2).
d) The minimal polynomial for T1 acting on W is equal to the minimal polynomial
or T2 acting on AW .

Exercise 7.1: Prove Lemma 8.1.

Theorem 8.2. For linear endomorphims T1, T2 on V , the following are equivalent:
(i) T1 and T2 are similar.
(ii) T1 and T2 have the same elementary divisors.
(iii) T1 and T2 have the same invariant factors.



LINEAR ALGEBRA: INVARIANT SUBSPACES 25

Proof. (i) =⇒ (ii): Suppose AT1A
−1 = T2, and let V =

⊕
Wi be a decomposition

into primary cyclic invariant subspaces for T1. By Lemma 8.1, V =
⊕
AWi is a

decomposition into primary cyclic invariant subspaces for T2, and the elementary
divisors are the same.
(ii) =⇒ (i): If the elementary divisors are {fi}, each of T1 and T2 have a basis
with respect to which the matrix is

⊕
i C(fi).

(ii) ⇐⇒ (iii): The list of elementary divisors determines the list of invariant factors,
and conversely, in a straightforward way. We leave the details to the reader. �

Exercise 7.2: Write out a detailed proof of (ii) ⇐⇒ (iii) in Theorem 8.2.

We can take things a step further: it is not necessary for T1 and T2 to be en-
domorphisms of the same vector space V . Let V1 and V2 be two finite-dimensional
vector spaces, and let T1 ∈ EndV1, T2 ∈ EndV2. We say that T1 and T2 are similar
if there is an isomorphism A : V1 → V2 such that AT1A

−1 = T2.

Exercise 7.3: Show that T1 ∈ EndV1 and T2 ∈ EndV2 are similar iff there is a
basis B1 for V1 and V2 for B2 such that the matrix of T1 with respect to B1 is equal
to the matrix of T2 with respect to B2.

Theorem 8.3. Let V1 and V2 be finite-dimensional vector spaces, and let T1 ∈
EndV1, T2 ∈ EndV2. The following are equivalent:
(i) T1 and T2 are similar.
(ii) T1 and T2 have the same elementary divisors.
(iii) T1 and T2 have the same invariant factors.

Exercise 7.4: Prove Theorem 8.3.

9. The Cayley-Hamilton Polynomial (Or: Up With Determinants?)

Given a linear transformation T , how does one actually compute the eigenvalues?
We choose a basis e1, . . . , en with corresponding matrix M . Then λ is an eigenvalue
for T iff λIn −M is not invertible iff det(λIn −M) = 0. We don’t just have to
randomly check one λ after another: if t is an indeterminate then det(tIn −M) is
a polynomial in t and its roots in F are precisely the eigenvalues. This motivates
the following definition.

Let e1, . . . , en be a basis for V and let M be the associated matrix of T . The
Cayley-Hamilton polynomial of T is

X(t) = det(tIn −M) ∈ F [t].

Lemma 9.1. The Cayley-Hamilton polynomial is independent of the choice of basis.

Proof. For a different basis e′1, . . . , e
′
n of V , the associated matrix M ′ is of the form

PMP−1 for some invertible matrix M . Thus

det(tIn −M ′) = det(tIn − PMP−1) = det(P (tIn −M)P−1)

= (detP ) det(tIn−M)(detP−1) = (detP ) det(tIn−M)(detP )−1 = det(tIn−M).

�

And now a miracle occurs!

Theorem 9.2. For any linear endomorphism T we have χ(t) = X(t).
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Proof. Step 1: Suppose V is cyclic. Then V admits a basis with respect to which the
matrix M is a companion matrix C(p). The Cayley-Hamilton polynomial of C(p)
is the determinant of the matrix XXX. This matrix is not quite upper triangular,
but it is very close: to bring it to upper triangular form we multiply the first row
by 1

t and add it to the second row, then we mutiply the second row by 1
t and

add it to the third row, and so forth. We get a diagonal matrix the first n − 1
diagonal entries of which are each equal to t and for which the last diagonal entry
is a0

tn−1 + a1
tn−2 + . . .+ λ− an−1. Thus

X(C(p)) = det(t− C(p)) = tn−1
( a0
tn−1

+
a1
tn−2

+ . . .+ t+ an−1

)
= p(t).

Step 2: By the Cyclic Decomposition Theorem, there is a basis with respect to
which M is a direct sum of companion matrices C(pi). By Step 1 we have

X(t) = det(tI −M) =
n∏
i=1

(tI − C(pi)) =

n∏
i=1

pi = χ(t). �

Theorem 9.3 (Cayley-Hamilton). We have X(T ) = 0.

Exercise 8.1: Prove Theorem 9.3.

10. Extending The Ground Field

In truth it is not so useful to maintain that when the ground field F is not al-
gebraically closed, there are linear endomorphisms without eigenvalues. A better
perspective is to define the eigenvalues by passage to the algebraic closure. In the
standard approach this just means taking the roots of the characteristic polynomial
χ over F , but our setup is a bit richer. Namely, χ has an intrinsic meaning over F
– it measures the dimensions of the p-primary subspaces – and when we pass from
F to F then any prime polynomial p of degree greater than 1 will no longer be
prime: it will split into linear factors. Thus a priori the characteristic polynomial
χF of the extension of T to V/F has a totally different definition – it is built out of

different local building blocks – and it is not obvious that χF = χ. Fortunately it
is true, and even more: χ is invariant upon any field extension. We will establish
that in this section and then use this invariance to show that our characteristic
polynomial agrees with the usual one defined via a determinant.

10.1. Some Invariances Under Base Extension.

Proposition 10.1. Let K/F be a field extension, and let T/K be the extended
linear endomorphism of V/K . Then the minimal polynomial of T/K is equal to the
minimal polynomial of T .

Proof. Step 0: An F -linearly independent subset S ⊂ V cannot become K-linearly
dependent in V/K : for instance, we can reduce to the case V = F d; linear depen-
dence can then be checked by placing the vectors as rows of a matrix and putting
the matrix in reduced row echelon form (rref); since rref is unique, it does not
change upon base extension.
Step 1: Let P be the minimal polynomial of T and let Q be the minimal polynomial
of T/K . Since P (T ) kills every basis element of V/K it kills V/K : thus Q | P .
Step 2: By the Local Attainment Theorem we have P = Pv for some v ∈ V . The
local minimal polynomial does not change under base extension: arguing as in Step
1, the only way it could change would be to become a proper divisor; on the other
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hand, by Step 0 the vectors v, Tv, . . . , T degPv−1v remain linearly independent in
K, so the degree of the local minimal polynomial for v viewed as an element of V/K
must be degPv. �

Theorem 10.2. Let K/F be a field extension, and let T/K be the extended linear
endomorphism of V/K . Then the characteristic polynomial of T , viewed as an
element of K[t], is equal to the characteristic polynomial of T/K .

Proof. First proof: This is clear for the Cayley-Hamilton polynomial X(t), and by
Theorem 9.2, χ(t) = X(t).
Second proof: We may reduce to the case that T is cyclic and primary, with charac-
teristic polynomial p(t)a for p irreducible in F [t]. Let C be an algebraically closed
field containing K, and let χC be the characteristic polynomial of T/C . It is enough
to show that χ = χC . Let λ1, . . . , λr be the distinct roots of p(t) in C, and let r and s
be the separable and inseparable degrees of the field extension F [t]/(p(t))/F . Then
χ(t) factors in C[t] as

∏r
i=1(t−λi)as. The minimal polynomial does not change upon

field extension (explain), so the characteristic polynomial χC(t) =
∏r
i=1(t − λi)ai .

We want to show that ai = as for all i; since degχC = dimV/C = dimV , it is
enough to show that all of the ai’s are equal. For this we use the fact that for
all 1 ≤ i ≤ r there is σi ∈ Aut(C/F ) with σi(λ1) = λi: first, we have such an
automorphism of the normal closure of F [t]/(p(t)), and second we may extend it
to an automorphism of C using [FT, § 12.2]. Then σi(V

λ1) = V λi , and this gives
the equality of the ai’s. �

Theorem 10.3. Suppose P (t) =
∏r
i=1(t − λi)ai is split, let B = b1, . . . , bd be a

triangular basis for T , and let M be the corresponding matrix. Then the diagonal
entries of MB are precisely the eigenvalues, and each eigenvalue λi appears precisely
dimV(t−λi)ai times.

Proof. Since M is upper triangular, so is tI −M , and thus

χ(t) = X(t) = det(tI −M) =

n∏
i=1

(t−mii).

The number of times a given eigenvalue λ appears on the diagonal is thus equal to
the largest integer a such that (t − λ)a divides χ(t), which in turn is equal to to
degχt−λ(t) = dimV(t−λi)ai . �

Exercise 9.1: Let M be a block diagonal matrix with blocks A1, . . . , An, and such
that each di×di block Ai has prime minimal polynomial pi of degree di. Show that
the characteristic polynomial is

∏n
i=1 pi.

Remark: Axler gives in [A] a determinant-free proof of Theorem 10.3: it takes
a little over two pages. I believe this is the second longest proof in [A]; the longest
is the proof of Exercise 8.2 in the case F = R.

Let T1, T2 ∈ EndV . We say T1 and T2 are potentially similar if there is some
field extension K/F such that (T1)/K and (T2)/K are similar.

Similar implies potentially similar: we may take K = F . But more is true.

Exercise 9.2: Let T1, T2 ∈ EndV be similar. Show that for any K/F , (T1)/K
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is similar to (T2)/K . (Suggestion: consider associated matrices.)

And in fact much more is true: we have the following extremely useful result.

Theorem 10.4 (Potential Similarity Theorem).
a) Let T ∈ EndV have invariant factors fr | . . . | f1 = P . Let K/F be any field
extension. Then the invariant factors of T/K are still fr | . . . | f1 = P .
b) If T1 and T2 are potentially similar, then they are similar.

Proof. a) By definition of the invariant factors, there is a basis {b1, . . . , bn} for V
such that the associated matrix for T is C(f1) ⊕ . . . C(fr). Of course this is still
the matrix for T/K with respect to the same basis. It follows (using, of course, the
uniqueness of invariant factors: see Exercise 5.2) that the invariant factors for T/K
are still fr | . . . | f1 = P .
b) This is immediate from part a) and Theorem 8.3. �

Remark: Our presentation has emphasized primary vectors and primary decom-
position, and thus until now we have preferred to work with elementary divisors
rather than invariant factors. But unlike the invariant factors, the elementary di-
visors can change upon base extension, because they depend on the prime divisors
of the minimal polynomial P , and while the minimal polynomial does not change
after base extension, if it has a prime divisor p of degree greater than one, then in
some extension (e.g. any splitting field) p will factor into polynomials of smaller
degree. Analyzing how a prime polynomial factors in an arbitrary field extension
requires some nontrivial field theory, especially when the ground field is not perfect.
We invite the ambitious reader to try it out in the following exercise.

Exercise 9.3: Let T ∈ EndV . Let K/F be a field extension, with K = K.
a) Give an explicit description of the invariant factors for T/K in terms of the in-
variant factors for T .
(Remark: to do this in the general case requires knowledge of separable versus in-
separable field extensions. See the following subsection for some basic definitions.)
b) Show in particular that the mapping from sequences of invariant factors over F
to sequences of invariant factors over K is injective.
c) Use part b) to give another proof of Theorem 10.4.

Corollary 10.5. Let P (t) ∈ F [t] be a polynomial which factors into distinct linear
factors in an algebraic closure F of F .1 If T1, T2 ∈ EndV each have minimal
polynomial P , then T1 and T2 are similar.

Proof. By hypothesis, over F we have P (t) = (t − α1) · · · (t − αn) for distinct
α1, . . . , αn. It follows that T1 and T2 are both diagonalizable with diagonal entries
α1, . . . , αn, so they are similar over F . By Theorem 10.4, T1 and T2 are similar. �

10.2. Semisimplicity Versus Potential Diagonalizability.

Let V/F be a finite-dimensional vector space and T ∈ EndV . A field extension
K/F is a splitting field for T if the characteristic polynomial χ(t) splits into linear
factors over K. (There is a notion of splitting field of a polynomial in field theory.
They are related but not the same: a splitting field K for T is a field extension of

1Such polynomials are called “separable” and are analyzed in the next subsection.
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F containing a splitting field of χ(t).) Every algebraically closed extension of F is
a splitting field for T . In particular, if F is a subfield of C then C is a splitting field
for every T ∈ EndV , and this is a popular choice in many circles.

We say that T is potentially diagonalizable if there is a field extension K/F
such that T/K ∈ EndV/K is diagonalizable.

Exercise 9.4: We say T ∈ EndV is potentially triangularizable if there is a
field extension K/F such that T/K is triangularizable.
a) Show that in fact every T is potentially triangularizable.
b) Show that the field extensions K/F over which K is triangularizable are pre-
cisely the splitting fields K/F .
c) Deduce that if T/K is diagonalizable, then K is a splitting field for T .

Exercise 9.5: Let P (t) ∈ F [t] be a nonzero polynomial. Show TFAE:
(i) For every field extension K/F , P ∈ K[t] is squarefree.
(ii) P ∈ F [t] is squarefree.
(iii) In some splitting field K/F , P ∈ K[t] is squarefree.
(iv) In every splitting field K/F , P ∈ K[t] is squarefree.
(v) gcd(P, P ′) = 1.
A polynomial satisfying these equivalent conditions is separable.

A field F is perfect if every prime polynomial f ∈ F [t] is separable.

Proposition 10.6.
a) Every field of characteristic 0 is perfect.
Henceforth we suppose that F has characteristic p > 0.
b) F is perfect iff: for all x ∈ F , there is y ∈ F with yp = x.
c) Every algebraically closed field is perfect.
d) Every finite field is perfect.
e) If k has characteristic p > 0, then the rational function field k(t) is not perfect.

Proof. Suppose f ∈ F [t] is a prime polynomial. Then gcd(f, f ′) 6= 1 ⇐⇒ f | f ′.
Since deg f ′ < deg f , this can only happen if f ′ = 0.
a) Since (tn)′ = ntn−1, in characteristic 0 the derivative of a polynomial of degree
n > 0 has degree n−1 ≥ 0, so the derivative of a prime polynomial cannot be zero.
b) Ithere is x ∈ F such that yp 6= x for all y ∈ F , then the polynomial tp − x is
prime: let γ ∈ F be such that γp = x, so in F , tp − x = (t − γ)p. Therefore any
nontrivial prime factor of tp − x must be of the form (t − γ)i for some 0 < i < p.
But the coefficient of ti−1 in (t − γ)i is −iγ, which does not lie in F since γ does
not lie in F .

Conversely, suppose that every x ∈ F is of the form yp for some y ∈ F , and let
f ∈ f(t) be a prime polynomial. As above, the only way for f not to be separable is
f ′ = 0; since (tn)′ = 0 ⇐⇒ p | n, we find that f ′ = 0 iff f(t) = g(tp) is a polynomial
in tp. If g(t) = adt

d + . . .+ a1t+ a0, then since every element of F is a power of p,
we may write ai = bpi for all i and then f(t) = g(tp) = (bdt

d + . . .+ b1t+ b0)p, so f
is not a prime polynomial.
c) If F is algebraically closed then for all a ∈ F , tp − a has a root.
d) For any field of characteristic p, the map x 7→ xp is a field endomorphism of
F (this is because of the “schoolboy binomial theorem: (x + y)p = xp + yp in
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characteristic p, since p |
(
p
i

)
for all 0 < i < p), hence injective. An injective map

from a finite set to itself is surjective.

e) There is no rational function r = f(t)
g(t) with rp = t: e.g. because the degree of

the numerator minus the degree of the denominator would have to be 1
p ! �

Proposition 10.7. Let F be a field.
a) Every nonzero separable polynomial is squarefree.
b) The following are equivalent:
(i) F is perfect.
(ii) Every nonzero squarefree polynomial is separable.

Proof. a) If for some prime polynomial p, p2 | f , then an easy application of the
product rule shows p | gcd(f, f ′).
b) (i) =⇒ (ii): Suppose F is perfect and f = p1 · · · pr is a product of distinct
primes. Then f ′ = p′1p2 · · · pr + . . . + p1 · · · pr−1p′r. So for each 1 ≤ i ≤ r, pi |
f ′ ⇐⇒ pi | p′i ⇐⇒ p′i = 0. Since f is perfect, these conditions don’t hold.
¬ (i) =⇒ ¬ (ii): If F is not perfect, there is a prime polynomial which is not
separable. Prime polynomials are squarefree. �

Theorem 10.8. a) For any T ∈ EndV , the following are equivalent:
(i) T is diagonalizable over every splitting field K.
(ii) T is diagonazliable over some splitting field K.
(iii) T is potentially diagonalizable.
(iv) The minimal polynomial P (t) is separable.
b) For any T ∈ EndV , if T is potentially diagonalizable then it is semisimple.
c) For a field F , the following are equivalent:
(i) F is perfect.
(ii) Every semisimple linear endomorphism on a finite-dimensional F -vector space
is potentially diagonalizable.

Proof. a) (i) =⇒ (ii) =⇒ (iii) is immediate.
(iii) =⇒ (iv): Suppose K/F is a field extension such that T/K is diagonalizable.
By Proposition 10.1, the minimal polynomial of T over K is simply P viewed as
a polynomial with coefficients in K, so by the Diagonalizability Theorem, P splits
into distinct linear factors in K. By Exercise 9.5, P is separable.
(iv) =⇒ (i): Let K/F be a splitting field for P . Since P is separable, by Exercie
9.3, P splits into distinct linear factors in K and then T/K is diagonalizable by the
Diagonalizability Theorem.
b) Since T is potentially diagonalizable iff its minimal polynomial is separable and
semisimple iff its minimal polynomial is squarefree, this follows immediately from
Proposition 10.7a).
c) (i) =⇒ (ii): By the Semisimplicity Theorem, T ∈ EndV is semisimple iff it has
squarefree minimal polynomial, whereas by part a), T is potentially diagonalizable
iff it has separable minimal polynomial. By Proposition 9.5, if F is perfect then
squarefree = separable, so semisimple = potentially diagonalizable. Conversely, if F
is not perfect there is a prime polynomial p which is not separable, and by Example
3.1 there is an endomorphim T with minimal polynomial p, hence a semisimple but
not potentially diagonalizable endomorphism. �
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11. The Dual Endomorphism

11.1. Review of Dual Spaces.

For any set S, let FS be the set of all functions f : S → F . For f, g ∈ FS

and α ∈ F , we define

αf + g : s ∈ S 7→ αf(s) + g(s).

Exercise 10.1: a) Show that FS is an F -vector space.
b) For s ∈ S, let δs ∈ FS be the function which maps s to 1 and every other element
of S to 0. Show that ∆ = {δs}s∈S is a linearly independent set.
c) Deduce that if S is infinite, FS is infinite-dimensional.
d) Show that ∆ is a basis for FS iff S is finite.

Now let V be an F -vector space, for the moment not assumed to be finite-dimensional.
Inside FV we have the subset V ∗ of F -linear maps f : V → F . Such maps are also
called linear functionals on V .

Exercise 10.2: Show that V ∗ is a linear subspace of FV , called the dual space.

For ` ∈ V ∗ and v ∈ V , we denote write 〈`, v〉 for `(v).

By V ∗∗ we mean (V ∗)∗, i.e., the space of linear functionals on the space of lin-
ear functionals on V . There is a canonical map

ι : V → V ∗∗, v 7→ (` 7→ 〈`, v〉).

Lemma 11.1. The map ι : V → V ∗∗ is an injection.

Proof. It is enough to show that for v ∈ V •, ι(v) 6= 0: explicitly, there is a linear
functional ` : V → F such that `(v) 6= 0. But since v 6= 0 there is a basis B of V
containing v, and then we can define ` by putting `(v) = 1 and defined arbitrarily
on every other basis element (i.e., it does not matter how it is defined). �

Suppose now that V is finite-dimensional, and let e1, . . . , ed be a basis. For 1 ≤ i ≤ d
there is a unique linear functional e∗i : V → F which maps ei to 1 and every other
basis element to 0. Suppose α1, . . . , αn ∈ F are such that α1e

∗
1 + . . . + αne

∗
n = 0.

Evaluating at ei we get αi = 0, so e∗1, . . . , e
∗
n are linearly independent. If ` ∈ V ∗ is

any linear functional, then ` and `(e1)e∗1 + . . . + `(en)e∗n agree when evaluated at
each basis element ei so are equal. Thus 〈e∗1, . . . , e∗n〉 = V ∗, so e∗1, . . . , e

∗
n is a basis

for V ∗, called the dual basis to e1, . . . , en. From this we deduce:

Corollary 11.2. Let V be a finite-dimensional vector space. Then:
a) V ∗ ∼= V .
b) The map ι : V → V ∗∗ is an isomorphism.

Proof. a) The above analysis shows that if V has finite dimension d then so does
V ∗, and any two vector spaces of the same dimension are isomorphic.
b) By part a), dimV ∗∗ = dim(V ∗)∗ = dimV ∗ = dimV . By Lemma 10.1, ι is an
injective linear map between two vector spaces of the same finite dimension, hence
is an isomorphism by the Dimension Theorem. �
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Remark 11.3. It turns out that for every infinite-dimensional vector space V ,

(3) dimV ∗ > dimV ;

this is an inequality of infinite cardinal numbers. Thus dimV ∗∗ > dimV ∗ > dimV .
In particular the canonical injection ι is not an isomorphism. However, establishing
(3) would take us too far from what we want to discuss here.

11.2. The Dual Endomorphism.

Let T ∈ EndV . There is a dual endomorphism T ∗ of EndV ∗: if λ : V → F , we
put T ∗λ = λ ◦ T : V → F . In other words, for all λ ∈ V ∗ and v ∈ V ,

〈T ∗λ, v〉 = 〈λ, T (v)〉.

Exercise 10.3: More generally, let L : V → W be any F -linear map. Then there is
a map L∗ : W ∗ → V ∗, given by

(` : W → F ) 7→ L∗` = ` ◦ L : V → F.

a) Show that L∗ is F -linear.
b) Show: if L is injective, L∗ is surjective.
c) Show: if L is surjective, L∗ is injective.

Lemma 11.4. a) For all f ∈ F [t], λ ∈ V ∗ and v ∈ V , we have

〈f(T ∗)λ, v〉 = 〈λ, f(T )v〉.

b) The minimal polynomial P ∗ of T ∗ on V ∗ is equal to the minimal polynomial P
of T on V .

Exercise 10.4: Prove Lemma 11.4.

For a subspace W ⊂ V and λ ∈ V ∗, we will write 〈λ,W 〉 = 0 as an abbrevi-
ation for “For all w ∈ W , 〈λ,w〉 = 0. For W ′ ⊂ V ∗ and v ∈ V the notation
〈W ′, v〉 = 0 is defined similarly.

For a subspace W ⊂ V we put

W⊥ = {λ ∈ V ∗ | 〈λ,W 〉 = 0}.

Exercise 10.5: a) Show that W⊥ is a linear subspace of V ∗.
b) If W is T -invariant, show that W⊥ is T ∗-invariant.

Suppose we have a direct sum decomposition V = W1 ⊕W2. Let π1 : V → W1

be given by (w1, w2) 7→ w1. Consider the dual map π∗1 : W ∗1 → V ∗. Since π1 is
surjective, by Exercise 10.3c), π∗1 is injective. We claim π∗1(W ∗1 ) = W⊥2 . Indeed:

Let w2 ∈W2 and λ : W1 → F . Then

〈π∗1(λ), (0, w2)〉 = (λ ◦ π‘)(0, w2) = λ(0) = 0.

Conversely, let λ : V → F be such that λ(W2) = 0. Let λ̃ = λ|W1
. Then for all

v = (w1, w2) ∈ V ,

π∗1(λ̃)(w1, w2) = λ̃(π1(w1, w2)) = λ̃(w1) = λ(w1)

so π∗1(λ̃) = λ.
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Theorem 11.5. Suppose V = W1 ⊕W2.
a) There are canonical isomorphisms

Φ = π∗1 : W ∗1
∼→W⊥2

and

Ψ = π∗2 : W ∗2
∼→W⊥1 .

b) Suppose W1 and W2 are invariant subspaces. Then

T ∗|W⊥2 ◦ Φ = Φ ◦ (T |W1
)∗

and

T ∗|W⊥1 ◦Ψ = Ψ ◦ (T |W2
)∗

c) Thus T ∗ ∈ EndW⊥2 and T ∈ EndW1 are similar endomorphisms, as are T ∗ ∈
EndW⊥1 and T ∈ EndW2.

Proof. In each part it suffices to prove the first assertion; the second one follows
from interchanging the roles of W1 and W2.
a) This has been shown above.
b) Let λ : W1 → F and v = w1 + w2 ∈W1 ⊕W2 = V . Then

〈(T ∗|W⊥2 ◦ Φ)(λ), w1 + w2〉 = 〈π∗1λ, T (w1) + T (w2)〉

= 〈λ ◦ π1, T (w1) + T (w2)〉 = λ(T (w1))

= 〈λ, T |W1
w1〉 = 〈(T |W1

)∗λ,w1〉

= 〈(T |W1
)∗λ, π1(w1 + w2)〉 = 〈π∗1(TW1

)∗λ,w1 + w2〉 = 〈Φ(T |W1
)∗λ,w1 + w2〉.

c) Part b) asserts that T ∗ ∈ EndW⊥2 and T ∈ EndW1 are similar, so the result
follows from Theorem 8.3. �

Corollary 11.6. Let W ⊂ V be a subspace. Then:
a) dimW⊥ = dimV − dimW .
b) W⊥⊥ = W .

Proof. a) This follows from Theorem 11.5a).
b) W⊥⊥ is the set of v ∈ V such that for all ` ∈ V ∗ such that `(W ) = 0, `(v) = 0;
clearly this contains W ! By part a), W and W⊥⊥ have the same finite dimension,
so the inclusion W ⊂W⊥⊥ must be an equality. �

Corollary 11.7. If V = W1 ⊕ W2 with W1 and W2 invariant subspaces, then
V ∗ = W⊥2 ⊕W⊥1 .

Proof. Step 1: Suppose ` ∈ W⊥1 ∩ W⊥2 . Let v ∈ V and write v = w1 + w2

with wi ∈ Wi. Then `(v) = `(w1) + `(w2) = 0. So ` = 0. It follows that
W⊥2 +W⊥1 = W⊥2 ⊕W⊥1 .
Step 2: By Corollary 11.6 we have

dimW⊥2 + dimW⊥1 = dimV − dimW2 + dimV − dimW1 = dimV = dimV ∗.

Since V is finite-dimensional, we conclude V ∗ = W⊥2 ⊕W⊥1 . �

Theorem 11.8. The elementary divisors of T on V are those of T ∗ on V ∗.
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Proof. Let V =
⊕n

i=1 Ci be a decomposition into primary cyclic subspaces. We go
by induction on n.
Base Case (n = 1): Suppose V is cyclic and primary, so the minimal and char-
acteristic polynomials are both equal to p(t)a for some prime polynomial p(t) and
a ∈ Z+, and p(t)a is the only elementary divisor. The minimal polynomial of V ∗ is
also p(t)a and its degree is dimV = dimV ∗, so V ∗ is also cyclic and primary with
p(t)a as its only invariant factor.
Induction Step: Let n ≥ 2 and assume the result when V has fewer than n elemen-
tary divisors. Put W2 =

⊕n
i=2 Ci, so V = C1⊕W2: here C1 is cyclic with minimal

polynomial pa11 . By Corollary 11.7, V ∗ = W⊥2 ⊕ C⊥1 . By Theorem 11.5b), W⊥2
is cyclic with minimal polynomial pa11 , so pa11 is an elementary divisor of V ∗. By
Theorem 11.5b), the endomorphism T on W2 is similar to the endomorphism T ∗ on
C⊥1 , hence they have the same elementary divisors. We are done by induction. �

11.3. Jacob’s Proof of the Existence of a Cyclic Decomposition.

Above we gave M.D. Burrow’s nice “early” proof that the minimal polynomial
of any linear transformation on a finite dimensional vector space V has degree at
most dimV . Burrow’s article [Bu73] also give nice inductive proofs of the facts that
if V is p-primary, deg p | dimV and that that Cayley-Hamilton polynomial is equal
to the characteristic polynomial. It happens that the following article [Ja73] in the
December 1973 issue of the Monthly, which begins on the same page as Burrow’s
article ends, contains a nice proof of the existence part of the Cyclic Decomposition
Theorem using dual spaces. We reproduce Jacob’s proof here.

It is enough to show: for any v ∈ v with Pv = P , there is an invariant sub-
space W ′ ⊂ V with V = [v]⊕W ′.

To show this: let k = degP , v1 = v, v2 = Tv, . . . , vk = T k−1v1, so v1, . . . , vk
is a basis for [v]. Extend it to a basis v1, . . . , vd for V . Let v∗1 , . . . , v

∗
k be the dual

basis of V ∗, and put v∗ = v∗k. Then

∀1 ≤ i ≤ k − 1, 〈v∗, vi〉 = 0,

〈v∗, vk〉 = 1.

Let U = 〈v∗, T ∗v∗, . . . , T ∗k−1v∗〉. Since P ∗ = P , U is T ∗-invariant.
claim: U ∩ [v]⊥ = 0 and dimU = k. If so, V ∗ = U ⊕ [v]⊥ and then

V = V ∗∗ = [v]⊥⊥ ⊕ U⊥ = [v]⊕ U⊥.
proof of claim: if either dimU < k or U ∩ [v]⊥ 6= 0, there is 0 ≤ s ≤ k − 1 such
that as 6= 0 and

a0v
∗ + a1T

∗v∗ + . . .+ asT
∗sv∗ ∈ [v]⊥.

Then
T ∗k−1−s (a0v

∗ + a1T
∗v∗ + . . .+ asT

∗sv∗)

= a0T
∗k−1−sv∗ + a1T

∗k−sv∗ + . . .+ asT
∗k−1v∗ ∈ [v]⊥.

Thus

0 = 〈(a0T ∗k−1−s+a1T ∗k−s+. . .+asT ∗k−1)v∗, v〉 = 〈v∗, (a0T k−1−s+. . .+asT k−1)v〉
= a0〈v∗, vk−s + . . .+ as〈v∗, vk〉 = as,

a contradiction.
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