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CHAPTER 1

Basics

1. Some Motivating Examples

Linear algebra is the study of linear systems, matrices, vector spaces and linear transformations. As
with most higher mathematics courses, it will take time to present and appreciate these new concepts
and objects. Rather than proceeding in a strict logical (linear?) order, I want to begin with some
motivational examples: some problems we can solve using linear algebra.

1.1. Example 1: Stoichiometry.

In chemical reactions, adding one compound to another may yield one or more new compounds using
the component atoms. We write equations to describe these reactions, but they need to be balanced.
For example, consider

N2 +H2 7→ NH3.

This reaction cannot happen as written: on the left hand side there are 2 nitrogen atoms and 2 hydrogen
atoms, whereas on the right hand side there is only 1 nitrogen atom and there are 3 hydrogen atoms.
We need to balance the equation by supplying positive whole number coefficients to make the number
of atoms of each element on the left hand side equal the number of atoms of each element on the right
hand side: say

?N2+?H2 7→?NH3.

Notice that we have twice as many nitrogen atoms on the left hand side as the right hand side, so why
not multiply the N2 by 1 and the NH3 by 2:

1N2+?H2 7→ 2NH3.

This balances the nitrogen. What about the hydrogen? Well, no problem: we have 6 on the right so
we need six on the left, so the last “?” should be 3:

N2 + 3H2 =⇒ 2NH3.

Is it always so easy? No, it isn’t, as you know if you’ve taken chemistry. Here is another example,
taken from an online chemistry guide to balancing equations.

? Zn3 Sb2 +?H2O 7→? Zn(OH)2+? SbH3.

Suppose we start by balancing the O:

? Zn3 Sb2 + 2H2O 7→ 1 Zn(OH)2+? SbH3.

And suppose we continue by balancing the Zn (zinc): we get stuck, because whatever positive integer
we take for the coefficient of Zn3 Sb2 we’ll get at least 3 zinc atoms on the left and we only have one
on the right. What do we do??

The handout instructs us to start again with an atom that only appears once on each side of the
equation, say Sb.1 This would lead us to

1 Zn3 Sb2 +?H2O 7→? Zn(OH)2 + 2 SbH3.

1Chemical trivia question: what element is denoted Sb?!?
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6 1. BASICS

Maybe we try the Zn next? We have to put a coefficient of 3 on the right, getting

1 Zn3 Sb2 +?H2O 7→ 3 Zn(OH)2 + 2 SbH3.

Finally, look at the H and the O. If we put a 6 on the left, it works out:

1Zn3Sb2 + 6H2O 7→ 3Zn(OH)2 + 2SbH3.

Well, that was fortunate. The same handout includes the following hints:

1. Start with an atom that appears only once on each side of the equation.
2. Continue choosing atoms needing only one new coefficient to become balanced.
3. Balance polyatomic ions as a group.2

4. Save hydrogen and oxygen atoms for last.
5. If you get totally stuck, try doubling (or tripling, etc.) all the coefficients already entered.

Oh, dear. The last bit suggests that we are being given less than a complete recipe. This stoi-
chiometry business looks like more of an art than a science.

Instead, let’s be scientific about it. We only need a small change: instead of repeated question marks,
let’s write variables for the coefficients, say

aZn3Sb2 + bH2O 7→ cZn(OH)2 + dSbH3.

Now equating the total number of instances of Zinc on both sides gives

3a = c.

Equating the total number of instances of Sb on both sides gives

2a = d.

Equating the total number of instances of H on both sides gives

2b = 2c+ 3d.

Equating the total number of instances of O on both sides gives

b = 2c.

So we get a system of four equations in four unknowns. If only we knew how to solve such things. Well,
we’ll learn! Note though that this is a pretty sparse system of equations. Many of the coefficients are
0:

3a+ 0b− c+ 0d = 0.

2a+ 0b+ 0c− d = 0.

0a+ 2b− 2c− 3d = 0.

0a+ b− 2c+ 0d = 0.

Maybe including the zero coefficients looks fastidious. But when we get serious about solving linear
systems, we’ll see that recopying the variables over and over again is unnecessary and even slightly
distracting. So long as we keep the zeros as placeholders, we can just take the coefficients and put
them in a rectangular array – a matrix:

3 0 −1 0 0
2 0 0 −1 0
0 2 −2 −3 0
0 1 −2 0 0

 .
Note that the final column consists entirely of zeros: this is characteristic of homogeneous linear
systems. Such systems always have a solution: take all variables equal to zero! Here, as usual, we
are looking for solutions other than the all zero solution.

2I’m not sure exactly what that means, but I wanted to give you all the advice.
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In fact the zeros in the matrix are not just placeholders but welcome guests. The more zero coef-
ficients in the corresponding matrix, the easier it is to solve the linear system. In this case solving the
system certainly doesn’t require any special knowledge or ingenuity: two of the variables are simply
being given to us in terms of a. Suppose for the sake of argument that a = 1. Then we get c = 3 and
d = 2, and using this information we get

2b = 2c+ 3d = 2 · 3 + 3 · 2 = 12,

so

b = 6.

And now we have one more equation involving b. Luckily it is consistent with what we already know:

b = 2c = 2 · 3 = 6.

Thus

(a, b, c, d) = (1, 6, 3, 2)

is a solution to the system...exactly the solution we found by hand above. It is not the only solution:
no matter what a is we can solve uniquely for b, c and d. In fact we can do this simply by leaving a
as is: we get

(a, b, c, d) = (a, 6a, 3a, 2a).

Notice that this amounts to taking our previous solution and just multiplying it through by a. However
the solution with a = 1 is the one that the chemists want: the entries need to be positive integers, and
we don’t want redundancy: mathematically speaking, we don’t want all of a, b, c, d to be divisible by
any common factor greater than 1.

This simple mathematical analysis is very illuminating. Here are some key points:

I. The entire task is being reduced to solving a system of linear equations. If we know how to do
that systematically, balancing equations has no fear for us.

II. We have in fact been given some good advice about how to solve linear systems. In particu-
lar, whenever a certain atom appears exactly once on each side, we’ll get an equation of the form
αa = βb, where a and b are the variables we’re trying to solve for any α and β are positive integers.
This tells us that b = β

αa, i.e., we’ve eliminated one of the variables from the system of equations,
making it that much easier to solve.

III. It seems to be an implicit assumption that the system is close to having a unique solution: namely
it has a unique solution if we require the variables to be positive integers without a common factor.
This is much less clear, even if for those who have some knowledge in the solution of linear systems.
Note for instance that we have four equations in four unknowns. As we will see later, “most of the
time” this type of homogeneous system has only the all zero solution, so our stoichiometric system
is somewhat atypical. Neither is it clear that we will always have the same number of variables as
equations. In fact, the inspiration to motivate linear systems through stoichiometry came from the
course text [SA], which does so on p. 66. However, their example leads to a system of three equations
in four unknowns, which as we will learn later, always has a solution apart from the all zero solution.

Could we in fact prove that the solutions to these stoichiometric systems always have a unique solution
in positive integers with no common factor? Or are there chemical reactions that are “stoichiometri-
cally impossible”? This is an interesting question which we’ll come back to later.
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1.2. Partial Fractions Decomposition.

Suppose I want to find an antiderivative of the function 2x+3
x3+x . In second semester calculus we learn to

do this via the method of partial fractions, namely we posit an algebraic identity of the form

x2 + 2x+ 3

x3 + x
=
A

x
+
Bx+ C

x2 + 1

and try to solve it for real numbers A,B,C. How is this done? Well, if we multiply both sides by
x3 + x to clear denominators we get

x2 + 2x+ 3 = A(x2 + 1) + (Bx+ C)x = (A+B)x2 + Cx+A.

Now the polynomial on the left will certainly be equal to the polynomial on the right if they are
equal coefficient by coefficient (in fact this is the only way for two polynomials with real numbers as
coefficients to be equal, as we will probably have occasion to recall later on), so it is enough to enforce

A = 3,

C = 2,

A+B = 1.

Again we get a linear system to solve! (This time the system is inhomogeneous: the right hand sides
of the equations are not all zero.) And again it’s an easier system than the general case, in this case
very easy: clearly A = 3 and C = 2, which tells us that B = 1−A = −2, thus the desired identity is

x2 + 2x+ 3

x3 + x
=

3

x
+
−2x+ 2

x2 + 1
,

so ∫
x2 + 2x+ 3

x3 + x
=

∫
3

x
−
∫

2x

x2 + 1
+ 2

∫
1

x2 + 1

= 3 log x− log(x2 + 1) + 2 arctanx+ c.

Of course this was a relatively benign example: in general, to integrate a proper rational function P (x)
Q(x)

when the denominator Q is a polynomial of degree n (i.e., the highest power of x which appears is xn),
then this method gives us an n× n system of linear equations to solve. It is not always the case that
one can solve the system so easily: sometimes there is still nontrivial work to do. In fact, the class of
rational functions you are asked to integrate in second semester calculus is limited to those for which
solving the corresponding linear systems is sufficiently easy to do without knowledge of the methods
of linear algebra.

Again though there is also a theoretical question here: how do we know that the linear system we
set up to do a partial fractions decomposition will always have a unique solution? This is the type of
question that linear algebra can answer.

1.3. Polynomial Interpolation.

It is a well-known adage that “two points determine a line”. What this means is that given any
two distinct points P1 and P2 in the plane, there is exactly one line passing through both of them. If
we dismiss vertical lines as being a not especially fascinating degenerate case, then the line is the graph
of a function f : R → R and the problem is one of interpolation: suppose we have x-coordinates
x1 < x2 and numbers y1, y2, and we want to find the unique linear function ` = mx+ b which passes
through the points P1 = (x1, y1) and P2 = (x2, y2). What do we do?

Really, we just do it: brute force algebra will work nicely. Namely, writing out the equations `(x1) = y1
and `(x2) = y2 we get

y1 = mx1 + b,

y2 = mx2 + b.
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Again this gives us a linear system: this time the two unknowns are m and b. We can solve it, for
instance, by subtracting the equatations, giving

y1 − y2 = m(x1 − x2),

so – perhaps we could have gotten here faster! –

m =
y1 − y2
x1 − x2

.

(The denominator cannot be zero since we have assumed x1 < x2.) Then

b = y1 −mx1 = y1 −
(
y1 − y2
x1 − x2

)
x1.

Now suppose that we are given three points

P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3).

Of course there will usually be no line that passes through all three points: if at first there is a line
passing through all three, then change the value of y3! However this time there is a unique quadratic
function

f(x) = ax2 + bx+ c

such that f(x1) = y1, f(x2) = y2, f(x3) = y3. By plugging everything in we get a linear system:

y1 = f(x1) = ax21 + bx1 + c

y2 = f(x2) = ax22 + bx2 + c

y3 = f(x3) = ax23 + bx3 + c.

(Note that these are not purely linear equations, but they are linear in the unknown variables a, b
and c.) For particular x1 < x2 < x3 and y1, y2, y3, we can try to solve the linear system: if there is
indeed a unique solution, we will find it. However this time we do not have a sparse system of three
equations and three unknowns: we really have to do some work to solve it. It is another matter entirely
to explain why there is always exactly one solution (a, b, c). In fact there are some general theorems
along these lines, for instance.

Theorem 1.1. (Lagrange Interpolation) Let n be a positive integer, let x1 < . . . < xn < xn+1 be
real numbers, and let y1, . . . , yn, yn+1 be real numbers. Then there is exactly one polynomial P (x) of
the form P (x) = anx

n + . . .+ a1x+ a0 – i.e., of degree at most n – such that P (x1) = y1, P (x2) = y2,
. . ., P (xn+1) = yn+1.

We will explain how to prove this theorem later on in the course. For now let me notice that there
is another polynomial interpolation theorem which is even more familiar. Namely, given an n times
differentiable function f defined on an interval containing c ∈ R, there is a unique polynomial function
Tn(x) of degree at most n such that: for all 0 ≤ i ≤ n, the ith derivative of Tn at c is equal to the ith
derivative of f at c:

T (i)
n (c) = f (i)(c).

Namely, Tn must be the degree n Taylor polynomial of f,

Tn(x) =

n∑
i=0

f (i)(c)

i!
(x− c)i.

This Taylor Interpolation Theorem can be (and is, say in Math 3100) proved without using linear
algebra. In fact one can give a linear-algebra free proof of Lagrange Interpolation: see e.g. [HC, § 12.5].

But what if we want to interpolate between Lagrange Interpolation and Taylor Interpretation? For
instance, suppose I have a function f , and I want a polynomial P (x) which matches the value of the
function and the first two derivatives at 1, the value of the function at 3 and the value of the function
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and the first three derivatives at 7. If you are patient enough to write all this out you will see that
this amounts to 3 + 1 + 4 = 8 different linear equations on the coefficients of an unknown polynomial.
Since a degree n polynomial has n + 1 different coefficients, it is plausible that to do this we should
look for a polynomial of degree (at most) 8. The Hermite Interpolation Theorem says that one
can always interpolate in this way by a polynomial of degree at most n, as long as n + 1 is at least
as large as “the number of conditions” we are imposing. It is a very satisfying generalization of both
Lagrange and Taylor interpolation, and in contrast to the above I only know how to prove this result
using linear algebra. We will do so later in the course.

1.4. Fibonacci Numbers.

There is a very famous and ubiquitous sequence of positive integers defined by F1 = F2 = 1 and
for all n ≥ 3, Fn = Fn−1 = Fn−2. In other words,

F3 = F1 + F2 = 1 + 1 = 2,

F4 = F2 + F3 = 1 + 2 = 3,

F5 = F3 + F4 = 2 + 3 = 5,

F6 = F4 + F5 = 3 + 5 = 8,

and so forth. There are all kinds of amazing identities surrounding the Fibonacci numbers. Here are
three:

Theorem 1.2. (Cassini Identity) For all positive integers n,

Fn+1Fn−1 − F 2
n = (−1)n.

Theorem 1.3. (Addition Formula) For all positive integers m and n,

Fm+n = FmFn+1 + Fm−1Fn.

Theorem 1.4. (Binet’s Formula) Let ϕ = 1+
√
5

2 and ϕ = 1−
√
5

2 . Then for all positive integers n,

Fn =
ϕn − ϕn√

5
.

It is in fact possible to prove all of these identities by induction on n. I have done so when teaching
induction in Math 3200. But the kryptonite of mathematical induction is that it does not give you
any help with the (often much more difficult) task of coming up with the statements you are trying to
prove. It turns out that one can not only prove but also discover these identities by using the algebraic
properties of a certain matrix

M =

[
1 1
1 0

]
.

In particular, as we will see, one can multiply any two square matrices of the same size to get another
square matrix of the same size. In particular, one can take powers Mk of any square matrix. Then
the key to all three of the above identities is the following matrix identity.

Theorem 1.5. For all positive integers n, we have

Mn =

[
Fn+1 Fn
Fn Fn−1

]
.
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1.5. Some Differential Equations.

One of the most important areas of both pure and applied mathematics is differential equations.
For instance, Newton’s Second Law is F = ma = mx′′. If the force is given as a function of the posi-
tion, then we get a second order differential equation whose solutions tell us how the body moves when
subjected to the given force: this is mathematical magic. For instance, in the case of a mass suspended
on a spring, Hooke’s Law says that upon distending the mass a distance of x units from the equilib-
rium, the spring pulls back in the opposite direction and with a force which is simply proportional to
x: F = −kx. This leads to

−kx(t) = mx′′(t),

or

x′′ =
−m
k
x.

Let us suppose for the sake of simplicity that m = k, so we get the equation

x′′ = −x.
This has two fundamental solutions x1(t) = cos t, x2(t) = sin t, and the general solution is obtained by
linearly combinbing them:

x(t) = C1 cos t+ C2 sin t.

Note that the differential equaiton x′′ = −x implies that

x′′′′ = (x′′)′′ = (−x)′′ = −x′′ = −(−x) = x.

Thus we are looking for functions which are equal to their own fourth derivative. This larger space
has four fundamental solutions

et, e−t, cos t, sin t

and the general solution is a linear combination of them. However et and e−t are “degenerate” solu-
tions in that they satisfy x′′ = x rather than the desired x′′ = −x.

It turns out that we are very lucky to be able to write down nondegenerate solutions to x′′′′ = x
by pure thought as we did above. Suppose for instance we want a function x = x(t) which is equal to
its own third derivative: x′′′ = x. Again there is the “degenerate solution” x(t) = et, which satisfies
x′ = x. What about a nondegenerate solution? The methods of linear algebra will help with this.

2. Row Operations and Row Echelon Form

We work over the real numbers (but everything we say would be valid for matrices with coefficients in
any field of scalars). For positive integers m,n we denote by Mm,n the set of m× n matrices.

Two matrices A,B ∈ Mm,n are row equivalent, and write A ∼ B, if we can get from A to B
by performing a finite sequence of elementary row operations. If A ∼ B, then for any column vectors
x = (x1, . . . , xn) and d = (d1, . . . , dm), we have Ax = d if and only if Bx = d. This is just matrix
notation for the fact that the elementary row operations preserve the solution set of a linear system.

Row equivalence is indeed an equivalence relation on Mm,n, hence it partitions Mm,n into equiva-
lence classes. One can motivate the main result of this note by asking for a canonical way of choosing
one matrix from each equivalence class.

For M ∈ Mm,n, an entry mij is a leading entry if, reading from left to right, it is nonzero and
is the first nonzero entry in its row. Thus a row has a leading entry if and only if it is not a zero row,
and every row has at most one leading entry. Thus the number of leading entries of M is at most m,
the number of rows.

A matrix A ∈Mm,n is in row echelon form if
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(REF1) Every zero row of A lies below every nonzero row of A, and
(REF2) Every leading entry occurs to the right of every leading entry in the rows above it.

Exercise 2.1. a) Show that (REF2) is equivalent to: if 1 ≤ i1 < i2 ≤ m and 1 ≤ j1, j2 ≤ n, ai1j1
is a leading entry and ai2j2 6= 0, then j2 > j1.
b) Show that (REF2) implies that every entry lying directly below a leading entry is 0. More precisely,
if aij is a leading entry, then for all i ≤ i′ ≤ m, ai′j = 0.

A matrix A ∈ Mm,n is in reduced row echelon form (or rref) if it is in row echelon form and
moreover

(RREF1) If a column contains a leading entry, every other entry of that column is zero, and
(RREF2) Every leading entry is equal to 1.

Proposition 2.1. Every A ∈Mm,n is row equivalent to a rref matrix.

Proof. The proof is constructive: that is, we give an explicit procedure.
Step 1: We use elementary row operations to put A ∈Mm,n in row echelon form. We begin by looking
at the first column.
Case 1: If every entry of the first column is 0, we move on to the m× (n−1) submatrix A′ obtained by
removing the first column of A. Any row operations that put A′ in row echelon form will also put A in
row echelon form (moreover if a matrix has a zero column, then so does any row equivalent matrix).
Case 2: Suppose that some entry of the first column is nonzero.
Case 2a: Suppose a11 6= 0. Then by using the type (III) row operation, for all 2 ≤ i ≤ m, we multiply
row 1 by −am1

a11
and add it to row i, thus making the (i, 1) entry equal to zero. Thus we end up with

a matrix with a1,1 nonzero (thus a leading entry) and ai,1 = 0 for all 2 ≤ i ≤ m. We then proceed
inward to the (m − 1) × (n − 1) submatrix A′ formed by removing the first row and column of A,
observing that any sequence of row operations that puts A′ in row echelon form does the same for our
matrix.3

Case 2b: Suppose that a11 = 0. Since we are in Case 2, there is some i such that ai1 6= 0. For the sake
of definiteness4 take the smallest such i and perform the type (I) row operation switching the first and
ith rows. This places us back in Case 2a.
We now have a smaller – either m× (n− 1) or (m− 1)× (n− 1) – matrix to put in row echelon form,
so we can apply the above procedure to this matrix. (In other words, the algorithm is recursive: we
do something very simple and then allow the algorithm to call on itself for smaller parameter values.)
Step 2: We have now replaced A by a row equivalent matrix which in row echelon form. We may easily
go further and put in reduced row echelon form. First, in each row containing a leading entry aij , we
use the type (III) row operation to make all the entries in that column above aij equal to zero just as
we did for the entries below to get to row echelon form. (It is worth thinking about why this process
necessarily preserves row echelon form: e.g. how do we know we don’t produce any zero rows lying
above nonzero rows by doing this?) Finally, for every row containing a leading entry aij we use the
type (II) row operation to multiply the ith row by 1

aij
, which makes the leading entry equal to 1 (and

does not change which entries are zero or nonzero so preserves everything we’ve done so far). �

Exercise 2.2. a) Suppose A ∈Mm,n has entries in the rational numbers Q – i.e., numbers of the
form a

b with a, b ∈ Z and b 6= 0. Show that our algorithm produces a row echelon form and then a
reduced row echelon form with entries in Q.
b) Suppose A ∈ Mm,n has entries in Z. Show that our algorithm does not in general produce a row
echelon form or a reduced row echelon form with entries in Z.

3This is straightforward to check but not, I think, immediately obvious. It is also very important...so please do

check it.
4We do actually want to give an algorithm. An algorithm is not allowed to “make choices”: it must do the same

thing every time.
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c) Show however that a modified algorithm will take any A with entries in Z and yield a row echelon
form with entries in Z. (Hint: when you want to divide by something, multiply a different row by that
thing instead.) In fact, show that we can start with any A with entries in Q and find a row equivalent
matrix in row echelon form with entries in Z.
d) Show that if A has entries in Mm,n, then a modified algorithm will yield a row echelon form which
satisfies (RREF1).5

Let A be a matrix in row echelon form. Then the variables corresponding to the columns which contain
leading entries are called pivot variables, whereas the variables corresponding to the other columns
are called free variables.

Theorem 2.2. The reduced row echelon form is unique. More precisely, for each A ∈Mm,n, there
is exactly one matrix R ∈Mm,n with A ∼ R and R in reduced row echelon form.

Proof. We follow T. Yuster [Y84] by inducting on n, the number of columns.
Base Case (n = 1): Suppose A has only one column. If A is the all zero matrix, it is row equivalent

only to itself and is in reduced row echelon form. Every nonzero matrix with one column has a nonzero
entry, and all such matrices have reduced row echelon form the column vector (1, 0, . . . , 0) and no other
row echelon form.

Induction Step: Suppose now that n > 1, that the result holds for all m × n matrices, and let
A ∈Mm,n+1. For any M ∈Mm,n+1, we let M ′ ∈Mm,n be obtained by removing the last column from
M . Let B and C be reduced row echelon forms of A. Here is the key observation: the matrices B′

and C ′ are in reduced row echelon form and row equivalent to A′.
By induction, we have B′ = C ′. In other words, we know that the reduced row echelon matrices
B and C are equal except possibly in the last column. Seeking a contradiction we suppose that
their last columns are not equal: i.e., there is some 1 ≤ i ≤ m such that bi,n+1 6= ci,n+1. Now let
x = (x1, . . . , xn+1) be any vector with Bx = 0, i.e., a solution of the associated homogeneous linear
system. Because B and C are row equivalent, x is also a solution to the homogeneous system Cx = 0.
It follows that (B−C)x = 0. Since the matrix B−C is zero except in its last column, performing the
multiplication of the ith row of B−C by x simply gives (bi,n+1−ci,n+1)xn+1 = 0. Since bi,n+1 6= ci,n+1

we deduce that xn+1 = 0. Thus xn+1 is not a free variable for either B or C, so in each of these matrices
the last column must contain a leading entry of 1 and have all the other entries 0. Moreover, in both
B and C the 1 must lie in the first zero row of B′ and C ′. Thus B = C. �

The uniqueness of reduced row echelon form has several important consequences. For now we point
the following one.

Corollary 2.3. Let A ∈Mm,n, and let B and C be row equivalent matrices each in row echelon
form. Then the pivot variables with respect to the matrix B are the same as the pivot variables with
respect to the matrix C.

Proof. We gave an algorithm to take the matrix B and put it in reduced row echelon form. At
every step this algorithm preserves the positions of the leading entries, so it preserves pivot variables.
Thus the pivot variables with respect to B are the same as the pivot variables for some reduced row
echelon form matrix RB which is row equivalent to A. Similarly, the pivot variables with respect to
C are the same as the pivot variables for some reduced row echelon form matrix RC which is row
equivalent to A. But by Theorem 2.2, RB = RC , and thus the pivot variables with respect to B are
the same as the pivot variables with respect o C. �

This allows us to make the following important definition. For a matrix A ∈Mm,n, we define the rank
of A to be the number of pivot variables in any row echelon form of A and the nullity of A to be the
number of free variables in any row echelon form of A. Corollary 2.3 ensures that this is “well-defined”,
i.e., independent of the row echelon form chosen. The following result follows immediately but, when
translated into other contexts, is in fact important and quite powerful.

5Perhaps we should call this almost reduced row echelon form?
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Theorem 2.4 (Rank-Nullity Theorem, Version 1). For any A ∈Mm,n we have

rank(A) + nullity(A) = n.

Exercise 2.3. Prove the Rank-Nullity Theorem.

Exercise 2.4. Find all rref matrices R ∈ M2,2. (Hint: what are the possibilities for the first
column?)

We denote by In the n×n matrix with (i, i) entry equal to 1 for all 1 and other entries 0. Notice that
In is in reduced row echelon form, and every column contains a leading entry. Thus it has n pivot
variables and 0 free variables, so it has rank n. Conversely, it is easy to see that In is the only reduced
row echelon form matrix in Mn,n in which every column contains a leading entry.

Theorem 2.5. For A ∈Mn,n, the following are equivalent:
(i) rref(A) = In.
(ii) For all b ∈ Rn, there is a unique x ∈ Rn such that Ax = b.
(iii) For all x ∈ Rn, if Ax = 0, then x = 0.
(iv) rankA = n.

Proof. (i) =⇒ (ii): If rref A = In, then for any b ∈ Rn, to solve Ax = b we put the augmented
matrix [A | b] in reduced row echelon form, getting [rref(A) | b′] = [In | b′]. (Here b′ is whatever get by
starting with b and doing the row reduction process.) In terms of equations this reads Inx = b′, i.e.,
x = b′. So there is always a unique solution.
(ii) =⇒ (iii): Let b = 0 can always solve the homogeneous system Ax = 0 by taking x = 0. Since we
are assuming the solution is unique, we must not have any other solutions: if Ax = 0, then x = 0.
(iii) =⇒ (iv): The number of parameters of the solution space to Ax = 0 is equal to the number of
free variables. So if we have only the trivial solution to Ax = 0, we have no free variables and therefore
all n variables are pivot variables: rankA = n.
(iv) =⇒ (i): Since rankA = n and n is the number of columns, rref(A) has n leading entries. For
an n × n matrix in reduced row echelon form to have n leading entries, it must be In. (If you are
doubtful, imagine the leading entry in the first row occurs anywhere to the right of the first column:
you’ll quickly see that you cannot then get n− 1 further leading entries. Now move on to the second
row; to be in row echelon form the leading entry cannot be any sooner than the second column; if it
were later, then we cannot get n− 2 further leading entries. And so forth.) �

3. Matrices and Linear Transformations

3.1. Review of Composition of Functions.

Let f : X → Y and g : Y → Z. We may compose the functions to get

g ◦ f : X → Z, x 7→ g(f(x)).

Note the somewhat confusing fact that g ◦ f means “first perform f , then g”. This can be traced to
the fact that we evaluate functions on the right, i.e., we write f(x). If we were willing to evaluate
functions on the left – i.e., to write (x)f instead – then composition would behave less confusingly. I
have seen function evaluaiton written on the left in some old textbooks, but not within the last thirty
years or so (and I don’t advocate it myself). It seems that we are stuck with things the way they are.

For any set A, let X denote the set of all functions f : A → A. Then composition of f, g ∈ X is
always defined and gives a binary composition law on X. The composition of functions on a fixed set
is surely the most important example of a binary composition law on a set, and many other important
laws reduce to it.

Example 3.1. Given f, g : A → A, we need not have g ◦ f = f ◦ g. That is, composition of
functions is not generally commutative. One learns some form of this in elementary school when one



3. MATRICES AND LINEAR TRANSFORMATIONS 15

is taught the order of operations. In general, the order in which procedures are performed may affect
the outcome! For a simple example, suppose f, g : R→ R with f(x) = x2 and g(x) = x+ 1. Then

g ◦ f : x 7→ g(f(x)) = g(x2) = x2 + 1,

while
f ◦ g : x 7→ f(g(x)) = f(x+ 1) = (x+ 1)2 = x2 + 2x+ 1.

Since for all x 6= 0, x2 + 2x+ 1 > x2 + 1, g ◦ f 6= f ◦ g.

Exercise 3.1. Our above example of non-commutativity of function composition used the infinite
set of real numbers. What is the smallest set A which admits functions f, g : A → A such that
g ◦ f 6= f ◦ g? E.g. can you find such functions with A = {1, 2, 3, 4}? What about with a smaller set
A?

Theorem 3.2. Composition of functions is associative (when defined). That is, if f : X → Y ,
g : Y → Z and h : Z →W , then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof. Sometimes the way to show that two things are equal is simply to write out both of them
and see that we get the same thing. This is one of those times. The function (h ◦ g) ◦ f is the function
which takes

x 7→ ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x)),

while the function h ◦ (g ◦ f) is the function which takes

x 7→ (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x)).

No problem! �

For any set X, we denote the 1X the function which maps each x ∈ X to itself. This is called the
identity function.

Portions of the following result ought to be familiar from a previous course, but we will provide a
complete proof anyway.

Proposition 3.3. Let X and Y be nonempty sets; consider a function f : X → Y .
a) If X is nonempty, the following are equivalent:
(i) There is a function g : Y → X such that g ◦ f = 1X .
(ii) f is injective: for all x1, x2 ∈ X, if f(x1) = f(x2), then x1 = x2.
b) The following are equivalent:
(i) There is a function g : Y → X such that f ◦ g = 1Y .
(ii) f is surjective: for all y ∈ Y , there is x ∈ X such that f(x) = y.
c) The following are equivalent:
(i) There is a function g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y .
(ii) f is bijective.

Proof. a) Suppose that g ◦ f = 1X , and let x1, x2 ∈ X be such that f(x1) = f(x2). Applying
g we get x1 = g(f(x1)) = g(f(x2)) = x2. So f is injective. Conversely, suppose that f is injective.
We have several choices for g : Y → X. For each y ∈ Y which is of the form f(x) for some x ∈ X,
we put g(y) = x: this makes sense because, since f is injective, if y = f(x), then it is of this form for
exactly one x ∈ X. Fix an element x0 ∈ X (here we use X 6= ∅); if y is not of the form f(x) for any
x ∈ X, we put g(y) = x0. The point is that this latter definition doesn’t matter: for all x ∈ X we
have g(f(x)) = x, which is what we wanted.
b) Suppose that f ◦ g = 1Y , and let y ∈ Y . Then f(g(y)) = y. Thus every element of y is mapped to
by some element of X: f is surjective. Conversely, suppose that f is surjective. Then for each y ∈ Y
there is at least one x ∈ X with f(x) = y. We choose any such x and put g(y) = x. Then for all
y ∈ Y , f(g(y)) = f(x) = y.
c) We simply combine parts a) and b). �
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Exercise 3.2. (For nullologists6 only.)
a) Observe that the nonemptiness of Y was never used.
b) If X = ∅, show that a(ii) always holds, whereas a(i) holds iff Y = ∅.
c) Show that part c) holds even if X = ∅.

Example 3.4. Let X be the set of all functions f : R → R, with binary composition law the
usual composition of functions. In this case there are certainly functions which are injective but not
surjective – e.g. f(x) = arctanx – as well as functions which are surjective but not injective – e.g.
g(x) = x sinx. Thus it is certainly possible for an element to have a left inverse but no right inverse,
or conversely.

3.2. Linear Transformations.

A linear transformation L : Rn → Rm is a function which satisfies:

(LT1) For all v, w ∈ Rn, L(v + w) = L(v) + L(w).
(LT2) For all α ∈ R and v ∈ Rn, L(αv) = αL(v).

Proposition 3.5. Let L : Rn → Rm be a function.
a) If L is a linear transformation and k ≥ 2, then for v1, . . . , vk ∈ Rn and α1, . . . , αk ∈ R, we have

L(α1v1 + . . .+ αnvn) = α1L(v1) + . . .+ αnL(vn).

b) (One-Step Linear Transformation Test): Suppose that for all α ∈ R and v, w ∈ Rn, L(αv +
w) = αL(v) + L(w). Then L is a linear transformation.

Proof. a) This is a clasic example of a “binary property” extending immediately to an n-ary
property: c.f. [Cl-I, § 7]. To get a formal proof, we go by induction on k.
Base Case (k = 2): Applying (LT1) and then (LT2) twice we get

L(α1v1 + α2v2) = L(α1v1) + L(α2v2) = α1L(v1) + α2L(v2).

Induction Step: Suppose the result holds for k ≥ 2. Then

L(α1v1 + . . .+ αk+1vk+1) = L((α1v1 + . . .+ αkvk) + αk+1vk+1)

= L(α1v1 + . . .+ αkvk) + L(αk+1vk+1)
IH
= α1L(v1) + . . .+ αkL(vk) + αk+1L(vk+1).

b) Taking α = 1 we get (LT1). Taking w = 0 we get (LT2). �

Remark: Don’t take Proposition 3.5b) too seriously. Really it is just a way of collecting two easy things
together so that we can call it one easy thing. In fact I think it saves more space in writing than it does
time in thinking, so although I will use it below when proving that maps are linear transformations,
when you are asked to think about whether a map is a linear transformation you may as well think in
terms of (LT1) and (LT2) separately.

Lemma 3.6. If L : Rn → Rm is a linear transformation, then L(0) = 0.

Proof. We have L(0) = L(0 + 0) = L(0) + L(0). Subtracting the vector L(0) from both sides
yields L(0) = 0. �

Remark: Our statement of Lemma 3.6 is slightly sloppy: the zero on the left hand side is the zero
vector in Rn, whereas the zero vector on the right hand side is the zero vector in Rm. In principle
we should distinguish them notationally, perhaps by writing 0m and 0n. But in practice this adds
complication without clarity.

In a way our definition of linear transformation is overly abstract and fancy. I claim that a linear

6Nullology: the study of the empty set. C.f. the sound of no hands clapping.
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transformation is really just a vector of linear functions with zero constant terms. In other words, for
1 ≤ i ≤ m and 1 ≤ j ≤ n, let aij be a real number. We define the function L : Rn → Rm by

(1) L(x1, . . . , xn) = (a11x1 + . . .+ a1nxn, . . . , am1x1 + . . .+ amnxn).

Proposition 3.7. The function L defined by (1) is a linear transformation.

Proof. Let x = (x1, . . . , xn), y = (y1, . . . , yn) and α ∈ R. Using the One-Step Linear Transfor-
mation Test, we have

L(αx+ y) = L(αx1 + y1, . . . , αxn + yn)

= (a11(αx1 + y1) + . . .+ a1n(αx1 + y1), . . . , am1(αx1 + y1) + . . .+ amn(αxn + yn))

= α((a11x1 + . . .+ a1nxn, . . . , am1x1 + . . .+ amnxn))

+(a11y1 + . . .+ a1nyn, . . . , am1y1 + . . .+ amnyn)

= αL(x) + L(y). �

The converse also holds: every linear transformation L : Rn → Rm is of the form (1) for some numbers
aij . Let x = (x1, . . . , xn) ∈ Rn. First, like any function with values in a product, we may write
L = (L1(x), . . . , Lm(x)). Then L is a linear transformation if and only if each component function
Li : Rn → R is a linear transformation. (We have tried to provide complete details for this basic but
important material, but we cannot think of any way to write this claim out that is any more convincing
than if you just think about it for a moment. Please do so.) Thus we have reduced to the case m = 1
and must show that any linear transformation L : Rn → R is of the form

L(x) = a1x1 + . . .+ anxn.

To this end, let ej = (0, 0, . . . , 1, . . . , 0) be the vector with a 1 in the jth component and all other
components zero. Then

L(x) = L(x1e1 + . . .+ xnen) = x1L(e1) + . . .+ xnL(en).

Since L(e1), . . . , L(en) are just real numbers, we may call them a1, . . . , an, and then

L(x) = a1x1 + . . .+ anxn.

Thus a linear transformation from Rn to Rm amounts precisely to a vector of m linear functions with
zero constant terms.

There is another way to view an arbitrary linear transformation L : Rn → Rm. For 1 ≤ i ≤ m
and 1 ≤ j ≤ n, we let aij be the ith component of L(ei), so that

L(x1, . . . , xn) = (a11x1 + . . .+ a1nxn, a21x1 + . . .+ a2nxn, . . . , amnx1 + . . .+ amnxn)

as above. Let A ∈Mm,n be the matrix with (A)ij = aij . Then

L(x1, . . . , xn) = Ax,

where in the above equation we regard x as an n× 1 column vector. In summary:

Theorem 3.8. For any m,n ∈ Z+, the following are equivalent:
(i) A vector of m linear expressions in x1, . . . , xn with zero constant terms.
(ii) A linear transformation L : Rn → Rm.
(iii) A matrix A ∈Mm,n.

Let us now consider composition of linear transformations. If L1 : Rn → Rm and L2 : Rp → Rn, then
the composition

L1 ◦ L2 : Rp → Rm, x 7→ L1(L2(x))

is defined.

Lemma 3.9. If L1 : Rn → Rm and L2 : Rp → Rn are linear transformations, then their composition
L1 ◦ L2 : Rp → Rm is a linear transformation.
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Proof. Let me give away a secret: if a map is indeed a linear transformation, checking that it
is is almost always trivial. We use the One-Step Linear Transformation Test and follow our noses: if
x, y ∈ Rn and α ∈ R, then

(L1 ◦ L2)(αx+ y) = L1(L2(αx+ y)) = L1(αL2(x) + L2(y))

= L1(αL2(x)) + L1(L2(y)) = αL1(L2(x)) + L1(L2(y)) = α(L1 ◦ L2)(x) + (L1 ◦ L2)(y).

�

Lemma 3.10. For a linear L : Rn → Rm, the following are equivalent:
(i) L is injective.
(ii) If L(v) = 0, then v = 0.

Proof. (i) =⇒ (ii): By Lemma 3.6 L(0) = 0, so if L(v) = 0 then 0 = L(v) = L(0). By
injectivity, v = 0.
(ii) =⇒ (i): Suppose v, w ∈ Rn are such that L(v) = L(w). Then 0 = L(v)− L(w) = L(v − w). By
hypothesis, this implies v − w = 0, so v = w. �

Lemma 3.11. Let L : Rn → Rm be a bijective linear transformation, so L admits an inverse
function g : Rm → Rn: that is, for all x ∈ Rn, g(L(x)) = x, and for all y ∈ Rm, L(g(y)) = y. Then g
is a linear transformation.

Proof. Note first that L is injective: if x1, x2 ∈ Rn, then L(x1) = L(x2) implies x1 = g(L(x1)) =
g(L(x20) = x2. Thus, let y1, y2 ∈ Rn and α ∈ R. To show that g(αy1 +y2) = αg(y1)+g(y2), since L is
injective, it suffices to show this equality after applying L, i.e., that L(g(αy1+y2)) = L(αg(y1)+g(y2)).
But since L is linear we have

L(g(αy1 + y2)) = αy1 + y2 = αL(g(y1)) + L(g(y2)) = L(αg(y1) + g(y2)). �

On the matrix side we can represent L1 as multiplication by a matrix M1 ∈ Mm,n and L2 as multi-
plication by a matrix M2 ∈ Mn,p, and then L1 ◦ L2, being a linear transformation from Rp to Rm,
must be represented by some matrix M3 in Mm,p. A natural question to ask is how the entries of this
“composite matrix” M3 depend on the entries of M1 and M2. The answer to this question will lead
us to define the fundamental operation of matrix multiplication.

Let M1 = (aij) and M2 = (bjk). Then for x = (x1, . . . , xp),

(L1 ◦ L2)(x) = M1(M2x) = M1

 b11x1 + . . .+ b1pxp
...

bn1x1 + . . .+ bnpxp

 =

 a11(b11x1 + . . .+ b1pxp) + a12(b21x1 + . . .+ b2pxp) + . . .+ a1n(bn1x1 + . . .+ bnpxp)
...

am1((b11x1 + . . .+ b1pxp) + am2(b21x1 + . . .+ b2pxp) + . . .+ amn(bmnx1 + . . .+ bnpxp)



=

 (a11b11 + a12b21 + . . .+ a1nbn1)x1 + . . .+ (a11b1p + . . .+ a1nbnp)xp
...

(am1b11 + . . .+ amnb1p)x1 + . . .+ (am1b1p + . . .+ amnbnp)xp

 = M3x,

where M3 is the m× p matrix whose (i, j) entry is the dot product

(ai1, . . . , ain) · (b1j , . . . , bnj),
i.e., the dot product of the ith row of M1 with the jth column of M2.

This motivates the following definition: if A ∈ Mm,n and B ∈ Mn,p, we define the matrix product
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AB ∈Mm,p to be the matrix with (i, j) entry the dot product of the ith row of A with the jth column
of B. Notice that in order for this definition to make sense we need these vector to have the same
number of components; the number of components of the first vector is the number of columns of A,
and the number of components of the second vector is the number of rows of B: in our setup both are
equal to n, so this makes sense.

Exercise 3.3. Let A ∈Mm,n and B ∈Mn,p.
a) Suppose that for some 1 ≤ i ≤ m, the ith row of A is zero. Show that the ith row of AB is zero.
b) Suppose that for some 1 ≤ j ≤ n, the jth column of B is zero. Show that the jth column of AB is
zero.

Example 3.12. (Fibonacci Matrices I) Let M =

[
1 1
1 0

]
. As advertised earlier, we will show

that for all positive integers n, we have

(2) Mn =

[
Fn+1 Fn
Fn Fn−1

]
,

where the Fn’s are the Fibonacci numbers:

F0 = 0, F1 = F2 = 1,∀n ≥ 2, Fn = Fn−1 + Fn−2.

We prove this by induction on n. The base case, n = 1, is immediate. Now suppose that (2) holds for
some n ∈ Z+. Then we have

Mn+1 = MnM =

[
Fn+1 Fn
Fn Fn−1

] [
1 1
1 0

]
=

[
Fn+1 + Fn Fn+1

Fn + Fn−1 Fn

]
=

[
Fn+2 Fn+1

Fn+1 Fn

]
,

completing the induction step.
We turn now to the prospect of proving identities about Fibonacci numbers via linear algebra. Our

level of success depends on how much linear algebra we know! For now we prove the Addition Formula:[
Fm+n+1 Fm+n

Fm+n Fm+n−1

]
= Mm+n = MmMn =

[
Fm+1 Fm
Fm Fm−1

] [
Fn+1 Fn
Fn Fn−1

]
.

The lower left entry of Mm+n is Fm+n. The lower left entry of MmMn is FmFn+1 + Fm−1Fn, so

Fm+n = FmFn+1 + Fm−1Fn.

3.3. Matrix Products as Linear Combinations of Rows and Columns.

There is an alternate interpretation of the matrix product AB that is often underutilized. Namely,
we claim that the rows of AB are linear combinations of the rows of B and that the columns of AB
are linear combinations of the columns of A. To see this it suffices to work one row or column at a
time, so first consider what happens if A is a 1 × n matrix – i.e., a row vector – and B is an n × p
matrix, so AB is a 1 × p row vector. We may write A = (x1, . . . , xn) = x1e1 + . . . + xnen, with
ei = (0, . . . , 1, . . . , 0) as usual. Now observe that the matrix product eiB is simply the ith row of B.
It follows that AB = x1(e1B) + . . . + xn(enB) is a linear combination of the rows of B, as claimed.
In the general case A and AB will each have m different rows, which simply means that we get m
(possibly) different linear combinations of the rows of B.

The corresponding interpretation of the columns of AB as linear combinations of the columns of
A is similar but more familiar. In particular, the fact that Aej returns the jth column of A is a key
insight in analyzing the linear transformation LA : Rm → Rn given by x 7→ Ax.

3.4. Fundamentals of Matrix Algebra.

We have now defined addition and multiplication operations on matrices, so we have some kind of
algebraic structure on them. Especially, things work out best if we restrict to square matrices, i.e.,
when the number of rows equals the number of columns, for then if A,B ∈ Mn,n, their product AB
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is defined and is again an element of Mn,n. In other words, matrix multiplication gives a binary
composition law on Mn,n.

3.4.1. Identity Elements.

Let (X, ·) be a set endowed with a binary operation. An identity element is an element 1 ∈ X
such that for all x ∈ X, 1 · x = x · 1 = x.

Lemma 3.13. A set endowed with a binary operation (X, ·) can have at most one identity element.

Proof. Suppose 1 and 1′ are both identity elements. Then we have

1 = 1 · 1′ = 1′. �

For n ∈ Z+, we define the identity matrix In to be the matrix with (i, i) entry 1 for all i and all
other entries 0.

Exercise 3.4. a) Let A ∈Mm,n. Show that AIn = A.
b) Let B ∈Mn,p. Show that InB = B.
c) Deduce that In is the unique identity element for (Mn,n, ·).

3.4.2. Absorbing Elements.

Exercise 3.5. Let 0m,n denote the m× n matrix consisting entirely of zeros.
a) Let A ∈Mk,m. Show that A0m,n = 0k,n.
b) Let B ∈Mn,p. Show that 0m,nB = 0m,p.
c) Let 0 = 0n,n. Deduce that for all A ∈Mn,n, A0 = 0A = 0.

Exercise 3.6. Let (X, ·) be a set endowed with a binary operation. An element Z ∈ X is absorb-
ing if for all A ∈ X, ZA = AZ = Z.
a) Show that there can be at most one absorbing element.
b) Deduce that the zero matrix is the unique element Z ∈ Mn,n such that for all A ∈ Mn,n, ZA =
AZ = Z.

3.4.3. Commutativity.

A binary operation · on a set X is commutative if xy = yx for all x, y ∈ X.

Multiplication in M1,1 is the usual multiplication of real numbers, so it is of course commutative.
However, the situation for n ≥ 2 is quite different.

Example 3.14. Let A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
. Then

AB =

[
0 1
0 0

]
= B,

while

BA = 0.

Thus matrix multiplication is not commutative in general.

Exercise 3.7. For 1 ≤ i, j ≤ n, let Eij be the matrix with all zero entries except for a 1 in the
(i, j) entry.
a) Let A ∈Mn,n. Show that AEij has every column zero except for the jth column, and the jth column
is the ith column of A.
b) Let A ∈Mn,n. Show that EijA has every row zero except for the ith row, and the ith row is the jth
row of A.
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Exercise 3.8. a) Let α ∈ R. Show that αIn is the matrix with (i, i) entry equal to α and (i, j)
entry equal to 0 for all i 6= j. Such matrices are called scalar matrices.
b) Let A be a scalar matrix. Show that A commutes with every B ∈ Mn,n: for all B ∈ Mn,n,
AB = BA.

Exercise 3.9. Let A ∈Mn,n be such that A commutes with every B ∈Mn,n.
a) Fix 1 ≤ i ≤ n. Use AEii = EiiA to show that if j 6= i, then aij = aji = 0.
b) Fix 1 ≤ j ≤ n. Use AE1j = E1jA to show that a11 = ajj.
c) Deduce that A is a scalar matrix.

Define the center of Mn,n to be the set of all matrices A ∈Mn,n which commute with every B ∈Mn,n.
The preceding exercises show that the center of Mn,n is precisely the set of all scalar matrices.

3.4.4. Associativity.

Proposition 3.15. Matrix multiplication is associative: if A ∈ Mm,n, B ∈ Mn,p and C ∈ Mp,q,
then

(AB)C = A(BC).

Proof. First Proof: Because matrix multiplication corresponds to composition of linear maps,
and function composition is always asssocative, matrix multiplication must be associative.
Second Proof: The above argument is certainly the best explanation of why matrix multiplication is
associative. On the other hand it should be possible to show directly that (AB)C = A(BC), and it is.
A little quiet contemplation shows that for 1 ≤ i ≤ m and 1 ≤ l ≤ q, the (i, l) entry of both (AB)C
and A(BC) is ∑

1≤j≤n, 1≤k≤p

aijbjkckl. �

Because we have shown matrix multiplication is associative, we may freely drop the parentheses,
writing ABC for (AB)C = A(BC). Moreover, it is a general fact about binary operations that as
soon as we have associativity then we have a “generalized associativity”: any n-fold product A1 · · ·An
is well-defined independent of the parentheses. See [Wa01] for a nice treatment of this.

Exercise 3.10. Let M1, . . . ,Mn be matrices, of dimensions such that for 1 ≤ i ≤ n − 1, each
product MiMi+1 is defined. Write down an explicit expression for the general entry of M1 · · ·Mn.

3.4.5. Inverses.

Let (X, ·) be a set endowed with a binary operation, and possessing an identity element 1. Let
A ∈ X.

An element AL ∈ X is a left inverse to A if ALA = 1.

An element AR ∈ X is a right inverse to A if AAR = 1.

Let A,B ∈ X. Sometimes we will say that B is a one-sided inverse to A if either AB = 1 or
BA = 1. Note that this is symmetric: if B is a one-sided inverse to A, then A is a one-sided inverse
to B.

An element B ∈ X is an inverse to A if AB = BA = 1.

An element A ∈ X is invertible if it has an invere.

Proposition 3.16. Let (X, ·) be a set endowed with an associative binary composition law and
possessing an identity element 1. Then any element A ∈ X has at most one inverse: if B and C are
both inverses to A, then B = C.
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Proof.

C = 1 · C = (BA)C = BAC = B(AC) = B · 1 = B. �

Because an element has at most one inverse, it makes sense to denote the inverse of an (invertible!)
element A ∈ (X, ·) by A−1.

Exercise 3.11. Suppose that B = A−1. Show that A = B−1. (We sometimes say “A and B are
mutually inverse.”)

Exercise 3.12. Consider f : R→ [0,∞) by f(x) = x2.
a) Show that f is surjective but not injective, so by Theorem 3.1 it has a right inverse g – i.e.,
f ◦ g = 1[0,∞) – but no left inverse.
b) Find one right inverse to f .
c) Find all right inverses to f . Conclude in particular that an element can have more than one right
inverse.

Exercise 3.13. Consider f : [0,∞)→ R by f(x) = x. (Note that this is not the identity function,
since the domain and codomain are different!)
a) Show that f is injective but not surjective, so by Theorem 3.1 it has a left inverse g – i.e., g ◦ f =
1[0,∞) – but no right inverse.
b) Find one left inverse to f .
c) Find all left inverses to f . Conclude in particular that an element can have more than one left
inverse.

Exercise 3.14. Addition on Mm,n is also a binary composition law.
a) Show that there is an identity element for matrix addition: what is it?
b) Show that every matrix A ∈Mm,n has an additive inverse matrix: what is it?

Very often in mathematics we will have a set endowed with two binary operations, called + and ·.
(There are whole courses on this...) In this case, A−1 refers to the multiplicative inverse rather than
the additive inverse. That goes in particular for Mn,n.

Proposition 3.17. (Shoes ’n’ Socks) Let (X, ·) be a set endowed with an associative binary com-
position law and possessing an identity element 1. Let A1, . . . , An ∈ X be invertible elements. Then
the product A1 · · ·An is invertible and

(A1 · · ·An)−1 = A−1n · · ·A−11 .

Proof. Consider

(A−1n · · ·A−11 )(A1 · · ·An).

Working our way from the inside out we cancel A−11 A1, then cancel A−12 A2, and so forth, finally
cancelling A−1n An to get 1. And much the same goes for

(A1 · · ·An)(A−1n · · ·A−11 ) :

we first cancel AnA
−1
n , then An−1A

−1
n−1, and so forth, finally cancelling A1A

−1
1 to get 1. �

We can recapture the spirit of the statement and proof of Proposition 3.17 as follows: think of an
invertible element as a process which can be reversed. (This is especially reasonable when the elements
of X are functions and the binary operation is composition, because one often thinks of a function as
being a procedure which takes an input, does something to it, and returns an output.) Any process
which is obtained by performing several reversible processes can itself be reversed: however, to do so
we must reverse the individual processes in reverse order. If that sounds like a mouthful, consider:
barring a catastrophe, putting on your socks is a reversible process, as is putting on your shoes. In
the morning we put on our socks first and then our shoes. In the evening we undo this composite
procedure by undoing the individual components, but in order to do so we must now deal with our
shoes first and our socks second.
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Exercise 3.15. Let A ∈Mn,n. Suppose that A is invertible. Show that A cannot have a zero row
or column.

Let’s reconsider the all-important example where (X, ·) is the set of all functions from a set A to itself,
and the binary operation is composition of functions. In this setting, Theorem 3.1 says that if f has a
left inverse fL and a right inverse fR, then it is injective and surjective, hence bijective, hence it has
an inverse function. This turns out to be a general fact about composition laws.

Proposition 3.18. Let (X, ·) be a set endowed with an associative binary composition law and
possessing an identity element 1. Let A ∈ X have a left inverse AL and a right inverse AR. Then
AL = AR is the inverse of A.

Proof. We have

AR = 1 ·AR = (ALA)AR = ALAAR = AL(AAR) = AL · 1 = AL.

It follows immediately that ARA = AAR = 1, so AR = AL is the inverse of A. �

Here is a related result.

Proposition 3.19. Let (X, ·) be a set endowed with an associative binary composition law and
possessing an identity element 1. Let A,B ∈ X be such that BA = 1. If either of A or B is invertible
then A and B are mutually inverse.

Proof. Suppose first that B is invertible. Multiplying both sides of BA = 1 on the left by B−1,
we get A = 1 ·A = B−1BA = B−11 = B−1. Next suppose that A is invertible. Multiplying both sides
of BA = 1 on the right by A−1, we get B = B · 1 = BAA−1 = A−1. �

Although matrix multiplication is an instance of function composition, it is an especially simple instance
which behaves better than the general case. It turns out that a matrix A ∈ Mn,n which has a left
inverse must also have a right inverse and thus be invertible (and similarly, if A has a right inverse
it must also have a left inverse and thus be invertible). It turns out to be difficult to prove this
directly, however. The right thing to do is to take a more ambitious approach by trying to give a
characterization of invertible matrices in terms of row reduction.

Theorem 3.20. For A ∈Mn,n, the following are equivalent:
(i) We have rref A = In.
(ii) We have rankA = n.
(iii): The equation Ax = 0 has only the trivial solution x = 0.
(iii′) The map LA : Rn → Rn is injective.
(iv) For all b ∈ Rn, the equation Ax = b has a unique solution.
(iv′) The map LA : Rn → Rn is bijective.
(v) The matrix A is invertible: there is B ∈Mn,n with AB = BA = In.

Proof. Step 1: Recall that we already know (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv): this is Theorem
2.5. The equivalence of (iii) and (iii′) is Lemma 3.1, and the equivalence of (iv) and (iv′) is immediate
from the definitions: to say that LA is bijective is exactly to say that for every b ∈ Rn, there is a
unique x ∈ Rn such that Ax = LA(x) = b.
Step 2: It remains to show that any one of the conditions other than (v) implies (v) and that (v)
implies any one of the other conditions. We will show that (iv′) implies (v) and that (v) implies (i).
(iv′) =⇒ (v): Since LA : Rn → Rn is bijective, by Theorem 3.1 it has an inverse function, i.e., there
is g : Rn → Rn with g ◦ LA = LA ◦ g = 1. By Lemma 3.11 g is a linear transformation, hence by
Theorem 3.8 g = LB for some matrix B. Expressing that LA and LB are mutually inverse functions
in terms of matrices we get precisely that BA = In = AB.
(v) =⇒ (i): If BA = In then LB ◦ LA = 1Rn , so by Theorem 3.1, LA is injective. �

The logic of the proof yields a further result. We could have stated it as an equivalent condition in
Theorem 3.20, but we decided to optimize our exposition so as to make the proof of that key result as
simple and clean as possible.
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Corollary 3.21. Let A,B ∈Mn,n. If BA = In, then AB = In.

Proof. As in the proof of Theorem 3.20, BA = In implies that LA is injective. By Theorem 3.20,
A is invertible. According to Proposition 3.19, its one-sided inverse B must actually be its inverse,
hence also AB = In. �

This result can be restated as follows: a square matrix which has a one-sided inverse must be invertible,
and any one-sided inverse is in fact the inverse.

Up until this point our discussion of inverses of matrices has been purely theoretical. We now know
that we can tell whether a square matrix is invertible by putting it in reduced row echelon form, but
if rref(A) = In, how do we go about finding the inverse? Again by row reduction!

Theorem 3.22. If rref(A) = In, then rref [A | In] =
[
In | A−1

]
.

Proof. Write B for A−1, so we have the equation AB = In. Focusing in on the jth columns
of both sides of this equation gives us a system of matrix equations Abj = ej which we are trying to
solve for the vectors b1, . . . , bn. To solve this system we proceed in the usual way: write down [A | ej ]
and put in reduced row echelon form. Since A is invertible, rref A = In, the solution vector bj is
unique, and thus the reduced row echelon form is [In | bj ]. Since the columns of a matrix function
quite independently under row reduction, nothing stops us from writing down the wider augmented
matrix [A | In]. The same row operations that put A in reduced row echelon form convert the jth
column on the right to the unique solution vector bj , so rref [A | In] =

[
In | A−1

]
. �

3.5. Elementary Matrices.

Fix a positive integer m.

For 1 ≤ i 6= j ≤ m, a type I elementary matrix Si,j is the m × m matrix which results from
interchanging the ith and jth rows of Im.

For 1 ≤ i ≤ m, a type II elementary matrix Mi,j(α) is the m × m matrix which results from
multiplying every entry in a single row of Im by some nonzero α ∈ R.

For 1 ≤ i 6= j ≤ m and nonzero α ∈ R, a type III elementary matrix Ti,j(α) is the m × m
matrix which differs from Im precisely in having its (j, i) entry equal to α.

Exercise 3.16. Show that every elementary matrix is invertible. In fact, show that the inverse of
any elementary matrix is again an elementary matrix of the same type.

In all cases an elementary matrix is the matrix you get by performing an elementary row operation
on the identity matrix Im. In fact a little more is true: in each case the above data is sufficient to
describe an elementary row operation on any m× n matrix.

Proposition 3.23. Let A ∈ Mm,n. We perform one elementary row operation R on A to get a
new matrix B. Then B = EA, where E is the corresponding elementary matrix.

Exercise 3.17. Prove Proposition 3.23.

The upshot is that we can track row reduction as a (finite!) sequence of premultiplications – i.e.,
multiplications on the left – by elementary matrices. Suppose that these elementary matrices are
called E1, . . . , Er. Then we get the matrix equation

(3) rref(A) = Er · · ·E1A.

Use of elementary matrices is not essential, but often allows one to make cleaner arguments involving
matrices rather than row operations.
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Example 3.24. We will use elementary matrices to give a second proof of the important fact that
A ∈Mn,n is invertible if and only if rref(A) = In. First suppose rref(A) = In. Then (3) reads

In = Er · · ·E1A.

Each elementary matrix Ei is invertible, so by Shoes ’n’ Socks so is Er · · ·E1, and the inverse is
E−11 · · ·E−1r . Premultiplying both sides by this product, we get

E−11 · · ·E−1r = A.

As a product of invertible elements, A is itself invertible: to be explicit about it, we can apply Shoes
’n’ Socks again to get

A−1 = Er · · ·E1.

Here is another example of a result that can be proved via row reduction considerations but is a little
cleaner via elementary matrices. This time the result is a new one: we could have included it among
the equivalent conditions of Theorem 3.20 but we had enough conditions to deal with at one time.

Theorem 3.25. Let A ∈ Mn,n. The equivalent conditions (i) through (v) of Theorem 3.20 are
also equivalent to each of the following:
(vi) There are no constraints: for all b ∈ Rn, the linear equation Ax = b is consistent, i.e., has at least
one solution.
(vi′) The linear transformation LA : Rn → Rn is surjective.

Proof. Step 1: Conditions (vi) and (vi′) are equivalent to each other: indeed, unpacking the
definition of the surjectivity of LA, one gets precisely condition (vi).
Step 2: Certainly conditions (iv) implies condition (vi) (or, equally true: certainly condition (iv′)
implies condition (vi′)).
Step 3: We suppose condition (vi). It suffices to show that rref A has no zero rows, for then rankA = n:
condition (ii) of Theorem 3.20. Suppose on the contrary that the last row of rref A = 0. Start with
b ∈ Rn, and let

(4) rref[A | b] = [rref(A) | b′].
In turn let b′ be (b1, . . . , bn). If bn 6= 0, then the last equation of the augmented rref matrix reads
0 = bn, a contradiction. So in particular we get an inconsistent system if b′n = en = (0, . . . , 0, 1). What
we need to argue for now is that there is some choice of b ∈ Rn such that the b′ defined by (4) turns
out to be en. In other words, we need to work the row reduction process backwards. This is exactly
what elementary matrices make clean and easy: there are elementary matrices such that

En · · ·E1A = rref(A),

and then for any b ∈ Rn, performing the same row operations gives

En · · ·E1b = b′.

But E1, . . . , En are all invertible, so we have

b = (En · · ·E1)−1b′ = E−11 · · ·E−1n b′.

Taking b′ = en this shows exactly what coefficient vector b we need to start with to get rref[A | b] =
[rref(A) | en]. Summing up: if rref A had a zero row, there is some b such that Ax = b is inconsistent.
This is precisely the contrapositive of what we wanted to show, so we’re done. �

3.6. Diagonal Matrices.

A matrix A ∈ Mn,n is diagonal if for all i 6= j, aij = 0. In other words the only nonzero en-
tries lie along the main diagonal a11, a22, . . . , ann.

Since we only need n numbers to specify an n × n diagonal matrix, we don’t need double indexing,
and we will denote the diagonal matrix with diagonal entries a1, . . . , an as ∆(a1, . . . , an).
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Example 3.26. a) ∆(1, . . . , 1) is the identity matrix In.
b) For any α ∈ R, ∆(α, . . . , α) is a scalar matrix.

The algebra of diagonal matrices is much simpler than that of arbitary matrices.

Exercise 3.18. Let A = ∆(a1, . . . , an), B = ∆(b1, . . . , bn) be diagonal matrices.
a) Show that AB = ∆(a1b1, . . . , anbn).
b) Deduce that AB = BA: diagonal matrices commute.

Proposition 3.27. Consider a diagonal matrix A = ∆(a1, . . . , an).
a) The following are equivalent:
(i) A is invertible.
(ii) a1, . . . , an are all nonzero.
b) If the equivalent conditions of part a) hold, then A−1 = ∆(a−11 , . . . , a−1n ).

Proof. Step 1: To show (i) =⇒ (ii) in part a) we will verify the contrapositive: not (ii) =⇒
not (i). The negation of (ii) is that for some i, ai = 0. If this is the case then the ith row of A is zero,
so rref A 6= In and A is not invertible.
Step 2: Suppose a1, . . . , an are all nonzero. By Exercise 3.18a), we have

∆(a1, . . . , an)∆(a−11 , . . . , a−1n ) = ∆(1, . . . , 1) = In.

This shows that ∆(a1, . . . , an) is invertible and that its inverse is ∆(a−11 , . . . , a−1n ). Hence we get (ii)
=⇒ (i) in part a) and also the result of part b): we’re done. �

3.7. Triangular Matrices.

A matrix A ∈Mn,n is upper triangular if for all i > j, aij = 0.

A matrix A ∈Mn,n is lower triangular if for all i < j, aij = 0.

A matrix A ∈ Mn,n is diagonal if and only if it is both upper and lower triangular. Above we
introduced the idea that diagonal matrices are ideally simple and easy to work with that we wish that
every matrix could be diagonal. In a precise sense that we have not yet encountered – that of simi-
larity – it is not possible to make every matrix diagonal, but (at least if we are able to use complex
numbers as scalars, as we eventually will!) in this same sense it will turn out that every matrix is
similar to an upper triangular matrix.

For an n × n matrix the entries a11, . . . , ann are said to lie on the main diagonal. Thus A ∈ Mn,n

is upper triangular if all the entries lying below the main diagonal are zero, is lower triangular if all
the entries lying above the main diagonal are zero, and is diagonal if all the entries are zero except
possibly those on the main diagonal.

Exercise 3.19. Let A ∈Mn,n.
a) Suppose A is in row echelon form. Show that A is upper triangular.
b) Suppose A is upper triangular. Must A be in row echelon form?

Proposition 3.28. Let A,B ∈Mn,n.
a) If A and B are both upper triangular, then AB is upper triangular.
b) If A and B are both lower triangular, then AB is lower triangular.

Proof. We have, as always, that

(5) (AB)ij =

n∑
j=1

aikbkj .

a) Suppose A and B are upper triangular and i > j. If i > k we have aik = 0 since A is upper
triangular. On the other hand, if k > j we have bkj = 0 since B is upper triangular. But no matter
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what k is, at least one of these two conditions must hold, because if both fail we have j ≤ k ≤ i,
contradicting our assumption that i > j. Thus each term in the sum of (5) is the product of two
numbers, at least one of which is zero. So (AB)ij = 0.
b) I leave this to you: you’ll know that you’ve understood the proof of part a) if you can supply the
proof of part b). �

Exercise 3.20. a) Let A,B ∈ Mn,n be upper triangular. Show that for all 1 ≤ i ≤ n, (AB)ii =
aiibii.
b) Does the conclusion of part a) hold if instead of being upper triangular, A and B are both lower
triangular?

Exercise 3.21. Suppose A ∈ Mn,n is upper triangular with aii 6= 0 for all 1 ≤ i ≤ n. Show that
A is in row echelon form.

Proposition 3.29. For an upper triangular A ∈Mn,n, the following are equivalent:
(i) For all 1 ≤ i ≤ n, aii 6= 0.
(ii) A is invertible.

Proof. (i) =⇒ (ii): By Exercise 3.21, the matrix A is in row echelon form. Since every row has
the leading entry aii, A has rank n and is thus (by Theorem 3.20) invertible.
(ii) =⇒ (i): We will work our way from the bottom right to the top left. First, we must have ann 6= 0,
since otherwise the last row is zero and A cannot be invertible. Since ann 6= 0, we zero out the entries
of the last column. Because ann is the only nonzero entry in the last row, this process does not any
of the entries of the other column, so in particular does not change the diagonal entries: it is enough
to prove that the diagonal entries are all nonzero. Now if an−1,n−1 were equal to zero, the (n − 1)st
row would be zero, again contradicting invertibility. Now we can zero out the other entries of the
(n − 1)st column without disturbing any of the diagonal entries. And so forth: we get that ann 6= 0,
an−1n−1 6= 0,. . ., a11 6= 0. �

Proposition 3.30. Let A ∈Mn,n be an invertible matrix. Then:
a) If A is upper triangular, then A−1 is upper triangular.
b) If A is lower triangular, then A−1 is lower triangular.

Proof. a) If A is upper triangular and invertible, then by Proposition 3.29, all the entries along
the main diagonal are nonzero. Thus to put it in reduced row echelon form we only need to perform
type (II) row operations to make the leading entries 1 and type (III) row operations of the form of
adding a multiple of row j to row i with i < j to zero out the entries above each leading entry. The
elementary matrices Ei corresponding to each of these row operations is upper triangular, and

In = rref(A) = Er · · ·E1A,

so A−1 = Er · · ·E1 is a product of upper triangular matrices and hence, by Proposition 3.28, upper
triangular.
b) The argument is very similar to that of part a) and we leave it to the reader. �

Exercise 3.22. Prove part b) of Theorem 3.30. (One thing to convince yourself of is the fact that
an invertible lower triangular matrix is generally not in row echelon form is not a problem.)

3.8. The Transpose Matrix.

Before we leave the realm of basic matrix algebra for more exalted terrain, we want to discuss one last
operation on matrices. In a way this last operation is the easiest – certainly you could explain it to
anyone, regardless of their mathematical background – but it is a little less clear why this operation
should be important in linear algebra. The latter question, unfortunately, will only be fully addressed
later in the course.

Let A ∈ Mm,n. We define the transpose matrix AT ∈ Mn,m as the matrix whose (i, j) entry is
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aji. In other words, the rows of A become the columns of AT , and vice versa. One can also think of
taking the transpose as reflecting the entries of A across the main diagonal.

Proposition 3.31. Let A,B ∈Mm,n, C ∈Mn,p and α ∈ R. Then:
a) (AT )T = A.
b) (αA)T = αAT .
c) (A+B)T = AT +BT .
d) (AC)T = CTAT .
e) If A is invertible, so is AT and (AT )−1 = (A−1)T .

Proof. a) To get from a matrix to its transpose we interchange the rows and the columns. Doing
this twice gets us back to the original matrix.
b) Both (αA)T and αAT have (i, j) entry αaji.
c) Both (A+B)T and AT +BT have (i, j) entry aji + bji.
d) The (k, i) entry of CTAT is the dot product of the kth row of CT with the ith column of AT . This
is also the dot product of the ith row of A with the jth column of C, hence it is the (k, i) entry of AC
and thus the (i, k) entry of (AC)T .
e) Using part d), we have (A−1)TAT = (AA−1)T = ITn = In. �

In the above proof we used that the identity matrix In has the property that ITn = In. A matrix which
has this property must be square. This turns out to be an interesting and important class of square
matrices: we say A ∈Mn,n is symmetric if AT = A. We also say that A ∈Mn,n is skew symmetric
if AT = −A.

Every symmetric matrix can be built as follows: we fill in all 1 + 2 + . . . + n = n(n+1)
2 entries ly-

ing on our above the main diagonal arbitrarily. Then the symmetry condition tells us that each entry
aij for i < j is equal to the corresponding entry aji. In particular, in a natural sense that we will later

make precise, the set Sn,n of all n × n symmetric matrices can be paramterized in terms of n(n+1)
2

parameters.

Exercise 3.23. Give a similar description of an n × n skew symmetric matrix. How many pa-
rameters does it take to specify such a matrix?

Exercise 3.24. a) Let A ∈Mn,n. Suppose A = AT = −A. Show: A = 0.
b) Let A ∈Mn,n. Show that A+AT is symmetric and A−AT is skew symmetric.
c) Let A ∈ Mn,n. Show that there are unique matrices As, Ass ∈ Mn,n such that: As is symmetric,
Ass is skew symmetric, and A = As +Ass.

One merit of the transpose matrix is to give us a formalism between switching between “row vectors”
– i.e., elements of M1,n – and “column vectors” – i.e., elements of Mm,1: namely, take the transpose.
We reiterate our standard convention that when viewing a vector v ∈ Rn as a matrix we view it as a
column vector, not a row vector. With this convention, we can reinterpret the dot product as itself
being a matrix multiplication:

∀v, w ∈ Rn, v · w = vTw.

Proposition 3.32. Let A ∈Mm,n, x ∈ Rn, y ∈ Rm. Then

(Ax) · y = x · (AT y).

Proof. Much of the work in this result is appreciating that both sides are well-defined, even
though the left hand side is a dot product of vectors in Rm and the right hand side is a dot product
of vector in Rn. Once you agree that both expressions are well-defined, we can move on to the proof:

(Ax) · y = (Ax)T y = xTAT y = xT (AT y) = x · (AT y). �
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4. Subspaces, Bases and Dimension

4.1. Spans in Rn.

Let v1, . . . , vm be an ordered list of vectors in Rn. By definition, a linear combination of v1, . . . , vm
is given by choosing α1, . . . , αm ∈ R and forming

α1v1 + . . .+ αmvm.

This is not meant to be a deep definition. In general, when you have a finite list of things for which
it makes sense to add them and to scale them by real numbers, you can form a linear combination.
More interesting is: the span of v1, . . . ,m is

{α1v1 + . . .+ αmvm | α1, . . . , αm ∈ R},
that is, the span is the set of all possible linear combinations of v1, . . . , vm. We denote this span by
〈v1, . . . , vm〉.

Example 4.1. Let v1, v2 ∈ R2 be nonzero vectors. We claim that if v1 and v2 both lie on a line
` through the origin, then 〈v1, v2〉 = `, and otherwise we have 〈v1, v2〉 = R2. COMPLETE ME!!

Evidently the span of an ordered list of vectors does not change if we reorder the list – this is simply
because vector addition is commutative.

Proposition 4.2. Let v1, . . . , vm, w ∈ RN . The following are equivalent:
(i) We have w ∈ 〈v1, . . . , vm〉.
(ii) We have 〈v1, . . . , vm〉 = 〈v1, . . . , vm, w〉.

Proof. (i) =⇒ (ii): Suppose there are β1, . . . , βr such that w = β1v1 + . . . + βmvm. Then for
all α1, . . . , αm ∈ R we have

α1v1 + . . .+ αmvm + αm+1w = α1v1 + . . .+ αmvm + (αm+1β1v1 + . . .+ αm+1βmvm)

= (α1 + αm+1β1)v1 + . . .+ (αm + αm+1βm)vm ∈ 〈v1, . . . , vm〉,
which shows that 〈v1, . . . , vm, w〉 ⊂ 〈v1, . . . , vm〉. The containment 〈v1, . . . , vm〉 ⊂ 〈v1, . . . , vm, w〉 is
easier: for all α1, . . . , αm ∈ R we have

α1v1 + . . .+ αmvm = α1v1 + . . .+ αmvm + 0w.

(ii) =⇒ (ii): If 〈v1, . . . , vm〉 = 〈v1, . . . , vm, w〉, then since w = 0v1 + . . . + 0vm + 1w we have
w ∈ 〈v1, . . . , vm, w〉 = 〈v1, . . . , vm〉. �

Thus when we append a vector at the end of an ordered list, we enlarge the span if and only if that
vector was not already in the span. This shows in particular that although it is permissible for our
ordered list to have repeated vectors, there is no advantage in doing so: removing all but the first
instance of any given vector in an ordered list yields an ordered list without repeated vectors with the
same span. Since also the order is important, this shows that the span is not really a property of an
ordered list of vectors but actually a property of a finite set S = {v1, . . . , vm} of vectors. It is better
for most theoretical purposes to think of span in terms of subsets, but it can also be convenient to
think of spans in terms of ordered lists, especially for computations.

We now enlarge our definition of linear combination and span, as follows: let S be any subset of
Rn (possibly infinite).

• If S = ∅, we define its span to be {0}.7
• If S is nonempty, then by a linear combination from S we mean that we choose a finite sequence
v1, . . . , vm of elements of S and a finite sequence α1, . . . , αm of real numbers and form

α1v1 + . . .+ αmvm.

7There is not much content here; it’s just to keep things tidy.
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Note well: when S is infinite, we do not entertain infinite linear combinations of vectors here. One
could do so, but one would need to use a notion of limit, making this a part of topology and/or analysis.
We define the span of S, denoted 〈S〉, as the set of all (finite!) linear combinations from S.

Exercise 4.1. Let S and T be subsets of Rn. Show:
a) We have S ⊂ 〈S〉.
b) If S ⊂ T then 〈S〉 ⊂ 〈T 〉.
c) We have 〈〈S〉〉 = 〈S〉.

4.2. Linear independence and spanning in Rn.

Let v1, . . . , vm be an ordered list of m vectors in Rn. We say that v1, . . . , vm are linearly inde-
pendent if for all α1, . . . , αm ∈ R, if α1v1 + . . . + αmvm = 0, then α1 = α2 = . . . = αm = 0. We say
that v1, . . . , vm are linearly dependent if they are not linearly independent.

Let us write v1 = (a11, . . . , an1), v2 = (a21, . . . , an2),. . ., vm = (am1, . . . , amn), and let A ∈ Mn,m(R)
be the matrix with (i, j) entry aij : in other words, for all 1 ≤ j ≤ m, the jth column of A is the
vector vj . Then the vector equation

α1v1 + . . .+ αmvm = 0

is really the matrix equation

A(α1, . . . , αm)T = (0, . . . , 0)T .

Thus from a computational perspective, we already understand linear independence: it means that
the associated homogeneous linear system has only the trivial solution. Nevertheless the concept is of
paramount theoretical importance, as we now develop.

4.3. Subspaces.

A subset V of Rn is a linear subspace if all of the following hold:

(SS1) 0 ∈ V .
(SS2) For all v, w ∈ V , v + w ∈ V .
(SS3) For all v ∈ V and all α ∈ R, αv ∈ V .

Remark 4.3. Since we will not be considering any other kind of subspace of Rn in this course, we
will omit the “linear” from “linear subspace”...but you should be aware that subspaces of various sorts
are ubiquitous throughout mathematics.

We claim that in the presence of (SS2) and (SS3), we could replace (SS1) with

(SS1′) V 6= ∅ (i.e., V is nonempty).

Indeed, it is clear that (SS1) =⇒ (SS1′). Conversely, suppose (SS1′) holds: thus there is some
element v ∈ V . By (SS3), 0 · v = 0 ∈ V .

We prefer to give the axioms for a subspace in this form because (i) in practice it is certainly no
harder to check (SS1) than (SS1′) and (ii) the formulation (SS1′) is so innocuous that it is easy to
forget.

Example 4.4. The subset {0} is a subspace of Rn: it may seem too obvious to be worth mentioning,
but this is important for bookkeeping purposes. Yet more obviously, Rn is a subspace of itself.

Example 4.5. Let ` be a line in Rn. We claim that ` is a subspace iff ` passes through the
origin. Indeed the condition 0 ∈ ` is necessary by (SS1). Conversely, if 0 ∈ ` then we may express `
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parametrically as {tx | t ∈ R} for some nonzero vector x ∈ Rn. We can now easily check (SS1) and
(SS2): if v, w ∈ ` then v = t1x and w = t2x for some t1, t2 ∈ R. Then

v + w = t1x+ t2x = (t1 + t2)x

lies in `. Similarly but yet more easily, if v = t1x and α ∈ R, then αv = (αt1)x ∈ `.

Exercise 4.2. Try to convince yourself that the subspaces of R2 are precisely: {0}, the lines
through the origin, and R2. (Suggestion: the key is to believe if a subspace V of R2 contains two
vectors v and w which do not lie on the same line, we must have V = R2. You can try to prove this
now if you like, but we will carefully prove this and more general facts later on. The point of this
exercise is to acquire intuition that it should be true.)

Example 4.6. Let P be a plane in R3. We claim that P is a subspace iff P passes through the
origin. Again the condition is certainly necessary. We can show the converse in several different ways,
depending upon how we choose to represent P : recall that we know at least two ways to do so. Suppose
first that we use the parametric expression of P : namely there are vectors x and y – which are not
scalar multiples of one another – such that

P = {sx+ ty | s, t ∈ R}.
Now let v = s1x+ t1y and w = s2x+ t2y be vectors in P . Then

v + w = s1x+ t1y + s2x+ t2y = (s1 + s2)x+ (t1 + t2)y ∈ P.
Similarly but more easily, if v = sx+ ty ∈ P and α ∈ R, then

αv = α(sx+ ty) = (αs)x+ (αt)y ∈ P.
Thus P is a subspace.

Example 4.7. Let’s revisit the previous example of a plane P ⊂ R3 passing through the origin,
but this time we represent P using a normal vector n = (a, b, c), namely

P = {x = (x1, x2, x3) ∈ R3 | 0 = n · x = ax1 + bx2 + cx3 = 0}.
Once again we have rigged things so that 0 ∈ P . Further, if x = (x1, x2, x3), y = (y1, y2, y3) ∈ P then

ax1 + bx2 + cx3 = ay1 + by2 + cy3 = 0

and thus

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = (ax1 + bx2 + cx3) + (ay1 + by2 + cy3) = 0 + 0 = 0,

so x+ y ∈ P . Finally, if x = (x1, x2, x3) ∈ P and α ∈ R, then

ax1 + bx2 + cx3 = 0,

hence
0 = α(ax1 + bx2 + cx3) = (αa)x1 + (αb)x2 + (αc)x3 = 0.

Exercise 4.3. I claim the subspaces of R3 are: {0}, the lines through the origin, the planes through
the origin, and R3. Try to convince yourself that this is true.

The above two techniques of showing that a plane through the origin in R3 is a subpace each generalizes
in a different way.

Exercise 4.4. Recall: for any n ≥ 2, a plane P in Rn is a subset of the form {sx+ty+z | s, t ∈ R},
where x, y, z ∈ Rn and x, y are not scalar multiples of each other. Show that P is a subspace if and
only if it passes through the origin, i.e., 0 ∈ P .

Exercise 4.5. Recall: for any n ≥ 2, a hyperplane H in Rn is a subset of the form {x ∈ Rn |
n · x = c} for any nonzero vector n and c ∈ R. Show that a hyperplane is a subspace of Rn if and only
if it passes through the origin (if and only if c = 0).

Exercise 4.6. Try to convince yourself that the subspaces of R4 are: {0}, lines through the origin,
planes through the origin, hyperplanes through the origin, and R4.
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Exercise 4.7. Show there are more subspaces of R5 than just: {0}, lines through the origin, planes
through the origin, hyperplanes through the origin, and R5. (Hint: we are missing “three-dimensional
subspaces”, whatever that means. But try to write one down.)

We should also be sure to give some examples of subsets of Rn which are not subspaces. Of course
any subset which does not contain the origin is such an example. Having said that, we may as well
consider subsets which have this property.

Example 4.8. Let Q = {(x, y) ∈ R2 | x, y ≥ 0} be the first quadrant in R2. Then 0 ∈ Q, so Q
satisfies (SS1). Moreover, it is easy to see that if v, w ∈ Q, so is v + w. However, Q does not satisfy
(SS3): (1, 1) ∈ Q but (−1,−1) = −1 · (1, 1) /∈ Q. So Q is not a subspace. (However it is rather close
to being a subspace in the sense that it satisfies (SS1), (SS2) and (SS3) for all α ≥ 0. Such subsets of
Rn are called cones. They too show up throughout mathematics.)

Example 4.9. Let S = {(x, y) ∈ R2 | x = 0 or y = 0}. Then S satisfies (SS1) and (SS3) but not
(SS2): e1 = (1, 0) and e2 = (0, 1) lie in S, but (1, 1) = e1 + e2 /∈ S.

Notice that the previous (non)example is precisely the union of two lines through the origin. We
conclude that the union of two subspaces of Rn need not be a subspace. The following exercise
purues this phenomenon more closely.

Exercise 4.8. Let V,W be subspaces of Rn.
a) Suppose that V ⊂W or W ⊂ V . Show that V ∪W is a subspace.
(Hint: this is a triviality.)
b) Suppose that V ∪W is a subspace. Show that either V ⊂W or W ⊂ V .
(This is not. Suggestion: work by contradiction and suppose that neither V ⊂ W nor W ⊂ V . Thus
there is x ∈ V \W and y ∈W \V . Since V ∪W is assumed to be a subspace, we must have x+y ∈ V ∪W .
Deduce a contradiction.)

In particular, Rn is never the union of two proper subspaces. One can carry this argument further,
but we will wait until we know a bit more about subspaces.

Subspaces behave much better with respect to intersection.

Proposition 4.10. Let V,W ⊂ Rn be subspaces. Then V ∩W is a subspace of Rn.

Proof. The key idea is that no ideas are necessary (!!): we just follow our nose and check the
properties. First, since 0 ∈ V and 0 ∈ W , 0 ∈ V ∩W . Second, let x, y ∈ V ∩W . Thus x, y ∈ V and
x, y ∈W . Since V is a subspace, x+ y ∈ V ; since W is a subspace, x+ y ∈W . Thus x+ y ∈ V ∩W .
Finally, let x ∈ V ∩W and α ∈ R. Since V is a subspace, αx ∈ V ; since W is a subspace, αx ∈ W .
Thus αx ∈ V ∩W . We’re done! �

Exercise 4.9. a) Let V1, . . . , Vk be subspaces of Rn. Show that the common intersection V1∩. . .∩Vk
is a subspace of Rn.
b) Suppose that I is a nonempty set and that for each i ∈ I we are given a subspace Vi of Rn. (Thus
we have {Vi}i∈I , an indexed family of subspaces.) Show that the common intersection

⋂
i∈I Vi – i.e.,

the set of x ∈ Rn which lie in Vi for all i – is a subspace of Rn.

4.4. Universal Examples of Subspaces.

In this section we give further examples of subspaces. In contrast to the examples given above, each
of these examples will turn out to be a universal example: that is, every subspace of Rn arises as a
case of each of our examples.8

8The idea of giving more than one universal example of something may seem strange at first. However in mathe-

matics there is often more than one way to “understand everything,” and pursuing these multiple understandings can

be very fruitful.
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Example 4.11. Let A ∈Mm,n. Then the null space

N(A) = {x ∈ Rn | Ax = 0}

is a subspace of Rn. Indeed: since A0 = 0, 0 ∈ N(A). If x, y ∈ N(A) then Ax = Ay = 0, so
A(x+ y) = Ax+Ay = 0. Finally, if x ∈ N(A) and α ∈ R then A(αx) = αAx = α · 0 = 0.

Example 4.12. Let L : Rn → Rm be a linear transformation. Then the kernel

KerL = {x ∈ Rn | Lx = 0}

is a subspace of Rn. Indeed, L0 = 0, so 0 ∈ KerL. If x, y ∈ KerL, then Lx = Ly = 0, so L(x+y) = 0.
Finally, if x ∈ KerL and α ∈ R then L(αx) = αL(x) = α · 0 = 0.

Remark 4.13. Since every linear transformation L : Rn → Rm is of the form x 7→ Ax for a
unique matrix A ∈ Mm,n, Examples 4.11 and 4.12 are really the same example: the null space of a
matrix A is the kernel of the corresponding linear transformation LA, and conversely. Nevertheless
both terms are commonly used.

4.5. Reducing Spanning Sets to Bases.

Theorem 4.14. Let S = {v1, . . . , vk} be a finite set of vectors in Rn, and let V = span{v, . . . , vk}.
Then there is a subset T ⊂ S such that T is a basis for V . In brief: Every finite spanning set can
be reduced to a basis.

Proof. The idea is simple: we write out the vectors in our spanning set v1, . . . , vk and work
from left to right: whenever we get a vector vi+1 which is a linear combination of the previous vectors
v1, . . . , vi, then we may remove it from S without changing the span. (In particular, we remove v1 if
and only if it is the zero vector.) We are left with a subset T ⊂ S of vectors which still spans V , and
for which none of which can be written as a linear combination of the previous vectors, hence it is
linearly independent and also spans V , so it is a basis for V . �

The previous proof could hardly have been simpler, but maybe it seems a bit too theoretical for its
own good: if I give you actual, numerical vectors, e.g.

S = {(1, 3, 5, 7), (−2, 3, 0, 4), (1, 1, 1, 1), (0, 9, 10, 18)},

how do we actually find a subset T which is a basis for spanS?

Algorithm: Given S = {v1, . . . , vk} be a finite subset of Rn. Let M ∈ Mn,k be the matrix with
columns v1, . . . , vk. Put M in reduced row echelon form. Let t ⊂ {1, . . . , k} be the set of indices i such
that the ith column of rref M contains a leading entry. Then T = {vi | i ∈ t} is a basis for spanS.

For 1 ≤ i ≤ k, let Mi be the matrix obtained by taking the first i columns of M . The algorithm
works because:
vi is a linear combination of v1, . . . , vi−1
⇐⇒ there are α1, . . . , αi ∈ R with αi 6= 0 such that α1v1 + . . .+ αivi = 0
⇐⇒ in rref Mi, the ith column is a free variable.
Since elementary row operations work independently on the columns, we can test this all at once by
looking at rref M .

Example 4.15. As above take S = {(1, 3, 5, 7), (−2, 3, 0, 4), (1, 1, 1, 1), (0, 9, 10, 18)}. The reduced
row echelon form of

A =


1 3 5 7
−2 3 0 4
1 1 1 1
0 9 10 18


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is

rref(A) =


1 0 0 2
0 1 0 1
0 0 1 0
0 0 0 0

 .
So {(1, 3, 5, 7), (−2, 3, 0, 4), (1, 1, 1, 1)} is a basis for the subspace spanned by S.

4.6. Enlarging Linearly Independent Sets to Bases. For a finite set S, #S denotes the
number of elements of S; e.g. #{2, 4, 6, 8, 10} = 5.

To be honest, for stylistic/aesthetic reasons I would prefer to defer the proof of the following re-
sult until we discuss the Exchange Lemma, at which point it comes for free. But giving the proof
now will enable us to quickly establish a result which is the natural complement to the result of the
last section.

Lemma 4.16. Let S ⊂ Rn be linearly independent. Then S is finite, and #S ≤ n.

Proof. It is enough to show that any set of n+1 vectors in Rn is linearly dependent. Recall that
any set {v1, . . . , vk} of vectors in Rn is linearly dependent if and only if the matrix M ∈ Mn,k with
v1, . . . , vk as its columns has a nontrivial null space. But if k = n+ 1, then M ∈ Mn,n+1, i.e., M has
more columns than rows, so must have at least one free variable and thus a nontrivial null space. �

Theorem 4.17. Let V be a subspace of Rn, and let S ⊂ V be a linearly independent set. Then
there is a finite subset T ⊃ S which is a basis for V .

Proof. Again the idea is very simple: S is a linearly independent subset of V , so it is not a basis
precisely if there is some vector v1 ∈ V which is not in the span of S. If so, S1 = S ∪ {v1} ⊂ V is
still linearly independent. If this larger set S1 does not span V then there is some v2 ∈ V which is not
in the span of S, so S2 = S1 ∪ {v2} = S ∪ {v1, v2} is linearly independent. And so on. This process
stops precisely when we get a basis for V . And it must stop eventually. Indeed, it must stop after at
most n steps: otherwise we get a linearly independent subset of Rn consisting of more than n vectors,
contradicting the previous result. �

Corollary 4.18. Every subspace V of Rn has a finite basis.

Proof. Apply Theorem 4.17 to S = ∅. �

It is not quite as clear how to make Theorem 4.17 concrete as we did for Theorem 4.14. One difference
is that in Theorem 4.14 what we are given is completely concrete: a finite set of vectors in Rn. In
Theorem 4.17, we are instead given a subspace V ⊂ Rn, an object which, as we have seen and will
continue to see, is a bit more abstract and can be concretely realized in several different ways. But let
us suppose for instance that S = {v1, . . . , vk} and that V is given to us as the span of a finite set of
vectors:

V = spanw1, . . . , w`.

Now we can be concrete about how to enlarge S to a finite basis for V : we use the algorithm given
as the concrete form of Theorem 4.14! We start with the ordered list v1, . . . , vk, w1, . . . , w`, which is
certainly a spanning set of V . Then we reduce this ordered list to a basis as we did before: we form
the matrix M ∈Mn,k+` with columns v1, . . . , vk, w1, . . . , w`, and we put in reduced row echelon form.
Then we keep the vectors formed by the columns of M such that the corresponding columns of rref M
have leading entries. Because v1, . . . , vk is linearly independent, we will necessarily keep all of the first
k columns, so we have expanded S to a basis of V .
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4.7. The Exchange Lemma.

In the previous two sections we established a kind of “duality” between spanning sets and linearly
independent sets: spanning sets have one of the properties of a basis but are in general “too large”
to have the other property (linear independence). But any finite spanning set can be reduced so as to
gain the linear independence property without losing the spanning property. Dually, linearly indepen-
dent sets have the other property of a basis but are in general “too small” to have the first property
(spanning). However, any linearly independent set can be enlarged so as to gain the spanning property
without losing the linear independence property.

There is however a further “largeness” property of spanning sets that we have yet to establish and
a further “smallness” property of linearly independent sets that we have as yet seen only in a weak
form. Namely, we know that every linearly independent set of vectors in Rn has at most n elements.
That’s nice, but we want more. For instance, suppose that I have a linearly independent subset S not
only of R3 but of some plane P in R3. We would then like to say not only that #S ≤ 3 but that
in fact #S ≤ 2: it seems geometrically clear that a set of three linearly independent vectors in R3

should not lie in any plane but rather span all of R3. We feel this way because we think of a plane
as a two-dimensional object: it is given as the span of two linearly independent vectors. However,
so far as we’ve shown so far, a plane in R3 might also be the span of a linearly independent set of
three vectors, and a plane in R17 might also be the span of a linearly independent set of up to 17 vectors.

In crisper terms, so far as we know, a plane P ⊂ Rn is defined as a subspace with a basis B with
#B = 2, but how do we know that it does not have a different basis B′ – recall that every nonzero
subspace has infinitely many bases – with #B′ = 3? We hope that this cannot happen. In fact, to
have a notion of “dimension” of a subspace V of Rn, what we need is that any two bases of V have
the same number of elements.

The following result will allow us to show this and more.

Lemma 4.19. (Steinitz Exchange Lemma) Let V be a subspace of RN . Let (v1, . . . , vm) be a
linearly independent sequence of vectors in V , and let (w1, . . . , wn) be a sequence of vectors in V
with V = spanw1, . . . , wn. Then m ≤ n, and – after reordering the wi’s, if necessary – we have
V = span v1, . . . , vm, wm+1, . . . , wn.

This is an archetypical example of a “lemma”: a result which looks a bit too technical to be front page
news but does the lion’s share of the work of the flashier theorem that it is used to prove. And indeed,
although the proof of Lemma 4.19 is not so bad, it is a little technical, so before we give it let’s see
the remarkable consequences that it has. It immediately implies the following fundamental result.

Theorem 4.20. Let V ⊂ Rn be a subspace.
a) Let S ⊂ V be a finite linearly independent subset, and let T ⊂ V be a finite spanning set. Then
#S ≤ #T .
b) Let B1 and B2 be two bases for V . Then both B1 and B2 are finite sets, and

#B1 = #B2.

Part a) of Theorem 4.20 is precisely what the conclusion m(= #S) ≤ n(= #T ) of the Exchange
Lemma is telling us. As for part b): first, we see again that any linearly independent subset S = Rn
has at most n elements, by applying the Exchange Lemma with T = {e1, . . . , en}. Second, a basis of
V is precisely a linearly independent, spanning subset of V , so if B1 and B2 are bases of V , we can
apply the Exchange Lemma with linearly independent subset B1 and spanning set B2 to get

#B1 ≤ #B2
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and then we can turn things around, applying the Exchange Lemma with linearly independent subset
B2 and spanning set B1 to get

#B2 ≤ #B1.
We conclude #B1 = #B2.

Now that we are fully invested, we turn to the Proof of the Steinitz Exchange Lemma. We will
show in fact that for any 1 ≤ i ≤ m, then i ≤ n, and after reordering the w’s if necessary, we have

span v1, . . . , vi, wi+1, wn = V.

Taking i = m gives us the result we want. Now we proceed by induction on i.
Base Case: i = 1. Sure, 1 ≤ n. So we just need to “exchange” v1 for one of the w’s. We do this in two
steps: first we simply put v1 into our list: v1, w1, . . . , wn. But now we have too many w’s: we need to
take one out and still get a spanning set. This is really what we want to show: if we can do that, then
we just reorder the remaining n− 1 w’s and call them w2, . . . , wn. For this: w1, . . . , wn is a spanning
set for V and v1 ∈ V , so we can write v1 = α1w1 + . . . + αnwn for some α1, . . . , αn ∈ R. Moreover,
not all the αi’s can be zero: if so, v1 = 0, but v1 was an element of a linearly independent sequence,
so it can’t be 0. Suppose for instance that αj 6= 0. Then we can write wj as a linear combination of
the other w’s and v:

αjwj = v − α1w1 − . . .− αj−1wj−1 − αj+1wj+1 − . . .− αnwn,
so

wi =
1

αj
v1 −

α1

αj
w1 − . . .−

αi−1
αj

wj−1 −
αj+1

αj
wj+1 − . . .−

αn
αj
wn.

Thus indeed can remove wj without changing the span, getting the n element spanning sequence
v, w1, . . . , wi−1, wi+1, . . . , wn. The bit about reordering is just that we will change the indices on the
w’s around so as to write this as v, w2, . . . , wn.
Induction Step: Let 1 ≤ i < m, and suppose (inductively) that i ≤ n and after reordering we have a
spanning sequence v1, . . . , vi, wi+1, . . . , wn. We need to show that i+ 1 ≤ n and that we can exchange
vi+1 for one of the w’s. First: since i ≤ n, we need to rule out the possibility that i = n (if so, i < n,
so i + 1 ≤ n). If i = n, then this means we have already exchanged out all the w’s, so v1, . . . , vi is a
spanning set for V . But since i < m, i + 1 ≤ m, so we have another vector vi+1 in V , which must
then be a linear cominbation of v1, . . . , vi, contradicting the assumed linear independence of v1, . . . , vm.
Having negotiated that slightly tricky part, the rest of the argument is the same as the base case: first
add in the next v vector, getting a spanning sequence v1, . . . , vi, vi+1, wi+1, . . . , wn. Now we need to
remove one of the w’s. Since we already had a spanning sequence, there are α1, . . . , αn ∈ R such that

vi+1 = α1v1 + . . .+ αivi + αi+1wi+1 + . . .+ αnwn.

Moreover, it cannot be that αi+1, . . . , αn are all 0: if so, we would have

vi+1 = α1v1 + . . .+ αivi,

and again this contradicts the linear independence of v1, . . . , vm. Thus there is a j with i+ 1 ≤ j ≤ n
such that αj 6= 0, so as above we can write

wj =
1

αj
vi+1 −

α1

αj
v1 − . . .−

αi
αj
vi −

αi+1

αj
wi+1 − . . .−

αj−1
αj

wj−1 −
αj+1

αj
wj+1 − . . .−

αn
αj
wn.

This shows that we can remove wj and still get a spanning sequence

v1, . . . , vi+1, wi+1, . . . , wj−1, wj+1, . . . , wn.

Changing the indices on the w’s, we write this as

v1, . . . , vi+1, wi+2, . . . , wn,

and we’re done.

I don’t know as much about the historical development of linear algebra as I should. There is the
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following complicating factor: some time in the early 20th century, the algebraic parts of mathematics
became much more “abstract” following work of the golden gods Hilbert, Noether and Artin, among
others. This abstract approach to mathematics has proven to be both very powerful and in many ways
simpler than the previous, more numerical/concrete approach. Of course it is difficult for students to
grasp at first: in a way, the difficulties you have grappling with mathematical abstraction recapitulate
those of many contemporaries of those aforementioned golden gods: famously, a very eminent but “old-
fashioned” mathematician Paul Gordan was alarmed at the way Hilbert proved vastly more general
results about certain “rings of invariants” than Gordan had over the course of a long career. The gist
of it is very similar to the dichotomy between showing that a subspace of Rn has a finite spanning set
by a theoretical argument versus giving an algorithmic procedure for actually producing such a finite
set. (Compare especially the proof of Corollary 4.18 to the more explicit procedure which is given just
afterwards.) Hilbert was one of the first mathematicians to realize that it can be much easier to prove
that something like a finite spanning set exists than to give an explicit recipe for writing one down, and
he exploited this brilliantly. Gordan remarked: “This is not mathematics; this is theology.” History
has proven that Gordan was wrong: the abstract approach is most certainly mathematics. Proponents
of the abstract approach were similarly disdainful of Gordan: “Er war ein Algorithmiker,” wrote Max
Noether (Emmy Noether’s father, and a great mathematician in his own right...though not quite as
good as his daughter) in Gordan’s obituary. Nowadays – and especially with the ubiquitousness of
modern computers – mathematics well understands that “algorithmikers” (i.e., algorithm-makers) can
be leading mathematicians too. In our golden age both the abstract and the concrete approaches are
extremely important.

Steinitz’s Exchange Lemma was developed by Ernst Steinitz, a German mathematician who lived
from 1871 to 1928.9 Like much of Steinitz’s work, it seems to have been somewhat neglected in his
own time but firmly embraced in ours. I feel that more core linear algebra content resides in the
Steinitz Exchange Lemma than any other single result in this course.

4.8. The Dimension of a Subspace.

Let V be a subspace of Rn. By Theorem 4.20, there is a fiite basis for V . Moreover every basis
of V is finite; and any two bases of V have the same number of elements. We define the dimension
of V to be the number of elements in any basis for V .

Proposition 4.21. Let V ⊂W ⊂ Rn be subspaces. If dimV = dimW , then V = W .

Proof. Let BV = {v1, . . . , vd} be a basis for V . Then BV is a linearly independent subset of W ,
so by Theorem 4.17 there is a basis BW for W containing BV . Since BV ⊂ BW are finite sets with the
same cardinality, BV = BW , and thus

V = spanBV = spanBW = W. �

Example 4.22. a) The zero-subspace has dimension 0: its only basis is ∅.
b) Rn has dimension n, since e1, . . . , en is a basis.
c) A line in Rn (passing through the origin) can be formally defined as a 1-dimensional subspace of
Rn.
d) A plane in Rn (passing through the origin) can be formally defined as a 2-dimensional subspace of
Rn.

Proposition 4.23. Let A ∈ Mm,n. Then the dimension of the null space of A is precisely the
number of free variables in rref A. Thus

dim nullityA+ rankA = n.

9This was not the same Steinitz who was the first official world chess champion, although the next world chess

champion, Emanuel Lasker, was a student of Emmy Noether.



38 1. BASICS

Example 4.24. Recall that a hyperplane in Rn is a subspace of the form

H = {x ∈ Rn | x · n = 0}
for some nonzero vector n. We claim that the hyperplanes are precisely the (n − 1)-dimensional
subspaces of Rn.
Step 1: Let H be a hyperplane. Then H is the null space of the 1 × n matrix A with n as its row.
Since n 6= 0, M has rank one, and nullityA = n− 1.

4.9. Dimensions of Intersections; Independent Subspaces.

Theorem 4.25. Let V and W be subspaces of Rn. Then

dimV +W = dimV + dimW − dimV ∩ dimW.

Proof. Let r = dimV ∩W , k = dimV , ` = dimW . Let v1, . . . , vr be a basis for V ∩W , and
extend it to a basis v1, . . . , vr, ur+1, . . . , uk for V and again to a basis v1, . . . , vr, wk+1, . . . , w` for W .
We claim that

B = {v1, . . . , vr, ur+1, . . . , uk, wr+1, . . . , w`}
is a basis for V +W . If so, then indeed

dimV +W = dimV + dimW − dimV ∩W
and the result follows. Since B is obtained as the union of spanning sets for V and W , it is a spanning
set for V +W , so it remains to show that B is linearly independent. Let α1, . . . , α` ∈ R be such that

α1v1 + . . .+ αrvr + αr+1ur+1 + . . .+ αkuk + αk+1wk+1 + . . .+ α`w` = 0.

We rewrite this as

z = α1v1 + . . .+ αrvr + αr+1ur+1 + . . .+ αkuk = −αk+1wk+1 − . . .− α`w`.
The left hand side lies V and the right hand side lies in W , so z ∈ V ∩W . Since v1, . . . , vr, ur+1, . . . , uk
is linearly independent, this implies αr+1 = . . . = αk = 0. Since v1, . . . , vw, w1, . . . , w` is linearly
independent, this implies α1 = . . . = αr = αk+1 = . . . = α` = 0. �

Theorem 4.26. For subspaces V and W of Rn, the following are equivalent:
(i) dimV +W = dimV + dimW .
(ii) V ∩W = {0}.
(iii) If v ∈ V \ {0} and w ∈W \ {0}, then the sequence (v, w) is linearly independent.
(iv) If L1 is a linearly independent list in V and L2 is a linearly independent list in W , then (L1, L2)
is a linearly independent list.
(v) If B1 is an ordered basis for V and B2 is an ordered basis for W , then (B1,B2) is an ordered basis
for V +W .

Proof. (i) ⇐⇒ (ii) follows from Theorem 4.25: since dimV +dimW−dim(V +W ) = dimV ∩W ,
we have dimV + dimW = dimV +W if and only if dimV ∩W = 0.
(ii) ⇐⇒ (iii): If v is a nonzero vector in V and w is a nonzero vector in W , then (v, w) is linearly
dependent if and only if w = αv for some nonzero α ∈ R. If this happens, then w is a nonzero vector
in V ∩W , so dimV ∩W ≥ 1. Conversely, if dimV ∩W ≥ 1, then taking any nonzero v ∈ V ∩W we
get a linearly dependent sequence (v, v) with v ∈ V and v ∈W .
(ii) =⇒ (iv): Let L1 = (v1, . . . , vk) and L2 = (w1, . . . , w`), and suppose α1, . . . , αk+` are real numbers
such that

α1v1 + . . .+ αkvk + αk+1w1 + . . .+ αk+`w` = 0.

Equivalently,
α1v1 + . . .+ αkvk = −αk+1w1 − . . .− αk+`w`.

If the left hand side is zero, then since L1 is linearly independent, α1 = . . . = αk = 0, and then also
the right hand side is zero and by linear independence of L2, αk+1 = . . . = αk+` = 0. Similarly if the
right hand side is zero. The only other possibility is that both sides are nonzero, and thus we get a
nonzero vector in V ∩W , contradicting (ii).
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(iv) =⇒ (v): By applying (iv) we get that (B1,B2) is linearly independent. And we always get a
spanning set for V +W by taking the union of a spanning set of V and a spanning set of W .
(v) =⇒ (i): By contraposition: if V ∩W were nonempty, then any nonzero vector would be part of
an ordered basis B1 for V and an ordered basis B2 for W and then (B1,B2) is a linearly dependent
list, contradicting our assumption. �

We describe the equivalent conditions of Theorem 4.26 by saying that V and W are independent
subspaces, and in this case we sometimes write V ⊕W instead of V +W . This notation is analogous
to writing S

∐
T for the union of two sets which are known to be disjoint.

Suppose now that we have k subspaces V1, . . . , Vk ⊂ Rn. We would like an analogous notion of
independence. Here however we need to be more careful: to have the subspaces be pairwise disjoint –
i..e, Vi ∩ Vj = {0} for all i 6= j – is not enough. For instance, any family of lines through the origin in
R2 will satisfy this condition, but if there are more than two of them we do not wish to consider this
family as independent.

The correct condition can be motivated, as follows: suppose we have three subspaces V1, V2, V2 of
Rn and are trying to show that

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3.

It is natural to proceed inductively and thus to consider the subspaces V1 +V2 and V3. If V1 and V2 are
disjoint, then dimV1 +V2 = dimV1 + dimV2. But now we want V3 to be disjoint, not just from V1 and
V2 but from their sum V1 +V2. If so, then again we get dim(V1 +V2 +V3) = dimV1 + dimV2 + dimV3.
So in general we want each subspace Vi to be disjoint from the subspace spanned by all the others.

Theorem 4.27. For subspaces V1, . . . , Vk of Rn, the following are equivalent:
(i) We have dim(V1 + . . .+ Vk) = dimV1 + . . .+ dimVk.
(ii) For all 1 ≤ i ≤ k, we have that Vi ∩ (V1 + . . .+ Vi−1 + Vi+1 + . . .+ Vk) = {0}.
(iii) If we choose for all 1 ≤ i ≤ k a nonzero vector wi ∈ Vi, then w1, . . . , wk is a linearly independent
list.
(iv) If we choose for all 1 ≤ i ≤ k a linearly independent list Li in Vi, then the list (L1, . . . , Lk) is
linearly independent.
(v) If we choose for all 1 ≤ i ≤ k an ordered basis Bi for Vi, then (B1, . . . ,Bk) is an ordered basis for
Rn.
We say V1, . . . , Vk are an independent family of subspaces when these conditions are satisfied.

Proof. We have that (iv) =⇒ (v) =⇒ (i) and also (iv) =⇒ (iii).
(ii) =⇒ (iii): For 1 ≤ i ≤ k choose a nonzero vector wi in Vi. If w1, . . . , wk is linearly dependent, then
some vector Wi can be written as a linear combination of the others, which gives a nonzero vector in
Vi ∩ (V1 + . . .+ Vi−1 + Vi+1 + . . .+ Vk).
(iii) =⇒ (ii): This is almost identical to the proof of (ii) =⇒ (iii) and is left to the reader.
(ii) =⇒ (i): We show this by induction on k, the case of k = 1 being trivial and the case of k = 2
being Theorem 4.26. Suppose k ≥ 3 and the result holds for any family of fewer than k subspaces.
Put W := (V1 + . . .+Vk−1. Then since each Vi is disjoint from the sum of the others, by our inductive
hypothesis we have dimW = dimV1 + . . .+ dimVk−1. Our hypothesis also implies that W and Vk are
disjoint, so applying the result for k = 2 gives

dim(V1 + . . .+ Vk) = dim(W + Vk) = dimW + dimVk = dimV1 + . . .+ dimVk−1 + dimVk.

(i) =⇒ (iv): Observe that if dim(V1 + . . .+ Vk) = dimV1 + . . .+ dimVk then the same holds for any
nonempty subset of V1, . . . , Vk: this is because for any subspace Z we have

dim(Z + Vi) ≤ dimZ + dimVi.

For 1 ≤ i ≤ k let Li be a linearly independent list in Vi, and let L′ = (L1, . . . , Lk−1). If we put
W = V1 + . . .+Vk−1, then induction gives us that the list L′ is linearly indpendent, and then applying
the k = 2 case to W and Vk gives that (L′, Lk) = (L1, . . . , Lk) is linearly independent. �
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4.10. Rank Revisited.

For any matrix A ∈ Mm,n, we defined rankA to be the number of leading entries in rref A (or in
any row echelon form of A). And we have seen the uses of that definition in solving systems of linear
equations and elsewhere. However, one must admit that our definition of rank is not the most graceful
one: it is a number that we associate to a matrix after performing a certain algorithm (Gaussian
reduction) on it. In this section we pursue other, more intrinsic definitions of rank, with applications
to an improved Rank Nullity Theorem and the important result that rankA = rankAT for all A.

Recall that the row space R(A) of A ∈ Mm,n is the subspace of Rn spanned by the rows of A.
Elementary row operations change the rows but not the row space: one way to see this is to think of
an elementary row operation as premultiplication by an elementary matrix: A 7→ EA. In general, the
rows of BA are linear combinations of the rows of A – c.f. § 2.3 – so this shows that the row space
of EA is contained in the row space of A. But E is invertible, and applying the same argument with
E−1 in place of E shows that the row space of A = E−1(EA) is contained in the row space of EA, so
the row spaces of A and EA are equal.

Perhaps the argument of the preceding paragraph is too slick for its own good. The reader may
prefer a more hands-on approach:

Exercise 4.10. Check more concretely that the row space of EA is equal to the row space of A
for every elementary matrix by considering each of the three elementary row operations separately, and
for each one, explicitly writing each row of EA as a linear combination of the rows of A, and explicitly
writing each row of A as a linear combination of the rows of EA.

Anyway, since there are elementary matrices E1, . . . , Er such that

rref(A) = Er · · ·E1A,

we deduce the following.

Proposition 4.28. For any A ∈Mm,n, the row space of A is equal to the row space of rref A.

Along with the row space of A ∈Mm,n we can also consider its column space C(A), the subspace of
Rm spanned by the columns of A. But beware:

Warning: Elementary row operations need not preserve the column space!

Example 4.29. Take A ∈Mm,1, i.e., a column vector. Then so long as A is not the zero matrix,
rref A = e1 = (1, . . . , 0). Thus the column space of rref A is the line spanned by e1. But the matrix A
we started with could be given by any nonzero vector, so its span need not be the span of e1.

Back to the row space and the rank. Here is the first important result.

Theorem 4.30. For all A ∈Mm,n, we have

rank(A) = dimR(A).

That is, the rank is equal to the dimension of the row space.

Proof. Since A and rref A have the same rank (by definition) and the same row space (by Propo-
sition 4.28), it is enough to show that the number of leading entries in rref A is equal to rank rref A.
I claim that a basis for rref A is obtained by taking the nonzero rows. Indeed, the nonzero rows cer-
tainly span the row space: the zero rows contribute nothing to the span. Moreover they are linearly
independent because each row contains a leading entry: we can be sure that a finite set v1, . . . , vk
of vectors is linearly independent if, as we move from left to right, each vi has a nonzero entry in a
coordinate where all the vectors to the left of it have zero entries (this observation is formalized in the
following exercise and you are asked to prove it: it’s not hard!). So indeed the nonzero rows of rref A
form a basis for the row space. Since the number of nonzero rows of rref A is precisely rankA, we’re
done. �
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Exercise 4.11. Prove the Eyeball Criterion for Linear Independence: Let v1, . . . , vk be
vectors in Rn. Suppose that for all 1 ≤ i ≤ k, there is some coordinate (i.e, 1 ≤ j ≤ n) such that
vi is nonzero in the jth coordinate, but all vi′ with i′ < i are zero in the jth coordinate. Show that
{v1, . . . , vk} is a linearly independent set.

Thus we can think of row reduction as taking the hard-to-see property of linear independence of a set
of vectors and reworking it until it is visible to the naked eye. This also gives a method for testing
a finite list of vectors v1, . . . , vk for linear independence: make a matrix with these vectors as row
vectors and row reduce: if the rref has rank k, the vectors are linearly independent; otherwise they are
linearly dependent. Is this interesting? We already know how to row reduce matrices to test for linear
independence.

But, wait – this is a different test from the one we’ve seen before: according to the definition of
linear independence, v1, . . . , vk are linearly independent if and only if we when we make a matrix with
these vectors as column vectors, then the rref has no free variables. That’s not the same test, and we
have begun to uncover the deep relationship between the rows and columns of a matrix.

Let’s push it farther: recall that the nullity nullityA of A ∈ Mm,n is the number of free variables
in rref A. Since every variable is either a free variable or a pivot variable, we get the Rank-Nullity
Theorem:

∀A ∈Mm,n, rankA+ nullityA = n.

Let v1, . . . , vm be vectors in Rn; let A ∈Mm,n be the matrix with ith row vi. Then:

rankA = m

⇐⇒ v1, . . . , vm is linearly independent

⇐⇒ nullity(AT ) = 0

⇐⇒ rankAT = m.

Thus A ∈Mm,n has rank m iff AT has rank m.

Let’s go even farther: let A ∈ Mm,n have rank k. Then there are some k rows of A which are
linearly independent: let B ∈ Mk,n be the matrix formed by these rows. By what we just said,
rankBT = k. But sine BT simply consists of some of the rows of AT , we must have

rankA = k = rankB = rankBT ≤ rankAT .

So for any matrix, rankA ≤ rankAT . Applying this inequality to AT we get rankAT ≤ rank(AT )T =
A. Thus, we’ve proven:

Theorem 4.31. For any matrix A ∈Mm,n,

rankA = rankAT .

Equivalently,

dimR(A) = dimC(A).

The rank of AT is often called the column rank of A (as seems reasonable). Thus Theorem 4.31 is
often abbreviated as row rank equals column rank. This is actually one of the least obvious of the
fundamental theorems relating dimensions of subspaces, because the row space R(A) and the column
space C(A) of A are usually not in any sense “the same” subspace: indeed, R(A) is a subspace of Rn
and C(A) is a subspace of Rm. Nevertheless these subspaces of different Euclidean spaces always have
the same dimension. That’s quite a deep result!

We want to give yet another interpretation of rankA. Namely, consider the associated linear transfor-
mation LA : Rn → Rm, x 7→ Ax.

Theorem 4.32. For any A ∈Mm,n, rankA = dim ImageLA.
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Proof. The proof will use the (very easy) fact that the null space of A is the kernel of LA, so
that by Rank-Nullity, dim KerLA + rankA = n and thus

(6) rankA = n− dim KerLA.

Really what we will show is

(7) dim ImageLA = n− dim KerLA.

And of course, combining (6) and (7) gives rankA = dim ImageLA. To show (7) we argue as follows:
let k = dim KerLA, so there is a basis v1, . . . , vk of KerLA. Like any basis for a subspace, we can
extend this to a basis for all of Rn, say v1, . . . , vk, vk+1, . . . , vn. Now I claim that L(vk+1), . . . , L(vn)
is a basis for ImageLA = LA(Rn): if so, we’re done, because we have n − k vectors in our basis, so
dim ImageLA = n − k = n − dim KerLA. Now ImageLA is spanned by L(v1), . . . , L(vn), and since
L(v1) = . . . = L(vk) = 0, it is certainly also spanned by L(vk+1), . . . , L(vn). So it remains to check
the linear independence: suppose we have αk+1, . . . , αn such that

αk+1L(vk+1) + . . .+ αnL(vn) = 0.

Then

0 = αk+1L(vk+1) + . . .+ αnL(vn) = L(αk+1vk+1 + . . .+ αnvn),

so αk+1vk+1 + . . .+ αnvn ∈ KerLA. Since KerLA is spanned by v1, . . . , vk, there are α1, . . . , αk such
that

αk+1vk+1 + . . .+ αnvn = α1v1 + . . .+ αkvk,

or

(−α1)v1 + . . .+ (−αk)vk + αk+1vk+1 + . . .+ αnvn.

Since v1, . . . , vn is linearly independent this means −α1 = . . . = −αk = αk+1 = . . . = αn = 0; this
shows that L(vk+1), . . . , L(vn) is linearly independent. �

Here is an equivalent statement.

Theorem 4.33. (Dimension Theorem) For any linear transformation L : Rn → Rm, we have

dim KerL+ dim ImageL = dimRn.

Exercise 4.12. Deduce Theorem 4.33 from Theorem 4.32.

The Rank-Nullity Theorem and the Dimension Theorem are really the same result ; the former is
couched in matrix language, the latter in the language of linear transformations. This is a common
theme in linear algebra: many if not most results can be expressed either way. This is useful because
linear transformations are more conceptual and thus ultimately more useful for theorems and proofs,
whereas it is critical to be able to phrase things in terms of matrices to do calculations.

As an example of this duality, let us use Theorem 4.32 (and Proposition 4.28) to give another proof
that row rank equals column rank. Namely, for A ∈Mm,n,

dimR(A) = rankA = dim ImageLA = dim spanLA(e1), . . . , LA(en) = spanA(e1), . . . , A(en).

But A(e1), . . . , A(en) are precisely the columns of A, so

dim spanA(e1), . . . , A(en) = dimC(A) = rankAT .
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4.11. Sylvester’s Law of Nullity.

Theorem 4.34. (Sylvester’s Law of Nullity) Let A ∈Mm,n and B ∈Mn,p. Then we have

(8) nullityAB ≤ nullityA+ nullityB.

Proof. If Bv = 0 then ABv = A0 = 0, so nullityB ⊂ nullityAB. Let v1, . . . , va be a basis for
B, and extend it to a basis v1, . . . , va, w1, . . . , wb for AB. We claim that B(w1), . . . , B(wb) is linearly
independent. The argument for this is essentially the same one used in the proof of Theorem 4.32: let
α1, . . . , αb ∈ R be such that α1B(w1) + . . .+ αbB(wb) = 0. Then

0 = α1B(w1) + . . .+ αaB(wb) = B(α1w1 + . . .+ αbwb),

so α1w1 + . . .+ αbwb ∈ B. Thus there are β1, . . . , βa ∈ R such that

α1w1 + . . .+ αbwb = β1v1 + . . .+ βava,

and by linear independence of v1, . . . , va, w1, . . . , wb, this gives 0 = α1 = · · · = αb(= β1 = . . . = βa,
though we don’t need this). Since B(w1), . . . , B(wb) ⊂ A, this gives

nullityA ≥ b,
and thus

nullityA+ nullityB ≥ b+ nullityB = b+ a = nullityAB. �

Exercise 4.13. Maintain the notation of Theorem 4.34. Use the Rank-Nullity Theorem to deduce
the following additional inequalities.
a) (Sylvester’s Rank Inequality) We have rankAB ≥ rankA+ rankB ≤ rankAB + n.
b) We have rankB ≤ rankAB + nullityA.

Corollary 4.35.
a) Let A1, . . . , AN be matrices such that the product A1 · · ·AN is defined. Then we have

nullityA1 · · ·AN ≤
N∑
i=1

nullityAi.

b) Let A1, . . . , AN ∈Mn,n be such that A1 · · ·AN = 0. Then
∑N
i=1 nullityAi ≥ n.

Exercise 4.14. Prove Corollary 4.35.

4.12. Ackerson’s Theorem.

Theorem 4.36 (Ackerson [Ac55]). Let A ∈ Mn,n. Let K be the null space of A, let R be the
image of A, let S be the image of A2, and let I := K ∩R. Then

dim I = dimR− dimS.

Proof. Let k = dim I, and let z1, . . . , zk be a basis for I. Since I is a subspace of the image of
A, there are x1, . . . , xk ∈ Rn such that zi = Axi for 1 ≤ i ≤ k. If r = rankA, then we may extend to
a basis Ax1, . . . , Axr of R.

Let x ∈ Rn. Then there are α1, . . . , αr such that

Ax = α1Ax1 + + . . .+ αkAxk + αk+1Axk+1 + . . .+ αrAxr,

so

A2x = α1A
2x1 + . . .+ αkA

2xk + αk+1A
2xk+1 + . . .+ αrA

2xr

= αk+1A
2xk+1 + . . .+ αrA

2xr.

This shows that A2xk+1, . . . , A
2xr span S. Suppose there are βk+1, . . . , βr ∈ R such that

βk+1A
2xk+1 + . . .+ βrA

2xr = 0.

Then

A(βk+1Axk+1 + . . .+ βrAxr) = 0,
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so

y := βk+1Axk+1 + . . .+ βrAxr ∈ K ∩R = I.

This means that y is a linear combination of Ax1, . . . , Axk. Since Ax1, . . . , Axk, Axk+1, . . . , Axr is
linearly independent, it follows that βk+1 = . . . = βr = 0. Thus A2xk+1, . . . , A

2xr form a basis for S
and we get

dimS = r − k = dimR− dim I

and thus

dim I = dimR− dimS. �

Corollary 4.37. Maintain the above notation.
a) We have K ⊂ R iff dimK = dimR− dimS.
b) We have R ⊂ K iff A2 = 0.
c) We have R = K iff A2 = 0 and dimK = dimR.

Proof. a) We have K ⊂ R iff K ∩R = K iff dimK = dimR− dimS.
b) We have R ⊂ K iff K ∩R = R iff dimR = dimR− dimS iff dimS = 0 iff A2 = 0.
c) By parts a) and b) we ave R = N iff A2 = 0 and dimK = dimR− dimS = dimR.

�

Corollary 4.38. Maintain the above notation. The following are equivalent:
(i) I = 0.
(ii) R = S.
(iii) Rn = K ⊕R.

Proof. (i) =⇒ (ii): Since I = 0, we have dimR = dimS. Since S ⊂ R, we get R = S.
(ii) =⇒ (iii) By the Dimension Theorem we have

n = dimK + dimR.

If R = S, then dim I = dimR− dimS = 0, so I = 0 and thus R and K are independent subspaces, so
dim〈R,K〉 = dimR+ dimK = n, and thus 〈R,K〉 = Rn.
(iii) =⇒ (i): This is immediate: I = K ∩R = 0. �

5. Some Linear Transformations

5.1. Permutations.

5.2. Projections.

Let V,W be subspaces of Rn with V ⊕W = Rn. Recall this means: V +W = Rn and V ∩W = {0}.
We define a linear transformation πV,W , the projection onto V with respect to W, as follows: the
complementarity of V and W means precisely that every x ∈ Rn can be written uniquely as x = v+w
for v ∈ v, w ∈W . Then we define

πV,W (x) = πV,W (v + w) = v.

In ohter words, the map πV,W resolves a vector into the sum of its V component and its W component,
keeps the V component and kills the W -component.

Proposition 5.1. The projection map πV,W : Rn → Rn is a linear transformation.

Proof. As usual, this is straightforward. Namely, let x1, x2 ∈ Rn and write x1 = v1 + w1,
x2 = v2 + w2 with vi ∈ V and wi ∈ W for i = i, 2. Then x1 + x2 = (v1 + v2) + (w1 + w2). It follows
that

πV,W (x1 + x2) = v1 + v2 = πV,W (x1) + πV,W (x2).

Similarly, for any α ∈ R, if x = v + w then

αx = αv + αw,
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so

πV,W (αx) = πV,W (αv + αw) = αv = απV,W (v).

�

Example 5.2. Let V be the span of e1 in R2, i.e., the line y = 0. Let w be any vector in R2 \ V ,
and put W = 〈w〉. Then V ∩W = {0}, hence

dimV +W = dimV + dimW \ dimV ∩W = 1 + 1− 0 = 2,

and thus V +W = R2 = V ⊕W . Let’s find the standard matrix representation of πV,W , i.e., the 2× 2
matrix with columns πV,W (e1) and πV,W (e2). First,

πV,W (e1) = e1.

To find πV,W (e2), the key idea is to express e2 as a linear combination of e1 and w. For this, write
w = (x, y); since w /∈ 〈e1〉, we must have y 6= 0. Then

w = xe1 + ye2,

and we solve for e2, getting

e2 =
1

y
w − x

y
e1

and thus

πV,W (e2) =
1

y
πV,W (w)− x

y
πV,W (e1) = 0− x

y
=
−x
y
.

So the standard matrix is

A =

[
1 −x

y

0 0

]
.

Some things to notice about this matrix are: (i) it has a row of zeros so is not invertible. This is not
surprising, since the linear transformation had a nontrivial kernel: it killed w. We also see that A
takes the simplest form if x = 0, in other words if W = 〈(0, y)〉 = 〈e2〉 is just the y-axis. In this special
case we have

A =

[
1 0
0 0

]
,

a diagonal matrix. We get this case by taking w to be perpendicular to v = e1.

There is a nice way of thinking about projection operators in terms of splitting a basis. Namely, let
B = {v1, . . . , vn} be a basis for Rn. We split it in two, namely we choose subsets B1,B2 ⊂ B such
that B1 ∪ B2 = B,B1 ∩ B2 = ∅. Then B1 and B2 are both subsets of a linearly independent set, hence
linearly independent, hence B1 is a basis for V1 = spanB1 and B2 is a basis for V2 = spanB2.

Exercise 5.1. With notation as above, show: Rn = V1 ⊕ V2.

Thus we can define a projection operator πV1,V2
associated to the splitting of the basis. Moreover, like

any linear transformation, πV1,V2
is uniquely specified by what it does to the elements of any basis, so

let’s see what it does to B. Well, we have split B into B1 and B2, and πV1,V2
keeps the elements of B1

and kills the elements of B∈:

∀b1 ∈ B1, πV1,V2
(b1) = b1,

∀b2 ∈ B2, πV1,V2(b2) = 0.

Next we observe that any projection has the property that doing it and then doing it again is the same
as doing it once:

(9) πV,W ◦ πV,W = πV,W .

Indeed, for any x = v + w ∈ Rn,

(πV,W ◦ πV,W )(x) = πV,W (πV,W (v + w)) = πV,W (v) = v = πV,W (x).
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Let A be the standard matrix of πV,W . Since composition of linear transformations corresponds to
multiplication of matrices, the matrix version of (10) is

(10) A2 = A.

A matrix A ∈ Mn,n satisfying (10) is called idempotent. The equation A2 = A looks a little silly
from the perspective of high school algebra: if A is a real number it has precisely the solutions A = 0
and A = 1. Equivalently, these are the only idempotent 1× 1 matrices. However, for any n ≥ 2 there
are many, many more solutions A ∈ Mn,n: namely the standard matrix associated to any projection
operator.

Exercise 5.2. Show: if A is idempotent, so is 1−A.

Exercise 5.3. a) It follows from our discussion so far that if A =

[
1 b
0 0

]
for any b ∈ R, then

A2 = A. Check this directly.
b) Write down an idempotent matrix A ∈M3,3 different from 0 and 1.
c) Write down a nondiagonal idempotent matrix A ∈M3,3.

That the standard matrix of a projection operator is idempotent is an instance of geometry (linear
transformations) governing algebra (matrix operations). It seems a bit more interesting that the
converse is also true.

Theorem 5.3. Let A ∈Mn,n be an idempotent matrix: A2 = A. Then:
a) We have Ker(1−A) = Image(A) and KerA = Image(1−A).
b) We have Rn = Image(A)⊕ Image(1−A).
c) A is the standard matrix of the projection operator πImage(A),Image(1−A).

Proof. a) If v ∈ Ker(1−A), then 0 = (1−A)v = v−Av, so Av = v, so v ∈ Image(A). Conversely,
if v ∈ Image(A) then v = Aw for some w ∈ Rn, and then (1 − A)v = (1 − A)(Aw) = Aw − A2w =
Aw −Aw = 0. This shows

Ker(1−A) = Image(A).

The equality KerA = Image(1− A) can be shown similarly, or by applying the above argument with
1−A in place of A, which is valid since 1−A is also idempotent by Exercise 5.2.
b) Suppose v ∈ Image(A) ∩ Image(1− A) = Image(A) ∩Ker(A). Then v = Aw for some w ∈ Rn and
also Av = 0, so

0 = Av = A(Aw) = A2w = Aw = v.

This shows that Image(A) ∩ Image(1 − A) = 0. To see that Image(A) + Image(1 − A) = Rn is even
easier: we may write any x ∈ Rn as

x = Ax+ (1−A)x.

c) It is enough to see that if x ∈ Image(A) then Ax = x and if x ∈ Image(1−A) then Ax = 0. Really
we’ve done this already, but nce again: if x = Aw for some w ∈ Rn then Ax = A(Aw) = A2w = Aw =
x, and if x = (1−A)w,then Ax = A(1−A)w = (A−A2)w = 0. �

5.3. Reflections. The above discussion of projections is easily modified so as to apply to another
class of operators, the reflections. We begin in the same way, with a decomposition of Rn into
complementary subspaces Rn = V1 ⊕ V2 and choices of bases B1 of V1 and B2 of V2, so that

B = B1 ∪ B2
is a basis for Rn. Whereas to get πV1,V2

we kept the elements of B1 and killed the elements of B2, we
now define a reflection τV1,V2

by:
∀b1 ∈ B1, τ(b1) = b1,

∀b2 ∈ B2, τ(b2) = −b2.
That is, instead of killing the basis elements of V2, we flip them.
In more algebraic terms, we write any x in Rn uniquely as v1 + v2 with v1 ∈ V1 and v2 ∈ V2 and put

τV1,V2(x) = τV1,V2(v1 + v2) = v1 − v2.
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Now let A be the standard matrix of the reflection τV1,V2
. Above we found that the geometry of

projection was faithfully recorded in the simple algebraic equation A2 = A, so it is natural to ask
whether the same kind of thing will hold for reflections. The answer is yes.

Proposition 5.4. a) Let Rn = V1 ⊕ V2, and let τV1,V2 be the corresponding reflection operator.
Then

(11) τV1,V2 ◦ τV1,V2 = 1Rn .

Equivalently, if A is the standard matrix of τV1,V2 , then

(12) A2 = 1.

b) Conversely, if A ∈Mn,n is such that A2 = 1, then A is the standard matrix of a projection operator
πV1,V2 , with

V1 = {x ∈ Rn | Ax = x}
and

V2 = {x ∈ Rn | Ax = −x}.

Proof. a) For x ∈ Rn, write x = v1 + v2 with v1 ∈ V1 and v2 ∈ V2. Then

(τV1,V2
◦ τV1,V2

)(x) = τV1,V2
(τV1,V2

(v1 + v2)) = τV1,V2
(τV1,V2

(v1) + τV1,V2
(v2))

= τV1,V2(v1 − v2) = τV1,V2(v1)− τV1,V2(v2) = v1 − (−v2) = v1 + v2 = x.

This shows (11); since composition of linear operators corresponds to multiplication of matrices, (12)
follows immediately.
b) Notice first that we defined V1 to be the set of vectors “kept” (or, in more common parlance, “fixed”)
by A and V2 to be the set of vectors “flipped” by A. A little thought shows that if A is the standard
matrix of a reflection operator then V1 and V2 have to be as we defined them, and what is left to show
is that Rn = V1 ⊕ V2. If x ∈ V1 ∩ V2, then Ax = x and also Ax = −x, so x = Ax = −x and thus
2x = 0 so x = 0. Now let x ∈ Rn. Here’s a trick: put y = x+Ax and z = x−Ax. Then

Ay = A(x+Ax) = Ax+A2x = Ax+ x = y,

so y ∈ V1. Also

Az = A(x−Ax) = Ax−A2x = Ax− x = −(x−Ax) = −z,
so z ∈ V2. Finally,

x =
1

2
y +

1

2
z ∈ V1 + V2.

�

Remark: In more advanced linear algebra one works with vector spaces not only over R but over an
arbitrary field of scalars. Most of linear algebra by its nature carries over to this general context with
no changes in the statements of proofs, but there are some exceptions. Here we fundamentally used
that 2 = 1 + 1 6= 0. If we took as our scalars the field F2 of two elements (or any field containing it),
then we would in fact have 1 + 1 = 0 and the above argument breaks down. In fact the result becomes
false: there are matrices with A2 = 1 which do not correspond to projection operators. The simplest

such example is A =

[
1 1
0 1

]
.

6. Determinants

Theorem 6.1. For A ∈Mn,n, the following are equivalent:
(i) The matrix A is singular.
(ii) We have detA = 0.

Theorem 6.2. For A ∈Mn,n we have detA = detAT .
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7. Orthogonality

7.1. Projection of a vector onto a line. Let ` be a line in Rn passing through the origin, so
` is the span of a nonzero vector u ∈ Rn. For any vector v in Rn we define the projection of v onto
` = 〈u〉 as

proj` v = proj〈u〉 v =
v · u
u · u

u.

The first thing to check is that this is well-defined: we say the projection is onto the line `, but to
define it we chose a nonzero vector u on `. What happens if we chose a different nonzero vector u′ on
`? Then there is α ∈ R \ {0} such that u′ = αu, so

v · u′

u′ · u′
u′ =

v · (αu)

(αu) · (αu)
αu =

α2

α2

v · u
u · u

=
v · u
u · u

u.

It is easy to see that the map

A : v ∈ Rn 7→ proj` v ∈ Rn

is a linear transformation of Rn. We claim that it is indeed a projection onto the subspace ` in the
sense of §X.X. First of all the image of this map is `: visibly it is contained in ` and for every nonzero
u ∈ ` the formula gives

proj` u = u.

This also shows that the transformation is idempotent – i.e., A2 = A since indeed idempotent linear
transformations are those that, upon restriction to their image, are the identity. As we saw, being
idempotent is a characteristic property of projection maps. Evidently the kernel is

H := {v ∈ Rn | v · u = 0},

i.e., the set of all vectors perpendicular to `. Since A has rank 1, its nullity is n−1, and thus (as we’ve
seen before) H is a linear subspace of dimension n− 1, i.e., a hyperplane.

Later we will see that for every subspace W of Rn we can define a special projection onto W , called
orthogonal projection, which is a projection operator with image W and for which the kernel is the
set of vectors perpendicular to every element of W .

7.2. Orthogonal Bases and Gram-Schmidt. A set of vectors S ⊂ Rn is orthogonal if 0 /∈ S
and for all v 6= w ∈ S we have v · w = 0. A set of vectors S ⊂ Rn is orthonormal if it is orthogonal
and moreover for all v ∈ S we have v · v = 1.

To every nonzero vector v ∈ Rn we associate a unit vector uv = v
||v|| = v√

v·v .

Exercise 7.1. Let S ⊂ Rn \ {0} be a set of nonzero vectors in Rn. Put

U(S) := {us =
s√
s · s

| s ∈ S},

the set of associated unit vectors of S.
a) Show: 〈S〉 = 〈U(S)〉, i.e., replacing S by its set of associated unit vectors does not change its span.
b) Show: S is linearly independent iff U(S) is linearly independent.
c) Show: S is orthogonal iff U(S) is orthonormal.

Because of Exercise 7.2 the distinction between orthogonal subsets and orthonormal subsets is always
a minor one. Here is a more significant result.

Proposition 7.1. An orthogonal subset S ⊂ Rn is linearly independent.

Proof. We go by contraposition: since 0 /∈ S, if S is linearly dependent then there are distinct
vectors v1, . . . , vn ∈ S and α1, . . . , αn−1 ∈ R such that

vn = α1v1 + . . .+ αn−1vn−1.
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Taking the dot product of both sides with vn we get

||vn||2 = α1v1 · vn + . . .+ αn−1vn−1 · vn = α10 + . . .+ αn−10 = 0,

a contradiction. �

It follows that an orthogonal subset of Rn has size at most n, and that an orthogonal subset of Rn has
size n iff it is a basis for Rn.

Do orthogonal bases exist? Well, sure: the standard basis e1 = (1, . . . , 0), . . . , en = (0, . . . , 1) of
Rn is an orthonormal basis. A more interesting question is whether every subspace W of Rn admits
an orthogonal basis B. If so, then by Exercise 7.2 the associated set of unit vectors U(B) is an or-
thonormal basis.

This is possible, indeed in a canonical way.

Theorem 7.2 (Gram-Schmidt Process). Let v1, . . . , vk be linearly independent vectors in Rn, and
let V = 〈v1, . . . , vk〉. We define vectors w1, . . . , wk as follows:
• w1 := v1.
• w2 := v2 − projw1

v2.
• Having defined w1, . . . , wi, we put

wi+1 := vi+1 − projw1
vi+1 − projw2

vi+1 − . . .− projwi
vi+1.

Then w1, . . . , wk is an orthogonal basis for V .

Proof. Let 1 ≤ i ≤ k. We will show, by induction on i, that w1, . . . , wi is an orthogonal basis
for 〈v1, . . . , vi. Taking i = k gives the result.
Base Case: Since v1 is part of a linearly independent set, it is nonzero, and thus w1 = v1 is nonzero
hence is an orthogonal basis for 〈v1〉.
Induction Step: Let 1 ≤ i ≤ n− 1. Suppose w1, . . . , wi is an orthogonal basis for 〈v1, . . . , vi〉. We have

wi+1 = vi+1 −
i∑

j=1

projwi
vi+1.

If wi+1 = 0 then vi+1 ∈ 〈w1, . . . , wi〉 = 〈v1, . . . , vi〉, contradicting linear independence. So wi+1 6= 0.
Since w1, . . . , wi are orthogonal, it is enough to show that for all 1 ≤ j ≤ i we have

wj · wi+1 = 0.

Since projwl
vi+1 is a scalar multiple of wl, if 1 ≤ j, l ≤ i and j 6= l then wj · projwl

vi+1 = 0. Thus

wj · wi+1 = wj · vi+1 − wj · (projwj
vi+1)

= wj · vi+1 − wj · (
wj · vi+1

wj · wj
wj) = wj · vi+1 − wj · vi+1 = 0. �

The approach taken to the proof of Theorem 7.2 is clean but not so geometrically enlightening. We will
revisit the construction after the notion of orthogonal projection onto a subspace has been introduced.

As we have seen, a basis of Rn gives an alternate coordinate system. The following result shows
that an orthogonal basis gives an especially nice coordinate system and that an orthonormal basis
gives an extraspecially nice coordinate system.

Theorem 7.3. Let v1, . . . , vn be an orthogonal basis of Rn.
a) For all v ∈ Rn we have

v =

n∑
i=1

projvi v.
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b) If v1, . . . , vn is an orthonormal basis of Rn, for all v ∈ Rn we have

v =

n∑
i=1

(v · vi)vi.

Proof. Since v1, . . . , vn is a basis for Rn there are unique scalars α1, . . . , αn ∈ R such that

v =

n∑
i=1

αivi.

Taking the dot product with vi gives
v · vi = αivi · vi.

Thus
αi =

v · vi
vi · vi

and
αivi = projvi v.

b) For all 1 ≤ i ≤ n, since vi is a unit vector we have projvi v = (v · vi)vi. �

7.3. Orthogonal Complements. For a subset S ⊂ Rn we put

S⊥ := {v ∈ Rn | v · s = 0 ∀s ∈ S}.
That is, S⊥ is the set of vectors in Rn that are perpendicular to every vector in S.

Proposition 7.4. Let S and T be subsets of Rn.
a) We have that S⊥ is a subspace of Rn.
b) If S ⊂ T then T⊥ ⊂ S⊥.
c) If W is the subspace spanned by S, we have S⊥ = W⊥.
d) We have S ⊂ (S⊥)⊥.

Proof. a) Let v, w ∈ S⊥ and let α ∈ R. Then for all s ∈ S we have

(αv + w) · s = α(v · s) + w · s = α · 0 + 0 = 0.

b) Suppose S ⊂ T , and let v ∈ T⊥. Then for all s ∈ S we have s ∈ T so v · s = 0, so v ∈ S⊥.
c) Since S ⊂ W it follows from part b) such that W⊥ ⊂ S⊥. Conversely, let v ∈ S⊥ and let w ∈ W .
Then there are s1, . . . , sn ∈ S and α1, . . . , αn ∈ R such that

w =

n∑
i=1

αisi,

and thus we have

v · w =

n∑
i=1

αi(v · si) =

n∑
i=1

αi · 0 = 0,

so v ∈W⊥.
d) If s ∈ S and v ∈ S⊥ then s · v = 0, so s ∈ (S⊥)⊥. Otherwise put: indeed every element of S is
perpendicular to every vector that is perpendicular to every element of S! �

From now on we will abbreviate (S⊥)⊥ to S⊥⊥.

Exercise 7.2. Show {0}⊥ = Rn and (Rn)⊥ = {0}.

We say that subspaces V,W of Rn are orthogonal if for all v ∈ V and w ∈ W we have v · w = 0.
It follows that V ∩ W = {0}: indeed, if x ∈ V ∩ W then x · x = 0, so x = 0. Thus V and W
are independent subspaces in the sense of Theorem 4.26, so we have V +W = V ⊕W . In this situa-
tion we will write V ⊥W in place of V ⊕W and refer to it as an “orthogonal direct sum decomposition.”

More generally we say that subspaces V1, . . . , Vk of Rn are orthogonal if for all 1 ≤ i, j ≤ k, if vi ∈ Vi
and vj ∈ Vj then vi · vj = 0. It then follows that if we choose any nonzero vectors v1 ∈ V1, . . . , vk ∈ Vk
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then {v1, . . . , vk} is orthogonal. It follows that the subspaces V1, . . . , Vk are independent in the sense
of Theorem 4.27. In this situation we write

〈V1, . . . , Vk〉 = V1 ⊥ V2 ⊥ . . . ⊥ Vk.

Theorem 7.5. Let W be a subspace of Rn.
a) We have Rn = W ⊥W⊥.
b) We have dimW⊥ = n− dimW .
c) We have W⊥⊥ = W .

Proof. a) Let m = dimW . The cases m = 0 and m = n are handled by Exercise 7.2, we will
assume that 1 ≤ m ≤ n−1. Let v1, . . . , vm be a basis for W , and extend it to a basis v1, . . . , vn for Rn.
Applying the Gram-Schmidt process we get an orthonormal basis b1, . . . , bn for Rn such that b1, . . . , bm
is an orthonormal basis for W . Let U be the subspace spanned by bm+1, . . . , bn, so Rn = W ⊥ U . It
is clear that U ⊂W⊥. Conversely, let v ∈W⊥. Write v =

∑n
i=1 αibi. Then for all 1 ≤ i ≤ m we have

0 = v · bi = αi,

so v =
∑n
i=m+1 αibi ∈ U .

b) This is immediate from part a): indeed, we saw that if dimW = m then dimW⊥ = dimU = n−m.
c) By Proposition 7.4 we have W ⊂W⊥⊥. Also we have

dimW⊥⊥ = n− dimW⊥ = n− (n− dimW ) = dimW,

and this implies that W = W⊥⊥. �

7.4. Orthogonal Projection. Let W be a subspace of Rn. By Theorem 7.5 we have

Rn = W ⊥W⊥.
Therefore we can define a linear transformation

projW = πW,W⊥ : Rn → Rn,

orthogonal projection onto W.

Let ` ⊂ Rn be a one-dimensional subspace, and let w be a nonzero vector in `. The notation proj` v
has now been defined twice: in §6.1 is given the definition

proj` v =
v · w
w · w

w,

and just now we defined it as proj`,`⊥ v. Fortunately these are the same transformation, as was shown

in §6.1: we have that v 7→ v·w
w·ww is an idempotent linear map with kernel `⊥.

Proposition 7.6. a) Let V1, . . . , Vk be orthogonal subspaces of Rn. Then we have

projV1⊥...⊥Vk
=

k∑
i=1

projVi
.

b) Let V be a subspace of Rn, and let w1, . . . , wk be an orthogonal basis of V . Then we have

projV =

k∑
i=1

proj〈wi〉 .

Proof. a) If we put W := (V1 ⊥ . . . ⊥ Vk)⊥, then we have

Rn = V1 ⊥ . . . ⊥ Vk ⊥W.
By Gram-Schmidt, we may choose orthogonal bases for V1, . . . , Vk,W respectively, and combining these
bases (in some order) gives an orthogonal basis of Rn. Writing down the matrices for both projV1⊥...⊥Vk

and
∑k
i=1 projVi

in this basis, we get that both sides are diagonal matrices with diagonal entries one
in the places corresponding to the basis elements of Vi for some i and 0 in the places corresponding to



52 1. BASICS

the basis elements of W .
b) Since V = 〈w1〉 ⊥ . . . ⊥ 〈wk〉, this is a special case of part a). �

We can now revisit the Gram-Schmidt process. Let v1, . . . , vk be linearly independent in Rn. For
1 ≤ i ≤ k, let Vi := 〈v1, . . . , vk〉. Then we have

w1 = v1,

w2 = v2 − proj〈w1〉 v2 = v2 − projV1
v2 = projV ⊥1 v2,

w3 = v3 − proj〈w1〉 v3 − proj〈w2〉 v3 = v3 − proj〈w1,w2〉 v3 = v3 − projV2
v3 = projV ⊥2 v3,

and in general, for 1 ≤ i ≤ k − 1 we have

wi+1 = vi+1 − projVi
vi+1 = projV ⊥i vi+1.

7.5. Orthogonal Matrices.

Lemma 7.7. (Polarization Identity) For all v, w ∈ Rn we have

(13) v · w =
||v + w||2 − ||v||2 − ||w||2

2
.

Exercise 7.3. Prove Lemma 7.7.
(Hint: no need to think: just calculate the right hand side.)

Notation: For 1 ≤ i, j ≤ n, we set δi,j to be 1 if i = j and 0 otherwise.

We say that v1, . . . , vn ∈ Rn forms an orthonormal basis if for all 1 ≤ i, j ≤ n, vi · vj = δi,j .
This is just a compact way of saying that we have an orthogonal basis of unit vectors.

Theorem 7.8. For a matrix A ∈Mn,n, the following are equivalent:
(i) For all v ∈ Rn, we have ||Av|| = ||v||.
(ii) For all v, w ∈ Rn, we have Av ·Aw = v · w.
(iii) For every orthonormal basis v1, . . . , vn of Rn, Av1, . . . , Avn is an orthonormal basis.
(iv) We have that Ae1, . . . , Aen is an orthonormal ordered basis for Rn.
(v) ATA = AAT = 1.

Proof. (i) =⇒ (ii): The follows from the polarization identity:

Av ·Aw =
||Av +Aw||2 − ||Av||2 − ||Aw||2

2
=
||v + w||2 − ||v||2 − ||w||2

2
= v · w.

(ii) =⇒ (iii): This is immediate: for all 1 ≤ i, j ≤ n, we have

Avi ·Avj = vi · vj = δi,j .

(iii) =⇒ (iv): Since e1, . . . , en is an orthonormal ordered basis of Rn, this is a special case of (iii).
(iv) =⇒ (v): First recall that for any A,B ∈ Mn, if AB = 1 then also BA = 1. So it is enough to
assume (iv) and show that ATA = 1. The (i, j) entry of AAT is the dot product of the ith row of AT

with the jth column of A, which is the dot product of the ith and jth columns of A, which is Aei ·Aej .
Since the (i, j) entry of the identity matrix is δij , this shows ATA = 1.
(v) =⇒ (i): It’s equivalent to show that for all v ∈ Rn, Av ·Av = v · v. For this, we have

Av ·Av = (Av)TAv = vTATAv = vT v = v · v. �

A matrix which satisfies the equivalent properties of Theorem 7.8 is called an orthogonal matrix.
We denote by On the set of all n× n orthogonal matrices.

Exercise 7.4. Show: A ∈Mn is orthogonal ⇐⇒ A is invertible and AT = A−1.

Exercise 7.5. Show that any permutation matrix is orthogonal.

Lemma 7.9. If A ∈Mn,n is orthogonal, then detA ∈ {±1}.
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Proof. Using Theorem 6.2 we get

1 = det(In) = det(AAT ) = detA detAT = (detA)2,

so detA ∈ {±1}. �

We write SOn for the set of all orthogonal matrices with determinant 1.

Exercise 7.6. Let σ ∈ Sn be a permutation, and let Pσ ∈Mn,n be the corresponding permutation
matrix. Show:

detPσ = sgnσ.

Example 7.10. For θ ∈ R, let

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
be the corresponding rotation matrix. Then (cos θ, sin θ), (− sin θ, cos θ) is an orthonormal basis for
R2, so Rθ is orthogonal. It has determinant cos2 θ + sin2 θ = 1, hence Rθ ∈ SO2.

Conversely, let A ∈ SO2. Let v1 and v2 be the two columns of A. Since v1 is a unit vector, it lies
on the unit circle and thus we can write v1 = (cos θ, sin θ) for a unique θ ∈ [0, 2π). Since v1 ·v2 = 0, we
have that v2 ∈ 〈v1〉⊥, which is a line spanned by (− sin θ, cos θ). The two unit vectors on that line are
±(− sin θ, cos θ), so we have v = ±(− sin θ, cos θ). The choice that leads to a matrix of determinant 1
is v2 = (− sin θ, cos θ).

Thus SO2 consists precisely of rotation matrices.

Lemma 7.11. a) If A,B ∈ On, then we have A−1 ∈ On and AB ∈ On.
b) If A,B ∈ SOn, then we have A−1 ∈ SOn and AB ∈ SOn.

Exercise 7.7. Prove Lemma 7.11.

8. Invariant Subspaces

For a matrix A ∈ Mn,n and a subspace V of Rn, we say that V is invariant under A (or A-invariant)
if A(V ) ⊂ V : that is, for all v ∈ V we have av ∈ V .

The subspaces {0} and Rn are invariant under A (no matter what A is). We call these invariant
subspaces trivial and every other subspace nontrivial.

Let θ ∈ (0, π) and let A = Rθ be the rotation matrix. Every other subspace of R2 is a line through the
origin, and rotation through θ does not preserve any lines (since θ is not a multiple of π), so A has no
nontrivial invariant subspaces.

Exercise 8.1. Let A ∈Mn,n. Let V1, . . . , Vk ⊂ Rn be A-invariant subspaces.
a) Show: V1 + . . .+ Vk is A-invariant.

b) Show:
⋂k
i=1 Vi is A-invariant.

Proposition 8.1. Let A ∈Mn,n be a nonsingular matrix, and let V ⊂ Rn be invariant under A.
Then V is also invariant under A−1.

Proof. Since A is injective, we have dimA(V ) = dimV , and since A(V ) ⊂ V is an inclusion of
subspaces of the same dimension, we must have equality: A(V ) = V . Thus every v ∈ V can be written
(uniquely) in the form v = Av′ for some v′ ∈ V . Then

A−1v = A−1(Av′) = v′ ∈ V. �

Theorem 8.2. Let A ∈Mn,n, and let V be an A-invariant subspace of Rn.
a) The subspace V ⊥ is AT -invariant.
b) If A is either symmetric or orthogonal, then V ⊥ is A-invariant.
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Proof. a) We must check that if w ∈ V ⊥ then ATw · v = 0 for all v ∈ V . We have

ATw · v = w · (Av) = 0

since Av ∈ V and w ∈ V ⊥.
b) If A is symmetric then AT = A, so this is immediate. If A is orthogonal, then by Example 8.1 V is
invariant under A−1 = AT , so V ⊥ is invariant under (AT )T = A. �

8.1. The Fitting Decomposition.

Theorem 8.3 (Fitting Decomposition). Let A : Rn → Rn be a linear transformation. There are
unique A-invariant subspaces V0, V1 of Rn such that
(i) A|V0 is nilpotent,
(ii) A|V1 is invertible, and
(iii) Rn = V0 ⊕ V1.

Proof. Observe that if W1 and W2 are invariant subspaces on which A is nilpotent, then A
remains nilpotent on 〈W1,W2〉: indeed, if w1 ∈ W1 and w2 ∈ W2 then there are positive integers
n1, n2 such that An1w1 = 0 and An2w2 = 0 and then An1+n2(w1 + w2) = 0. So there is a unique
largest invariant subspace V0 on which A is nilpotent: can we describe it in a more useful way?

Well, being nilpotent means that some power of A is 0. In fact, a linear transformation is nilpotent
iff any power of it is nilpotent. So the subspace V0 found above for A is the same as for An for any
n ∈ Z+. On the other hand, if v ∈ V0 then v lies in the kernel of An for all sufficiently large n. A little
thought then shows that we have an increasing sequence of invariant subspaces

0 ⊂ KerA ⊂ KerA2 ⊂ . . . ⊂ KerAn ⊂ . . . ⊂ Rn.

Because Rn is finite-dimensional, this sequence must stabilize at some point. More precisely, if we
have KerAn = KerAn+1 then we must have KerAn = KerAn+k for all k ≥ 1: inductively, it is
enough to show this for k = 2 and if An+2v = 0, then An+1(Av) = 0, so Av ∈ KerAn+1 = KerAn, so
0 = An(Av) = An+1v. So let N0 be the least positive integer such that KerAN0 = KerAN0+1 and put

V0 := KerAN0 .

What about V1? Well, for any n ∈ Z+ we have that A is invertible iff An is invertible. This time we
get a descreasing sequence of invariant subspaces

Rn ⊃ A(Rn) ⊃ A2(Rn) ⊃ . . . ⊃ An(Rn) ⊃ . . . ⊃ {0},

and we have a similar discussion to the above: the containments must be strict until the first instance
of An+1(Rn) = An(Rn) at which point we must have An+2(Rn) = A(An+1(Rn)) = A(An(Rn)) =
An+1(Rn) and so forth. Let N1 be the least such N such that AN1(Rn) = AN1+1(Rn) and put

V1 := AN1(Rn).

We have A(V1) = AN1+1(Rn) = AN1(Rn) = V1, so A|V1
is invertible. If W is any invariant subspace

on which A is invertible, then

W = AN1(W ) ⊂ AN1(V ) = V1,

so indeed V1 is the unique largest invariant subspace on which A is invertible.
The subspaces V0 and V1 must be independent, since on their intersection A is both nilpotent and

invertible. Thus dim〈V0, V1〉 = dimV0 + dimV1. Finally, taking N2 = max(N0, N1) the Dimension
Theorem gives

n = dimRn = dim KerAN2 + dimAN2(V ) = dimV0 + dimV1,

so we must have Rn = V0 ⊕ V1. �

Exercise 8.2. In the notation of the proof of Theorem 8.3, show: N0 = N1.

Exercise 8.3. Let A : Rn → Rn be a linear transformation. Let V1, V2 ⊂ Rn be subspaces such
that A|V1

is injective and A|V2
is injective.
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a) Suppose that V1 and V2 are A-invariant. Show: V1 + V2 is an A-invariant subspace on which
A is invertible.

b) Show that in general A|V1+V2
need not be injective.

Exercise 8.4. Let A : Rn → Rn and suppose that KerA∩A(Rn) = (0). Show that, in the notation
of Theorem 8.3, we have KerA = V0 and A(Rn) = V1.

8.2. Existence of Invariant Subspaces.

Theorem 8.4. Let n ∈ Z+, and let A ∈Mn,n be a matrix.
a) If n is odd, then A has a one-dimensional invariant subspace.
b) If n is even, then A has an invariant subspace of dimension two.

Proof. a) Every one-dimensional A-invariant subspace is spanned by an eigenvector of A, so A
has a one-dimensional invariant subspace iff it has an eigenvalue. If n is odd, then χA(t) is a polynomial
with real coefficients of odd degree, hence has a real root by the Intermediate Value Theorem.
b) Let P (t) be the minimal polynomial of A.
Case 1: Suppose that P has degree 1. Then P (t) = t − λ for some λ ∈ R and A is the scalar matrix
λIn for which every subspace is invariant. Since n is even, it is at least two, and so indeed there is a
2-dimensional A-invariant subspace.
Case 2: Suppose P admits an irreducible quadratic factor Q(t) = t2 + bt+ c, and write P = QR. Since
degR < degP we must have R(A) 6= 0; let v ∈ Rn be such that R(A)v 6= 0. Put w := R(A)v and
V := 〈w,Aw〉. We claim that V is a two-dimensional A-invariant subspace. First, it is A-invariant
since A2w = −bAw − cw. Second, if V were one-dimensional then w would be an eigenvector for A,
say with eigenvalue λ. But then

0 = (A2 + bA+ cIn)w = (λ2 + bλ+ c)w,

and since w 6= 0 we have 0 = Q(λ), contradicting the fact that Q is irreducible quadratic.
Case 3: Suppose P has linear factors (t − λ1) and (t − λ2) for λ1 6= λ2 ∈ R. Then the λ1 and λ2
eigenspaces are each nontrivial. If v1 is an eigenvector with eigenvalue λ1 and v2 is an eigenvector with
eigenvalue λ2 then V := 〈v1, v2〉 is a two-dimensional A-invariant subspace.
Case 4: If none of the above hold, then we must have P (t) = (t − λ)k for some λ ∈ R and k ≥ 1.
There must be v ∈ Rn such that (A− λ)k−1v 6= 0, for otherwise A satisfies the polynomial (t− λ)k−1,
which has degree less than the minimal polynomial. Let w := (A − λ)k−2(v). Then (A − λ)w 6= 0
but (A − λ)2w = 0, so the subspace V := 〈w,Aw〉 is two-dimensional and A-invariant. Indeed, by
construction w is not an eigenvector with eigenvalue λ, and by Proposition 9.27 since λ is the only
root of P it is the only eigenvalue for A. �

9. Eigenvectors and Diagonalization

9.1. Diagonalization.

9.2. Eigenvectors, Eigenvalues and Eigenspaces.

A vector v ∈ Rn is an eigenvector for a linear transformation L : Rn → Rn if

(EV1) v 6= 0, and
(EV2) There is λ ∈ R such that L(v) = λv.

Thus an eigenvector is a nonzero v such that L(v) is a scalar multiple of v.

If v is an eigenvector, then the scalar λ such that L(v) = λv is unique: if

λ1v = L(v) = λ2v =⇒ (λ1 − λ2)(v) = 0.

Since v 6= 0, this forces λ1 = λ2. This scalar is called the eigenvalue of v. Moreover, a scalar λ ∈ R
is called an eigenvalue for L if there is some eigenvector v with eigenvalue λ.
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Example 9.1. Let D be a diagonal matrix with diagonal entries d1, . . . , dn. Then each of the
standard basis vectors e1, . . . , en, and the eigenvalues are (respectively) d1, . . . , dn. In particular there
is a basis – the standard basis! – of Rn consisting of eigenvectors of D.

Remark 9.2. Although the zero vector is not allowed to be an eigenvector, the zero scalar is
allowed to be an eigenvalue, and this is an important case: 0 is an eigenvalue for L if and only if there
is 0 6= v such that L(v) = 0v = 0. Thus the eigenvectors with eigenvalue 0 are precisely the nonzero
vectors in the kernel (or null space) of T , and L has 0 has an eigenvalue if and only if it is singular.

For any λ ∈ R we define the λ-eigenspace

Vλ := {v ∈ Rn | L(v) = λv}.

In other words, Vλ consists of the eigenvectors for v with eigenvalue λ (if any) along with the zero
vector. We also define the geometric multiplicity of λ as dimVλ.10

The following exercise is very easy but all-important: it tells us that computing eigenspaces is a
special case of our favorite linear algebraic computation.

Exercise 9.1. Show: for all λ ∈ R, Vλ is the null space of λIn −A.

Example 9.3. We return to the case of a diagonal matrix D ∈ Mn,n with diagonal entries
d1, . . . , dn. Earlier we saw that the standard basis vectors e1, . . . , en are eigenvectors, with corre-
sponding eigenvalues d1, . . . , dn. Now we want to go further by computing all the eigenspaces. First,
suppose v = (x1, . . . , xn) is an eigenvector for D. Then there is λ ∈ R such that

λv = (λx1, . . . , λxn) = Dv = (d1x1, . . . , dnxn).

Thus for all 1 ≤ i ≤ n, we have λxi = dixi, so if xi 6= 0 then λ = di. By definition of eigenvectors,
v 6= 0 hence at least one xi is nonzero, so λ = di. This shows that the only eigenvalues of D are the
diagonal entries. Moreover, if for 1 ≤ i 6= j ≤ n we have both xi 6= 0 and xj 6= 0, then di = λ = dj. In
other words, if several components of v are nonzero, then the corresponding diagonal entries must all
be equal; conversely when this happens we do indeed have Dv = λv. This shows:

Vdi = span1≤j≤n{ej | dj = di}.

The dimension of Vdi is the number of 1 ≤ j ≤ n such that dj = di.
(Subexample: For instance, if

D =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 3

 ,
then V1 = span e1, e3, V2 = span e2, v3 = span e4.)
Further, the eigenspaces are independent and the sum of their dimensions is n.

Exercise 9.2. As the previous example indicates, cleaner bookkeeping arises for diagonal matrices
if we assume that repeated diagonal entries occur in blocks of consecutive terms (unlike the subexample
above, in which the two 1’s occur nonconsecutively). Show that any diagonal matrix is similar to a
diagonal matrix with this property.

Proposition 9.4. Let T : Rn → Rn be a linear transformation.
a) For any λ ∈ R, Vλ is a subspace of Rn.
b) Vλ ) {0} ⇐⇒ λ is an eigenvalue of T .

10Yes, this is a lot to swallow. Our pedagogical strategy here is to put all the basic definitions in one place for easy

reference, and then explore the consequences of these definitions in a more leisurely manner.



9. EIGENVECTORS AND DIAGONALIZATION 57

Proof. It is tempting to leave this as an exercise – it is quite straightforward – but because of
its importance to our narrative we prefer to give a complete proof.
a) As usual, this is easy: 0 ∈ Vλ. Further, if v, w ∈ Vλ and α ∈ R, then

L(αv + w) = αL(v) + L(w) = αλv + λw = λ(αv + w),

so αv + w ∈ Vλ. By the One-Step Linear Transformation Test, Vλ is a subspace.
b) According to our definitions, λ is an eigenvalue for T if and only if there is a nonzero vector v ∈ Rn
with T (v) = λv; this occurs if and only if Vλ 6= {0}. �

Proposition 9.5. Let L : Rn → Rn be a linear transformation, and let λ1, . . . , λn be distinct real
numbers. Then the eigenspaces Vλ1

, . . . , Vλn
are independent:

Vλ1
+ . . .+ Vλn

= Vλ1
⊕ . . .⊕ Vλn

.

Proof. According to Theorem ?? it suffices to show: for any nonzero vectors vi ∈ Vλi
, the set

{v1, . . . , vn} is linearly independent. Suppose not. Then after reordering the vectors there is some
2 ≤ k ≤ n such that

(14) α1v1 + α2v2 + . . .+ αkvk = 0

with every αk 6= 0 (we cannot have k = 1 because each vi is nonzero) and among all such relations we
may choose one with k as small as possible. If we can conjure up a similar linear dependence relation
among k−1 vectors, we get a contradiction and we’ll be done. Well, the big idea is to apply L to (14),
getting

(15) α1λ1v1 + α2λ2v2 + . . .+ αkλkvk = 0.

Multiplying (14) by λ1 and subtracting what we get from (15), we obtain

(16) α2(λ2 − λ1)v2 + α3(λ3 − λ1)v3 + . . .+ αk(λn − λ1)vk = 0.

Since the λi’s are distinct, for all 2 ≤ i ≤ k, λi −α1 6= 0, and thus (16) is a linear dependence relation
with all nonzero coefficients but with k − 1 terms instead of k terms: contradiction. �

Exercise 9.3. Give a much shorter proof of Proposition 9.5 when n = 2.

Corollary 9.6. A linear transformation L : Rn → Rn has at most n eigenvalues.

Proof. If we had n+ 1 eigenvalues λ1, . . . , λn+1, then Vλ1 + . . .+ Vλn+1 would be a subspace of

Rn of dimension
∑n+1
i=1 dimVλi

≥
∑n+1
i=1 1 = n+ 1. �

Why do we care about all this eigenstuff anyway?? Because of the following result.

Theorem 9.7. Let A ∈Mn,n, and let P ∈Mn,n be invertible.
a) The following are equivalent:
(i) P−1AP is diagonal.
(ii) The columns of P are eigenvectors for LA.
b) The following are equivalent:
(i) A is diagonalizable.
(ii) There is a basis {v1, . . . , vn} of Rn consisting of eigenvectors for A.
(iii) There is an eigenvalue for A, and if λ1, . . . , λk are the eigenvalues, then

Rn = Vλ1 ⊕ . . .⊕ Vλk
.

Proof. a) (i) =⇒ (ii): Suppose that P−1AP = D, where D is diagonal with diagonal entries
λ1, . . . , λn. Let vi be the ith column of P . Then for all 1 ≤ i ≤ n,

λiei = Dei = P 1APei = P−1Avi.

Multiplying on the left by P gives

λivi = λiP (ei) = P (λiei) = PP−1Avi = Avi,
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so vi ∈ Vλi
. Since P is invertible, each vi is nonzero, so vi is an eigenvector for LA.

(ii) =⇒ (i): Suppose that for all 1 ≤ i ≤ n, there is λi ∈ R such that Avi = λivi, and let
B = (v1, . . . , vn). Then the change of basis formula gives

AL,B = P−1AP.

Moreover, since Avi = λivi, the ith column of AL,B is λiei: thus AL,B is a diagonal matrix with
diagonal entries λ1, . . . , λn.
b) The equivalence of (i) and (ii) follows immediately from part a). Moreover, if we have a basis of Rn
consisting of eigenvectors for L, then breaking it apart into subsets Bi consisting of eigenvectors for
the eigenvalue λi gives a direct sum decomposition Rn = Vλ1

⊕ . . .⊕ Vλk
. And conversely: given such

a direct sum decomposition, we take Bi to a basis for Vλi , and then B = B1 ∪ . . .∪Bk is a basis for Rn
consisting of eigenvectors. �

Proposition 9.8. Let A ∈ Mn,n be nonsingular. Then 0 is not an eigenvalue of A, and for all
nonzero λ ∈ R, the λ-eigenspace of A is the λ−1-eigenspace of A−1.

Proof. Av = λv. If λ = 0, then v lies in the null space of A so A is singular, contradiction.
Applying A−1 to the equation Av = λv we get

v = A−1λv = λA−1v,

or

A−1v = λ−1v,

which shows that v lies in the λ−1 eigenspace of A−1. Applying the same claim with (A−1, λ−1) in
place of (A, λ) shows that every vector lying in the λ−1 eigenspace of A−1 also lies in the λ eigenspace
of A. �

Exercise 9.4. a) Show: A2 = A, then A is diagonalizable.
b) Show: if A2 = 1, then A is diagonalizable.11

Recall that the determinant of a matrix is a similarity invariant: in concrete terms, this means that
if A,B ∈Mn,n are similar – i.e., B = PAP−1 for some invertible P – then detA = detB. But there is
also a richer perspective: as we have seen, similarity of matrices is an equivalence relation on Mn,n, and
thus it partitions Mn,n into equivalence classes. However, if I give you two matrices A,B ∈Mn,n, it is
usually not so easy to tell whether they lie in the same equivalence class: in principle we would have to
try conjugating A by every invertible matrix P to see whether we get B, but there are infinitely many
such matrices so it is not clear that this can always be done in a practical manner. This is common in
higher mathematics: for an interesting equivalence relation ∼ on a set X, it is not always clear how
to check in practice whether two objects are equivalent. One strategy is to find an invariant of the
equivalence relation. One can think of this as a function f : X → Y defined on the entire set such that
if x1 ∼ x2 then f(x1) = f(x2). Then, if we have two objects x1, x2 such that f(x1) 6= f(x2), we knw
that they can’t be equivalent. The determinant is such a function: if detA 6= detB, then A and B
cannot be similiar. Unfortunately the converse does not hold, as we have seen. Thus we want further
such invariants. If we are lucky, then eventually we will find a complete set of invariants, such that
if all the invariants of x1 and x2 agree, then indeed x1 ∼ x2.

In the case of similarity of matrices this can indeed be done, but unfortunately the end of this story
lies beyond the end of this course. But here are some further important invariants.

Theorem 9.9. Let A,P ∈Mn,n, and suppose P is invertible.
a) For v ∈ Rn, if Av = λv, then

(P−1AP )(P−1v) = λ(P−1v).

11In this exercise it is important that our scalar field is R.
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b) For all λ ∈ R, let Vλ be the λ-eigenspace for A, and let Wλ be the λ-eigenspace for P−1AP . Then

P−1Vλ = Wλ.

c) For all λ ∈ R, the geometric multiplicity of λ for A is equal to the geometric multiplicity of λ for
P−1AP .

Proof. a) This is a straightforward computation that we leave to the reader.
b) Part a) says that if v is an eigenvector for A, then P−1v is an eigenvector for P−1AP . In other
words, we have

P−1Vλ ⊂Wλ.

Conversely, if w ∈ Wλ then P−1APw = λw, so A(Pw) = P (λw) = λ(Pw) and thus Pw ∈ Vλ: thus
PWλ ⊂ Vλ; applying P−1 to both sides gives Wλ ⊂ P−1Vλ. Thus P−1Vλ = Wλ.
c) Let (v1, . . . , vk) be an ordered basis for Vλ. Then (P−1(v1), . . . , P−1(vk)) is an ordered basis for
P−1Vλ = Wλ, so dimVλ = dimWλ. �

Thus similar matrices have the same eigenvalues and the same geometric multiplicities. Thus for all
λ ∈ R, the geometric multiplicity of λ (which will be 0 if λ is not an eigenvalue) is a similarity invariant.

Exercise 9.5. Theorem 9.9 does not say that similar matrices have equal λ-eigenspaces. Give an
explicit example of similar matrices with distinct λ-eigenspaces for some λ.
(Suggestion: any matrix that is diagonalizable but not diagonal will give rise to an example.)

Exercise 9.6. a) Let A ∈Mn,n, and let N ∈ Z+. If v is an eigenvector for A with eigenvalue λ,
show that v is an eigenvector for AN with eigenvalue λN .
b) Recall that a matrix A ∈ Mn,n is nilpotent if AN = 0 for some N ∈ Z+. Show that a nilpotent
matrix has precisely one eigenvalue: 0.
c) In the setting of part a), show that it is possible that the N th powers of the eigenvalues of A do not
give all of the eigenvalues of AN . For instance, exhibit an A which has no eigenvalues but A2 does.

Corollary 9.10. If A ∈Mn,n has n eigenvalues, then it is diagonalizable.

Proof. Each eigenvalue contributes at least one dimension to the sum of the eigenspaces, hence
if we have n eigenvalues then the sum of the eigenspaces is all of Rn. �

It is part of Theorem 9.7 that in order for a matrix A ∈Mn,n to be diagonalizable it must have at least
one eigenvalue. This also follows because similar matrices have the same eigenvalues, and diagonal
matrices have their diagonal entries as eigenvalues, hence at least one. For any n ≥ 1, an n×n matrix
may well have only a single eigenvalue and still be diagonalizable.

If A ∈ Mn,n has at least one and fewer than n eigenvalues, whether it is diagonalizable or not de-
pends upon the geometric multiplicities: for A to be diagonalizable, it is necessary and sufficient that
the geometric multiplicities sum to n. Thus, the fewer eigenvalues we have, the larger each of their
geometric multiplicities must be in order for the matrix to be diagonalizable. Here is the extreme case:

Example 9.11. Let λ ∈ R. The scalar matrix λIn has λ as an eigenvalue. In fact, Rn = Vλ;
in particular λ is the only eigenvalue. Conversely, this property is evidently characteristic of scalar
matrices: if Rn = Vλ for some λ, this precisely means that Av = λv for all v ∈ Rn. In particular this
holds for v = e1, . . . , en, so A = λIn is a scalar matrix.

Thus a matrix A ∈ Mn,n with exactly one eigenvalue λ is diagonalizable if and only if it is the scalar
matrix λIn. In particular, a nondiagonal matrix with at most one eigenvalue cannot be diagonalizable.

Exercise 9.7. Let A ∈ Mn,n be a singular matrix with a single eigenvalue. Show that A is
diagonalizable if and only if A = 0.

Example 9.12. Let R : R2 → R2 be rotation through an angle θ ∈ [0, 2π). If θ 6= 0, π, then there
are no eigenvectors: rotating a nonzero vector through an angle of θ changes the line that it lies on.
(Rotating a vector through an angle of 0 fixes it, and rotating a vector through an angle of π scales it
by −1.) Having no eigenvectors –equivalently, having no eigenvalues) – R is not diagonalizable.
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Exercise 9.8. For any even positive integer n, construct a linear transformation L : Rn → Rn
with no eigenvectors.

9.3. The Characteristic Polynomial.

So far we have developed just the beginning of the theory of eigenvectorss and diagonalization: there
are many (many!) results that give necessary and/or sufficient conditions for a linear transformation
(or a matrix) to admit a basis of eigenvectors. However, before we press on in this direction we should
first address a computational issue.

Question 9.13. Let A ∈Mn,n. How do we compute the eigenvalues of A?

Notice that computing the eigenvalues is the key to computing the eigenspaces. Indeed, recall Exercise
9.1: for any λ ∈ R, the eigenspace Vλ is simply the null space of λIn−A, so we can compute it via row
reduction. However, there are of course infinitely many real numbers, so we can’t simply compute the
null spacess of all λIn −A. In some cases one can successfully guess (or know) some good candidates
for λ. But in general this would be difficult.

Example 9.14. Let M =

[
1 1
1 0

]
. We claim that λ = 1±

√
5

2 are eigenvalues. Indeed,

(
1 +
√

5

2
)I2 −M =

[
1+
√
5

2 − 1 −1

−1 1+
√
5

2

]
=

[ √
5−1
2 −1

−1
√
5+1
2

]
.

Multiplying the first row by 2√
5−1 and adding it to the second row, we get[ √

5−1
2 −1

0
√
5+1
2 − 2√

5−1

]
=

[ √
5−1
2 −1
0 0

]
.

So the null space is nontrivial and v1 = ( 2√
5−1 , 1) = (

√
5+1
2 , 1) is an eigenvector. Similarly,

(
1−
√

5

2
)I2 −M =

[
−1−

√
5

2 −1

−1 1−
√
5

2

]
.

Multiplying the first row by 2
−1−

√
5

and adding it to the second row, we get[
−1−

√
5

2 −1

0 2
1+
√
5

+ 1−
√
5

2

]
=

[
−1−

√
5

2 −1
0 0

]
.

Again the null space is nontrivial, and v2 = ( 1−
√
5

2 , 1) is an eigenvector.

Probably few of us would have guessed taking λ = 1±
√
5

2 without some extra insight/information. We
need a technique for computing eigenvalues.

Now determinants come to our rescue: for any A ∈Mn,n and λ ∈ R, we have:

λ is an eigenvalue ⇐⇒ Ker(λIn −A) ) {0} ⇐⇒ λIn −A is singular ⇐⇒ det(λIn −A) = 0.

Thus the eigenvalues are precisely the real numbers λ such that det(λIn − A) = 0. This is useful
because of the following result.

Proposition 9.15. For any A ∈Mn,n and λ ∈ R, det(λIn−A) is a monic12 polynomial of degree
n with real coefficients.

12A polynomial is monic if its highest order term has leading coefficient 1.
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Proof. The (i, j) entry of λIn − A is λδ(i, j) − aij : when i = j this is a linear polynomial in λ;
otherwise it is a real number. Because the determinant of any matrix is a certain polynomial expression
involving the matrix entries, detλIn −A is certainly a polynomial in λ. More precisely each of the n!
terms in the determinant is, up to ±1, obtained by multiplying a choice of one entry from each row
and column of the matrix, hence each term is a product of n factors each of which is either a constant
or a linear polynomial, so each term is a polynomial of degree at most n. In order to get a degree
n polynomial we must have a factor of λ every time, and this happens precisely when we choose the
diagonal entries (or, if you like, the identity permutation): this term contributes (λ−a11) · · · (λ−ann),
which is a monic degree n polynomial in λ. If we add a monic polynomial of degree n to a polynomial
of smaller degree, the leading term cannot change so we get another monic polynomial of degree λ. �

We define the characteristic polynomial of A

χA(t) := det(tIn −A).

(Why did we switch from λ to t? This is a fastidiousness on my part: I want to distinguish between a
polynomial and the numbers that we plug into it.)

The characteristic polynomial χA(t) is precious to us because (i) we know how to compute it, by
computing the determinant (e.g. by row reduction to upper triangular form) and (ii) as we have seen,
the eigenvalues of A are precisely the real roots of χA(t), i.e., the real numbers λ such that χA(λ) = 0.

Exercise 9.9. Let A ∈Mn,n.
a) Suppose each aij is a rational number. Show that all the coefficients of χA(t) are rational numbers.
b) Supose each aij is an integer. Show that all the coefficients of χA(t) are integers.

The characteristic polynomial is the final tool we need for a complete computational method for deter-
mining whether A ∈Mn,n is diagonalizable and if so finding a matrix P such that P−1AP is diagonal.

Step 1: We compute the characteristic polynomial χA(t) and find all the real roots λ1, . . . , λk. These
are the eigenvalues of A. If not all of the roots of χA(t) are real then A cannot be diagonalized (over
R). If all the roots are real, we proceed to Step 2.

Step 2: For each eigenvalue λ, we compute the eigenspace Vλ = Ker(λIn −A).

Step 3: A is diagonalizable iff
∑k
i=1 dimVλ = n. If so, we find a basis Bi for each Vλi

, and let
P be the matrix with columns the elements of the Bi’s.

Although we are in theory working with the real numbers as our “scalars,” in practice most of our
matrices have had rational numbers as entries. Gaussian reduction applied to a matrix with rational
entries will yield a rref matrix also with rational entries, and thus a basis of the null space consisting
of vectors with rational entries can always be found. Similarly orthogonalization does not introduce
irrational numbers (orthonormalization does, but only square roots). This explains why most of our
calculations have involved only rational numbers. It would be great if the characteristic polynomial
of a matrix with rational entries necessarily had only rational numbers as roots, because then we can
find all of them easily using the following high school result.

Theorem 9.16. (Rational Roots Theorem) Let P (t) = ant
n + . . .+ a1t+ a0 be a polynomial with

integer coefficients ai. Then the only possible nonzero rational numbers r such that P (r) = 0 are of
the form ± c

d where c and d are nonzero integers, d 6= 0, a0 is divisible by c and an is divisible by d.

As Example 9.14 shows, the characteristic polynomial can have rational (even integral) coefficients but
still have irrational numbers as roots. In fact a polynomial with integral coefficents will have irrational
roots most of the time: consider for instance the case of a quadratic polynomial P (t) = t2 + bt + c,
in which the quadratic formula gives us a square root. You have probably solved enough quadratic
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equations in your time to understand that if you choose integers b and c at random, the discriminant
b2 − 4ac is very unlikely to be a perfect square, so the roots are very likely to be irrational numbers.

Exercise 9.10. a) Let a0, a1, a2 ∈ R, and let A =

 0 0 −a0
1 0 −a1
0 1 −a2

. Show:

χA(t) = (t− a0)(t− a1)(t− a2).

b) Let n be a positive integer, let a0, . . . , an−1 ∈ R, and let p(t) = tn + an−1t
n−1 + . . .+ a1t+ a0, i.e.,

an arbitrary monic degree n polynomial. Let

Ap =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...
0 0 . . . 1 −an−1

 .
Show that χAp

(t) = p(t). (Ap is called the companion matrix of p.)

Exercise 9.11. Let A be the companion matrix of tn.
a) Show: A is nilpotent.
b) Show: An = 0.
c) Show: An−1 6= 0.

Exercise 9.12. Let A ∈Mn,n be nilpotent.
a) Let k ≥ 1 be such that Ak 6= 0. Thus there is v ∈ Rn such that Akv 6= 0. Show that there is ` ≥ 0
such that Ak+`v 6= 0 and Ak+`+1v = 0.
b) Show that A`v ∈ KerAk+1 \KerAk.
c) Deduce: An = 0.

Proposition 9.17. Let A,P ∈Mn,n with P invertible. Then

χP−1AP (t) = χA(t).

In other words, the characteristic polynomial is a similarity invariant.

Proof. We use the fact that scalar matrices commute with all matrices:

χP−1AP (t) = det(tIn − P−1AP ) = det(tP−1InP − P−1AP )

= det(P−1(tIn −A)P ) = det(P−1) det(tIn −A) detP

= χA(t) det(P )−1 detP = χA(t). �

Example 9.18. Let A ∈Mn,n be (upper or lower) triangular. Then tIn −A is also triangular, so
its determinant is the product of the diagonal entries:

χA(t) = (t− a11) · · · (t− ann).

In particular χA(t) is split: that is, it factors into a product of linear polynomials. Not every polynomial
is split: e.g. t2 + 1 is not, hence neither is any polynomial of the form (t2 + 1)g(t) for a nonzero
polynomial g(t).

Theorem 9.19. Let A ∈ Mn,n. If A is diagonalizable – or even triangularizable, i.e., similar
to a triangular matrix – then χA(t) is split.

Proof. This follows immediately from the two previous results. �

Perhaps the previous result looks a bit abstruse. In fact it is given here to help us out: i.e., to tell us
that in certain situations diagonalization is hopeless so we need not compute the eigenspaces.
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Example 9.20. Let A ∈ M3,3 have characteristic polynomial t(t2 + 1). (Recall that by Exercise
9.10 there is at least one n× n matrix with any given monic degree n polynomial as its characteristic
polynomial.) Then the only eigenvalue of A is λ = 0, so the only way that A could be diagonalizable is if
it is the zero matrix. But the zero matrix has characteristic polynomial t3. So A is not diagonalizable.

Let A ∈ M4,4 have characteristic polynomial (t − 1)(t − 2)(t2 + 1). Then A has two eigenvalues,
λ = 1 and λ = 2. The argument of the preceding paragraph does not apply. But it would be a
waste of time to compute the eigenspaces V1 and V2: because χA(t) is not split, the matrix cannot be
diagonalizable.

Having a split characteristic polynomial is not enough for a matrix to be diagonalizable: take a nonzero
nilpotent matrix. However, the following weaker result is true.

Theorem 9.21. For A ∈Mn,n, the following are equivalent:
a) The characteristic polynomial χA(t) is split.
b) A is similar to an upper triangular matrix.
c) A is similar to a lower triangular matrix.

Proof. a) =⇒ b): We go by induction on n, the case n = 1 being clear. Suppose the result
holds for all B ∈Mn−1,n−1, and consider A ∈Mn,n. By assumption, we may write χA(t) = (t−λ)g(t)
where g(t) ∈ R[t] is a split polynomial of degree n − 1. Let v1 ∈ Rn be a nonzero vector such that
Av1 = λv1, and complete to a basis v1, . . . , vn. The matrix A′ of the linear transformation with respect
to this basis has first column (λ, 0, . . . , 0)T , so has the form

λ a12 . . . a1n
0 a22 . . . a2n
...
0 an2 . . . ann

 .
Schematically it has the form [

λ ∗
0 B

]
.

(Here we write ∗ for a block of entries in the matrix that we do not care about. When we write ∗ from
one equation to the next, it does not mean that the entries are the same as before. ) Then we have

(t− λ)g(t)χA(t) = χA′(t) = det

[
t− λ ∗

0 tIn−1 −B

]
= (t− λ) det(tIn−1 −B) = (t− λ)χB(t).

Thus χB(t) = g(t) is split. By induction there is Q ∈ GLn−1 such that QBQ−1 is upper triangular.
Let P be the block diagonal matrix I1 ⊕Q. Then

PA′P−1 =

[
1 0
0 Q

] [
1 ∗
0 B

] [
1 0
0 Q−1

]
=

[
1 ∗
0 QB

] [
1 0
0 Q−1

]
=

[
1 ∗
0 QBQ−1

]
is upper triangular.
b) =⇒ c): Let σ be the permutation i 7→ n+ 1− i, and let P (σ) be the corresponding permutation
matrix. If T is upper triangular, then P (σ)AP (σ)−1 is lower triangular: indeed, the jth column of
B = P (σ)AP (σ)−1 expresses the linear transformation on en+1−j in terms of en, en−1, . . . , e1: in other
words, the jth column of B is obtained from the (n + 1 − j)th column of A by writing the entries in
the reverse order. Working from right to left, we see that if A is upper triangular, then B is lower
triangular.
c) =⇒ a): This is Theorem 9.19. �

We now want to identify a further situation in which diagonalizability is hopeless. Let D be a di-
agonal matrix with diagonal entries d1, . . . , dn. As a special case of Example 9.18, we know that
χD(t) = (t−d1) · · · (t−dn). Not only is χD(t) split with roots precisely the eigenvalues of D, but that
the multiplicity of each root λ – i.e., the number of occurrences of the linear factor t− λ – is equal
to dimVλ, i.e., to the geometric multiplicity of λ. This motivates the following definition.
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For an eigenvalue λ of A ∈ Mn,n, the algebraic multiplicity of λ is equal to its multiplicity as
a root of the characteristic polynomial χA(t). Since χA(t) is a similarity invariant, so are the algebraic
multiplicities of the eigenvalues. Moreover we deduce the following result.

Proposition 9.22. Let A ∈ Mn,n. Then A is diagonalizable if and only if χA(t) is split and for
all eigenvalues λ, the geometric multiplicity of λ is equal to the algebraic multiplicity of λ.

Proof. We have seen that if A is diagonal, then χA(t) is split and the algebraic and geometric
multiplicities coincide. Since all of these are similarity invariants, this is a necessary condition for
diagonalizability. Conversely, if χA(t) is split then it factors as a product of n (not necessarily distinct)
linear factors, and if all of the geometric multiplicities are equal to the algebraic multiplicities, then
the sum of the geometric multiplicities is equal to the sum of the algebraic multiplicities, which (since
χA(t) is split!) is equal to n. Thus A is diagonalizable. �

Example 9.23. Suppose that A ∈M4,4 has characteristic polynomial χA(t) = (t−1)2(t−3)(t−4).
Since χA(t) is split, A may or may not be diagonalizable: we need to do some computations. We begin
by computing V1 and its dimension. If dimV1 = 1, then the geometric multiplicity of λ = 1 is less than
its algebraic multiplicity, so there is no need to compute V3 and V4: A is not diagonalizable. Conversely
if dimV2 = 2 then since dimV3 ≥ 1 and dimV4 ≥ 1 we must have dimV2 = 2, dimV3 = dimV4 = 1
and thus dimV2 + dimV3 + dimV4 = 4 = dimR4, so A is diagonalizable.

In our discussion we have saved the following result for last: it seems more technical and less useful
than the others.

Theorem 9.24. The geometric multiplicity is always less than or equal to the algebraic multiplicity.
More precisely: let λ be an eigenvalue for A ∈ Mn,n. Then dimVλ is less than or equal to the
multiplicity of λ as a root of χA(t).

Proof. Let v1, . . . , vk be a basis for Vλ and extend it to a basis v1, . . . , vn for Rn. The matrix of
A with respect to this basis has the block form

B =

[
λIk ∗
0 A′

]
,

where A′ ∈Mn−k,n−k. Since B is similar to A, we have

χA(t) = χB(t) = det(tIn −B).

In order to compute this determinant we need only row reduce to get an upper triangular matrix. We
can do so by performing row operations on the last n − k rows only, so as to make the lower right
corner the identity matrix; doing so we acquire a factor of χA′(t), so that

χA(t) = χA′(t)

[
(t− λ)Ik ∗

0 In−k

]
= (t− λ)kχA′(t).

So the multiplicity of λ as a root of χA(t) is at least k. �

9.4. An Alternative to the Characteristic Polynomial.

We denote by R[t] the set of all polynomials p(t) = ant
n + . . . + a1t + a0 with real coefficients.

Polynomials are ubiquitous and flexible algebraic objects (much like vector spaces and matrices). We
can think of them on one hand as formal expressions which can be added and multiplied. On the
other hand, we can “plug things into them”. E.g. in calculus a polynomial is usually thought of as a
function R → R, x ∈ R 7→ p(x). But we can also plug in an n × n matrix, with the convention that
the constant term a0 denotes the scalar matrix a0In. Thus e.g. if p(t) = t2 + t+ 1, then

p(A) = A2 +A+ In.

We say that a matrix A satisfies a polynomial p(t) if p(A) = 0.
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Exercise 9.13. Let A,B ∈ Mn,n be similar matrices, and let p(t) be a polynomial. Suppose A
satisfies p(t). Show: B satisfies p(t).

Theorem 9.25. Let A ∈ Mn,n. Then there is a monic polynomial p(t) of degree at most n2 such
that p(A) = 0.

Proof. We identify Mn,n with Rn2

, by sending the matrix A = (aij) to the vector

(a11, a12, . . . , a1n, a21, . . . , a2n, . . . , ann).

In this way we consider the powers I = A0, A1, A2, . . . as elements of Rn2

. Because dimRn2

= n2,

there must be some nontrivial linear relation among In = A0, . . . , An
2

. Arguing in the usual manner
there is a k ≤ n2 such that A0, . . . , Ak−1 are linearly independent and

Ak = ck−1A
k−1 + . . .+ c1A+ C0In.

Then if p(t) = tk − ck−1tk−1 − . . .− c1t− c0, we have p(A) = 0. �

In the above proof we found a monic polynomial p(t) of least degree k such that p(A) = 0. In fact
this polynomial is unique. This may seem surprising at first, but the argument is simple: suppose
q(t) is another monic polynomial of minimal degree such that q(A) = 0. Put r(t) = p(t)− q(t). Then
r(A) = p(A) − q(A) = 0 − 0 = 0. Since p(t) and q(t) are both monic of the same degree, the highest
order terms cancel out and r has smaller degree. If r is not the zero polynomial then we may write

r(t) = d`t
` + . . .+ d1t+ d0

and d` 6= 0. Then 1
d`
r(t) is a monic polynomial of degree ` < k and 1

d`
r(A) = 1

d`
0 = 0: this contradicts

the minimality of p(t). Thus it must be that r(t) is the zero polynomial: i.e., p(t) = q(t).

We call this unique monic polynomial of least degree satisfied by A the minimal polynomial of
A and write it as mA(t).

Proposition 9.26. Let A ∈Mn,n, and let p(t) be a polynomial satisfied by A. Then mA(t) divides
p(t): there is a polynomial q(t) such that p(t) = mA(t)q(t).

Proof. We use polynomial division with remainder: there are polynomials q(t) and r(t) such that

p(t) = mA(t)q(t) + r(t)

and deg r < degmA. Now plug in A:

0 = p(A) = mA(A)q(A) + r(A) = 0 · q(A) + r(A) = r(A).

Thus r(t) is a polynomial of smaller degree than mA(t) satisfied by A; as we saw above, this means
that r(t) is the zero polynomial and thus p(t) = mA(t)q(t). �

Proposition 9.27. Let A ∈ Mn,n, and let p(t) be a monic polynomial satisfied by A. Then for
every eigenvalue λ of A, we have p(λ) = 0.

Proof. Let v be an eigenvector for λ, i.e., a nonzero vector in Rn such that Av = λv. Then since
Akv = λkv, adding these up we find that

0v = p(A)v = p(λ)v.

Since v 6= 0, we must have p(λ) = 0. �

A monic polynomial p(t) is squarefree split if it is a product of distinct linear factors. Thus e.g.
t2 + t = t(t+ 1) is squarefree split and t3 + t2 = t2(t+ 1) is split but not squarefree split.

Exercise 9.14. Let f(t) and g(t) be monic polynomials. Show: if g is squarefree split and f
divides g, then f is squarefree split.
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Theorem 9.28. For A ∈Mn,n, the following are equivalent:
(i) A is diagonalizable.
(ii) There is a squarefree split polynomial p(t) such that p(A) = 0.
(iii) The minimal polynomial mA(t) is squarefree split.

Proof. (i) =⇒ (ii): By Exercise 9.13, the set of polynomials satisfied by a matrix is a similarity
invariant, so we may as well assume that A is diagonal. Let λ1, . . . , λk be the distinct eigenvalues of A
(i.e., the distinct real numbers which comprise the diagonal entries of A). Let p(t) = (t−λ1) · · · (t−λk),
and observe that p(t) is squarefree split. We claim that A satisfies p(t). Indeed,

p(A) = (A− λ1In) · · · (A− λkIn)

is a diagonal matrix with ith diagonal entry equal to (aii−λ1) · · · (aii−λk) = 0 since each aii is equal
to one of the λ’s.
(ii) =⇒ (iii): Since p(A) = 0 and mA(t) is the minimal polynomial, we have mA(t) divides p(t). By
Exercise 9.14 the polynomial mA(t) is squarefree split.
(iii) =⇒ (ii) is immediate.
(ii) =⇒ (i): Let p(t) = (t − r1) · · · (t − rk) with r1, . . . , rk distinct be a squarefree split polynomial
satisfied by A: thus

(A− r1In) · · · (A− rkIn) = 0.

By Corollary 4.35, we have

k∑
i=1

dimVri =

k∑
i=1

nullity(A− riIn) ≥ n,

so A is diagonalizable by Theorem 9.7. �

Theorem 9.28 seems in many ways more insightful than the characterization of diagonalization in
terms of algebraic and geometric multiplicities. For one thing, if A has rational entries, then mA(t)
has rational coefficients and its computation requires only row operations with matrices with rational
entries. If our primary goal is to determine whether A is diagonalizable then computin mA(t) and de-
termining whether it is squarefree split is faster and more straightforward than computing eigenspaces.

The result also gives us insight into some of our previous results. For instance, we saw that every
(not necessarily orthogonal) projection and reflection was diagonalizable. From our present persepc-
tive, this is immediate: a matrix A is a projection if A2 = A, i.e., if A satisfies the squarefree split
polynomial t2 − t = t(t − 1). Similarly, A is a reflection if A2 = In, i.e., if A satisfies the squarefree
split polynomial t2 − 1 = (t+ 1)(t− 1).

There is a natural question that our discussion so far has (somewhat nontraditionally) avoided. Namely,
we have defined two polynomials attached to A, the minimal polynomial mA(T ) and the characteristic
polynomial χA(t). How are they related?

Here is one case: if A is diagonalizable, then the characteristic polynomial is split, so is of the form∏k
i=1(t − λi)

ri . In the proof of Theorem 9.28 we showed that the squarefree part of this polyno-

mial, namely p(t) =
∏k
i=1(t − λ − i), is satisfied by A. Thus the minimal polynomial mA(T ) divides∏k

i=1(t − λi). Looking back at that calculation, we see that we need each factor t − λi to kill all the

diagonal entries of p(A), so that mA(t) =
∏k
i=1(t−λi). In particular mA(t) divides χA(t): equivalently,

A satisfies its characteritic polynomial χA(t) in this case.

The following is an extremely elegant theorem whose proof we defer until the next chapter.

Theorem 9.29. (Cayley-Hamilton) Let A ∈Mn,n.
a) A satisfies its characteristic polynomial: χA(A) = 0. Equivalently, the minimal polynomial divides
the characteristic polynomial.
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b) The minimal polynomial and the characteristic polynomial have the same irreducible factors (al-
though the characteristic polynomial may have them with larger multiplicities).

Example 9.30. By pure brute force we will verify the Cayley-Hamilton Theorem for n = 2.

Namely, let A =

[
a b
c d

]
. Then as we know, χA(t) = t2 − (a+ d)t+ (ad− bc). We compute

χA(A) = A2 − (a+ d)A+ (ad− bc)I2

=

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
−
[
a2 + da ab+ bd
ac+ cd ad+ d2

]
+

[
ad− bc 0

0 ad− bc

]
=

[
0 0
0 0

]
.

Exercise 9.15. Use bruter force to verify the Cayley-Hamilton Theorem for n = 3.

Suppose that χA(t) is split. Then the irreducible factors of the characteristic polynomial are precisely
t−λ as λ runs through the eigenvalues of A. By part a) of the Cayley-Hamilton Theorem, the minimal
polynomial mA(t) is also split, and by Proposition 9.27 (and the Root Factor Theorem: if p(λ) = 0
then (t− λ) divides p(t)) for every eigenvalue λ, t− λ divides mA(t). Thus in this case part b) follows
from part a).

From our perspective, the new content of part b) of the Cayley-Hamilton Theorem lies in the case
where the characteristic polynomial has irreducible quadratic factors, e.g. t2 + 1. In this chapter we
are working over the real numbers as a scalar field. If instead we admitted complex numbers as scalars
then the “splitness” issue would evaporate and we would only need part a) of the Cayley-Hamilton
Theorem.

Corollary 9.31. For A ∈Mn,n, the minimal polynomial mA(t) has degree at most n.

Exercise 9.16. Prove Corollary 9.31.

Some history: The Cayley-Hamilton Theorem was stated by Arthur Cayley in 1858. Arthur Cay-
ley (1821-1895) was the greatest English mathematician since Newton. In fact, in the long years
in between Newton’s death (1727) and Cayley’s ascendancy (circa 1860), English mathematics lay
remarkably fallow. The high esteem in which British pure mathematics has been held for the last
century or so is probably due more to Cayley than anyone else. William Rowan Hamilton (1805-1865)
was a leading Irish mathematician who deeply studied rotations in three-dimensional space and in-
vented quaternions, among other things. By modern standards of pure mathematics, the following
seems somewhere between amusing and scandalous: neither Cayley nor Hamilton even attempted a
proof of the Cayley-Hamilton Theorem in the general case! In 1858 Cayley checked the n = 2 case –
as we did in Example 9.30 – and in the n = 3 case (as we assigned as an exercise). On the basis of
these calculations he was quite confident of the general case. Five years earlier, Hamilton had checked
the result for rotations in R3. On this basis the result is named after them! It seems that the first
proof of the general case was given by Georg Frobenius (a German mathematician and one of the true
founders of modern algebra) in 1878.

Many proofs have since been given. However, elementary proofs of the Cayley-Hamilton theorem
tend not to be very insightful or rewarding. We gave a proof in the diagonalizable case. Once one
reaches a certain level of algebraic sophistication it is possible to explain by “pure thought” why the
general case follows from this. In the next chapter we will give a proof built around the fact that any
matrix is similar to a block diagonal matrix each of whose blocks is a companion matrix.

9.5. The Spectral Theorem.

Let A ∈ Mn,n. So far we have studied the question of whether there is an invertible P ∈ Mn,n

such that P−1AP is diagonal. One interpretation of this is that the columns of B form a new coordi-
nate system for Rn with respect to which the linear transformation has a very simple structure.
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However, not all coordinate systems in Rn are created equal. As we saw, the standard basis has a prop-
erty that most other bases lack: it is an orthonormal basis, and this explains why if v = a1e1+. . .+anen,
then the coefficient ai is simply v ·ei. Although from an algebraic perspective it is certainly very helpful
to have any basis of eigenvectors, from a geometric perspective it would be more natural to have an
orthonormal basis of eigenvectors. This motivates the following definition.

A matrix A ∈ Mn,n is orthogonally diagonalizable if there is an orthogonal matrix P such that
P−1AP is diagonal.

Exercise 9.17. Show: for A ∈Mn,n, the following are equivalent.
(i) A is orthogonally diagonalizable.
(ii) A admits an orthonormal basis of eigenvectors.
(iii) A admits an orthogonal basis of eigenvectors.

It is perhaps not immediately clear that orthogonal diagonalizability is really a stronger condition
than mere diagonalizability. Up until this point, our take on orthonormal bases is that they are nice
but nothing special: if you have a basis and want an orthonormal basis, no problem: apply the Gram-
Schmidt process. However, the Gram-Schmidt process usually does not preserve eigenvectors, and
indeed it is not hard to come up with examples of matrices that admit bases for eigenvectors but
no orthonormal bases. Indeed, consider A ∈ M2,2 which has distinct eigenvalues λ1, λ2. Then the
eigenspaces Vλ1 , Vλ2 are both lines in the plane. These lines might be orthogonal to each other and
they might not: if not, there is no orthogonal basis of eigenvectors.

Example 9.32. Let A =

[
1 −1
0 0

]
. The characteristic polynomial is χA(t) = t2 + t, so the

eigenvalues are λ = 0, l. Solving for the nullspaces, we find V0 = span(1, 1) and V1 = span(1, 0).
The vectors (1, 0) and (1, 1) are simply not perpendicular to each other, so – although there is a basis
of eigenvectors and A is diagonalizable – there is on orthogonal basis of eigenvectors, so A is not
orthgonally diagonalizable. Notice that A is a projection operator: A2 = A, and for all such operators
Rn = V1 ⊕ V0. However it is not an orthogonal projection: this means precisely that V0 and V1 are
not orthogonal subspaces.

Exercise 9.18. Let A ∈Mn,n be a projection: A2 = A, so that Rn = V1 ⊕ V0 and A is diagonal-
izable. Show that A is orthogonally diagonalizable if and only if V1 ⊥ V0, i.e., if and only if A is an
orthogonal projection.

I claim that in fact I can tell immediately upon looking at

[
1 −1
0 0

]
that it is not orthogonally

diagonalizable. Why is that? Because of the following result.

Proposition 9.33. If A ∈Mn,n is orthogonally diagonalizable then A is symmetric: AT = A.

Proof. Suppose that there is an orthogonal matrix P such that P−1AP = D is diagonal. Then
A = PDP−1, so

AT = (PDP−1)T = (P−1)TDTPT = PDP−1 = PDP−1 = A. �

Exercise 9.19. Show: if A is symmetric and P is orthogonal, then P−1AP is symmetric.

Well, that was easy. In general in mathematics when you learn a result of the form A =⇒ B, you
should immediately inquire about the converse. Sometimes the proof that you gave of A =⇒ B can
be easily turned around to give a proof of B =⇒ A. Not always, of course: often enough the converse
is false.13 There is a third possibility: sometimes the converse is also true, but the proof of B =⇒ A
has nothing to do with the proof of B =⇒ A. Sometimes the innocent question “Is the converse also
true?” leads us to some deep results. That is the case here.

13All squares are rectangles, but not all rectangles are squares.
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Theorem 9.34 (Spectral Theorem). Every symmetric matrix A ∈ Mn,n(R) is orthogonally diag-
onalizable.

We will prove the Spectral Theorem in the next section: it will take some doing.

9.6. Proof of the Spectral Theorem.

Example 9.35. Let v be an eigenvector for A, with eigenvalue λ, and let V = span v. Then every
element w of V is of the form w = αv for some α ∈ R, so Aw = A(αv) = αAv = αλv ∈ V . Thus V
is a one-dimensional invariant subspace. Conversely, let V = span v be a one-dimensional invariant
subspace. Then Av ∈ V , and every element of V is of the form αv for some α ∈ R, so Av = αv and
v is an eigenvector. We deduce that the one-dimensional invariant subspaces are precisely the lines
spanned by eigenvectors.

Proposition 9.36. Let A ∈ Mn,n be either symmetric or orthongal. Then the eigenspace are
orthogonal: if λ2 6= λ2 are eigenvalues of A, then Vλ1

⊥ Vλ2
.

Proof. Let v ∈ Vλ1
and w ∈ Vλ2

.
First we suppose that A is symmetric. Then we have

λ1v · w = (λ1v) · w = (Av) · w = v · (ATw) = v ·Aw = v · (λ2w) = λ2v · w,
so (λ1 − λ2)(v · w) = 0. Since λ1 6= λ2 we have v · w = 0.

Now suppose that A is orthgonal, and let λ be an eigenvalue of A. Then there is a nonzero v ∈ Rn
such that Av = λv. Since A is orthogonal we have

||v|| = ||Av|| = ||λv|| = |λ|||v||,
so λ ∈ {±1}. Thus without loss of generality we have λ1 = 1 and λ2 = −1, so

v · w = (Av) · w = v · (ATw) = v · (A−1w) = v · (−w) = −(v · w).

Thus 2(v · w) = 0, so v · w = 0. �

In light of Proposition 9.36b), in order to prove the Spectral Theorem it is enough to show that every
symmetric matrix has a basis of eigenvalues.

Lemma 9.37. Let A ∈ Mn,n(R) be symmetric, and let α, β ∈ R be such that α2 < 4β. Then
A2 + αA+ βIn is invertible.

Proof. We claim that for all 0 6= v ∈ Rn,

(A2 + αA+ βIn)v · v > 0.

If so then the null space of A2 + αA+ βIn is {0} and thus A2 + αA+ βIn is invertible.
Step 1: Recall the Cauchy-Schwarz inequality: for v, w ∈ Rn,

|v · w| ≤ ||v||||w||.
Thus for any α ∈ R,

−α(v · w) ≤ | − α||v · w| = |α||v · w| ≤ |α|||v||||w||;
multiplying through by −1 gives

α(v · w) ≥ −|α|||v||||w||.
Using this we find

(A2 + αA+ βIn)v · v = (A2v) · v + β(v · v)

= Av ·AT v + α(Av · v) + β||v||2

= Av · aV + α(Av · v) + β||v||2

= ||Av||2 + α(Av · v) + β||v||2

≥ ||Av||2 − |α|||Av||||v||+ β||v||2

=

(
||Av|| − |α|||v||

2

)2

+

(
β − α2

4

)
||v||2 > 0. �
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Proposition 9.38. Let A ∈Mn,n(R) be symmetric. Then A has an eigenvalue.

Proof. Let 0 6= v ∈ Rn. Then the set {v,Av, . . . , Anv} consists of n + 1 vectors in Rn, so they
are linearly dependent: there are a0, . . . , an ∈ R, not all zero, such that

anA
nv + . . .+ a1Av + a0v = 0.

There is N ≤ n such that aN 6= 0 and

aNa
Nv + . . .+ a1Av + a0v = 0.

Let p(t) = aN t
N + . . .+ a1t+ a0, so p(A)v = 0. We factor p(t) as

p(t) = aN (t2 + α1t+ β1) · · · (t2 + αst+ βs) · (t− λ1) · · · (t− λr),
where the quadratic polynomials t2+αit+βi have no real roots – equivalently by the quadratic formula,
α2
i < 4βi for all i. Since

0 = p(A)v = aN (A2 + α1A+ β1In) · · · (A2 + . . .+ αsA+ βsIn)(A− λ1In) · · · (A− λrIn)v.

By Lemma 9.37 each matrix A2 + αiA+ βiIn is invertible, so multiplying by their inverses gives

0 = (A− λ1In) · · · (A− λrIn)v.

If (A− λrIn)v = 0, then λr is an eigenvalue. If not, then

v′ := (A− λrIn)v 6= 0,

so if (Aλr−1In)v′ = 0 then λr−1 is an eigenvalue. And so forth: since the product is zero, at some
point multiplying by (A− λiIn) must convert a nonzero vector to the 0 vector, so one of λ1, . . . , λr is
an eigenvalue for A. �

Proof of the Spectral Theorem: We go by induction on n, the case n = 1 being trivial. So
suppose n ≥ 2 and every symmetric matrix B ∈ Mn−1,n−1(R) is diagonalizable. Let A ∈ Mn,n(R) be
a symmetric matrix. By Proposition 9.38, there is an eigenvector v for A, say with eigenvalue λ. By
rescaling v we may choose v to be a unit vector. Let v, v2, . . . , vn be an orthonormal basis of Rn (extend
v to a basis then apply Gram-Schmidt to get an orthonormal basis). Let P be the (orthogonal!) matrix
with columns v, v2, . . . , vn, and let A′ = P−1AP . Since P is orthogonal, by Exercise 9.19, the matrix
A′ is again symmetric. The matrix A′ is block diagonal, with upper left 1 × 1 block λ and bottom
right n − 1 × n − 1 block B, say. Since A′ is symmetric, so is B. By induction, B is orthogonally
diagonalizable: there is an orthogonal matrix Q1 ∈Mn−1,n−1 such that Q−11 BQ1 is diagonal. Thus if
Q is the block matrix 1⊕Q1, then Q is orthogonal and

Q−1A′Q = Q−1P−1APQ = (PQ)−1A(PQ)

is diagonal. Since P and Q are orthogonal, so is PQ, so A is orthogonally diagonalizable.

Corollary 9.39. If A ∈ Mn,n is symmetric, then its characteristic polynomial χA(t) has n real
roots.

Proof. This follows from Theorems 9.34 and 9.19. �

9.7. Canonical Form for Orthogonal Matrices.

Proposition 9.40. Let A ∈ SO3. Then there is a nonzero vector v ∈ R3 such that Av = v.

Proof. Equivalently, we must show that 1 is an eigenvalue of A. Let χA(t) = t3 + a2t
2 + a1t+ a0

be the characteristic polynomial of A. Recall that by the Intermediate Value Theorem, every cubic
polynomial has at least one real root. Thus χA(t) either factors as (t − λ)q(t) for an irreducible
quadratic polynomial q or factors as (t− λ1)(t− λ2)(t− λ3).

Suppose first that we have three linear factors. Then

−detA = (−1)3 detA = det(−A) = (−λ1)(−λ2)(−λ3),

so
1 = detA = λ1λ2λ3.
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Since an orthogonal matrix preserves lengths of vectors, if v is an eigenvector for A with eigenvalue λ,
then we we have

||v|| = ||Av|| = ||λv|| = |λ|||v||,
so |λ| = 1 and λ = ±1. Since λ1λ2λ3 = 1 we must have some λi = 1.

Now suppose that χA(t) = (t− λ1)q(t), and write

q(t) = t2 +Bt+ C.

Since q has no root in R we must have B2 < 4C and thus C > 0. Setting t = 0 we get

−1 = det(−A) = χA(0) = −λC,

and thus λ = 1
C > 0, so λ = 1. �

We will now show that every A ∈ SO3 is a rotation through a fixed axis `. The proof will in particular
clarify what this means!

Theorem 9.41 (Principal Axis Theorem). Let A ∈ SO3. Then there is a line through the origin
` ⊂ R3 such that A consists of a rotation with axis `.

Proof. By Proposition 9.40 there is a nonzero vector v1 ∈ R3 with Av1 = v1: we take ` = 〈v〉.
Let P = `⊥, so P is the “normal plane” to `, so R3 = ` ⊥ P . By Theorem 8.2, the plane P is also

invariant under A. Let v2, v3 be an orthogonal basis for P , and let R =

[
a b
c d

]
be the matrix for

A|P with respect to this basis. Then v1, v2, v3 is an orthogonal basis for R3, and the matrix of P with
respect to this basis is  1 0 0

0 a b
0 c d

 .
From this we see that

1 = detA = 1 · detR,

so detP = 1. The matrix R must be orthogonal, since a matrix is orthogonal iff the corresponding
linear transformation preserves lengths of vectors and since A has this property on all of R3 it certainly
has it on the subspace P . Thus R ∈ SO2 so by Example 7.10 it is rotation through an angle of θ. �

We will now use these results to give a “canonical form” for orthogonal matrices.

Theorem 9.42. Let A ∈ On be an orthogonal matrix. We have an orthogonal sum decomposition

Rn = V1 ⊥ . . . ⊥ Vk
such that for all 1 ≤ i ≤ k we have that:
(i) The subspace Vi is A-invariant,
(ii) The dimension of Vi is 1 or 2,
(iii) If dimVi = 1 then A|Vi = ±1, and
(iv) If dimVi = 2 then there is an orthonormal basis ei,1, ei,2 of Vi with respect to which the matrix of

A|Vi is the rotation matrix Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Proof. Let V1 and V−1 be the 1 and −1 eigenspaces of A, respectively. Then we have Rn = V1 ⊥
V−1 ⊥W , whereW = (V1 ⊥ V−1)⊥. There is a basis of V1⊕V−1 on which A is diagonal with eigenvalues
±1. The map A|W has no eigenvectors and thus no one-dimensional invariant subspaces. By Theorem
8.4 and induction, W is an orthogonal sum of two-dimensional invariant subspaces Wi, and on each Wi

the characteristic polynomial χi(t) = t2 + bit+ ci is irreducible quadratic, so detA|Wi
= ci > 0. Thus

ci = 1, and by Example 7.10 there is an orthonormal basis of Wi with respect to which the matrix of
A|Wi is a rotation matrix Rθ. �
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10. Complex Scalars

10.1. Vector Spaces Over a Scalar Field. A field is a set F endowed with binary operations

+ : F × F → F, · : F × F → F,

called addition and multiplication, that are required to satisfy the following “field axioms”:

(F1) Commutativity of Addition: ∀x, y ∈ F, x+ y = y + x
(F2) Associativity of Addition: ∀x, y, z ∈ F, (x+ y) + z = x+ (y + z)
(F3) Existence of an Identity for Addition: there is 0 ∈ F such that for all x ∈ F , we have
0 + x = x+ 0 = x.
(F3) Existence of Inverses for Addition: for all x ∈ F there is y ∈ F such that x+ y = y + x = 0.
(F4) Commutativity of Multiplication: ∀x, y ∈ F we have x · y = y · x.
(F5) Associativity of Multiplication: ∀x, y, z ∈ F we have (x · y) · z = x · (y · z).
(F6) Existence of an Identity for Multiplication: there is 1 ∈ F such that for all x ∈ F , we have
1 · x = x · 1 = x.
(F7) Existence of Multiplicative Inverses for Nonzero Elements: for all 0 6= x ∈ F , there is y ∈ F such
that x · y = y · x = 1.
(F8) Distributivity of Multiplication Over Addition: for all x, y, z ∈ F we have

x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z).
(F9) Nondegeneracy: We have 0 6= 1.

Lemma 10.1. For all x ∈ F we have 0 · x = 0.

Proof.
0 · x = (0 + 0) · x = (0 · x) + (0 · x).

If y is the additive inverse to 0 · x, then adding y to both sides gives

0 = 0 · x. �

Suppose that (F1) through (F8) holds but (F9) fails: then 0 = 1, so for all x ∈ F we have

0 = 0 · x = 1 · x = x,

and thus F consists of a single element, called both 0 and 1. This is precisely the “degeneracy” that
we are not allowing.

In practice we usually abbreviate x · y to xy.

Example 10.2. a) The real numbers R form a field. Indeed this is the “scalar field” over
which we have been doing linear algebra thus far. Exactly what that means will become clear
soon.

b) The rational numbers Q form a field.
c) The complex numbers C form a field. We may view C as the vector space R2 together with

the usual addition of vectors and the following “exotic” multiplication.

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

In practice though we identify R as a subset of C via x 7→ (x, 0), put i :=
√
−1, so that

(x, y) = x+ iy.

Note that
i2 = (0, 1) ∗ (0, 1) = (−1, 0) = −1.

Then axioms (F1) through (F3) follow from the vector space axioms. We still need to check
(F4) through (F9). In this regard: (F4) and (F9) are virtually immediate; (F5), (F6), (F8)
and (F9) are straightforward calculations that we leave to the reader. To show (F7) on the
other hand we need to do something: if x, y ∈ R, not both zero, then we must find w ∈ C
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such that (x + yi)w = 1. For this we first introduce, for any z = x + iy ∈ C, the complex
conjugate

z = x+ iy := x− iy.
Then we have the useful identity

zz = (x+ iy)(x− iy) = x2 + ixy − ixy − i2y2 = x2 + y2.

Thus zz is a non-negative real number and is strictly positive iff z 6= 0. So if z 6= 0 then

z ·
(

x

x2 + y2
− i y

x2 + y2

)
= 1,

so

z−1 =
z

x2 + y2
.

d) If there is a field with two elements, then the elements must be 0, the additive identity, and
1, the multiplicative identity. By the nature of identity elements we must have 0 + 0 = 0,
0 + 1 = 1, 1 ·0 = 0, 1 ·1 = 1. By Lemma 10.1 we must have 0 ·0 = 0. This leaves 1 + 1. If we
had 1 + 1 = 1, then adding the additive inverse of 1 to both sides yields 1 = 0, contradicting
(F9). So we must have 1 + 1 = 0. One still has to check that these binary operations satisfy
the field axioms, and we leave that to the reader.

It is now time to reveal that most of linear algebra can be done with respect to any field of scalars
rather than just R. (There are, however, some exceptions where we used special properties of R. We
will explain exactly what these are.) Here are the main points:

It makes sense to consider linear equations a1x1 + . . . + a1xn = b over a field F : here a1, . . . , an, b
are fixed elements of F and x1, . . . , xn are variables, so that given any (x1, . . . , xn) ∈ Fn either
a1x1 + . . .+ anxn = b holds or it doesn’t. We may similarly consider systems of linear equations

a1,1x1 + . . .+ a1,nxn = b1

...

am,1x1 + . . .+ am,nxn = bn

and consider the set of (x1, . . . , xn) ∈ Fn that solve all of these equations. Moreover the techniques
we used to solve linear systems with real variables and coefficients adapt verbatim to the case of any
scalar field F . In particular we may consider matrices with entries in F . There is a notion of row re-
duction, row echelon form, and reduced row echelon form, and all the results of §2 carry over verbatim.

We can define a dot product on Fn the same way:

∀x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn, x · y = (x1 · · ·xn) · (y1, . . . , yn) := x1y1 + . . .+ xnyn.

However we need to be careful with this dot product because it lacks some properties that it does over
R: namely, over R for any nonzero x = (x1, . . . , xn) ∈ Rn we have

x · x = x21 + . . .+ x2n > 0.

In particular, if x · x = 0 then x = 0. This property holds for some scalar fields F and not for others:
it also holds, for instance, for F = Q since Q is a subfield of R – that is, Q ⊂ R and the addition and
multiplication on Q are those on R restricted to Q – and indeed it holds for any subfield of R, of which
there are many. It does not hold over F2:

(1, 1) · (1, 1) = 1 · 1 + 1 · 1 = 1 + 1 = 0.

Moreover it does not hold over C:

(1, i) · (1, i) = 1 · 1 + i · i = 1 + (−1) = 0.

One says a field F is formally real if for all n ∈ Z+, if x1, . . . , xn ∈ F are such that x21 + . . .+x2n = 0
then x1 = · · · = xn = 0.
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Example 10.3 (Formally Real Fields and Ordered Fields). COMPLETE ME!

We defined the length of a vector x = (x1, . . . , xn) ∈ Rn as

||x|| =
√
x21 + . . .+ x2n.

This works first because R is formally real, but also because in R every positive number has a square
root. Even most ordered fields lack this latter property: e.g. because

√
2 is irrational, 2 is not a square

in Q and thus we cannot define ||(1, 1)|| as an element of Q.

It turns out that the notion of a length of a vector simply is not part of linear algebra over a general
scalar field F . We do have this notion when F = C, and it even arises from a variation on the standard
inner product, as we will see in the next section.

For any field F , we may consider Mm,n(F ), the set of m × n matrices with entries in F . Addi-
tion and scalar multiplication of matrices holds verbatim. Moreover, if we have A ∈ Mm,k(F ) and
B ∈ Mk,n(F ) then we define AB ∈ Mm,n(F ) in exactly the same way: namely, the (i, j) entry is∑k
l=1 ailblj . Although we warned about being careful with dot products, indeed here it is still the case

that the (ij) entry of AB is the dot product of the ith row of A with the jth column of B.

For m,n ∈ Z+ a linear transformation L : Fn → Fm is a function that satisfies:

(LT1) For all v, w ∈ Fn we have L(v + w) = L(v) + L(w), and
(LT2) For all α ∈ F and v ∈ Fn, we have L(αv) = αL(v).

The correspondence between linear transformations and matrices holds verbatim over any scalar field
F , as do the rest of the results of §3.

The notions of linear indepenence, spanning, subspace and basis hold verbatim over any scalar field F ,
as do all the results of §4. We lose the direct geometric interpretations: e.g. a 2-dimensional subspace
of F 3 is no longer literally a plane in anything approaching the sense of Euclidean geometry, but
it is still extremely useful to maintain this geometric language and intuition. Thus for instance one
speaks of one-dimensional subspaces of Fn as “lines,” two-dimensional subspaces of Fn as “planes”
and n− 1-dimensional subspaces of Fn as “hyperplanes.”

The results of §5 go through verbatim over any scalar field F .

Most of §6 on determinants goes through verbatim over any scalar field: we lose, however, the geo-
metric interpretation of the determinant as the signed change of volume and also the dichotomy that
a nonsingular matrix must have either positive or negative determinant. One says a field F has char-
acteristic 2 if 1 + 1 = 0 in F . We saw that the field with two elements has characteristic 2: there are
many others. If we regard the sign sgn(σ) of a permutation as an element of a field F of characteristic
2, then because −1 = 1 in F this becomes trivial: σ(σ) = 1 for all σ. In particular we cannot use
the determinant of a permutation matrix to compute the sign of a permutation in characteristic 2;
otherwise we can.

We lose all of §7 over a general field F : orthogonal projection onto a line, orthogonal bases and
Gram-Schmidt all need the field F to be formally real to even make sense. If the field F is formally
real we can do the Gram-Schmidt process to convert any basis to an orthogonal basis; however, we
cannot in general rescale to get unit vectors, so we cannot in general get an orthonormal basis.

Over any field F we can still define a matrix to be orthogonal if AT = A−1 and this still gives a
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class of invertible matrices with determinant ±1, but the geometric interpretation of orthogonal ma-
trices as corresponding to distance-preserving linear transformations is lost.

Proposition 8.1 and Theorem 8.3 hold over any scalar field F . For Theorem 8.2 we need the scalar field
to be formally real. In Theorem 8.4 we are using the fact that every odd degree polynomial f ∈ R[t]
has a root in R, so this result breaks down completely over an arbitrary scalar field: e.g. when F = Q,
for all n ∈ Z+ there is A ∈Mn,n(Q) such that no subspace {0} ( V ( Qn is A-invariant.

In §9, an eigenvalue for A ∈ Mn,n(F ) is an element λ ∈ F such that there is a nonzero v ∈ Fn

such that Av = λv. All of the results in §9.1 through 9.4 continue to hold. The Spectral Theorem
breaks down completely: over an arbitrary F a symmetric matrix need not be diagonalizable at all,
let alone orthogonally diagonalizable.

Example 10.4 (Speyer). Let F = C and consider the symmetric matrix

A =

[
1 i
i −1

]
.

The trace of A is 0 and detA = −1− (i)(i) = 0, so χA(t) = t2 and the only eigenvalue is 0. Therefore
if A were diagonalizable it would be the scalar matrix 0, which it isn’t.

In [MSV93] necessary and sufficient conditions on a field F are given such that every symmetric
matrix A ∈ Mn,n(F ) are diagonalizable. In particular such fields must be formally real: see https:

//mathoverflow.net/questions/118680

10.2. The Complex Inner Product.

Lemma 10.5 (Polarization Identity). For all v, w ∈ Cn we have

〈v, w〉 =
1

4

(
||v + w||2 − ||v − w||2 + i||v − iw||2 − i||v + iw||2

)
.

Exercise 10.1. Prove Lemma 10.5.

10.3. Normal Operators and the Spectral Theorem.

Proposition 10.6. Let A ∈ Mn,n(C). There is a unique matrix A∗ such that for all v, w ∈ Cn
we have

〈Av,w〉 = 〈v,A∗w〉.
Explicitly, the (i, j) entry of A∗ is aj,i of A. Thus A∗ = (A)T = AT is the conjugate transpose of A.

Proof. For v, w ∈ Cn we have 〈v, w〉 = vTw, so

〈Av,w〉 = (Av)Tw = vTATw

and

〈v,A∗w〉 = vT (A∗w) = vTA∗w.

If for 1 ≤ i, j ≤ n we take v = ei, w = ej then we get

〈Aei, ej〉 = aji

and

〈ei, A∗ej〉 = a∗ij ,

showing that we must have

a∗ij = aji

and thus A∗ = AT . Conversely, with this choice of A∗ it is clear that vTATw = vTA∗w for all
v, w ∈ Cn. �
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We refer to A∗ as the adjoint of A.

Observe that we could run the entire discussion in Rn rather than Cn. It then simplifies because
complex conjugation is trivial, and we get that for A ∈Mn,n(R), A∗ = AT : i.e., the adjoint is just the
transpose.

Exercise 10.2. Show that for all A ∈Mn,n(C) we have (A∗)∗ = A.

Lemma 10.7. For a subspace W of Cn, put

W = {(z1, . . . , zn) := (z1, . . . , zn) ∈ Cn | (z1, . . . , zn) ∈W}.
a) If v1, . . . , vm is a linearly independent list in Cn, then so is v1, . . . , vm.
b) If v1, . . . , vm is a spanning set for W , then v1, . . . , vm is a spanning set for W .
c) If b1, . . . , bm is a basis for W , then b1, . . . , bm is a basis for W .
d) We have dimCW = dimCW .

Proof. a) Let α1, . . . , αm ∈ C be such that α1v1 + . . .+ αmvm = 0. For 1 ≤ i ≤ m, put βi = αi.
Then we have

0 = α1v1 + . . .+ αmvm = β1v1 + . . .+ βmvm,

which implies
β1v1 + . . .+ βmvm = 0,

and then by linear independence we get β1 = α1 = . . . = βm = αm = 0, which finally implies that
α1 = . . . = αm = 0.
b) If w′ ∈W then w′ ∈W , so there are α1, . . . , αm ∈ C such that

w′ = α1v1 + . . .+ αmvm,

and then
w′ = α1v1 + . . .+ αmvm,

so w′ ∈ 〈v1, . . . , vm〉.
Part c) follows immediately from parts a) and b), and part d) follows immediately from part c). �

Proposition 10.8. Let A ∈Mn,n(C). Then we have

(17) (ImageA∗) = (KerA)⊥

and

(18) (KerA∗) = (ImageA)⊥.

Proof. Applying (17) with A∗ in place of A and using (A∗)∗ = A, we get

(ImageA)⊥ = (Image(A∗)∗)⊥ = (KerA∗)⊥⊥ = KerA∗,

so it suffices to show (17). Let u, v ∈ Cn be such that Au = 0. Then

0 = 〈Au, v〉 = 〈u,A∗v〉.
This shows that (ImageA∗) ⊥ KerA, so ImageA∗ ⊂ (KerA)⊥. We know that rankA = rankAT .
Moreover, for any B ∈ Mn,n(C), if W is the image of B then W is the image of B, so by Lemma

10.7d) we have rankB = rankB. Combining this with the Dimension Theorem we get

dim ImageA∗ = dim ImageA = dim ImageA = n− dim KerA = dim(KerA)⊥.

It follows that ImageA∗ = (KerA)⊥. �

A matrix A ∈ Mn,n(C) is Hermitian (or self-adjoint) if A∗ = A. Thus a real matrix is self-adjoint
iff it is symmetric.

If A ∈ Mn,n(R) then χA(t) has n real roots: Corollary 9.39. We worked quite hard to prove this:
it came as a byproduct of the Spectral Theorem, that A is orthogonally diagonalizable. It is a little
weird how much easier it is to prove the following (stronger!) result.
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Proposition 10.9. All the eigenvalues of a Hermitian matrix A ∈Mn,n(C) are real.

Proof. Let λ ∈ C be an eigenvalue of A: so there is 0 6= v ∈ Cn such that Av = λv. Then

λ||v||2 = 〈λv, v〉 = 〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉

= 〈v, λv〉 = λ〈v, v〉 = λ||v||2.
Since v 6= 0 we have ||v||2 6= 0 and thus λ = λ. �

Exercise 10.3. A matrix A ∈Mn,n(C) is skew-Hermitian if A∗ = −A.

(i) Show: if A is skew-Hermitian, then every eigenvalue of A is purely imaginary, i.e., is of the
form ib for some b ∈ R.

(ii) Show: A is skew-Hermitian iff iA is Hermitian.

Let’s reflect on the weird state of affairs a bit. The problem is that over the scalar field R a matrix
need not have any eigenvalues at all, whereas any A ∈Mn,n(C) certainly has n eigenvalues (counting
multiplicity). It is much easier to show that a complex number is real than to show that something
that might not exist actually does. As a corollary to this, since R ⊂ C it is often useful to think of
the eigenvalues of a real matrix as complex numbers λ1, . . . , λn as complex numbers that may or may
not be real. Of course we must keep in mind that a necessary condition for diagonalizability (or even
triangularizability) is that all the eigenvalues be real.

A matrix A ∈Mn,n(C) is unitary if AA∗ = In. Notice that a real matrix is unitary iff it is orthogonal.

A matrix A ∈Mn,n(C) is normal (or a normal operator) if AA∗ = A∗A.

Lemma 10.10. Let A ∈Mn,n(C) be such that 〈Av, v〉 = 0 for all v ∈ Cn. Then A = 0.

Proof. For v, w ∈ Cn we have

〈A(v + w), v + w〉 − 〈A(v − w), v − w〉+ i〈A(v + iw), v + iw〉 − i〈A(v − iw), v − iw〉
= 4〈Av,w〉.

Thus if 〈Av, v〉 = 0 for all v ∈ Cn then 〈Av,w〉 = 0 for all v, w ∈ Cn. In particular, for all v ∈ Cn,
taking w = Av we get 〈Av,Av〉 = 0 and thus Av = 0. So A = 0. �

Lemma 10.10 fails over the scalar field R: if A =

[
0 −1
1 0

]
is the matrix of a rotation through π

2 ,

then A 6= 0 but 〈Av, v〉 = 0 for all v ∈ R2.

Proposition 10.11. For A ∈Mn,n(C), the following are equivalent:

(i) We have ||Av|| = ||A∗v|| for all v ∈ Cn.
(ii) The operator A is normal.

Proof. The matrix A is normal iff A∗A−AA∗ = 0. By Lemma 10.10 this holds iff

∀v ∈ V, 〈(A∗A−AA∗)v, v〉 = 0 ⇐⇒
∀v ∈ V, 〈AA∗v, v〉 = 〈A∗Av, v〉 ⇐⇒
∀v ∈ V, 〈Av,Av〉 = 〈A∗v,A∗v〉 ⇐⇒

∀v ∈ V, ||Av|| = ||A∗v||. �

Corollary 10.12. Let A ∈Mn,n(C) be a normal operator. Then

Cn = (KerA) ⊥ (ImageA).

Proof. By Proposition 10.11, for v ∈ Cn we have v ∈ KerA ⇐⇒ ||Av|| = 0 ⇐⇒ ||A∗v|| =
0 ⇐⇒ v ∈ KerA∗, so by Proposition 10.8 we have

Cn = (KerA∗) ⊥ (ImageA) = (KerA) ⊥ (ImageA). �
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Exercise 10.4. Let A ∈ Mn,n(C). Let p(t) = ant
n + . . . + a1t + a0 ∈ C[t] be a polynomial. Put

p(t) := ant
n + . . .+ a1t+ a0.

a) Show: We have (p(A))∗ = p(A∗).
b) Show: if A is normal, then so is p(A).

Lemma 10.13. Let A,U ∈Mn,n(C). If A is normal and U is unitary, then U−1AU is normal.

Proof. We have (U−1AU)∗ = U∗A∗(U−1)∗ = U−1A∗U . Since unitary matrices preserve lengths
of vectors, for v ∈ Cn we have

||(U−1AU)∗v|| = ||U−1A∗Uv|| = ||A∗(Uv)|| = ||A(Uv)|| = ||U−1AUv||.

So U−1AU is normal by Proposition 10.11. �

Theorem 10.14. Let A ∈Mn,n(C) be a normal operator.

a) For λ ∈ C, let Vλ denote the λ-eigenspace for A, and let Wλ denote the λ-eigenspace for A∗.
Then for all λ ∈ C we have

Vλ = Wλ.

b) If λ1 6= λ2 then Vλ1
⊥ Vλ2

.
c) Let v1, . . . , vn ∈ Cn. Then v1, . . . , vn is an orthonormal basis of eigenvectors for A iff it is

an orthonormal basis of eigenvectors for A∗.

Proof. a) For λ ∈ C, by Exercise 10.4 we have that since A is normal, so is A − λIn. So for
v ∈ Cn we have

v ∈ Vλ ⇐⇒ ||(A− λIn)v|| = 0 ⇐⇒ ||(A− λI)∗v|| = 0 ⇐⇒ Av = λv ⇐⇒ v ∈Wλ.

b) Let v ∈ Vλ1
and w ∈ Vλ2

. Then we have

(λ1 − λ2)〈v, w〉 = 〈λv,w〉 − 〈v, λ2w〉 = 〈Av,w〉 − 〈v,A∗w〉 = 0.

Since λ 6= λ2, this forces 〈v, w〉 = 0.
c) Whether v1, . . . , vn is an orthonormal basis does not involve the matrices at all. By part a), each
vi is an eigenvector for A iff it is an eigenvector for A∗. �

Theorem 10.15 (Schur). Every A ∈ Mn,n(C) is unitarily triangularizable: there is U ∈ Un such
that U−1AU is upper triangular.

Proof. If u1, . . . , un is an orthonormal basis of Cn and U = (u1| · · · |un), then U−1AU is the
matrix of the linear transformation A• with respect to the basis u1, . . . , un. So it suffices to show
that A• is upper triangular with respect to some orthonormal basis. By Theorem 9.21 A• is upper
triangular with respect to some basis v1, . . . , vn. Let u1, . . . , un be obtained from v1, . . . , vn be the
Gram-Schmidt process. Then for all 1 ≤ i ≤ n we have 〈v1, . . . , vi〉 = 〈u1, . . . , ui〉, which means that
the matrix with respect to u1, . . . , un is also upper triangular. �

Exercise 10.5. Show: for every A ∈ Mn,n(C) there is U ∈ Un such that U−1AU is lower
triangular.

Lemma 10.16. Let A ∈Mn,n(C) be a normal operator. If A is upper triangular, then A is diagonal.

Proof. Write A = (aij). For 1 ≤ i ≤ n let ci denote the (i, i) entry of AA∗ and let di denote the
(i, i) entry of A∗A. Since A is normal we have ci = di. More explicitly, let ri denote the ith row of A
and let si denote the ith row of A∗. Then

ci = 〈ri, ri〉 = |aii|2 +
∑
i<j≤n

|aij |2.

di = 〈si, si〉 = |aii|2 +
∑

1≤j<i

|aji|2.
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Since ci = di, we have ∑
i<j≤n

|aij |2 =
∑

1≤j<i

|aji|2.

Taking i = 1, we get that a1j = 0 for all j ≥ 2. Now taking i = 2, we get a2j = 0 for all j ≥ 3.
Proceeding inductively, we eventually find that aij = 0 for all i < j, so A is diagonal. �

Theorem 10.17 (Spectral Theorem). For A ∈Mn,n(C) the following are equivalent:

(i) A is unitarily diagonalizable: there is a unitary matrix U ∈ Un and a diagonal matrix D ∈
Mn,n(C) such that U−1AU = D.

(ii) There is an orthonormal basis of Cn consisting of eigenvectors for A.
(iii) A is a normal operator.

Proof. (i) ⇐⇒ (ii): We have seen this before: over any scalar field F , for any matrix A and
invertible matrix P , the matrix P−1AP is diagonal iff the columns of P give a basis of eigenvectors for
A. Since a matrix is unitary iff its columns form an orthonormal basis for Cn, the equivalence follows.
(ii) =⇒ (iii): Let v1, . . . , vn be an orthonormal basis of Cn consisting of eigenvectors for A. By
10.14c) it is also an orthonormal basis of eigenvectors for A∗. So U := (v1| · · · |vn) ∈ Un and

D1 := U−1AU, D2 := U−1A∗U

are both diagonal. All diagonal matrices commute with each other, so

U−1AA∗U = (U−1AU)(U−1A∗U) = D1D2 = D2D1 = (U−1A∗U)(U−1AU) = U−1A∗AU,

and multiplying by U on the left and U−1 on the right, we get

AA∗ = A∗A.

(iii) =⇒ (i): Suppose A ∈ Mn,n(C) is a normal operator. By Theorem 10.15, for any A ∈ Mn,n(C)
there is a unitary U ∈ Un such that U−1AU is upper triangular. By Lemma 10.13, U−1AU is again
normal, so by Lemma 10.16, the matrix U−1AU is diagonal. �

Corollary 10.18. For A ∈Mn,n(C), the following are equivalent:

(i) The matrix A is Hermitian: A∗ = A.
(ii) The matrix A is unitarily diagonalizable and has real eigenvalues.

Proof. (i) =⇒ (ii): Suppose A is Hermitian. Then AA∗ = A∗A, so by Theorem 10.17 A is
unitarily diagonalizable. By Proposition 10.9, the matrix A has real eigenvalues.
(ii) =⇒ (i): For λ1, . . . , λn ∈ C, we denote by D(λ1, . . . , λn) the diagonal matrix in Mn,n(C) with
diagonal entries λ1, . . . , λn. We have that

(D(λ1, . . . , λn))∗ = D(λ1, . . . , λn).

Now suppose there is a unitary matrix U and real numbers λ1, . . . , λn such that U−1AU = D(λ1, . . . , λn).
Then

A = UD(λ1, . . . , λn)U−1,

so
A∗ = (U−1)∗D(λ1, . . . , λn)∗U∗ = UD(λ1, . . . , λn)U−1 = A. �

10.4. Gershgorin’s Theorem. Let A = (aij) ∈Mn,n(C). If A is diagonal, then the eigenvalues
are precisely the diagonal entries a1,1, . . . , an,n. On the other hand, as A varies over all n×n complex
matrices, then the eigenvalues should vary continuously with the coefficients of A. (This actually takes
some work to pin down precisely, the main difficulty being that the eigenvalues form an unordered set
with multiplicities. But it turns out to be true!) From this it stands to reason that if A is “almost”
diagonal – i.e., is of the form D+S where D = (di,i) is diagonal and S = (sij) with |sij | ≤ ε for all i, j
and some small ε > 0, then the eigenvalues of A should be “close” to the diagonal entries d1,1, . . . , dn,n
somehow in terms of ε and n. The following beautiful result of Gershgorin14 accomplishes this.

14Semyon Aronovich Gershgorin, 1901-1933.
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Theorem 10.19 (Gershgorin Disk Theorem [Ge31]). Let A ∈Mn,n(C). For 1 ≤ i ≤ n, put

Ri :=
∑
j 6=i

|aij |,

let B•Ri
(ai,i) be the closed disk with center ai,i and radius Ri, and let λ be an eigenvalue of A. Then

λ ∈
n⋃
i=1

B•Ri
(ai,i).

We will give the (easy!) proof presently, but first a bit of discussion. First: A is diagonal iff Ri = 0 for
all i iff each of the “Gershgorin disks” B•Ri

(ai,i) just consists of the single point ai,i, and we recover
the statement that the eigenvalues of a diagonal matrix are its diagonal entries. Second: suppose that
for some ε > 0 we have that every off-diagonal entry has absolute value at most ε. Then we have
Ri ≤ (n− 1)ε for all i and we get that every eigenvalue distance at most (n− 1)ε from some diagonal
entry. So this is indeed a quantitative version of our desired qualitative statement.

Proof. Let λ be an eigenvalue of A, and let v = (v1, . . . , vn) be a corresponding eigenvector –
recall that by definition v is nonzero. We may scale v such that there is 1 ≤ i ≤ n such that vi = 1
and |vj | ≤ 1 for all j 6= i. The ith coordinate of the identity Av = λv is

λ = λvi =

n∑
j=1

aijvj = aii +
∑
j 6=i

aijvj ,

so
|λ− aii| = |

∑
j 6=i

aijvj | ≤
∑
j 6=i

|aij ||vj |
∑
j 6=i

|aij | = Ri. �

A matrix A ∈Mn,n(C) is strictly diagonally dominant if for all 1 ≤ i ≤ n we have

|aii| >
∑
j 6=i

|aij |.

Corollary 10.20 (Levy-Desplanques). A strictly diagonally dominant matrix A ∈ Mn,n(C) is
nonsingular.

Exercise 10.6. Prove Corollary 10.20.

We mention some refinements of the Gershgorin Disk Theorem.

Theorem 10.21. With the setup as in the Gershgorin Disk Theorem, suppose that for some 1 ≤
k < n the union Sk of some k of the disks is disjoint from the union Tn−k of the remaining n − k
disks. Then precisely k of the eigenvalues (with multiplities counted) lie in Sk and the remaining n−k
lie in Tn−k. In particular if the disks are pairwise disjoint, each contains a single eigenvalue.

Theorem 10.22 (Marsli-Hall [MH13]). Let A ∈ Mn,n(C). If λ is an eigenvalue of A with
geometric multiplicity k, then λ lies in at least k of the Gershgorin disks.



CHAPTER 2

Theory

1. Linear independence and bases in infinite-dimensional vector spaces

Let F be a field, and let V be an F -vector space. We now fully engage with the possibility that
V need not be finite-dimensional.

For any subset S ⊂ V , the span 〈S〉 is the set of all F -linear combinations from S: that is, we
choose α1, . . . , αm ∈ F and v1, . . . , vm ∈ V and form α1v1 + . . .+αmvm. For any S, 〈S〉 is an F -linear
subspace of V . If S is a subset of V and W is an F -linear subspace of V , we say that S spans W if
〈S〉 = W .

A finite subset S = {v1, . . . , vm} ⊂ V is linearly independent if

∀α1, . . . , αm ∈ F, α1v1 + . . .+ αmvm = 0 =⇒ α1 = . . . = αm = 0.

An infinite subset S of V is linearly independent if every finite subset T ⊂ S is linearly independent.

We say that taking α1 = . . . = αr = 0 gives the trivial linear combination of v1, . . . , vm and
any other choice of αi’s is nontrivial. Thus we can reword linear independence as: a nontrivial linear
combination of v1, . . . , vm is never 0.

A basis for V is a linearly independent subset S of V that spans V .

The collection of linearly independent subsets of an F -vector space V is partially ordered under inclu-
sion. By a maximal linearly independent subset of V we mean a maximal element S in this partially
ordered set: in plainer terms, this means that S is linearly independent and is not properly contained
in any other linearly independent subset of V .

Theorem 1.1. Let V be an F -vector space.
a) A basis of V is precisely a maximal linearly independent subset of V .
b) Every linearly independent subset of V is contained in a basis of V .

Proof. a) Let B be a basis for V . By definition, B is a linearly independent subst of V that
spans V . It suffices to show that for any v ∈ V \ B, the set B ∪ {v} is linearly dependent. Indeed,
since B spans V there are vectors w1, . . . , wm ∈ B and scalars α1, . . . , αm ∈ F such that

v = α1w1 + . . .+ αmwm.

But then
α1w1 + . . .+ αmwm − v = 0

is a nontrivial linear combination of w1, . . . , wm, v that is 0, so indeed B ∪ {v} is linearly dependent.
Now let S be a maximal linearly independent subset of V , and let v ∈ V . If v /∈ 〈S〉 then S ∪ {v}

remains linearly independent: indeed, suppose α1, . . . , αm, β ∈ F are such that

α1v1 + . . .+ αmvm + βw = 0.

If β 6= 0 then

w =
−α1

β
v1 + . . .+

−αm
β
∈ 〈S〉,

81
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a contradiction. So β = 0, and then we must have α1 = . . . = αm = 0 because V is lienearly
independent. Thus the maximality of S as a linearly independent subset implies 〈S〉 = V .
b) In view of part a) it is equivalent to show that every linearly independent subset S of V is contained
in a maximal linearly independent subset. For this we will apply Zorn’s Lemma in the partially ordered
set S of linearly independent subsets T with S ⊂ T ⊂ V . Since S ∈ S, certainly S is nonempty. Now
let {Ti}i∈I be a chain of linearly independent subsets of V , each containing S. Then T :=

⋃
i∈I Ti

contains each Ti and thus also contains S, so it suffices to show that T remains linearly independent.
But by definition T is linearly independent iff each finite subset is linearly independent, and each finite
subset of T lies in some Ti: indeed, if v1, . . . , vm ∈ T then there are i1, . . . , im ∈ I such that vj ∈ ij
and then v1, . . . , vm ∈ Tmax ij . Thus we have showed that every chain in S has an upper bound in S,
so S has a maximal element. �

Remark 1.2. The appeal to Zorn’s Lemma is not overkill. Zorn’s Lemma is equivalent to the
Axiom of Choice, and in a certain precise sense in which we will not get into here, the assumption
that every vector space has a basis implies the Axiom of Choice and thus also Zorn’s Lemma.

Theorem 1.3. Let V be an F -vector space, and let S, T be subsets of V . If S is linearly independent
and T spans V then #S ≤ #T .

Proof. Case 1: Suppose that T is finite. Then the Steinitz Exchange Lemma holds in V : in
Lemma 4.19 this is stated for a subspace V of RN that admits a finite spanning set. However the same
argument holds verbatim for a vector space over any field F that admits a finite spanning set, as we
ask the reader to show. As recorded in Theorem 4.20, this immediately implies the result in this case.
Case 2: Suppose that T is infinite. If S is finite then indeed we have #S ≤ #T , so we may assume
that S is also infinite. By Theorem 1.1, there is a basis B of V such that B contains S, and since then
we have #S ≤ #B, it is enough to show that #B ≤ #T . Write B = {vi | i ∈ I} and T = {wj | j ∈ J};
seeking a contradiction we assume that #J < #I. For all j ∈ J , there is a finite subset Ej ⊂ I

wj =
∑
i∈Ej

αi,jvi for some αi,j ∈ F.

Sine J is infinite, we have #
⋃
j∈J Ej ≤ #J < #I, so there is i• ∈ I \

⋃
j∈J Ej . Since T is a spanning

set, we can write vi• as a linear combination of the vectors wj , each of which in turn is a linear
combination of vectors vi with i 6= i•. This shows that vi• ∈ 〈vi | i 6= i•〉, contradicting the linear
independence of B. �

We immediately deduce:

Corollary 1.4. If B1 and B2 are two bases for an F -vector space V , then #B1 = #B2.

Thus for any F -vector space V , we can define its dimension dimV as the cardinality of any basis. In
this case dimV is a cardinal number, possibly infinite. For any cardinal number κ there is an F -vector
space of dimension κ: as soon as we discuss direct sums (and it will be soon), we will see that we can
just take the direct sum of κ copies of F itself.

2. Linear Maps

Let V and W be F -vector spaces. An F-linear map (or just a linear map if F is understood; or
linear transformation) is a function L : V →W such that

(L1) For all v1, v2 ∈ V we have L(v1 + v2) = L(v1) + L(v2), and
(L2) For all α ∈ F and all x ∈ V we have L(αv) = αL(v).

Exercise 2.1. Let V and W be F -vector spaces. State and prove an analogue of Proposition 3.5
for a function f : V →W .
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An isomorphism of vector spaces is a linear map L : V → W for which there is a linear map
L′ : W → V that is a two-sided inverse to L: that is, we have

L′ ◦ L = 1V , L ◦ L′ = 1W .

Lemma 2.1. For a linear map L : V →W , the following are equivalent:
(i) The map L is an isomorphism of vector spaces.
(ii) The map L is a bijection.

Proof. Any function f : X → Y admits an inverse function iff f is bijective, in which case the
inverse is unique. So the condition that L : V → W is an isomorphism of vector spaces amounts to
saying that L is bijective and the inverse function L−1 is again an F -linear map. This shows (i) =⇒
(ii) and clarifies that to show (ii) =⇒ (i) we need to show that the inverse function L−1 : W → V is
a linear map. Let w,w1, w2 ∈W and α ∈ F . We have

L(L−1(w1 + w2)) = w1 + w2 = L(L−1(w1)) + L(L−1(w2)) = L(L−1(w1) + L−1(w2)).

Since L is an injection, this gives L−1(w1 + w2) = L−1(w1) + L−1(w2). Similarly we have

L(L−1(αw)) = αw = αL(L−1(w)) = L(αL−1(w)),

and injectivity of L gives L−1(αw) = αL−1(w). �

Proposition 2.2. Let L : V →W be a linear map, and let S ⊂ V .

a) Suppose that L|S is injective and that L(S) is linearly independent in W . Then S is linearly
independent in V .

b) Suppose S spans V . Then L(S) spans L(V ) and thus spans W iff L is surjective.
c) If L is injective and S is linearly independent in V , then L(S) is linearly independent in W .

If L is not injective, then there is a linearly independent subset R of V such that L(R) is
linearly dependent in W .

d) If L is an isomorphism and S is a basis for V , then L(S) is a basis for W .

Proof. a) Let s1, . . . , sn ∈ S and let α1, . . . , αn ∈ F be such that α1s1 + . . . + αnsn = 0. Then
0 = L(0) = L(α1s1 + . . . + αnsn) = α1L(s1) + . . . + αnL(sn). Because L(S) is linearly independent,
we have α1 = . . . = αn = 0.
b) If w ∈ L(V ) then w = L(v) for some v ∈ V . Since S spans V there are s1, . . . , sn ∈ S and
α1, . . . , αn ∈ F such that α1s1 + . . .+αnsn = v and thus w = α1L(s1) + . . .+αnL(sn) ∈ 〈L(S). Since
L is surjective iff L(V ) = W , the second statement is clear.
c) Let s1, . . . , sn be distinct elements of S, and let α1, . . . , αn ∈ F be such that α1L(s1)+. . .+αnL(sn) =
0. Then

0 = L(α1s1 + . . .+ αnsn),

so α1s1 + . . .+αnsn = 0 because L is injective. By linear independence of S we get α1 = . . . = αn = 0.
d) If L is an isomorphism, then it follows from parts b) and c) that L(S) is a basis for W . Suppose
that L is not an isomorphism; then it fails to be either injective or surjective. �

Example 2.3. Let π1 : F 2 → F by (x, y) 7→ x. Let b1 = (1, 0) and b2 = (1, 1). Then B = {b1, b2}
is a basis for F 2 and π1(B) = {1} is a basis for F , even though π1 is not injective. This shows why
in part a) it was necessary to assume that L|S is injective and why in part d) we did not include the
converse statement that if a linear map preserves bases then it must be an isomorphism.

For F -vector spaces V and W , we write HomF (V,W ) for the set of all F -linear maps L : V → W .
(When the scalar field F is understood, we may abbreviate this to Hom(V,W ).) We may endow
HomF (V,W ) with the structure of an F -vector space, as follows:

L1 + L2 : v 7→ L1(v) + L2(v).

αL : v 7→ αL(v).
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3. Direct products and Direct Sums

Let I be a set, and for each i ∈ I, let Vi be an F -vector space. We define two vector spaces that
combine the Vi’s into a single space. The direct product

∏
i∈I Vi has underlying set the Cartesian

product of the Vi’s, i.e., an element of
∏
i∈I Vi is an I-tuple (vi)i∈I such that vi ∈ Vi for all i ∈ I. This

gets the structure of an F -vector space “coordinatewise”: that is, we define

∀(vi), (wi) ∈
∏
i∈I

Vi, (vi) + (wi) := (vi + wi),

∀(vi) ∈
∏
i∈I

Vi, α ∈ F, α(vi) := (αvi).

The direct sum
⊕

i∈I Vi is a subspace of the direct product
∏
i∈I Vi: it consists of tuples (vi) such

that {i ∈ I | vi 6= 0} is finite. Then we have⊕
i∈I

Vi =
∏
i∈I

Vi ⇐⇒ I is finite.

For i ∈ I, we define the inclusion map ιi : Vi →
⊕

i∈I Vi by sending vi ∈ V to the element whose ith
coordinate is vi and all other coordinates are 0. This is an injective linear map, and thus

ιi : Vi
∼→ ιi(Vi).

Moreover we have

(19)
⊕
i∈I

Vi = 〈{ιi(Vi)}i∈I〉.

Proposition 3.1. Let I be a set, and let {Vi}i∈I be an indexed family of F -vector spaces.

a) For each i ∈ I, let {bij}j∈Ji be a basis of Vi, and let Bij be the element of
⊕

i∈I with ith
component bij and with all other components 0. Then B := {Bij}i∈I, j∈Ji is a basis for⊕

i∈I Vi.
b) We have

dim
⊕
i∈I

Vi =
∑
i∈I

dimVi.

Proof. a) For all i ∈ I, every element of Vi is a finite F -linear combination of the bij , so every
element of ιi(Vi) is a finite F -linear combination of the Bij . By (19) every element of

⊕
i∈I Vi is a finite

F -linear combination of elements from the ιi(Vi). Thus B spans
⊕

i∈I Vi. As for linear independence:
if not, then some Bij is a finite F -linear combination of the others, and without loss of generality
we may assume that all the scalars in the linear combination are nonzero. But since Bij is 0 except
in the ith coordinate, Bij could only be a linear combination of other Bij′ ’s, which is not possible –
since {Bij}j∈Ji is the image of the basis {bij}j∈Ji under the injective linear map ιi, it is a linearly
independent set. Thus B is a basis for

⊕
i∈I Vi.

b) We have

dim
⊕
i∈I

Vi = #B = #
⋃
i∈I
{Bij}j∈Ji =

∑
i∈I

#{Bij}j∈Ji =
∑
i∈I

#{bij}j∈Ji =
∑
i∈I

dimVi. �

Theorem 3.2. (Universal Property of the Direct Sum) Let I be a set, and let {Vi}i∈I be an indexed
family of F -vector spaces. For i ∈ I, let ιi : Vi →

⊕
i∈I Vi be the inclusion map as above. Let W be

an F -vector space, and for each i ∈ I, let Li : Vi → W be an F -linear map. Then there is a unique
F -linear map L :

⊕
i∈I Vi →W such that for all i ∈ I we have Li = L ◦ ιi.

Proof. First we will show that there is at most one such map L. Indeed, for all i ∈ I the identity
Li = L ◦ ιi means that for all vi ∈ Vi we have L(ιi(vi)) = Li(vi). This means that the behavior of L is
determined on ιi(Vi). Since 〈{ιi(Vi)}i∈I〉 =

⊕
i∈I , the behavior of L is determined on a spanning set

for
⊕

i∈I Vi and thus it is determined on all of Vi.
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The question remains whether there is such a linear map L! A little thought shows that we can
take L :

⊕
i∈I Vi →W to be

(vi) 7→
∑
i∈I

Li(vi).

Because each (vi) is zero except in finitely many coordinates, the above sum is actually a finite sum,
so L is well-defined. That L is an F -linear map is almost immediate and left to the reader. Let i ∈ I
and vi ∈ Vi. Then ιi(vi) is the element of

⊕
i∈I that is vi in the ith coordinate and 0 in all other

coordinates, so L(ιi(vi)) = Li(vi), showing that Li = L ◦ ι1. �

Let I be a set, and let W be an F -vector space. For all i ∈ I, let ei ∈
⊕

i∈I F be the element that
is 1 in the ith coordinate and 0 in all other coordinates. Then {ei}i∈I is a basis for

⊕
i∈I F : this is

a special case of Proposition 3.1. Given an F -vector space W and a linear map L :
⊕

i∈I F → W ,
evaluating on the basis gives us an I-tuple of elements of W : {L(ei)}i∈I . Conversely, given an I-tuple
(wi) of elements of W , there is a unique linear map L :

⊕
i∈I F → W such that L(ei) = wi for all

i ∈ I. This is clear in its own right, because all linear maps from a vector space V to a vector space
W come from mapping all elements of a basis of V to arbitrary elements of W ; it is also a special case
of Theorem 3.2. In particular:

Corollary 3.3. Let V be an F -vector space, and let B be a basis for V . Then there is a canonical
isomorphism ⊕

b∈B

F
∼→ V.

Proof. For all b ∈ B, let eb ∈
⊕

b∈B F be the element whose bth coordinate is 1 and all other
coordinates are 0, so {eb}b∈B is a basis for

⊕
i∈I F . Therefore there is a unique F -linear map

⊕
b∈B F →

V that maps eb to b, and since this maps a basis to a basis, it is an isomorphism. �

4. Quotients

Let V be an F -vector space, and let W be an F -linear subspace of V . For v ∈ V , we put

v +W := {v + w | w ∈W}.
The subsets v +W are called cosets of W in V.

Lemma 4.1. The set of cosets of W in V {v +W}v∈V forms a partition of V .

Proof. Every coset v +W contains v + 0 = v and thus is nonempty, and for all v ∈ V , v lies in
v+W , so it remains to check that distinct cosets are pairwise disjoint. So, let v1, v2 ∈ V be such that
there is

v3 ∈ (v1 +W ) ∩ (v2 +W ).

That is, there are w1, w2 ∈W such that

v1 + w1 = v3 = v2 + w2.

This means that w′ := v1 − v2 ∈W and thus for all w ∈W we have

v1 + w = v1 + (v2 − v1) + w = v2 + (w − w′) ∈ v2 +W,

so
v1 +W ⊂ v2 +W,

and similarly
v2 + w = v2 + (v1 − v2) + w = v1 + (w + w′) ∈ v1 +W,

so
v2 +W ⊂ v1 +W.

Thus v1 +W = vw +W , and we’re done. �

The following result was essentially shown in the above proof, but it is so important that we ask the
reader to check it carefully once again.
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Exercise 4.1. Let W be a subspace of a vector space V . For v1, v2 ∈ V , the following are
equivalent:
(i) We have v1 − v2 ∈W .
(ii) We have v1 +W = v2 +W .

For any partition P on a set S we have an associated quotient map

q : S → P
in which we send s ∈ S to [s], the unique element of P that contains s. This map is surjective and has
the “tautological” property that the preimage q−1([s]) = [s].

For our subspace W ⊂ V , we denote the the set of cosets of W in V by V/W , and as above let
q : V → V/W be the quotient map:

q : v 7→ v +W.

Proposition 4.2. There is exactly one way to make V/W into an F -vector space such that the
quotient map q : V → V/W is F -linear.

Proof. First we want an addition operation on cosets with the property that for all v1, v2 ∈ V
we have

(v1 + v2) +W = q(v1 + v2) = q(v1) + q(v2) = (v1 +W ) + (v2 +W ).

But reading this equation from right to left tells us exactly how this operation must be defined:

(v1 +W ) + (v2 +W ) := (v1 + v2) +W.

It remains to check that it is well-defined, i.e., that it did not depend on the representative elements
v1 and v2 chosen. If we have v′1, v

′
2 ∈ V such that v1 + W = v′1 + W and v2 + W = v′2 + W , then

v′1 − v1, v′2 − v2 ∈W , so

(v′1 + v′2) +W = v1 + v2 + (v′1 − v1 + v′2 − v2) +W = v1 + v2 +W.

So addition of cosets is well-defined. That it makes V/W into a commutative group is almost immediate
and left to the reader. To be sure, the identity is 0 +W = W , and the inverse of v +W is −v +W .

Next we want a scalar multiplication on cosets such that for all α ∈ F and all v ∈ V we have

αv +Wq(αv) = αq(v) = α(v +W ).

Once again, reading right to left shows that we must have

α(v +W ) := αv +W.

This time we will leave to the reader the verification that this is a well-defined operation on cosets.
We also leave the verification that V/W satisfies all the vector space axioms. �

Theorem 4.3 (Fundamental Isomorphism Theorem). Let L : V → W be an F -linear map, and
let q : V → V/KerL be the quotient map.
a) There is a unique linear map L : V/KerL→W such that L = L ◦ q.
b) The map L is injective and has image L(V ), and thus

L : V/KerL→ L(V )

is an isomorphism of vector spaces.

Proof. a) Suppose there is such an L such that L = L ◦ q. Then for all v ∈ V we have

L(v) = L(q(v)) = L(v + KerL).

Once again this tells us what L has to be: it must map the coset v + KerL to L(v). And once again
we need to check that this map is well-defined; if v + KerL = v′ + KerL, then v − v′ ∈ KerL, so
L(v − v′) = 0, so L(v) = L(v′). Thus we do get a well-defined linear map L : V/KerL→W .
b) Suppose v + KerL lies in the kernel of L. Then

0 = L(v + Ker) = L(v),
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so v ∈ KerL, so v+KerL = KerL is the zero element of V/KerL. This shows that L is injective. It is
clear from the definition of L that its image is Image(L), so L : V/KerL→ L(V ) is an isomorphism. �

If W is a subspace of an F -vector space V , then we define the codimension codimW to be the
dimension of the quotient space V/W .

Let B1 be a basis for W , extend it to a basis B for V , and put B2 := B \ B1. Let q : V → V/W
be the quotient map. We claim {q(b) | bıB2} is a basis for V/W . First, every v ∈ V is of the form∑
i αibi +

∑
j βjbj such that αi, βj ∈ F and all but finitely many are zero, so every element of V/W is

of the form
(
∑
i

αibi +
∑
j

βjbj) +W = (
∑
j

βjbj) +W =
∑
j

βjq(bj),

so we get a spanning set. Now suppose that we have βj ∈ F such that
∑
j βjq(bj) = 0. Equivalently, we

have (
∑
j βjbj)+W = W , so

∑
j βjbj ∈W and thus there are αi ∈ F such that

∑
i αibi+

∑
j βjbj = 0.

Since B1∪B2 = B is a basis, this gives αi = βj = 0 for all i and j, so the q(bj)’s are linearly independent.
This shows:

dimV = dimW + codimW.

This is an (important) special case of our next result, the Dimension Theorem.

5. The Dimension Theorem

Theorem 5.1 (Dimension Theorem). Let L : V →W be an F -linear map. Then we have

dimV = dim KerL+ dim ImageL.

Proof. Let C = {cj}j∈J be a basis for ImageL. For each j ∈ J , choose bj ∈ L−1(cj). Then
B := {bj}j∈J is a linearly independent subset of V by Proposition 2.2b). Let Y := 〈B〉. We claim that
V = KerL

⊕
Y . If so we’re done, since then by Proposition 3.1b) we have

dimV = dim KerL+ dimY = dim KerL+ #B = dim KerL+ #C = dim KerL+ dim ImageL.

First, if v ∈ KerL ∩ Y then L(v) = 0. Write v =
∑
j∈J αjbj and then

0 = L(v) =
∑
j∈J

αjL(bj) =
∑
j∈J

αjcj .

But since the cj ’s are linearly independent this means that αj = 0 for all j ∈ J and thus v = 0.
Thus KerL ∩ Y = {0}. Next, let v ∈ V . Since the restriction of L to Y maps Y isomorphically onto
ImageV , there is y ∈ Y such that L(v) = L(y). Thus v = y+ (v− y) with y ∈ Y and L(v− y) = 0, so
v − y ∈ KerL. �

For an F -linear map L : V →W , we define the cokernel CokerL as W/ Image(L).

Exercise 5.1. Let L : V →W be an F -linear map, and let U ⊂ V be an F -subspace.

a) Let ι : U ↪→ V be the inclusion map. Show:

codimU = Coker ι.

b) Show: L is surjective iff CokerL = {0}.
c) Show:

(20) dim KerL+ dimW = dimV + dim commutativegroupL.

d) Deduce: if V = W is finite-dimensional, then dim KerL = dim CokerL.

Exercise 5.2. Let V and W be F -vector spaces. An F -linear map L : V → W is Fredholm if
both KerL and CokerL are finite-dimensional. For such a map we define the index

indL := dim KerL− dim CokerL.

a) Show: if V and W are finite-dimensional, every L ∈ Hom(V,W ) is Fredholm.
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b) Show: if V = W is finite-dimensional, then indL = 0.
c) (Hadwin [Ha94]) Suppose L1 : V →W and L2 : W → X are linear maps. Show:

dim Ker(L2 ◦ L1) + dim CokerL1 + dim CokerL2 = dim Coker(L2 ◦ L1) + dim KerL1 + dim KerL2.

d) Show: if L1 : V →W and L2 : W → X are Fredholm, then so is L2 ◦ L1, and we have

indL2 ◦ L1 = indL1 + indL2.

5.1. Independent Families of Subspaces. Let V be an F -vector space, let I be a set, and let
{Wi}i∈I be an indexed family of subspaces of V . For all i ∈ I, let Li : Wi ↪→ V be the inclusion map.
The universal property of direct sums gives us a map

L :
⊕
i∈I

Wi → V, (vi) 7→
∑
i∈I

Li(vi) =
∑
i∈I

vi.

The image of L is W := 〈Wi〉, the subspace spanned by the Wi’s. We say that the family of subspaces
{Wi}i∈I is independent if L is an injection; equivalently, if it induces an isomorphism⊕

i∈I
Wi

∼→ 〈Wi〉.

Theorem 5.2. For a family {Wi}i∈I of subspaces of a vector space V , the following are equivalent:
(i) The family {Wi}i∈I is independent.
(ii) For each i ∈ I, choose wi ∈ Wi such that wi = 0 for all but finitely many i ∈ I. If

∑
i∈I wi = 0,

then wi = 0 for all i.
(iii) If for all i ∈ I we choose a nonzero wi ∈Wi, then {wi}i∈I is a linearly independent subset of V .
(iv) For all i ∈ I we have Wi ∩ 〈{Wj}j∈I\{i}〉 = {0}.
(v) For each i ∈ I, choose a linearly independent subset Si of Wi. Then S :=

⋃
i∈I Si is a linearly

independent subset of V .

Proof. (i) ⇐⇒ (ii): This is immediate, since the kernel of the natural linear map L :
⊕

i∈IWi →
V defined above is the set of (wi) such that

∑
i∈I wi = 0.

(ii) ⇐⇒ (iii): If (ii) fails then it gives a linear dependence relation among nonzero vectors wi ∈Wi. If
(iii) fails then we can choose for each i ∈ I a nonzero wi ∈Wi such that {wi}i∈I are linearly dependent,
then there are distinct i0, i1, . . . , in ∈ I such that

wi =

n∑
j=1

αjwij

for αj ∈ F ; since wi 6= 0, after decreasing n if necessary we may assume that each αj is nonzero. But
then we have

wi +

n∑
j=1

(−αjwij ) = 0,

and each −αjwij is a nonzero vector in Wij , so (ii) fails.
(iii) ⇐⇒ (iv): Condition (iii) fails iff there is some i ∈ I and some nonzero wi ∈ Wi that lies in the
span of the Wj ’s for j 6= i, which is precisely the negation of condition (iv) (ii) =⇒ (v): Suppose that
(v) fails. Then there is a finite nonempty subset J = {i1, . . . , im} ⊂ I and for each i ∈ J we have a
linearly independent subset wi1,1, . . . , wi1,ni1

such that their union is linearly dependent, i.e., there is
a nontrivial linear dependence relation of the form

m∑
j=1

αj,1wij ,1 + . . .+ αj,nij
wij ,nij

= 0.

For 1 ≤ j ≤ m put
wj := αj,1wij ,1 + . . .+ αj,nij

wij ,nij
.

Because for each fixed j the vectors wij ,1 . . . , wij ,nij
are linearly independent, we have wj = 0 iff

αj,1 = . . . = αj,nj
= 0; by assumption, this does not hold for at least one j. Shrinking to a k-element
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subset K = {i1, . . . , ik} ⊂ J , we get that wi1 + . . . + wik = 0 where each wij is a nonzero vector in
Wij : this contradicts (ii).
(v) =⇒ (ii): Condition (ii) is the special case of condition (v) in which each Si consists of a single,
necessarily nonzero, element. �

Corollary 5.3. Let W1,W2 be subspaces of an F -vector space V .
a) We have

dim(W1 +W2) + dimW1 ∩W2 = dimW1 + dimW2.

b) The following are equivalent:
(i) The natural map L : W1 ⊕W2 → V given by (w1, w2) 7→ w1 + w2 is an injection.
(ii) We have W1 ∩W2 = {0}.

Proof. a) We have a surjective F -linear map Φ : W1 ⊕W2 → W1 + W2 given by (w1, w2) 7→
w1 +w2. Its kernel is the set of all pairs (w1, w2) ∈W1⊕W2 such that w1 +w2 = 0, or in other words,
the set of (w1,−w1) ∈W1 ⊕W2. It follows that the linear map

W1 ∩W2 → KerL, w 7→ (w,−w)

is an isomorphism, so
dim KerL = dimW1 ∩W2.

Using the Dimension Theorem and Proposition 3.1b) we get

dimW1 + dimW2 = dimW1 ⊕W2 = dim Ker Φ + dim Image Φ = dim(W1 ∩W2) + dim(W1 +W2).

b) This is immediate from part a) and also from the equivalence of (i) and (iv) in Theorem 5.2. �

6. Dual Spaces

For a set S, let FS be the set of all functions f : S → F . For f, g ∈ FS and α ∈ F , we put

αf + g : s ∈ S 7→ αf(s) + g(s).

This makes FS into an F -vector space.

Exercise 6.1. a) For s ∈ S, let δs be the function t 7→

{
1 t = s

0 t 6= s
. Show: ∆ := {δs | s ∈ S} is a

linearly independent subset of FS.
b) Show: ∆ is a basis for FS iff S is finite.

Let V be an F -vector space. Let

V ∨ := {f ∈ FV | f is linear}.

Exercise 6.2. Show: V ∨ is a subspace of FV .

We call V ∨ the dual space of V . The elements f : V → F of V are called linear functionals on V .

For ` ∈ V ∨ and v ∈ V , we put 〈`, v〉 := `(v).

Let B = {ei}i∈I be a basis of V . We define a subset B∨ = {e∨i }i∈I of V ∨ as follows:

∀i ∈ I, 〈e∨i , ej〉 :=

{
1 i = j

0 otherwise
.

Since as usual, every map on a basis extends uniquely to a linear map on the space, the above formula
serves to uniquely define e∨i . We call B∨ the dual basis to B. However, please read on!

Proposition 6.1. Let V be a vector space with basis B = {ei}i∈I , and let B∨ = {e∨i }i∈I be the
dual basis of V ∨.

a) The set B∨ is linearly independent in V ∨.
b) The set B∨ is a basis for V ∨ iff dimV is finite.
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Proof. a) Let α1, . . . , αn ∈ F , let i1, . . . , in ∈ I and suppose that α1e
∨
i1

+ . . .+ αne
∨
in

= 0. That
is, for all v ∈ V we have

α1〈e∨i1 , v〉+ . . .+ αn〈e∨in , v〉 = 0.

For 1 ≤ j ≤ n, taking v = ej gives αj = 0.
b) Suppose dimV is finite, in which case we may take I = {1, . . . , n}. Let ` ∈ V ∨ and let v =
α1e1 + . . .+ αnen ∈ V . We claim that for ` ∈ V ∨ we have

` = `(e1)e∨1 + . . .+ `(en)e∨n .

Indeed, for all 1 ≤ i ≤ n, both ` and `(e1)e∨1 + . . . + `(en)e∨n upon evaluation at ei give `(ei), so the
maps agree. Thus B∨ is a basis for V ∨.

Suppose dimV is infinite; equivalently, I is infinite. Let W := 〈B∨〉. For all ` ∈ W , we have
`(ei) = 0 for all but finitely many i ∈ I, so the linear functional λ that maps each ei to 1 does not lie
in W . �

So beware: when dimV is infinite, the dual basis B∨ is not actually a basis for the dual space V ∨!

Exercise 6.3. Let V be a vector space, and put V ∨ := (V ∨)∨, the “second dual space” of V . Let

ι : V → V ∨∨, ι(v) : ` 7→ 〈`, v〉.

a) Show: ι is an injective linear map.
b) We say that V is reflexive if ι is an isomorphism. Show: V is reflexive iff it is finite-dimensional.

Thus the notion of a reflexive vector space is just a fancy way of saying it is finite-dimensional: we must
admit that this is not so interesting. However the notion of reflexivity carries over to other contexts
in a richer way. We mention two examples in passing:
(i) If R is a commutative ring and M is an R-module, then we can define M∨ = HomR(M,R) to be
the collection of R-module maps f : M → R. In this context the map ι is still defined but need not
be injective; again, one says M is reflexive when ι is an isomorphism. When e.g. R = Z, being finitely
generated is neither necessary nor sufficient for reflexivity.
(ii) If V is a Banach space over R (say), one takes V ∗ = Homc(V,R) to be the continuous linear
functionals. The set V ∗ can naturally be given the structure of a Banach space. In this context
ι : V → V ∗∗ is always an isometric embedding of Banach spaces but need not be an isomorphism: a
Banach space is called reflexive when ι is an isomorphism. This is a very important class of Banach
spaces, including for instance the Lp-spaces for p ∈ (1,∞).

Proposition 6.2. Let B = {ei | i ∈ I} be a basis for the vector space V . Then there is an
isomorphism of vector spaces

Φ : V ∨ → F I , ` 7→ (〈`, ei〉).

Proof. For any v ∈ V , we get a map

〈·, v〉 : V ∨ → F, λ ∈ V ∨ 7→ 〈λ, v〉,

and one checks immediately that this is F -linear. In particular this holds for v = ei, and the map Φ
comes from this family of maps via the universal property of the direct product. (This is fancier than
necessary: no problem to check directly that Φ is F -linear.) The bijectivity of Φ is really nothing else
than the statement that a linear map is uniquely and freely determined by what it does to a basis. �

Let f : V →W be an F -linear map. We define an induced F -linear map f∨ : W∨ → V ∨, as follows:

` ∈W∨ = HomF (W,F ) 7→ ` ◦ f ∈ HomF (V, F ) = V ∨.

It is natural to wonder whether and how properties of f induce properties of f∨: for instance, if f is
injective, must f∨ also be? Well, it is always reasonable to guess, but as guesses go this one is not
the greatest: for instance if V and W are finite-dimensional with dimV < dimW then there is an
injective linear map f : V → W but no injective linear map from W∨ to V ∨. Similarly, if V and W
are finite-dimensional with dimV > dimW then there is a surjective linear map f : V → W but not
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surjective linear map from W∨ to V ∨. Reflecting a bit more about the dimension obstructions one
might be led to guess the following result.

Proposition 6.3. Let f : V →W be a linear map, with dual map f∨ : W∨ → V ∨.
a) If f is injective, then f∨ is surjective.
b) If f is surjective, then f∨ is injective.
c) If f is an isomorphism, then so is f∨.

Proof. a) Since f is injective, it defines an isomorphism f : V → f(V ); let f−1 : f(V ) → V be
the inverse map. Now let `V ∈ HomF (V, F ); we want to find `W ∈ HomF (W,F ) such that `W ◦f = `V .
We claim that `W restricted to f(V ) is uniquely defined: indeed, for all v ∈ V we must have

`W (f(v)) = `V (v);

since for all v ∈ V there is a unique w ∈ f(V ) such that v = f−1(w), we have

`W (w) = `V (f−1(w)).

This defines `W uniquely on f(V ). We can then extend `W to a linear map defined on W , in general
in many ways, and any such extension will satisfy `W ◦ f = `V .
b) Suppose f is surjective, and let ` ∈ HomF (W,F ) be such that f∨(`) = ` ◦ f = 0. That is, for all
v ∈ V we have `(f(v)) = 0. But since f is surjective this implies that `(w) = 0 for all w ∈ W , and
thus ` = 0.
c) This follows immediately from parts a) and b). �

7. Dimensions of Direct Products and Dual Spaces

In this section we follow a MathOverflow discussion [MO] and use in particular the answers of Pierre-
Yves Gaillard and Todd Trimble.

Proposition 7.1. Let F be a field, and let V be a nonzero F -vector space.

a) If V is finite (as a set), then F ∼= Fq is a finite field, V is finite-dimensional and #V = qdimV .
b) If V is infinite (as a set), then we have #V = max(dimV,#F ).

Proof. a) If V is a nontrivial vector space over an infinite field F , then let v ∈ V \ {0}. Then
F ↪→ V , α 7→ αv is an injection, so V is infinite. So if V is finite then F must be finite and thus have q
elements for some prime power q. If dimV were infinite then for all d ∈ Z+ there would be a subspace
isomorphic to Fdq , so #V ≥ qd for all d and thus V is infinite. So V must be finite-dimensional and

thus isomorphic to FdimV
q .

b) If G is a group and S ⊂ G is an infinite generating set, then #S = #G. Indeed, since S is a subset
of G we have #S ≤ #G. Without changing #S we may assume that S is closed under inversion,
and then there is a natural map

∐∞
n=1 S

n → G obtained by (s1, . . . , sn) 7→ s1 · · · sn, and this map is
surjective since S generates G. Since S is infinite we have #

∐∞
n=1 S

n = #S, and thus #S ≥ #G.
Certainly we have dimV ≤ #V , and as above we have #F ≤ #V . Let B be a basis for V .

Then S := {αb | α ∈ F, b ∈ B} generates V as an additive group, and S has cardinality at most
dimV ·#F = max(dimV,#F ), so #V ≤ max(dimV,#F ). �

Following Gaillard, we will say that an F -vector space V is large if dimV ≥ max(#F,ℵ0). Proposition
implies that V is large iff dimV = #V .

Theorem 7.2. Let I be a nonempty set, for all i ∈ I, let Vi be a nonzero F -vector space, and put
V :=

∏
i∈I Vi.

a) If I is finite, then V =
⊕

i∈I Vi, so dimV =
∑
i∈I dimVi.

b) If I is infinite, then V is large.
c) In particular we have dimF I = (#F )#I .
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Proof. a) This is Proposition 3.1a).
b) Step 1: Let E := Fℵ0 =

∏∞
i=1 F . We show that V is large. Since the subspace

⊕∞
i=1 F of V

has dimension ℵ0, it suffices to show that dimV ≥ #F . Seeking a contradiction, we suppose that
there is an F -basis B of E with #B < #F . This implies that F is uncountably infinite. Let F0 be
the prime subfield of F . Let F1 be the subfield of F obtained by adjoining to F0 the coordinates in
F of every b ∈ B. We have #F1 ≤ #B < #F , so the field F is a large F1-vector space: we have
dimF1

F = #F > ℵ0, and therefore there is x ∈ E whose coordinates are F1-linearly independent.
Let b1, . . . , bn ∈ B be such that x lies in the F -span of b1, . . . , bN . Consider the matrix M = (mij) ∈
Mn,n+1(F1) with mij equal to the jth coordinate of bi. The nullspace of M must be nontrivial: let
0 6= λ = (λ1, . . . , λn+1)T ∈ Fn+1 be such that Mλ = 0: thus

∀1 ≤ i ≤ n,
n+1∑
j=1

λjmi,j = 0.

It then follows that
n+1∑
j=1

λjxj = 0,

contradicting the choice of x.
Step 2: There is an injective F -linear map ι : E→ V , so dimV ≥ dimE ≥ max(ℵ0,#F ) and thus V
is also large.
c) Since #F I = (#F )#I , this is immediate from part b). �

Corollary 7.3. Let V be a vector space over a field F . If dimV is infinite, then dimV < dimV ∨.

Proof. By Proposition 6.2 we have V ∨ ∼= F dimV , so by Theorem 7.2 and Cantor’s Theorem
[Cl-STI, Thm. 12] we have

dimV ∨ = (#F )dimV ≥ 2dimV > dimV. �

Corollary 7.3 immediately implies that no infinite-dimensional vector space is reflexive, which is the
more challenging direction of Exercise 6.3b). (It is possible to solve the exercise without this result!)

Exercise 7.1. Let I be an infinite index set; for all i ∈ I let Vi be a nonzero F -vector space. Put

µ := max(ℵ0,#F ), α := #{i ∈ I | dimVi < µ}.

Show:

dim
∏
i∈I

Vi = (#F )α
∏

dimVi≥µ

dimVi.

8. Change of Basis

Let V be an m-dimensional vector space, let W be an n-dimensional vector space, and let L : V →W
be a linear transformation. Then L is a rather abstract object, but we can study it quite concretely
by means of bases. Namely, let BV = v1, . . . , vm be an ordered basis for V , and let BW = w1, . . . , wn
be an ordered basis for W . Then there are unique scalars aij ∈ F such that

L(vi) =

n∑
j=1

aijwj .

In what follows, we let e1, . . . , en be the standard basis of Fn.

Theorem 8.1. a) Let A ∈Mn,m(F ).
The map

A• : (x1, . . . , xm) 7→ A(x1, . . . , xm)T

is a linear map from Fm to Fn.
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b) Let L : Fm → Fn be a linear map. There is a unique A = (aij) ∈Mm,n(F ) such that for all
1 ≤ i ≤ m we have

L(ei) =

n∑
j=1

aijej .

Then L = AT •.

Proof. a) This is left to the reader.
b) The existence and uniqueness of A is just because e1, . . . , en is a basis of Fn. By part a), AT • :
Fm → Fn is a linear map. For all 1 ≤ i ≤ m we have

AT ei = (ai,1, . . . , ai,n)T =

n∑
j=1

ai,jej = T (ei).

Since a linear map is determined by its action on a basis, we have AT • = L. �

The transpose in the above result is a bit annoying.1 The easiest way to fix it turns out to be just to
use a less-immediately-appealing indexing convention: namely, instead of writing

L(vi) =

n∑
j=1

aijwj ,

if we write

L(vi) =

n∑
j=1

ajiwj ,

then the transpose goes away. A better way to say this is that we write down the rectangular array of
scalars whose ith column expresses L(vi) in terms of the wj ’s.

We return to the case of L : V → W as above. To L we associated a rectangular array of num-
bers, so we should sharpen it up in terms of matrix multiplication. This is done as follows: the ordered
basis v1, . . . , vm of V gives us an isomorphism

BV : Fm → V,

and the ordered basis w1, . . . , wn of W gives us an isomorphism

BW : Fn →W.

A key idea: composing with an isomorphism (or its inverse!) does not really change anything; it just
induces a “relabelling.” In this case, we may replace L : V →W by

LBV ,BW
: Fm

BV→ V
L→W

B−1
W→ Fn.

By Theorem 8.1a) we see that LBV ,BW
is given by multiplication by a matrix A ∈Mn,m(F ), and it is

a minor variant of Theorem 8.1b) to see that the (i, j) entry of A is aji.

Now the plot thickens: we can change the basis on V and/or on W . Let v′1, . . . , v
′
m be another

ordered basis for V and let w′1, . . . , w
′
n be another ordered basis for W . Then the linear map

LB′V ,B′W : Fm
B′V→ V

L→W
B′−1

W→ Fn

is given by A′•, where A′ ∈Mn,m(F ) is the matrix whose (i, j)th entry is a′ji, where for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n we have

L(v′i) =

n∑
j=1

a′jiw
′
j .

1It ruined one of my lectures: Math 7900, October 7, 2019.
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The question is now: what is the relationship between A and A′?

The evident thing to do is to write the new bases in terms of the old bases, so let’s start there:
for 1 ≤ i, j ≤ m there are unique αi,j ∈ F such that for all 1 ≤ i ≤ m we have

v′i =

m∑
j=1

αjivj .

Put P := (αij) ∈ GLm(F ). Similarly, for 1 ≤ i, j ≤ n there are unique βi,j ∈ F such that for all
1 ≤ i ≤ n we have

w′i =

n∑
j=1

βjiwj .

Put Q := (βij) ∈ GLn(F ). So, more precisely, we want to describe A′ in terms of A, P and Q.

Theorem 8.2. With notation as above we have

(21) A′ = Q−1AP.

Proof. Step 1: We claim that as linear transformations we have

(22) B′V = BV ◦ (P•)

and

(23) B′−1W = (Q−1•) ◦ B−1W .

To see (22): for 1 ≤ i ≤ m we have

BV (Pei) = BV (

m∑
j=1

αjiej) =

m∑
j=1

αjivj = v′i = B′V (ei).

As for (23): taking inverses gives B′W = BW ◦ (Q•), and this is proved identically to (22).
Step 2: We have

A′• = B′−1W ◦ L ◦ B′V =
(
(Q−1•) ◦ BW

)
◦ L ◦ (BV ◦ (P•))

= Q−1 • ◦ (BW ◦ L ◦ BV ) ◦ P• = (Q−1•) ◦ (A•) ◦ (P•) = Q−1AP•,
and thus

A′ = Q−1AP. �

Reflecting on the above proof one sees that most of it is not really about the linear transformation at
all! Rather it concerns the phenomenon on having two bases B = {bi | i ∈ I} and B′ = {b′i | i ∈ I}
for the same vector space V . (Since any two bases must have the same cardinality, it is no loss of
generality to index them by the same set.) This gives two different isomorphisms

B,B′ :
⊕
i∈I

F → V.

(Here we are using the same notation for the basis as the isomorphism. This seems justified, since the
basis and the isomorphism correspond uniquely to each other!) There is then a unique automorphism
PB′,B of

⊕
i∈I F such that

B′ = B ◦ PB′,B;

indeeed we must have PB′,B = B−1 ◦ B′. Assuming now that I is finite and replacing
⊕

i∈I by Fn, the
map PB′,B is given by an invertible n× n matrix. We already figured out what this matrix is: its ith
column expresses the ith vector b′i of B′ as a linear combination of the vectors b1, . . . , bn. We think of
this matrix as “transforming us from B′-coordinates to B-coordinates.”
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Exercise 8.1. Let V be an finite-dimensional F -vector space, and let B1,B2, B3 be bases of V .
a) Show:

PB2,B1
= P−1B1,B2

.

b) Show:
PB3,B1 = PB2,B1PB3,B2 .

Exercise 8.2. Suppose V = Fn with its canonical basis E = e1, . . . , en.
a) Let B1 = v1, . . . , vn be a basis of V . Show that PB,E is the matrix whose ith column is the vector vi.
b) Let B2 = w1, . . . , wn be another basis of V . Show:

PB2,B1 = [v1 | · · · | vn]−1[w1 | · · · | wn].
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