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Introduction

0.1. Some theorems in mathematics with snappy model-theoretic proofs.

1) The Nullstellensatz and the R-Nullstellensatz.
2) Chevalley’s Theorem: the image of a constructible set is constructible.
3) (Grothendieck, Ax) An injective polynomial map from Cn to Cn is surjective.
4) Hilbert’s 17th problem: a positive semidefinite rational function f ∈ R(t1, . . . , tn)
is a sum of squares.
5) Polynomially compact operators have invariant subspaces. (Let V be a complex
Hilbert space, L a bounded linear operator on H, and 0 ̸= P (t) ∈ C[t] . Suppose
that P (L) is a compact operator: the image of the unit ball has compact closure.
Then there exists a nontrivial, proper closed subspaceW of V which is L-invariant.)
6) (Ax-Kochen) For each n ∈ Z+ and all sufficiently large primes p, a homogeneous
form with coefficients in Qp with at least n2 + 1 variables has a nontrivial zero.
7) (Duesler-Knecht) An analogue of the Ax-Katz theorem for rationally connected
varieties over the maximal unramified extension of Qp.
8) (Faltings, Hrushovski) Mordell-Lang Conjecture.

Remark: So far as I know, these are in increasing order of difficulty. However,
I have barely glanced at the proof of 5), so this is just a guess.

1. Languages, structures, sentences and theories

1.1. Languages.

Definition: A language L is the supply of symbols that are deemed admissible
when appearing in an expression. There are three types of symbols that make up
a language: for each n ∈ Z+, a set of n-ary function symbols f = f(x1, . . . , xn)
– formally f is just a symbol which has the number n associated to it; for each
n ∈ Z+, a set of n-ary relation symbols R = R(x1, . . . , xn) – formally exactly
the same as a function – and a set of constant symbols.

We assume that all of these sets are disjoint – i.e., that given an element a ∈ L, we
can say unambiguously that it is an n-ary function symbol for a unique n ∈ Z+,
an n-ary relation symbol (for a unique n) or a constant. Otherwise the sets are
quite arbitrary: any or all of them may be empty (and most of them usually will
be in any given application), and the sets may be infinite, even uncountably infinite.
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An L-structure X is given by the data of
• an underlying set1, which we (abusively) also denote X,
• for all n and for each n-ary function f a map of sets n-ary function fX : Xn → X,
• for all n and for each n-ary relation R a subset RX ⊂ Xn,
• for each constant c an element cX ∈ X.

That is, to endow a set X with an L-structure is to assign to each element “formal
n-ary function” f ∈ L an actual n-ary function on X, to each “formal n-ary rela-
tion” R ∈ L an actual n-ary relation on X, and to each “formal constant” c ∈ L
an actual element (“constant”) of X.

Exercise 1.1: Let L be a language, and let X be a set.
a) If X is nonempty, show that X can always be endowed with an L-structure.
b) For which languages L can the empty set be endowed with an L-structure?

Exercise 1.2: Explain how a constant can be viewed as a 0-ary function. (Nev-
ertheless, we will just call them constants.)

We also have the notion of morphism of L-structures. In fact, there are two natural
such notions.

Let X and Y be L-structures. A homomorphism φ : X → Y is a map of
the underlying sets such that:
(HS1) For each constant c ∈ L, φ(cX) = cY .
(HS2) For each n-ary function f ∈ L and all (x1, ldots, xn) ∈ Xn, we have

fY ((φ(x1), . . . , φ(xn)) = φ(fX(x1, . . . , xn)).

(HS3) For each n-ary relation R ∈ L and all (x1, . . . , xn) ∈ RX , we have

(φ(x1), . . . , φ(xn)) ∈ RY .

On the other hand, an embedding ι : X → Y of L-structures is an injective map-
ping on the underlying sets satisfying (HS1), (HS2) and the following strengthened
version of (HS3):

(IS3) For each n-ary relationR ∈ L and all (x1, . . . , xn) ∈ Xn, we have (x1, . . . , xn) ∈
RX ⇐⇒ (φ(x1), . . . , φ(xn)) ∈ RY .

An isomorphism of L-structures is, as usual, a homomorphism of L-structures
which has a two-sided inverse homomorphism.

Exercise 1.3: For a homomorphism φ : X → Y of L-structures, TFAE:
(i) φ is an isomorphism of L-structures.
(ii) φ is a surjective embedding of L-structures.

1Most of the texts I have consulted require X to be nonempty. Although this will certainly be

the case of interest to us, I do not see – yet – why it is necessary or helpful to assume this at the
outset. Let me know if you spot why!
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We demonstrate that the notion of an L-structure is a familiar one by identifying
some of the smallest possible L-structures as standard examples of mathematical
structures.

Example 1.4: If L = ∅, an L-structure is precisely a set; a homomorphism of L-
structures is precisely a mapping between sets, and an embedding of L-structures
is simply an injective mapping of sets.

Example 1.5: Let L be the language with a single unary relation R. Then an
L-structure is a pair of sets (X,S), i.e., a set X together with a distinguished
subset S. A homomorphism φ : (X1, S1) → (X2, S2) is a homomorphism of pairs
in the usual sense of (e.g.) algebraic topology: a mapping X1 → X2 such that
φ(S1) ⊂ S2. An embedding of pairs is an injective map such that φ−1(S2) ⊂ S1.

This example can evidently be generalized: if L consists of a set I of unary
relations, then an L-structure is an I-tuple: i.e., a set endowed with an I-indexed
family of subsets.

Example 1.6: If L consists of a single unary function f , an L-structure is a function
f :M →M : a “discrete dynamical system.”

Example 1.7: If L consists of a single binary function ·, an L-structure is a bi-
nary composition law · : M × M → M , i.e., what Bourbaki calls a magma. If
L = {·, e}, i.e., a binary function together with a constant, we get a pointed magma.

Here is a key point: we are probably more interested in more restricted subcat-
egories of (pointed) magmas: e.g., in which the composition law is associative
(semigroup) and for which the constant is an identity element (monoid) and with
respect to which there are multiplicative inverses (a group). We have an idea that
a semigroup is a magma with additional structure. This is not captured by the
idea of an L-structure but rather by the idea of imposing additional axioms on the
structure that we already have. This is coming up shortly!

Example 1.8: The underlying L-structure of the category of rings consists of two
constant symbols 0 and 1 and two binary operations + and −.

Example 1.9: The underlying L-structure of the category of ordered rings con-
sists of the above elements together with a binary relation <.

Example 1.10: If L consists of a single binary relation ∼, then an L-structure
is a (simple, undirected) graph. This is a good example to use to reflect on the
difference between homomorphisms and embeddings. For instance, let n > 1 be an
integer. Let X1 be the graph on the vertex set {1, . . . , n} with no edges: i.e., the
binary relation is the empty relation. Let X2 be the complete graph on the vertex
set {1, . . . , n}, i.e., i ∼ j ⇐⇒ i ̸= j. Let ι be the identity map on {1, . . . , n}. Then
ι is a bijective homomorphism from X1 to X2 but is not an embedding.

Non-example 1.11: There is no appropriate L-structure for topological spaces. That
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is because the data of a topological space is a set X together with a unary relation
(i.e., subset) T on 2X . As it turns out, the notion of L-structure is fundamentally
unable to treat subsets on the same footing as sets. This is certainly worth thinking
about. For instance, the reader may wonder whether we can capture the structure
of a topological space via a set I of unary relations as in Example 1.5 above. The
problem here is that the set I would have to depend upon the topological space X:
think about it!

The general term for L-structures is relational structures, i.e., the sort of struc-
ture which is given by n-ary relations (after all an n-ary function is a special kind
of (n+ 1)-ary relation and a constant is a 0-ary function). As we have seen, many
(but not all!) instances of mathematical structure are special cases of relational
structure. There is a branch of mathematics which studies the (homomorphism
and embedding) categories of general relational structures: it is called universal
algebra. This is not what we want to study! As alluded to above, in conventional
mathematics it is natural to restrict the categories of L-structures by requiring
them to satisfy certain axioms. Thus to get to model theory at all we need to add
the syntactic ingredient: i.e., to define first-order formulas and statments.

1.2. Statements and Formulas.

Thinking of L as giving us an admissible set of symbols, a formula is a syntac-
tically correct expression made out of those symbols. For a formal definition of
what a formula is, consult [Marker, pp. 9-10]; we will content ourselves with the
following description, which should allow the reader to see in each case whether
an expression is or isn’t a formula. First we give ourselves a supply of variables
{vi}∞i=1. Actually this is overly formalistic – in practice we can use any single char-
acter which is not already denoting something else in a formula; we often use x, y, z
for variables. (The reader will see shortly why we do not need to take more than a
countable set of variables.) Then a formula is built out of:

variables: formally speaking, we should take a fixed countably infinite set of vari-
ables, say {xi}∞i=1; in practice we will use whatever lower case letter we like;
constants, functions, relations
equality: =

logical symbols: ¬,∨,∧, =⇒ , ⇐⇒ ,∃,∀
parentheses: ( , )

We are not trying to do computer programming or anything of the sort, so we
will feel free to use new symbols which are commonly understood to be composed
out of our basic symbols. For instance, we all understand ̸= to be shorthand for
¬ =, and we will use this freely in formulas.

For example, the following are all valid formulas in the language (+, ·, 0, 1) of rings:

0 = 1.

x2 + y2 = z2.
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(Here we are again employing shorthand: by x2, we of course really mean x · x.
Note that xy does not have an agreed upon meaning in terms of the given symbols,
so that would certainly be out of bounds.

∀b∀c ∃x (x2 + bx+ c = 0).

(Here we understand bx to be an abbreviation for b · x.)

The key point is the following: given any formula φ in a language L, and given
any L-structureX, the formula has a semantic interpretation in the structureX.

Note that the formulas (1) and (3) are of a different nature than formula (2).
Formulas (1) and (3), when interpreted in any ring R, make a mathematical state-
ment about the ring R, which is either true or false (and not both!). For instance
(1) is true in a ring R iff R is the ring with a single element. Formula (3) asserts
that any monic quadratic equation with coefficients in R has a solution in R: this
is true, for instance, if R = C and false if R = Z or Q or R. However, intrepreting
(2) in the ring R = R of real numbers, say, it does not make sense to say that it is
true or false. It depends on what values the variables x, y, z take.

The logical formalization of this lies in the distinction between bound and free
variables. A variable v appearing in a formula is said to be bound if it comes after
a quantifier ∃v or ∀v: otherwise it is said to be free. A sentence is a formula
in which all variables are bound. (In particular, a formula in which no variables
appear is automatically a sentence.)

Of course the sentences will play a distinguished and important role in what follows.
But considering formulas with free variables is also important: it is the key to the
geometric interpretation of model theory. Namely, a statement must either be true
or false, but a formula φ with unbound variables (x1, . . . , xn) may be viewed as a
parameterized family of sentences: for each structure X and each a = (a1, . . . , an)
in Xn, the formula φ defines a subset of Xn: namely the set of parameters φ(a)
is true. Note that this directly generalizes the notion of an affine variety as being
defined by a finite set of polynomial equations.2

1.3. Satisfaction.

Let us come back to the case of sentences. Suppose that L is a language, X is
an L-structure, and φ is an L-sentence. Then we have a fundamental dichotomy:
either φ is true in the structure X, or it is false. In the former case we say that X
satisfies φ. This is sufficiently important that it gets its own symbol:

X |= φ.

The following result is another instance of how easy things become when we do not
need to worry about quantifiers.

Proposition 1. Let X ⊂ Y be an embedding of L-structures, and let ϕ(v) be a
quantifier-free formula with n unbound variables. Then for all a ∈ Xn, X |= ϕ(a)
iff Y |= ϕ(a).

2From a logical standpoint, there is no difference between a single statement and a finite set
of statements, since φ1, . . . , φn are all true iff the single statement

∧n
i=1 φi is true.
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Proof. Let’s try to see what this proposition means. Suppose there are no free
variables in the formula. Then since there are no quantifiers either, there are no
variables at all, i.e. the formula expresses some fact about the constants. Since
X ↪→ Y is an embedding of sets preserving the constants, clearly this sentence has
the same truth value in X and Y . Now take an n-tuple a ∈ Xn. By evaluating at
a we have essentially reduced to the previous case, except that the coordinates of a
may not be distinguished constants in the language in question. But contemplate
enlarging the language by adding these new constants – then the above argument
goes through to show the equivalence of X |= ϕ(a) and Y |= (a) in the expanded
language. But this is just formal nonsense: the truth of ϕ(a) is the same in both
languages! �

1.4. Elementary equivalence.
Let X1 and X2 be two L-structures. We say that X1 and X2 are elementarily
equivalent – denoted X1 ≡ X2 – if for all L-sentences φ, X1 |= φ ⇐⇒ X2 |= φ.
Thus two structures are elementarily equivalent if they satisfy exactly the same
first-order sentences.

This is an immediately appealing notion, because it suggests the possibility of
an important proof technique, that of transfer: suppose one is trying to prove a
certain theorem about a structure X. Suppose that the theorem can be expressed
as X |= φ where φ is an L-sentence (or a set of L-sentences; more on that shortly).
Then, we are free to replace X with any structure X ′ which is elementarily equiva-
lent to X and which is either simpler in some objective way or somehow tailored so
as to make the sentence φ easier to prove. Then we are free to prove the sentence φ
in X’ (by whatever mathematical means we can), and then the truth is transferred
to X. In fact this is very close – but not quite – the way we will prove that injective
polynomial maps on the complex numbers are surjective. A better example is non-
standard analysis: there are ordered fields R elementarily equivalent to the real
numbers but with infinitesimal elements: as long as one can restrict the theorems
one wishes to prove to first-order statements, it is perfectly acceptable to do one’s
analysis in the field R. This proof technique was systematized by A. Robinson, who
showed that – after a certain logical scaffolding for the “transfer” is set up once and
for all – one can with complete rigor prove theorems in calculus and real analysis by
reasoning with infinitesimal elements. In other words, the methods of Newton and
Leibniz, which had been justly denigrated for hundreds of years, can be made sound!

A good question is whether the introduction of infinitesimals is actually helpful:
do they allow one to prove things that the epsilontically trained mathematician
cannot? The answer is in principle no, as will be answered by Gödel’s Complete-
ness Theorem. However, one can ask this question of almost any mathematical
technique: does one really need complex analysis to prove the prime number the-
orem? In fact no, as Erdos and Selberg famously showed. But it certainly helps!
There are definitely theorems that were first proven using nonstandard methods.
An early example is the subspace theorem for polynomially compact operators, by
Bernstein and Robinson [BR66].

The principle that elementary equivalence is a much coarser relation than isomor-
phism is the driving force behind model theory. Unfortunately, at the present time
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it is difficult to give explicit examples of elementarily equivalent but nonisomorphic
structures: much of the theory we will develop is pointing in that direction. But at
least we can give a cardinality argument.

Exercise 1.12: Let L be a language.
a) Show that the number of L-sentences is max(ℵ0, |L|).
b) Deduce that the number of pairwise non-elementarily equivalent L-structures is
at most 2max(ℵ0,|L|).
c) Show that for any cardinal number κ, there are more than κ pairwise noniso-
morphic L-structures.
d) Deduce that for any cardinal number κ there exists a set of κ pairwise noniso-
morphic L-structures which are all elementarily equivalent.

Exercise 1.13: Let X be a finite L-structure. Show that if an L-structure X ′ is
elementarily equivalent to X, then |X ′| = |X|.

Exercise 1.14 (harder): Let X be a finite L-structure and X ′ an L-structure. Show
that X ≡ X ′ iff X ∼= X ′.

1.5. Theories.

A theory T in the language L is a set of L-sentences. If X is an L-structure,
then X |= T means that X satisfies every sentence in T . In such a situation, we
say that X is a model of T .

Notice that the class of L-structures which are models of a given theory T form
a category (in two different ways), simply by defining a homomorphism (resp. an
embedding) of models of T to be a homomorphism (resp. embedding) of the un-
derlying L-structures.

Example 1.15: Let L be the language with one binary operation · and one con-
stant symbol e. Let T consist of the two sentences:

φA : ∀x∀y∀z(x · y) · z = x · (y · z).

φe : ∀x (x · e = x) ∧ (e · x = x).

Then T is the theory of monoids, and the resulting category is precisely the cate-
gory of monoids (resp. the category of monoids and monoid embeddings).

In a similar way we can define the theories of groups, rings, integral domains and
fields. This is possible because in each case, the familiar axioms satisfied by these
structures are captured by sentences in the appropriate language. (The reader
should check this!)

We say that a class C of L-structures is finitely axiomatizable if there exists
a sentence φC such that an L-structure X lies in C iff X |= φC . Informally speak-
ing, we may think of membership in a class C as being a “property” of a structure,
and conversely. For instance, in the language of rings, being commutative, being
an integral domain, being a field, being the zero ring, are all finitely axiomatizable.
A simple but important observation is that if a property is finitely axiomatizable,
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then its negation is also finitely axiomatizable.

Exercise 1.16: Let n be a positive integer. Let L be any language. Show that
the properties “X has at least n elements”, “X has at most n elements” and “X
has exactly n elements” are all finitely axiomatizable.

We say that a property P of L-structures is elementary or first-order if there
exists an L-theory T such that an L-structure X has property P iff X |= T .

Example 1.17: We show that the class of algebraically closed fields is elementary.
Indeed, we can certainly write down one sentence that enforces commutativity:

φc : ∀x∀y xy = yx

and another sentence that enforces that every nonzero element has a multiplicative
inverse:

φe : ∀x∃y xy = yx = 1.

To get the property of algebraic closure, the evident way to go is to include, for
each n ∈ Z+, a sentence φn asserting that every monic degree n polynomial has a
root. For instance, we can take φ3 to be:

∀a∀b∀c∃x x3 + ax2 + bx+ c = 0.

We define {φc, φe, φn}∞n=1 to be the theory of algebraically closed fields. Thus the
class of algebraically closed fields is elementary.

Note that this leaves open the question as to whether the class of algebraically
closed fields is finitely axiomatizable. The reader might think that we could dis-
pose of this by replacing the infinite collection of sentences φn by the single sentence

Φ : ∀n ∈ Z+,∀c0, . . . , cn−1, ∃x xn + cN−1x
n−1 + . . .+ c1x+ c0 = 0.

However, this is absolutely not a valid sentence! The problem is that we have
quantified over the positive integers, which is not allowed: quantifiers are not al-
lowed to range over auxiliary sets: every quantifier must pertain to the L-structure
itself. Related to this, . . . is not one of our symbols! Similarly, of course by xn we
mean x · x · . . . x (n times), which is again illegal. The notion of a “generic integer”
is firmly off-limits.3 In fact, we will see later that the class of algebraically closed
fields is not finitely axiomatizable (and also why this matters).

A reasonable initial reaction to this state of affairs is that first-order sentences
are rather inconveniently limited in their expressive value: why are we working
with them? This is a great question, and it has a fantastic answer, coming up next:
Gödel’s Completeness Theorem.

2. Big Theorems: Completeness, Compactness and Löwenheim-Skolem

2.1. The Completeness Theorem.

Let T be a theory in a language L. We say that T is satisfiable if it has at
least one model.

3In contrast, it is okay to write things like 17x2 + 2 = 0, it being understood that this is just

a shorthand for (1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1)(x ·x)+ (1+1) = 0.
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Exercise 2.1: Let T be a satisfiable L-theory and φ an L-sentence. Show that
the following are equivalent.
(i) T ̸ |=φ.
(ii) T ∪ {¬φ} is satisfiable.

A basic and important question is: when is a theory satisfiable?

It is easy to give “silly” examples theories which are not satisfiable. Suppose for
instance that for some L-sentence φ, the theory T contains both φ and its negation
¬φ. Then evidently T is not satisfiable!

Evidently there are slightly more examples with the same basic silliness: e.g. sup-
pose that there are sentences φ1, φ2, φ3 such that our theory T contains the follow-
ing sentences:

φ1, φ1 =⇒ φ2, φ2 =⇒ φ3, φ3 =⇒ ¬φ1.

This is clearly no good either: it doesn’t matter that T need not contain the sen-
tence ¬φ1, because this is a logical consequence of sentences that it does contain.
In fact, let’s use more precise terminology – after all, in mathematics, what other
kinds of consequences are there than logical consequences? The nonsatisfiability
of T has nothing to do with the semantics (i.e., meaning) of the sentences φi as
interpreted in any L-structure. Rather, their contradictory nature follows from a
purely syntactic manipulation of these formulas using basic rules of formal logic.

This notion can be formalized by something called predicate calculus, i.e., a
formal system of deducing various sentences from various other sentences from a
fixed set of universal logical rules. As an example, if we are given a list of sentences
including φ1 and φ1 =⇒ φ2, then we should be able to append the sentence φ2

to the list.
It is most convenient for us to think of the process of formal proof as a black

box satisfying the following assumptions: with respect to a fixed language L, let
T be a theory and φ a sentence. A formal proof of φ from T consists of a finite
series of sentences φ1, . . . , φn generated as follows, where given φ1, . . . , φi, the sen-
tence φi+1 is either an element of T or is obtained from the previous sentences by
applying one of the finitely many preassigned, valid logical deductions. We require
that φn = φ. Particular proof systems have been given; a popular one is called
predicate calculus. We isolate the two most important features of the foregoing
informal description.

(Soundness): We write T ⊢ φ if there is a formal proof of φ from T : we think
of this as syntactic implication as it has nothing to do with the meaning of the
sentence φ in any model. At the other extreme, we define T |= φ if the sentence
φ is true in every model of T . This is semantic implication and corresponds
to the usual notion of mathematical implication for statements of our restricted
“first-order” form. Now we certainly want the following soundness property:

(T ⊢ φ) =⇒ (T |= φ).
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In other words, all of the formal proofs are actually true! As long as our “deduc-
tion” rules are true logical facts like the above “modus ponens”, this is nothing to
worry about.

(Finite character): If T ⊢ φ, then there exists a finite subset F ⊂ T such that
F ⊢ φ. This also follows from our above description: a proof by definition has
finite length, so it can only involve introducing finitely many sentences of T .

We may now state a truly fundamental and spectacular result.

Theorem 2. (Gödel’s Completeness Theorem) Let T be a theory in a language L
and let φ be an L-sentence. Then

(T |= φ) ⇐⇒ (T ⊢ φ.).

Proof. We are not going to prove the completeness theorem here (in a sense that
will be made clear soon enough, it is not the business of model theory proper to
prove this result). For a proof, see e.g. [BS, Ch. 3]. �

Remark: Perhaps because of the similar name, awareness of Theorem 2 in the larger
mathematical community has been largely drowned out by Gödel’s Incompleteness
Theorems. (The completeness theorem appears in Gödel’s 1929 doctoral disser-
tation; the incompleteness theorems were proved in 1931.) It is not our business
here to describe this latter – and yes, even more spectacular – result. Among other
sources, wikipedia gives a solid introduction.

Of course the fact that syntactic implication implies semantic implication is just the
soundness of our deduction rules referred to above: nothing exciting about that.
However, the converse is amazing! It says nothing less than that – provided we
restrict our attention to first-order sentences – the notions of mathematical truth
and purely syntactic provability coincide.

Corollary 3. Say that a theory T is syntactically consistent if for no sentence
φ is it the case that T ⊢ (φ ∧ ¬φ). Then a theory T is syntactically consistent iff
it is satisfiable, i.e., if it has a model X.

Proof. Again, it is clear that any theory which has a model is syntactically consis-
tent. Inversely, suppose that T is unsatisfiable, i.e., has no model. Let φ be any
sentence whatsoever – e.g. ∀x x = x. Then it is vacuously true that T |= (φ∧¬φ).
By the Completeness Theorem, it follows that T ⊢ (φ ∧ ¬φ), i.e., that T is synac-
tically inconsistent. �

2.2. Proof-theoretic consequences of the completeness theorem.

Gödel’s completeness theorem has some metamathematical consequences lying out-
side of the scope of model theory in general and our course in particular. Never-
theless, some of these consequences are too basic and important to be ignored
completely, so we give a brief description now that we hope will enable the reader
to make sense of later “decidability” statements thrown off briefly and our course
and increasingly ubiquitous elsewhere.

Let L be a countable language. We say that L is recursive if there exists an
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algorithm (e.g., Turing machine – we will not need to formalize this concept here)
to decide whether a finite sequence of symbols is a syntactically valid formula. Note
that a language is certainly recursive if it has only finitly many constants, relations
and functions: this already covers most of our applications. Further, we say that
an L-theory is recursive if there exists an algorithm which, given an L-sentence φ
lies in T .

Simple examples: the theories of rings, integral domains, fields, ordered fields, alge-
braically closed fields are all recursive. At the other extreme, given an L-structure
X, the complete theory T (X) of all sentences true in X is not necessarily recursive:
this is indeed what we would like to be able to prove in various examples of interest.

Proposition 4. If L is a recurive language and T is a recursive L-theory, then the
set of all sentences φ such that T ⊢ φ is recursively enumerable.

In lieu of a proof we give a definition of recursively enumerable! A theory T ′ is
recursively enumerable iff there exists a semialgorithm to determine membership
in T ′: i.e., a Turing machine that when inputted a sentence φ halts iff φ ∈ T ′.
The result should now be clear: given a recursive set of axioms and a proof system,
one can then enumerate all possible proofs. Putting T ′ to the set of all syntactic
consequences of T , if φ ∈ T ′, then eventually we will hit upon a proof of φ.

Corollary 5. Let T be a complete recursive theory in a recursive language L.
Then the set T ′ of syntactic consequences of T is recursive.

Exercise 2.2: Prove Corollary 5. (Simple but enlightening.)

A theory T whose set of syntactic consequences is recursive is said to be decid-
able. The point being that if T is a decidable theory, then by Gödel’s completeness
theorem there is an algorithm that, given a sentence φ, determines whether T |= φ.
So, for instance, if we can prove that the complete theory of the real numbers R is
decidable, then it follows that there is an algorithm which decides whether an ar-
bitrary system of polynomial equations has a solution. In fact, more is true. Since
in R the formula ∃x (x2 = y) cuts out the set of non-negaive real numbers, the
algorithm can also handle polynomial inequalities: e.g. we can determine whether
a system of polynomial equations has a solution in a given open disk. In particular,
we can compute roots of univariate polynomial equations to arbitrary accuracy.

That Th(R) is decidable was proved by Tarski and again, later, by Abraham
Robinson. In due time we will give Robinson’s proof: this is one of the major
results of our course.

Finally, we must mention the theorem of Davis-Matijasevic-Putnam-Robinson4 that
there is no algorithm for deciding whether a system of polynomial equations with
Z-coefficients has a Z-solution [Mat]. This implies that the complete theory of Z in
the language of rings is undecidable. In fact it is much stronger: a precise statement
is that even the set of existential sentences – i.e., sentences in which only existential
quantifiers appear – in the language of rings which are true in Z is not recursive.

4Here “Robinson” means Julia Bowman Robinson. Her husband was Raphael Robinson, who
was also a leading mathematician working at the intersection of mathematical logic, number theory

and geometry. So a theorem of Robinson in model theoretic algebra could be due to any of at
least three people.
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One says that the existential theory of Z is undecidable.

On the other hand, Julia Robinson proved the following fantastic theorem [JRob49]:
consider the formula

φ(x, y, z) : ∃a∃b∃c xyz2 + 2 = a2 + xy2 − yc2

and the formula ψ(x) be the formula

ψ(x)∀y∀z([ϕ(y, z, 0) ∧ (∀w(ϕ(y, z, w) =⇒ ϕ(y, z, w + 1)))] =⇒ ϕ(y, z, x)).

Then for x ∈ Q, x ∈ Z iff Q |= ψ(x). In other words, using ψ(x) allows us to
express the condition “x is an integer” in our first-order language.

Exercise 2.3: Deduce from Robinson’s theorem and the Davis-Matijasevic-Putnam-
Robinson theorem that the complete theory of Q in the language of rings is unde-
cidable.

In contrast, the question of whether the existential theory of Q remains undecidable
– that is, is there an algorithm to decide whether a system of polynomial equations
with Q-coefficients has a Q-solution – remains open, and is surely the leading open
problem in the area. Most leading experts I’ve spoken to belive that the there is
no such algorithm. I am most familiar with the work of Bjorn Poonen in this area,
who has proved some very nice results in this direction, especially undecidability of
the existential theory of rings intermediate between Z and Q and are, in a certain
precise sense, “much closer to Q than to Z”.

2.3. The Compactness Theorem.

Theorem 6. (Gödel’s Compactness Theorem) A theory T is satisfiable iff every
finite subset of T is satisfiable.

Proof. The implication =⇒ is certainly clear. Conversely, assume that every finite
subset of T is satisfiable but T itself is not satisfiable. As in the proof of Corollary
3 above, let φ be any sentence; then T ⊢ (φ ∧ ¬φ). But by the finite character of
proof, this implies that there exists a finite subset F of T that proves (φ∧¬φ). Thus
F is syntactically inconsistent, so it certainly is not satisfiable, contradiction. �
Remark: Define a theory T to be finitely satisfiable if every finite subset F ⊂ T
is satisfiable. Then the compactness theorem can be stated more...compactly?...as
follows: a theory T is satisfiable iff it is finitely satisfiable. One might think that
the compactness theorem allows us to dispense with the term “finitely satisfiable”
but this turns out not quite to be the case – the term is used later on in these notes.

2.4. Topological interpretation of the compactness theorem.

When one first learns of the Compactness Theorem, a question springs immedi-
ately to mind: what does this have to do with the concept of compactness that one
learns in conventional mathematics, i.e., compactness of topological spaces? I am
sorry to say that many model theory texts either do not address this question at
all, or brush it away with vague remarks about the “analogy” between finite sat-
isfiability and the finite intersection property which characterizes compact spaces.
This is a disservice.
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In fact, the compactness theorem for L-theories is equivalent to the compactness
of a certain naturally associated topological space.

We need a preliminary definition. Let us say that a theory T is complete if
for every sentence φ, exactly one of T |= φ, T |= ¬φ holds. On the other hand
we define a theory T to be maximal if for evey sentence φ, exactly one of φ ∈ T ,
¬φ ∈ T holds.

Exercise: A theory T is complete iff its closure T is maximal.

Exercise: a) A maximal theory is precisely a maximal element in the set of consis-
tent L-theories partially ordered by inclusion.
b) Show in two different ways that a theory T is satisfiable iff it is contained in a
maximal theory.
First proof: Let X be a model of T . Then the collection of all sentences which are
true in X is a maximal theory containing T .
Second proof: Argue by Zorn’s Lemma using the Compactness Theorem.

Now let X = X(L) be the set of all maximal L-theories. For each L-sentence φ, let
U(φ) = {T ∈ X | φ ∈ T }. We topologize X by taking the U(φ) as a subbase for the
open sets, i.e., the nonvoid proper open subsets are precisely the finite intersections
of the U(φ).5 In fact U(φ1) ∩ U(φ2) = U(φ1 ∧ φ2), so the U(φ) form a base for
the topology. Moreover, by the definition of a complete theory, X \U(φ) = U(¬φ),
so that each U(φ) is closed as well as open: it follows that the topology on X is
totally disconnected.

Theorem 7. a) The space X(L) is Hausdorff and totally disconnected.
b) The space X(L) is compact iff every finitely satisfiable L-theory is satisfiable.

Proof. a) Let T1 ̸= T2 be distinct maximal L-theories. Then there exists a sentence
φ such that φ ∈ T1 and ¬φ ∈ T2, so that T1 ∈ U(φ), T2 ∈ U(¬φ) and U(φ) ∩
U(¬φ) = ∅. Thus X(L) is totally disconnected in the strong sense that any two
distinct points lie in distinct elements of some partition of X(L) into two disjoint
open sets, and this immediately implies that X(L) is Hausdorff as well.
b) Compactness may be checked on coverings by basis elements, so X(L) is compact
iff every open covering by sets U(φ) has a finite subcovering. Taking complements –
and using the fact that the set of all U(φ)’s is stable under complementation – this
is equivalent to the assertion that for every family {φi}i∈I of sentences, we have∩

i∈I U(φi) = ∅ iff there exists a finite subset J ⊂ I such that
∩

i∈J U(φi) = ∅. But
put T = {φi}i∈I . Then

∩
i∈I U(φi) is the set of all complete theories containing T ;

as we saw above, this set is empty iff T is not satisfiable. Similarly, a finite subset
J ⊂ I such that

∩
i∈J U(φi) = ∅ is a finite subset of T which is not satisfiable.

Thus we have shown that the compactness of X is equivalent to the assertion that a
theory T is not satisfiable iff there exists a finite subset of T which is not satisfiable,
which is certainly equivalent to the compactness theorem. �

Comment: Let X̃(L) be the set of all complete L-theories, topologized via the sets

Ũ(φ) = {T | T |= φ}. In a previous draft of these notes, I worked with the space

5In this case, we in fact already have ∅ = U(∃x (x ̸= x) and X = U(∀x (x = x)); I am just
reminding you of the general definition of the topology generated by an arbitary family of subsets.
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X̃(L) instead of X(L). The above proof works to show that the quasi-compactness

of X̃(L) is equivalent to the compactness theorem for L-theories. However, as was

pointed out in class by J. Stankewicz, the space X̃(L) is not Hausdorff. Indeed it
is not even a T0, or Kolmogorov space.6 Recall that in a topological space X,
we define an equivalence relation, topological indistinguishability, as follows:for
points x, y, write x ∼ y if x and y have exactly the same open neighborhoods. Then
any space has a universal T0-quotient, its Kolmogorov completion: as a set, we
take X/ ∼, the set of equivalence classes under topological indistinguishability, and
we endow X/ ∼ with the quotient topology via the map q : X → X/ ∼. It is easy
to check that on X/ ∼ any two distinct points are topologically distinguishable.
It is interesting to remark that in our context, the topology and the model theory
matches up nicely: two theories T1 and T2 are topologically indistinguishable iff
they have exactly the same models iff T1 = T2. Thus the Kolmogorov quotient of

X̃(L) may be identified with the space X(L) of maximal theories, which is compact
(i.e., Hausdorff!).

One may also regard X(L) as the space of elementary equivalence classes of L-
structures.

The space X(L) is often called the Stone space7 of L: as we have seen, it is
a compact, totally disconnected space. Such spaces show up frequently in mod-
ern mathematics and are important (for instance) because of the Stone Duality
Theorem: the category of Stone spaces and continuous maps is anti-equivalent to
the category of Boolean rings. For mathematicians with a certain background and
inclination, this is an invitation to consider ultrafilters.

To many readers the previous paragraph will sound quite mysterious. We will
come back to this point later and indeed give a direct proof of the compactness of
the Stone space X(L) and hence of the compactness theorem.

Exercise 2.4: Show that a topological space is compact8 and totally disconnected
iff it is an inverse limit of finite discrete spaces.

2.5. First applications of compactness.

We claim that the compactness theorem, and not the (stronger!) completeness
theorem is one of the fundamental results of model theory. This is partially true by
definition: model theory as a branch of mathematical logic is not concerned with
formal provability but only with satisfiability. But there are also deeper reasons:
unlike the completeness theorem, which necesarily takes place relative to a formal
proof system (although there are multiple systems for which the theorem can be
proven) and therefore any proof must deal with these formal aspects of proof, there

6It follows that it is not totally disconnected, since the closure of a singleton set is connected
and not all points are closed.

7Warning: there are other, related topological spaces which are also called Stone spaces; c.f.
[Mar, §4.1].

8Following Bourbaki, for me compact means quasi-compact – every open cover has a finite
subcover – and Hausdorff.
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are purely semantic proofs of the compactness theorem. We will give one especially
short and elegant proof later on in the course as an application of ultraproducts.
Finally and most importantly, the compactness theorem has many, many important
model-theoretic consequences. We give some first examples.

Theorem 8. Let T be a theory which has arbitrarily large finite models. Then T
has an infinite model.

Proof. As above, for any n ∈ Z+, there exists a sentence φn whose interpretation
in a structure X is “X has at least n elements. For n ∈ Z+, let Tn = T ∪ {φi}ni=1,
and let T∞ =

∪
n Tn. Now, our hypothesis is precisely that for all n, Tn has a

model. Let F be any finite subset of T∞; then in particular F contains only finitely
many of the sentences φn, so F ⊂ Tn for some n. Since Tn is satisfiable, so is F .
Therefore every finite subset of T∞ has a model, and so, by compactness, T∞ has
a model, which is precisely an infinite model of T . �

Corollary 9. The following classes are not elementary classes: the class of all
finite sets, the class of all finite groups, the class of all finite abelian groups, the
class of all finite rings, the class of all finite fields.

Remark: Note that for each of the classes of Corollary 9, the complementary class
– i.e., infinite sets, etc. – is an elementary class. Thus it is possible for the comple-
ment of an elementary class to be non-elementary. On the other hand, if a class C
is finitely axiomatizable – i.e., there exists a single sentence φ such that X ∈ C iff
X |= φ – then the complementary class is also finitely axiomatizable: it is the set
of models of ¬φ. This gives a technique for showing that an elementary class is not
finitely axiomatizable: show that its complementary class is not elementary. We
will return later to address the efficacy of this technique to show that an elementary
class is not finitely axiomatizable.

The language of ordered fields is (+,−, ·, <, 0, 1). The theory of ordered fields
is the theory of fields augmented with sentences expressing the compatibility of the
order relation with the field axioms, viz.:

∀x ((x < 0) ∨ (x = 0) ∨ (0 < x)),

∀a∀b∀c∀d ((a < c) ∧ (b < d) =⇒ (a+ b < c+ d),

∀x∀y (0 < x) ∧ (0 < y) =⇒ (0 < x · y).
In practice, it is convenient to informally introduce additional binary relation sym-
bols ≤, >,≥ with the usual meanings, e.g. we regard x ≥ y as an abbreviation for
(y < x) ∨ (y = x).

Exercise 2.5: a) In ordered field, −1 is not a sum of squares.
b) In particular, an ordered field has characteristic 0 and hence has Q as a canonical
subfield.

A positive element x in an ordered field F is infinitesimal if for all n ∈ Z+,
x < 1

n . Similarly, a positive element x is infinitely large if for all n ∈ Z+, x > n.

It is immediate that x is infinitesimal iff 1
x is infinitely large. An ordered field is said

to be non-Archimidean if it contains infinitesimal elements and Archimedean
otherwise. For instance, the standard ordering on the real numbers is Archimedean,
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as are all ordered subfields of R.

Exercise 2.6: Show that, conversely, every Archimedean ordered is isomorphic to a
subfield of R. In particular, any ordered field of cardinality greater than c = |R| is
necessarily non-Archimedean.

Theorem 10. There exists a non-Archimedean ordered field R which is elemen-
tarily equivalent to R.

Proof. Let T be the complete theory of the real numbers, i.e., the collection of all
sentences in the language L of ordered fields which are true in R. We extend L by
adding a single constant element c, and we extend T to an L∗ theory T ∗ by adding
the following infinite family of sentences: for each n ∈ Z+,

φn : c > n.

Every finite subset of the theory T ∗ is satisfiable, so by compactness T ∗ is sat-
isfiable: let R be a model. Evidently the element cR is infinitely large, so R is
non-Archimedean. However, viewing R merely as an ordered field (and not as an
ordered field with a distinguished infinitely large element), it is certainly a model of
T . Moreover, since T is the set of all sentences which are true in R, it is a maximal
satisfiable theory: adding any other sentence would give a contradiction. Therefore
T is precisely the set of sentences in L which are true for R, whence R ≡ R. �

Theorem 11. Let κ ≥ max(ℵ0, |L|). Let T be a theory which admits infinite
models. Then T admits a model of cardinality at least κ.

Proof. Let L∗ be the scalar extension of L obtained by adding constant symbols ci
for each i ∈ κ. For all distinct indices i ̸= j in κ, define the L∗-sentence:

φi,j : ci ̸= cj .

Arguing similarly as above, since T admits infinite models, every finite subset of T ∗

is satisfiable. By compactness, T ∗ is satisfiable, and a model X of T ∗ is precisely a
model of T together with an injection κ ↪→ X, so X has cardinality at least κ. �

Exercise 2.7: Combine Theorem 11 and Exercise 2.6 to prove (again) Theorem 10.

2.6. The Löwenheim-Skolem Theorems.

Theorem 11 shows that the class of structures elementarily equivalent to a given
infinite structure contains members of arbitrarily large cardinality. This motivates
a closer study of the sizes of models. The results here are strikingly strong: for
instance, a theory in a countable language which admits infinite models admits
models of every infinite cardinality!

Even this last result is not the full extent of what is true. For that, we need another
fundamental definition: let ι : X ↪→ Y be an embedding of L-structures. We say
that ι is an elementary embedding if for all formulas φ(x1, . . . , xn) – here our
convention is that x1, . . . , xn are the unbound variables – and all (a1, . . . , an) ∈ Xn,

X |= φ(a1, . . . , an) ⇐⇒ Y |= φ(ι(a1), . . . , ι(an)).
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Note that this immediately implies that X and Y are elementarily equivalent: this
is the n = 0 case, i.e., sentences.9 But it is much stronger than that: e.g. it
is possible to have an embedding of elementarily equivalent (or even isomorphic!)
structures that is not an elementary embedding.

The notion of an elementary embedding then is one which fundamentally exploits
the existence of formulas containing unbound variables. In fact, one of the major
themes of model theory10 is the interplay between bound and unbound variables.
One instance of this is the following simple but important result, which reduces the
notion of elementary embedding to that of an “ordinary embedding” in an enriched
language.

For an L-structure X, we define a new language LX as follows: LX consists of
the language L together with a new constant symbol cx for each element x ∈ X.
We may canonically extend X to an LX structure by interpreting each constant cx
as the element x ∈ X. Similarly, if ι : X ↪→ Y is an embedding of L-structures, then
we may canonically extend Y to an LX structure by interpreting each constant cx
as the element ι(x) ∈ Y .

Proposition 12. For an embedding ι : X ↪→ Y of L-structures, TFAE:
(i) The map ι is an embedding of the induced LX-structures.
(ii) The map ι is an elementary embedding of L-structures.

The proof amounts to unwinding the definitions and is left as a good exercise.

Exercise 2.8: Let ι : K ↪→ L be an elementary embedding of fields.
a) Show that K is algebraically closed in L: i.e. an element of L which is the root
of a polynomial equation with coefficients in K is already an element of K.
b) Show L/K is regular: K is algebraically closed in L and L⊗K K is a domain.

Theorem 13. (Upward Löwenheim-Skolem) Let X be an infinite L-structure and
κ a cardinal with κ ≥ |X| + |L|. Then there exists an L-structure Y with |Y | = κ
and an elementary embedding ι : X ↪→ Y .

Exercise 2.9: Show that each of the following structures admits a model of every
infinite cardinality: groups, abelian groups, divisible abelian groups, fields, ordered
fields, algebraically closed fields.

Theorem 14. (Downward Löwenheim-Skolem) Let X be an L-structure and A a
subset of X. Let κ be a cardinal such that |L|+ |A| ≤ κ ≤ |X|. Then there exists a
substructure Y of X satisfying all of the following:
• A ⊂ Y ;
• |Y | = κ;
• the inclusion map Y ↪→ X is an elementary embedding.

The proofs of Theorems 13 and 14 take some time. Since the emphasis in our
course is on the applications of model-theoretic results, we omit the proofs for now.

9Even if our notation suggests otherwise, by a formula we always allow the possibility of 0
unbound variables. For one thing, it doesn’t matter either way: we could always make a sentence

φ into a formula by introducing a new variable x and putting φ′(x) = φ ∧ (x = x).
10Please count and tell me at the end of the course how many major themes there are in model

theory!
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Depending upon interest, we may return to give the proofs later in the course. (If
not, see any introductory text on the subject, e.g. [BS], [Hod], [Mar], [Poi]. . .)

I was very much struck by the Löwenheim-Skolem theorems when I first learned of
them: many times had I wondered “Is there an example of a certain mathematical
structure X of cardinality κ?” I knew many ad hoc constructions, but it was reve-
latory to learn that there were general results along these lines!

Here is a very pretty example of Löwenheim-Skolem telling us unfamiliar facts
about familiar structures.

Theorem 15. Let G be an infinite simple group. Then for every cardinal κ with
ℵ0 ≤ κ ≤ |G|, G has a simple subgroup of cardinality κ.

Proof. [Hod, p. 72] The language of groups is countable, so by downward Löwenheim-
Skolem there exists a subgroup H of G such that |H| = κ and the inclusion of H
into G is elementary. Note that since being simple refers to subgroups, it is not
clear that it is preserved by elementary equivalence (indeed, we will see later that
it is not). So we have to argue more cleverly, using the stronger property of an
elementary embedding.

First observe that for H to be simple, it suffices to show: if a, b ∈ H are such
that b ̸= e, then a lies in the least normal subgroup of H generated by b. Certainly
this holds true in G, since G is simple. Suppose for example that there are elements
y and z of G such that a = y−1by · z−1b−1z. Then

G |= ∃y∃z (a = y−1by · z−1b−1z).

Since H is an elementary substructure of G, this is also true in H! Done. �

Remark: I suppose this theorem is more interesting the more infinite simple groups
one knows. Perhaps the easiest construction is as follows: let n ≥ 2 and F be any
field. Then the projective special linear group PSLn(F ) is simple unless (n, |F |) =
(2, 2) or (2, 3). In particular, taking F to be an infinite field of cardinality κ (e.g. by
Löwenheim-Skolem), one gets infinite simple groups of all cardinalities. However,
in this case the conclusion is easy to see by hand: we can get the desired simple
group by taking a subfield of the desired cardinality. Other examples: a simple Lie
group with trivial center, the group of permutations on Z modulo permutations
which move only finitely many objects.

3. Complete and model complete theories

3.1. Maximal and complete theories.

Let us say that a theory T is maximal if it is maximal among all satisfiable
theories: equivalently, for any sentence φ, exactly one of φ,¬φ lies in T .

For an L-structure X, we define the complete theory of X, Th(X), to be the set
of all L-sentences which are true in X.

Proposition 16. For a theory T , TFAE:
(i) T is maximal.
(ii) There exists an L-structure X such that T = Th(X).
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Proof. (i) =⇒ (ii): Let T be a maximal theory, and let X be a model of T . This
means T ⊂ Th(X), and by definition of maximality, we must have equality.
(ii) =⇒ (i): The set of all sentences which are true in a given structure is clearly
a maximal theory. �
It is not in the spirit of model theory to distinguish between theories which have
the same models. (Moreover, for applications to decidability results, a maximal
theory is often unpleasantly large – e.g. it is not clearly recursive.) This motivates
the following weaker – but much more useful – notion.

Recall that a theory T is complete if for every sentence φ, either T |= φ or
T |= ¬φ, but not both.11

Proposition 17. For a theory T , TFAE:
(i) T is complete.
(ii) T is satisfiable, and if X1 and X2 are two models of T , then X1 ≡ X2.

Exercise 3.1: Prove Proposition 17.

Exercise 3.2 Define the deductive closure T of a theory to be the set of all
sentences such that T ⊢ φ.12
a) Show that T 7→ T ⊢ is a closure operator (this involves checking three simple
properties; see e.g. wikipedia for the definition).
b) Show that T is satisfiable iff T ⊢ is a proper subset of the set of all sentences.
c) Show that for any L-structure X, T |= X ⇐⇒ T ⊢ |= X. d) Show that T is
complete iff T ⊢ is maximal.

Thus one way to resolve the issue of distinct theories with the same set of models
is to always pass to the deductive closure. However, this turns out not to be so
desirable. (E.g., from a proof-theoretic perspective, if T is recursive, then T |= need
only be recursively enumerable.) In fact, a major goal in model theory is somehow
the opposite: given a maximal theory T , find a subtheory T ′ which is as small as
possible such that T ′|= = T .

3.2. Model complete theories. A theory T is model complete if every em-
bedding ι : X → Y of models of T is an elementary embedding.

Although neither completeness nor model completeness implies the other (we will
see examples shortly), nevertheless the two concepts are closely related.

We define a model X of a theory T to be minimal if for every model Y of T
there exists an embedding of structures ι : X ↪→ Y .

Example: The field Q is a minimal model for the theory of fields of characteris-
tic 0. The field Fp is a minimal model for the theory of fields of characteristic p > 0.

Example: The field Q is a minimal model for the theory of ordered fields.

11Many standard sources do not require a complete theory to be consistent. Since one is not
interested in inconsistent theories – i.e., theories without models – it seems like we are not missing
out on anything by excluding them by definition.

12Notation in an earlier draft: T ⊢.
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Proposition 18. Let T be a model complete theory, and let T ′ be a satisfiable
theory containing T . Then T ′ is also model complete.

Proof. Indeed, let ι : X ↪→ Y be an embedding between two models of T ′. In
particular, it is an embedding between two models of T , so by hypothesis is an
elementary embedding. (Note that the definition of an elementary embedding,
like that of elementary equivalence, refers only to a language L and not to any
L-theory.) �

Proposition 19. Let T be a model complete theory which admits a minimal model.
Then T is complete.

Proof. By Proposition 17, it suffices to show that any two models X1 and X2 of
T are elementarily equivalent. But let I be a minimal model, so that there exist
embeddings ι1 : I ↪→ X1 and ι2 : I ↪→ X2. By model completeness, both ι1 and ι2
are elementary embeddings, so X1 ≡ I ≡ X2. �

Our next order of business is to give some of the classical examples of complete
and/or model complete theories. The proofs of the completeness require some ad-
ditional techniques and are deferred until the next chapter. However, we will use the
completeness of these theories to derive some interesting theorems in mainstream
mathematics.

3.3. Algebraically closed fields I: model completeness.

Theorem 20. The theory of algebraically closed fields is model complete.

We will prove this result in Chapter 5.

Corollary 21. a) For any prime number p, the theory of algebraically closed fields
of characteristic p is model complete and thus complete.
b) The theory of algebraically closed fields of characteristic 0 is model complete and
thus complete.

Exercise 3.3: Prove Corollary 21.

Remark: Corollary 21b) is one way to make precise the Lefschetz principle –
i.e., that algebraic geometry is “the same” over any algebraically closed field of
characteristic 0. A practicing algebraic geometer would recognize this as a rather
anemic incarnation of the Lefschetz principle, and this is really the beginning of
the story: there has been much work by model theorists on formulating stronger
versions.

Example: For those who know some algebraic geometry and elliptic curve theory,
here is a “nonexample” of the Lefschetz principle, i.e., a difference in the algebraic
geometry of two different algebraically closed fields of the same characteristic. Let
p be any prime number. Let E be an elliptic curve defined over Fp (equivalently,
over some finite field). Then the endomorphism algebra of E is either an imaginary
quadratic field (“ordinary”) or the definite rational quaternion algebra of discrim-

inant p (“supersingular”). On the other hand, let K = Fp(t) and let E/K be an
elliptic curve with j-invariant t. Then the endomorphism algebra of E is Q.
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3.4. Algebraically closed fields II: Nullstellensätze.

Our first application of Theorem 21a) is the Nullstellensatz for algebraically closed
fields. Owing to the way this was presented in the lectures, we do this in two steps:
first a “weak” Nullstellensatz and then Hilbert’s Nullstellensatz.

Theorem 22. Let k be an algebraically closed field, and let P1, . . . , Pk ∈ k[t] =
k[t1, . . . , tn] be a finite set of polynomials. Let

V = V (P1, . . . , Pm) = {x = (x1, . . . , xn) ∈ kn | P1(x) = . . . = Pm(x) = 0}

be the locus of simultaneous zeros of the polynomials P1, . . . , Pm. TFAE:
(i) There exist polynomials g1(t), . . . , gm(t) such that

(1) g1(t)P1(t) + . . .+ gm(t)Pm(t) = 1.

(ii) V = ∅.

Proof. That (i) =⇒ (ii) is obvious: if x ∈ V , then plugging x in to (1) yields
0 = 1, a contradiction.
Now assume that (i) does not hold: equivalently, the ideal I = ⟨P1, . . . , Pk⟩ is a
proper ideal of the polynomial ring k[t]. Therefore I is contained in a maximal
ideal m, so k[t]/m is a field, say K. Let K be an algebraic closure of K; then the
composite map

k → k[t] → k[t]/m = K → K

gives an embedding ι : k ↪→ K of algebraically closed fields. By Theorem 20, ι is
an elementary embedding, and this means precisely that the system of polynomial
equations P1 = . . . = Pm = 0 has a solution over k iff it has a solution over K. But
the latter is a tautology: indeed, let x be the image of (t1, . . . , tn) in k[t]/m = K.
Since each Pi(t) lies in m, we have that Pi(x) = 0 for all i. In particular x is a
common zero of the polynomials over K. Done! �

Exercise 3.4: Deduce from Theorem 22 the “weak Nullstellensatz”: the maximal
ideals in k[t] are all of the form ⟨t1 − a1, . . . , tn − an⟩ for (a1, . . . , an) ∈ kn.

It is well-known that the modern version of the Nullstellensatz – i.e., that the
correpondences I 7→ V (I) and V 7→ I(V ) between radical ideals and Zariski-closed
subsets are mutually inverse bijections – follows easily from this by “Rabinowitch’s
trick”: see e.g. http://www.math.uga.edu/∼pete/8320notes3.pdf.

In fact we can give a simple model-theoretic proof of Hilbert’s Nullstellensatz.
For this we need a preliminary result in commutative algebra: literally, Theorem 1
in Kaplansky’s Commutative Rings, which the author attributes to W. Krull.

Proposition 23. (Multiplicative Avoidance) Let R be a commutative ring and
S ⊂ R. Suppose:
1 is in S; 0 is not in S; and S is closed under multiplication: S · S ⊂ S.
Let IS be the set of ideals of R which are disjoint from S. Then:
a) IS is nonempty;.
b) Every element of IS is contained in a maximal element of IS.
c) Every maximal element of IS is prime.
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Proof. a) (0) ∈ IS . b) Let I ∈ IS . Consider the subposet PI of IS consisting of
ideals which contain I. Since I ∈ PI , PI is nonempty; moreover, any chain in PI

has an upper bound, namely the union of all of its elements. Therefore by Zorn’s
Lemma, PI has a maximal element, which is clearly also a maximal element of IS .
c) Let I be a maximal element of IS ; suppose that x, y ∈ R are such that xy ∈ I.
If x is not in I, then ⟨I, x⟩ contains an element s1 of S, say

s1 = i1 + ax.

Similarly, if y is not in I, then we get an element s2 of S of the form

s2 = i2 + by.

But then

s1s2 = i1i2 + (by)i1 + (ax)i2 + (ab)xy ∈ I ∩ S,

a contradiction. �

Let k be an arbitrary field, n ∈ Z+, and put R = k[t] = k[t1, . . . , tn]. For an ideal
J of R, put

V (J) = {x = (x1, . . . , xn) ∈ kn | ∀f ∈ R f(x) = 0},

i.e., the set of simultaneous zeros of all polynomials in J . On the other hand, for
S ⊂ kn, put

I(S) = {f ∈ R | ∀x ∈ S f(x) = 0}.

Then the pair (V, I) is a Galois connection between the set of ideals of R and the
set of subsets of kn (both partially ordered by inclusion).13 We have associated
closure operators S 7→ S := V (I(S)) and J 7→ J = I(V (J)). The closure operator
on subsets also has the following property: for all S, T ⊂ kn, S ∪ T = S ∪ T . It is
therefore a Kuratowski closure operator, i.e., the closure operator for a unique
topology on kn, called the Zariski topology. In this topology, the closed sets are
precisely the zero loci of families of polynomials. Since every ideal of R is finitely
generated (Hilbert Basis Theorem), the zero locus of an a priori infinite family of
polynomials can be rewritten as the zero locus of some finite subfamily.14

On the other hand, an explicit description of the closure operator I 7→ I on ideals
depends very much on the structure of the ground field k. An explicit description
of this closure operator for a field k will be called a Nullstellensatz over k.

Exercise 3.5: Let k be any field, and let I be any ideal in k[t1, . . . , tn]. Show
that I contains rad(I) = {x ∈ R | ∃n ∈ Z+ xn ∈ I}.

Theorem 24. (The Nullstellensatz for Algebraically Closed Fields) Let k an alge-
braically closed field and I an ideal of R = k[t1, . . . , tn]. Then I = rad(I).

Proof. Let I = ⟨f1, . . . , fm⟩ be an ideal of R. By Exercise 3.5, I ⊃ rad(I). Seeking
a contradiction, suppose that there exists g ∈ I \ rad(I). Then the multiplicative
subset S = {gn}∞n=1 is disjoint from I. By Proposition 23, there exists a prime

13We hope to provide a handout with more details: stay tuned.
14Yes, another compactness theorem.
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ideal p containing I and disjoint from S. Let K be the fraction field of R/p and let
K be an algebraic closure of K. Consider the Lk-sentence

∃x(
m∧
i=1

fi(x) = 0) ∧ (g(x) ̸= 0).

Taking x to be the image of t = (t1, . . . , tn) in K, this sentence is true in K;
since it is an existential sentence (i.e., the only quantifiers appearing are existential
quantifiers), it is also true in K. By model completeness of ACF, the embedding
k ↪→ K is elementary, so that the sentence is also true in k, and the existence of
such an x ∈ kn shows that g ̸∈ I. This contradiction completes the proof. �

Remark: We could attain a slightly shorter proof of Theorem 24 by replacing Propo-
sition 23 with the following fact: for any ideal I in a commutative ring, rad(I) is
the intersection of all the prime ideals containing it. In particular, if I ⊂ J is a
proper inclusion of radical ideals, then there exists a prime ideal p such that I ⊂ p
and there exists g ∈ J \ p. However, since a similar argument will be given later to
prove the Nullstellensatz over a real-closed field, we chose to present this slightly
more elementary argument for the sake of variety.

Exercise 3.6: Prove the converse of Theorem 24: let k be a field, and suppose
that for all n ∈ Z+ and all ideals I of k[t1, . . . , tn], I = rad(I). Show that k is
algebraically closed.

Exercise 3.7: Find all fields k with the following property: for each n ∈ Z+ and
R = k[t1, . . . , tn], the zero ideal in R is closed: I(V ({0})) = {0}.

3.5. Algebraically closed fields III: Ax’s Transfer Principle.

Theorem 25. (Ax’s Transfer Principle)
For a sentence φ in the language of fields, TFAE:
(i) φ is true in C, the complex field.
(ii) φ is true in every algebraically closed field of characteristic 0.
(iii) There exists a constant N such that for any algebraically closed field K of
characteristic p > N , φ is true in K.
(iv) There are infinitely many primes p such that φ is true in every algebraically
closed field of characteristic p.

Proof. (i) ≡ (ii) follows from Corollary X.Xa). Suppose (ii), so that ACF0 |= φ.
By Gödel’s Completeness Theorem, there exists a finite subset T of ACF0 such
that T |= φ. Since T ⊂ ACFp for all but finitely many prime numbers p, (iii)
follows. Trivially (iii) =⇒ (iv). Suppose (iv) holds and that it is not the case
that ACF0 |= φ. By completenesss, ACF0 |= ¬φ and then by the above work
ACFP |= ¬φ for all but finitely many primes, contradiction. �

Corollary 26. (Grothendieck, Ax) Let f1, . . . , fn ∈ C[t1, . . . , tn] be polynomials,
and let f = (f1, . . . , fn) : Cn → Cn be a map. If f is injective, then it is surjective.

Proof. For each fixed n ∈ Z+, the statement is expressible as a sentence in the
language of fields. Therefore, by Theorem 25, it is equivalent to prove that for all
primes p, an injective polynomial map from F

n

p to F
n

p is surjective. Let Fq be an
extension of Fp containing all of the coefficients of all the polynomials. Then P
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also induces a polynomial map from (Fq)
n → (Fq)

n and, indeed, for all a ∈ Z+,
polynomial maps Pa : (Fqa)

n → (Fqa)
n for all a ∈ Z+. A moment’s thought shows

that the injectivity (resp. surjectivity) of P is equivalent to the injectivity (resp.
surjectivity) of Pa for all a. Therefore we may assume that, for all a ∈ Z+, Pa is
injective. But Pa is a map from a finite set to itself, so, being injective, it must also
be surjective. Done! �
Remark: The reader with a background in algebraic geometry may enjoy extend-
ing the statement (and proof) of Corollary 26 to regular maps of algebraic varieties.

Remarks: Corollary 26 was first by A. Grothendieck in EGAIII circa 1966 and
independently by J. Ax [Ax68]. Ax’s proof is indeed the one we have given here,
namely as a corollary to Theorem 25 (also due to Ax).

A very good exercise for the reader who is not sure what to make of model-
theoretic methods is to try to prove Corollary 26 from scratch. This is indeed pos-
sible: leaving aside Grothendieck’s proof, other proofs were given by Borel [Bor69],
Rudin [Rud], Brian Conrad (unpublished, I believe) and Serre [Ser09]. (Serre’s
recent article is especially highly recommended, as he essentially “transfers” the
transfer argument from model theory to conventional algebra.) Certainly there is
no argument that if we are given Theorem 25 (which, to be fair, we point out that
we have not yet proven) one can scarcely imagine a simpler proof of Corollary 26.
Moreover Theorem 25 is a very general result which builds a bridge between alge-
braic geometry of characteristic 0 and algebraic geometry in positive characteristic.

3.6. Ordered fields and formally real fields I: background.

The structure of real-closed fields is a shining example of the merits of extension
of language. This is because, even in the non-model theoretic study of real-closed
fields, it is natural to consider them as two different types of structures: as a cer-
tain kind of field, and as a certain kind of ordered field. We briefly recall the basic
definitions. For more details, the reader may consult (e.g.) [FT, Ch. 11].

A field K is formally real if for no n ∈ Z+ is it possible to express −1 as a
sum of n squares in the field. (Thus this is a first-order property which can be
axiomatized by infintely many sentences.) A field is real-closed if it is formally
real but admits no proper formally real algebraic extension. For instance, the real
numbers are formally real. The main result on formally real fields is the following
celebrated theorem.

Theorem 27. (Grand Artin-Schreier Theorem) For a field F , TFAE:
(i) F is formally real and admits no proper formally real algebraic extension.
(ii) F is formally real, every odd degree polynomial over F has a root, and for each
x ∈ F×, exactly one of x, −x is a square.
(iii) F is formally real and F (

√
−1) is algebraically closed.

(iv) The absolute Galois group of F is finite and nontrivial.

In particular, property (ii) is equivalent to an infinite union of sentences in the
language of fields, so the class of real-closed fields is again first-order.

The “Little Artin-Schreier Theorem” asserts that a field admits a compatible order-
ing (as defined above) iff it is formally real. One direction is easy: directly from the
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axioms one sees that in an ordered field, −1 is negative and every sum of squares
is non-negative, so certainly an orderable field is formally real. In particular, or-
derable fields have characteristic 0. So the following result is a strong form of the
Little Artin-Schreier Theorem.

Theorem 28. (Artin) Let F be a a field with char(F ) ̸= 2 and x ∈ F . TFAE:
a) For every ordering < on F , x > 0.
b) x is a sum of squares of elements of F .

Proof. See e.g. [FT, Cor. 94]. �

(Just to be sure: this implies the little Artin-Schreier theorem because if F is
formally real, −1 is not a sum of squares, so −1 is not positive for every ordering
on F , so there must be at least one ordering on F !)

3.7. Ordered fields and formally real fields II: the real spectrum.

So every formally real field may be given the structure of an ordered field. In
general, there are many different orderings on a formally real field. For instance,
for a number field, the orderings correspond to the real roots of a minimal polyno-
mial on F . In fact, the set of all orderings of a field can be topologized as follows:
for a ∈ F×, define H(a) to be the set of all orderings on F with respect to which
a is positive. Then there is a unique topology on the space RSpec(F ) of orderings
of F for which {H(a) | a ∈ F} is a subbase: i.e., for which the open sets are finite
intersections of the sets H(a). This is called the Harrison topology and the sets
H(a) are called the Harrison subbase.

Theorem 29. Let F be a field. Then the space RSpec(F ) of orderings of F endowed
with the Harrison topology is a Stone space: i.e., it is compact (Hausdorff!) and
totally disconnected.

Exercise 3.8: This exercise leads you through a proof of the compactness of RSpec(F ).
a) Show that for all a ∈ F×, RSpec(F ) = H(a)

⨿
H(−a).

b) If P, P ′ are distinct orderings on F , then there exists a ∈ F such that a ∈ P ,
−a ∈ P ′.
c) Deduce from a) and b) that RSpec(F ) is Hausdorff and totally disconnected.

d) Define an injection ι : RSpec(F ) ↪→ {0, 1}F×
. (Hint: to each ordering P , asso-

ciate the subset of positive elements.)

e) Endow {0, 1} with the discrete topology and {0, 1}F×
with the product topol-

ogy. Show that it is a Stone space. Show moreover that the map ι : RSpec(F ) →
ι(RSpec(F )) is a homeomorphism: i.e., the topology that RSpec(F ) inherits from

its embedding into {0, 1}F×
coincides with the Harrison topology.

f) Show that ι(RSpec(F )) is closed in {0, 1}F×
. Deduce that RSpec(F ) is compact.

Exercise 3.9: Define a relation R on F × RSpec(F ) by (x, P ) ∈ R if x ∈ P .
a) Show that the corresponding closure operator on RSpec(F ) is precisely the clo-
sure with respect to the Harrison topology.
b) What can you say about the closure operator on subsets of F?

3.8. Real-closed fields I: definition and model completeness.
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On the other hand, any real-closed field admits a unique ordering: indeed, by The-
orem 27(ii) in a real-closed field F , any nonzero element x is either a square – hence
necessarily positive – or minus a square – hence necessarily negative – and not both.

Moreover, one has the notion of the real-closure of an ordered-field (F,<): this
is a real-closed algebraic extension R of F such that the unique ordering on R
restricts to the given ordering < on F .

Theorem 30. Let (F,<) be an ordered field.
a) Then (F,<) admits a real-closure as an ordered field.
b) Any two real-closures of (F,<) are isomorphic over F .

Proof. For a proof of the existence of a real-closure of an ordered field, see e.g. [FT,
Thm. 103]. The uniqueness is considerably harder; for that see [Mar, Appendix B]
or [Lam]. �

Exercise 3.10: Let ι : Q ↪→ C be an embedding.15 Define R0 = ι(Q) ∩ R to be the
field of real algebraic numbers.
a) Show that R0 is a real-closed field. (Suggestion: use Theorem 27(iii).)
b) Show that R0 embeds in each real-closed field. (Hint: the field Q admits a
unique ordering.) c) Deduce that the theory of real-closed fields admits minimal
models.

So any real-closed field has the canonical structure of an ordered field. Now a
key observation: the theory of real-closed fields in the language of fields is model
complete iff the theory of real-closed fields in the language of ordered fields is model-
complete. This is because every embedding of real-closed fields in the category of
fields promotes uniquely to an embdding of real-closed fields in the category of
ordered fields, and conversely.

Theorem 31. (Tarski [Tar48]) The theory of real closed fields is model complete.

We will prove Theorem 31 in Chapter 5. In fact, the proof of this theorem is the
main goal of that chapter.

Corollary 32. The theory of real closed fields is complete.

Exercise 3.11: Prove Corolllary 32.

3.9. Real-closed fields II: Nullstellensatz.

As our first application, we will prove a Nullstellensatz for real-closed fields.

First some motivation: let us determine which prime ideals p of R[t] are closed
– i.e., have the property that if a polynomial g vanishes at every point of simul-
taneous vanishing of the elements of p, then g ∈ p. We leave it to the reader to
check that the zero ideal is closed (a special case of Exercise 3.5. The nonzero
prime ideals of R[t] are all principal and in bijective correspondence with monic
irreducible polynomials p(t). Of course these come in two flavors: linear polynomi-
als and irreducible quadratic polynomials. Let a ∈ R, and put I = (t − a). Then

15Depending upon your religious convictions, you may or may not believe that the complex
numbers come equipped with a standard such embedding, but of course such embeddings exist.
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V (I) = {a} and I(V (I)) is the set of all polynomials vanishing at a. Of course, if
g(a) = 0, then t − a | g, so this ideal is indeed (t − a): I is closed. On the other
hand, if I = (t2+bt+c) is the principal ideal generated by an irreducible quadratic,
then V (I) = ∅ and hence I(V (I)) = R[t] – every polynomial vanishes at every point
of the empty set! These ideals are not closed.

This example suggests that we need a notion of a “real ideal”. The correct one
for this context is the following.

An ideal I of a commutative ring is real if for all n ∈ Z+ and x1, . . . , xn ∈ R,
x21 + . . .+ x2n ∈ I =⇒ x1, . . . , xn ∈ I.

Exercise 3.12: Let I be a real ideal in a commutative ring. Show that I is radical,
i.e., I = rad(I). (Suggestion: suppose xn ∈ I. If n is even then x

n
2 ∈ I, whereas if

n is odd then x
n+1
2 ∈ I.)

Exercise 3.13: Let {Ii} be a family of real ideals in a commutative ring R. Show
that I =

∩
i Ii is also a real ideal.

A commutative ring R is real if the zero ideal is real.

Exercise 3.14: Show that an integral domain is real iff its fraction field is formally
real.

Proposition 33. Let k be a formally real field and R = k[t] = k[t1, . . . , tn]. If an
ideal J of R is closed, then J is real.

Proof. Let J be a closed ideal of R and let f1, . . . , fm ∈ k[t] be such that f21 + . . .+
f2m ∈ J . Fix x ∈ V (J). Then f1(x)

2 + . . . + fm(x)2 = 0; since k is formally real,
this implies f1(x) = . . . = fm(x) = 0. So for all 1 ≤ i ≤ m, fi ∈ I(V (J)) = J . �

Exercise 3.15: Find a real prime ideal p ∈ Q[t] which is not closed.

However, if k is real-closed, the converse of Proposition 33 holds: every real ideal
is closed. We want a little more than this, namely to identify the closure operator
on an arbitrary ideal of k[t].

For an ideal I of a ring R, define the real radical

R rad(I) = {x ∈ R |∃n ∈ Z+ ∃b1, . . . , bm ∈ R | a2n + b21 + . . .+ b2m ∈ I}.

The following result is the key piece of algebraic information we need to adapt our
previous model-theoretic arguments: it is the “real algebraic” analogue of the fact
that the radical of an ideal in a commutative ring is the intersection of the prime
ideals containing it.

Proposition 34. [BCR, Prop. 4.1.7] Let I be an ideal in a commutative ring R.
a) A real ideal J contains I iff J ⊃ R rad(I) i.e., R rad(I) is the unique minimal
real ideal containing I.
b) R rad(I) is equal to the intersection of all real prime ideals p ⊃ I.
c) It follows that every real ideal is equal to the intersection of all the real prime
ideals containing it.
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Remark: If there are no real prime ideals containing I, then the intersection over
this empty set is taken to be R.

Proof. Step 1: we show that R rad(I) is an ideal. The only nonobvious part of this
is closure under addition. Suppose that

a2n + b21 + . . .+ b2m, A
2N +B2

1 + . . .+B2
M ∈ I.

We may write

(a+A)2(n+N) + (a−A)2(n+N) = a2mc+A2MC,

with c, C sums of squares in R. Then

(a+A)2(n+N) + (a−A)2(n+N) + c(b21 + . . .+ b2m) + C(B2
1 + . . .+B2

M ) ∈ I,

so a+A ∈ R rad(I).
Step 2: R rad(I) is a real ideal. Indeed, if x21+ . . .+x

2
k ∈ R rad(I), then there exists

n ∈ Z+ and b1, . . . , bm ∈ R such that

(x21 + . . .+ x2k)
2m + b21 + . . .+ b2m ∈ I;

for each 1 ≤ i ≤ k, we may rewrite this expression as x4mi + B2
1 + . . . + B2

N , so
xi ∈ R rad(I).
Step 3: Since every real ideal is radical, it is clear that any real ideal containing I
also contains R rad(I).
Step 4: Let a ∈ R \R rad(I). By Zorn’s Lemma, the set of real ideals containing I
but not a has a maximal element, say J . We claim that J is prime. If not, there
exist b, b′ ∈ R\J such that bb′ ∈ J . Then a ∈ R rad(J+bR) and a ∈ R rad(J+b′R),
hence there are j, j′ ∈ J such that

a2m + c21 + . . .+ c2q = j + bd, a2m
′
+ c′21 + . . .+ c′2q = j′ + b′d′.

It follows that

a2(m+m′) + a sum of squares = jj′ + jb′d′ + j′bd+ bb′dd′ ∈ J,

and thus a ∈ R rad(J) = J , contradiction. Thus R rad(I) is the intersection of all
real prime ideals containing I. �

Theorem 35. (The Nullstellensatz for Real-Closed Fields) Let k be a real-closed
field, and I an ideal in k[t1, . . . , tn]. Then I = R rad(I).

Proof. Let I = ⟨f1, . . . , fm⟩ be an ideal of R. By Propositions 33 and 34, I is a real
ideal containing I, so I ⊃ R rad(I).

Seeking a contradiction, suppose R rad(I) ⊂ I is a proper inclusion of real ideals.
Then by Proposition 34c) there exists a real prime ideal p containing R rad(I) but
not I; in particular, there exists g ∈ I \ p. We may now proceed exactly as in the
proof of Theorem 24: let K be the fraction field of R/p and let Krc be a real closure
of K. Consider the Lk-sentence

∃x(
m∧
i=1

fi(x) = 0) ∧ (g(x) ̸= 0).

Taking x to be the image of t = (t1, . . . , tn) in K, this sentence is true in K and
hence also in Krc. By model completeness of RCF, the embedding k ↪→ Krc is
elementary, so that the sentence is also true in k, and the existence of such an
x ∈ kn shows that g ̸∈ I. This contradiction completes the proof. �
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3.10. Real-closed fields III: Hilbert’s 17th problem.

Hilbert’s 17th problem asked if every positive semidefinite polynomial with R-
coefficients was a sum of squares of rational functions.

Exercise 3.16: Show that Hilbert’s 17th problem has an affirmative answer in the
case of rational functions of a single variable.16

Theorem 36. (Artin) Let F be a real-closed field and f ∈ F (t) = F (t1, . . . , tn) be
a positive semidefinite rational function. Then there exist g1, . . . , gm ∈ F (x) such
that f = g21 + . . .+ g2m.

Proof. Seeking a contradiction, let f be a positive semidefinite rational function
which is not a sum of squares. By [FT, Cor. 94], there exists an ordering < on
F (t) such that f < 0. Let R be the real-closure of (F,<). Then the elements
t1, . . . , tn all lie in R, so that we may think of the field element f as the rational
function f with F -coefficients evaluated at the element t = (t1, . . . , tn) of R and
thus f = f(t) < 0.17 In other words,

R |= ∃x f(x) < 0.

But by the model-completeness of RCF, F ↪→ R is an elementary embedding, hence
also

F |= ∃x f(x) < 0,

i.e., there exists x = (x1, . . . , xn) ∈ F such that f(x) < 0. Contradiction! �

Theorem 36 was first proved by Emil Artin in 1927. Artin’s original proof was
not model-theoretic but rather used more of the theory of formally real fields that
he had developed with Schreier. Nowadays we view Artin’s technique of proof as
the beginning of a branch of mathematics called real algebraic geometry. The
above model-theoretic proof is due to Abraham Robinson [ARob55]. The subjects
of model theory and real algebraic geometry have been closely connected ever since.

4. Categoricity: a condition for completeness

By Löwenheim-Skolem, any theory in a countable language which admits infinite
models admits models of every infinite cardinality, and indeed, models of any given
cardinality elementarily equivalent to any fixed infinite model. Thus the next step
in understanding the relation of elementary e equivalence is to consider models of
a fixed cardinality. In this regard, the following definition captures the simplest
possible state of affairs.

Let κ be an infinite cardinal. A theory T is κ-categorical if there exists a unique
(up to isomorphism) model of cardinality κ.

Categoricity leads to completeness as follows:

16This is sort of a function field analogue of Fermat’s Two Squares Theorem.
17This step of the proof was confusing to me when I was first learning the subject. We are

thinking of f at the same time as an element of the abstract field R(t) and as a rational function

with R-coefficients evaluated at the “generic” element (t1, . . . , tn). This makes perfect sense, but
it may take some getting used to.
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Theorem 37. (Vaught’s Test) Let T be a satisfiable theory with no finite models
which is κ-categorical for some κ ≥ |L|. Then T is complete.

Proof. Suppose T is not complete, and let φ be a sentence such that T ̸|= φ and
T ̸|= ¬ϕ. Then the extended theories T1 := T ∪ ¬ϕ and T2 := T ∪ ϕ are both
satisfiable. Since they do not admit finite models, they both admit infinite models.
By Löweneim-Skolem, each Ti admits a model Xi of cardinality κ. But X1 and X2

disagree about the truth of φ, so they are not even elementarily equivalent – let
alone isomorphic – contradicting the κ-categoricity of T . �
Exercise 4.1: For a theory T , let T∞ be the theory of infinite models of T , i.e., T
augmented with the infinite family of sentences φn, each φn expressing that the
structure has at least n distinct elements. Prove the following variation of Vaught’s
Test: let T be a theory admitting an infinite model which is κ-categorical for some
κ ≥ max(ℵ0, |L|). Then T∞ is complete. Immediately after seeing the proof, A.
Brunyate pointed out the following strengthening.

Theorem 38. (Brunyate’s Test) Let T be a satisfiable theory without finite models.
Suppose that there exists an infinite cardinal κ ≥ |L| such that any two models of
T of cardinality κ are elementarily equivalent. Then T is complete.

Exercise 4.2: Prove Brunyate’s Test, and also its analogue for T∞ as in Exercise 4.1.

One may ask why we use Vaught’s Test and not Brunyate’s Test since the latter
is plainly stronger. Indeed, every complete theory satisfies Brunyate’s Test. The
answer, I believe, is that the hypothesis of Brunyate’s Test is model-theoretic in
nature, whereas the (stronger!) hypothesis of Vaught’s test belongs to mainstream
mathematics. Therefore in certain elementary instances we essentially already know
that the hypothesis of Vaught’s test is satisfied and stating it as a theorem is a clue
to keep one’s eye open for κ-categorical theories.

We now give some examples of the successful application of Vaught’s test.

Proposition 39. Let L be the empty language – i.e., the language of naked sets.
Let X and Y be L-structures. TFAE:
(i) Either X and Y are both infinite, or X and Y are both finite with |X| = |Y |.
(ii) X ≡ Y .

Exercise 4.3: Prove Proposition 39.

Exercise 4.4: Let L be the language with a single constant symbol, so L-structures
are pointed sets. Classify L-structures up to elementary equivalence.

Exercise 4.5: Let L be the language with a single unary relation, so L-structures are
pairs (X,Y ) with Y ⊂ X. Try to classify L-structures up to elementary equivalence.

Theorem 40. The theories ACF0 and ACFp (for any prime p ≥ 0 are each κ-
categorical for any uncountable cardinal κ. None of these theories admit finite
models, so by Vaught’s test they are all complete.

Proof. In other words, we claim that if K1 and K2 are algebraically closed fields
of the same characteristic and the same uncountable cardinality, then they are
isomorphic. This is a true fact of field theory, a consequence of the following more



32 PETE L. CLARK

precise result: two algebraically closed fields are isomorphic iff they have the same
characteristic and the same absolute transcendence degree (i.e., the transcendence
degree over their prime subfield). But for an uncountable field, the transcendence
degree is equal to the cardinality. �

Remark: The theories ACF0 and ACFp are not ℵ0-categorical: for countable fields,
the absolute transcendence degree is an extra invariant. This provides our first
example of two structures of the same cardinality which are elementarily equivalent
but not isomorphic: say Q and Q(t).

At a deeper level, algebraic geometers have long known that – Lefschetz principle
notwithstanding! – a countable algebraically closed field of larger transcendence
degree is a “richer” object than Q. For instance, not every complex algebraic
variety may be defined over Q. Among countable models of ACF0, the “richest”
– indeed, the maximal one with respect to embeddings – is clearly the one of
countably infinite transcendence degree. Such fields played a fundamental role
in Weil’s formalization of algebraic geometry via universal domains. Although
this notion is now somewhere between out of fashion and completely forgotten by
contemporary algebraic geometers, it is well appreciated by model theorists, being
an instance of the notion of a saturated model (which I think we will not get to
in this course).

4.1. DLO.

Recall that DLO (dense linear orders) is the theory (well-defined up to syntactic
closure) in the language L = {<} consisting of one binary relation whose models
are precisely the nonempty linearly ordered sets without endpoints and for which
the order relation is dense: for all x < y, there exists z with x < z < y.

Exercise 4.6: a) Show that DLO does not admit finite models.
b) Let (F,<) be an ordered field. Show that the underlying ordered set is a DLO.

Theorem 41. The theory DLO of dense linear orders without endpoints is ℵ0-
categorical. Thus – by Exercise 4.6a) and Vaught’s Test, DLO is complete.

Proof. The proof is by what is called a back and forth argument. Let X =
{xn}∞n=1 and Y = {yn}∞n=1 be countable DLOs. We will build up an order-
preserving bijection from X to Y via a sequence of countable steps. At Step 2n−1,
we will ensure that xn is in the domain of the bijection, and at Step 2n, we will
ensure that yn is in the codomain of the bijection. If we can do this, we’re done!
Step 1: Take x1 and map it to any element of Y .
Step 2: If y1 is already in the codomain of f1, we do nothing. If not, we choose an
element x of X and map x to y1. We choose x such that x < x1 if y1 < f(x1) and
x > x1 if y1 > f(x1).
Step 3: If x2 is already in the domain of f2, we do nothing. If not, we choose an
element y of Y and map x2 to y. We do this in such a way to preserve the extant
order relations: the elements in the order-preserving bijection f2 split up both X
and Y into finitely many intervals, each of which is nonempty by definition of DLO.
So we need only choose y lying in the correspodning interval to x2.
We continue in this manner. A little thought shows that this strategy succeeds. �
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Exericse 4.6: a) Show that DLO is not 2ℵ0-categorical. (Suggestion: compare R
with its canonical ordering to the ordered sum R + Q: i.e., we place a copy of Q
“on top of” R such that every element of Q is greater than every element of R.)
b)(harder) Show that DLO is not κ-categorical for any uncountable κ.

Exercise 4.7: Let DLOE be the theory of dense linear orders with largest and
smallest elements.
a) Show that DLOE is ℵ0-categorical. (Hint: use either the statement or the proof
of Theorem 41.)
b) Apply Vaught’s Test to show that DLOE is a complete theory.
c) Show that DLOE is not model complete.18

The method of proof of Theorem 41 is probably more important than the result it-
self. The construction of an isomorphism, or elementary embedding, by back and
forth turns out to be one of the most fundamental notions in model theory. Indeed,
in Bruno Poizat’s (somewhat idiosyncratic, but extremely insightful) introductory
text [Poi], the concept of back-and-forth is taken as a primitive and elementary
equivalence is defined in terms of it.

4.2. R-modules.

In this section we provide a glimpse of the model-theoretic study of modules over a
(not necessarily commutative) ring. While perhaps not as sexy as the model theory
of fields, this is nevertheless an active research area at the border of model theory
and algebra.

As motivation, we provide two examples of complete theories in the language of
groups. First some (standard) terminology.

Let G be a group. The exponent E(G) is the least positive integer E such that for
all g ∈ G, gE = e – equivalently, the least common multiple of all orders of elements
of G. (If no such integer exists, we say that the exponent is ∞.) For instance, if G
is finite, then by Lagrange’s Theorem E(G) | |G|.

Moreover, for every n ∈ Z+, we have a map [n] : G→ G, g 7→ gn. (Note that [n]
need not be a group homomorphism. Indeed [2] is a homomorphism iff G is com-
mutative iff [n] is a homomorphism for all n ∈ Z+.) We say that G is torsionfree
if for all n ∈ Z+ and all g ∈ G, [n]g = e ⇐⇒ g = e.19 G is divisible if each [n] is
surjective and uniquely divisible if each [n] is bijective.

Theorem 42. Let L = {+,−, 0} be the language of commutative monoids. All of
the following L-theories are complete:
(i) For any prime p, the theory of infinite commutative groups of exponent p.
(ii) The theory of nontrivial uniquely divisible abelian groups.

18This is a standard example of a complete but not model complete theory. In fact, it is the
simplest one I know, although it requires some machinery to show this. If you can think of a more
elementary example of a complete but not model complete theory, please let me know!

19If G is commutative, this is equivalent to saying that each [n] is injective. For noncommu-

tative G, the latter condition is a priori stronger, but I don’t have an example to confirm that it
is strictly stronger.
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Proof. Each of the theories admits only infinite models, so it enough to show that
these theories are κ-categorical for some infinite cardinal and then apply Vaught’s
test.

A commutative group of exponent p has, in a unique way, the structure of an
Fp-vector space, and conversely the additive group of any nontrivial Fp-vector space
is a commutative group of exponent p. The only invariant of an Fp-vector space is
its dimension, and for any infinite Fp-vector space V , its dimension is simply equal
to its cardinality (c.f. Lemma 43). Therefore the theory of infinite commutative
groups of exponent p is κ-categorical for all infinite κ.

Similarly, a uniquely divisible abelian group has, in a unique way, the structure
of a Q-vector space, and conversely the additive group of any Q-vector space is a
commutative, uniquely divisible abelian group. The only invariant of a Q-vector
space is its dimension, and for any uncountable Q-vector space V , its dimension is
simply equal to its cardinality (c.f. Lemma 43). Therefore the theory of nontrivial
uniquely divisible commutative groups is κ-categorical for all uncountble κ. �
The following result nails down the relation between the dimension of a vector space
and its cardinality, special cases of which were used in the above proof.

Lemma 43. Let F be a field and V a nontrivial vector space over F . Then

|V | = max(|F |,dim(V )).

Exercise 4.8: Prove Lemma 43.

These examples suggest a common generalization in terms of vector spaces over
a field. However, it is somewhat “lucky” that vector spaces over Fp and over Q
are characterized by their underlying abelian groups. This cannot be the case in
general: e.g. the underlying abelian groups of a Q(

√
2)-vector space are the same

as those of a Q(
√
3)-vector space. This suggests a linguistic adjustment: to capture

the structure of a vector space over a field F , we include the action of the elements
of F as part of the language. Indeed, this can be done more generally.

Let R be a ring (not necessarily commutative, but with multiplicative identity). To
avoid trivialities, we exlcude the zero ring. The language of (say, left) R-modules
is, by definition, LR = {+,−, 0} ∪ {r : r ∈ R}, i.e., the language of commutative
monoids augmented by a unary function r for each r ∈ R. The class of left R-
modules and R-module homomorphisms is easily seen to be an elementary class of
LR-structures: in other words, the usual axioms for a left R-module are expressable
as sentences in LR.

The theory of R-modules is not complete, because the trivial R-module has one
element, whereas the R-module R itself has more than one element. However,
there is a class of rings – containing R = Q as above – such that the theory of
nontrivial R-modules is complete.

Theorem 44. Let R be a ring (not the zero ring!) without zero divisors.
a) The theory of infinite R-modules is complete iff R is a division ring.
b) The theory of nontrivial R-modules is complete iff R is an infinite division ring.

The following exercises lead a reader through a proof of Theorem 44.



2010 SUMMER COURSE ON MODEL THEORY 35

Exercise 4.9: Let R be a ring (not the zero ring!) without zero divisors. An
element x in a left R-module M is said to be torsion if there exists 0 ̸= r ∈ R such
that rx = 0. A left R-module is torsionfree if the only torsion element is zero.
a) Show that R itself is a torsionfree left R-module. (We use here that R has no
zero divisors.)
b) LetM and N be left R-modules. IfM is torsionfree andM ≡ N in the language
of R-modules, then N is torsionfree.
c) Suppose that R is a ring which admits nontrivial torsion left R-modules. Show
that the theories of nontrivial and infinite left R-modules are not complete.

Exercise 4.10: For a ring R (not the zero ring)without zero divisors, show that
the following are equivalent:
(i) The only left ideals of R are {0} and R. (ii) R is a division ring.
(iii) Every left R-module is torsionfree.
(iv) Every left R-module is isomorphic to the direct sum of κ copies of R for a
uniquely determined cardinal κ.

Exercise 4.11: Prove Theorem 44.

Exercise 4.12: What about the case of rings with zero divisors?20

4.3. Morley’s Categoricity Theorem.

One cannot help but notice the dichotomy between countable and uncountable
cardinals in all of our applications of Vaught’s test. It is natural to wonder whether
there is a theory which is κ-categorical for some but not all uncountable cardinals.
The answer is a resounding no.

Theorem 45. (Morley’s Categoricity Theorem) If a theory is categorical for some
uncountable cardinal, then it is categorical for every uncountable cardinal.

As Marker remarks in his book [Mar], “Morley’s proof was the beginning of modern
model theory.” This theorem is too rich for our blood: beautiful and impressive
as it is, it is a theorem of pure model theory: it is hard to imagine a mainstream
mathematical problem in which distinct uncountable cardinals arise naturally.21

4.4. Complete, non-categorical theories.

It is important to emphasize that Vaught’s test is only a sufficient condition for
completeness. (Indeed, it is the “cheapest” criterion for completeness that I know,
but as we have seen, it nevertheless has some useful consequences.) There are com-
plete theories which are far from being κ-categorical for any infinite cardinal κ. As
usual, the theory RCF of real-closed fields (again, either in the language of fields
or in that of ordered fields; it doesn’t matter) is an important example.

20This section is taken from my notes on model theory from 2003, in which I had overlooked
the point that “torsionfree” is not a good notion for rings with zero divisors. To make things
easy for myself here, I have simply added that hypothesis throughout, but it seems likely that
something can be said in the general case.

21To those readers who are offended by this statement, my apologies: in Athens, GA there are
no practitioners of set theory, topos theory, general topology...
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Exercise 4.13: Let T be a theory in a countable language. Show that T has at
most c = 2ℵ0 pairwise nonisomorphic countable models.

Exercise 4.14: Show that RCF, the theory of real-closed fields, has c-many pairwise
nonisomorphic countable models. Suggestions:
(i) In fact, there are c-many countable Archimedean real-closed fields. To see this:
(ii) Show that every real number α, there is a countable real-closed subfield R of R
such that α ∈ R.
(iii) Show that any two distinct real-closed subfields of R are nonisomorphic. (Hint:
in a previous exercise you were asked to show that every Archimedean ordered fields
order embeds into R. Here we want the fact that this embedding is unique, which
is in fact easier to see.)

Exercise 4.15: Let C be an algebraically closed field of characteristic 0. The point
of this exercise is to use real-closed fields to show that the automorphism group
G = Aut(C) is really big.
a) Show that there exists at least one subfield R of C such that [C : R] = 2. (By
the Grand Artin-Schreier Theorem, R is real-closed.) Fix one such subfield and call
it R0.
b) Let H = {σ ∈ Aut(C) | σ(R0) = R0}. Note that H contains h = Aut(C/R0) =
{1, cR}, a group of order 2. If the unique ordering on R0 is Archimedean, show
that H = h.
c)* Show that there exist non-Archimedean real-closed fields with H ) h and also
non-Archimedean real-closed fields with H = h. (This is quite difficult.)
d) Show that the coset space G/H is naturally in bijection with the set of all index
2 subfields R of C such that R ∼= R0.
e) Show that every real-closed field R with |R| = c embeds as an index 2 subfield
of C.
f) Apply part e) and the previous exercise to show that there are precisely 2c = 22

ℵ0

conjugacy classes of order 2 elements in G. In particular |G| = 22
ℵ0
.

5. Quantifier elimination: a criterion for model-completeness

Having seen that categoricity is a concept of somewhat limited usefulness, we now
turn to a more versatile (and historically prior) technique for establishing model
completeness, namely quantifier elimination. But more than just giving further
criteria for showing that theories are model / completen, quantifier elimination is a
fundamental concept in its own right (arguably more so than categoricity, at least
in applied model theory). It leads us to the concept of definable subsets, which
– in that it presents model theory as a strict generalization of classical algebraic
geometry – is probably the aspect of model theory which is most interesting and
useful to mainstream mathematicians.

5.1. Constructible and definable sets.

We have held back the following basic definitions until absolutely needed, which is
now.

For a structure M , a definable subset of Mn is one which can be realized as
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the locus of validity of a formula with n unbound variables.

For a structure M , a constructible subset of Mn is one which can be realized
as the locus of validity of a quantifier-free formula with n variables.

Each of these is a generalization of the notion of algebraic set in classical alge-
braic geometry, i.e., the simultaneous zero locus of a finite family of polynomial
equations. However, a constructible set is a very mild generalization which is also
familiar in algebraic geometry.22 For a particular structure M , a basic and im-
portant question is whether the class of constructible and definable subsets of Mn

coincide, and if not, to seek to understand how much richer the latter class may be.

As our basic example, take a field F in the language of rings. Can we find subsets
of Fn which are definable but not constructible?

Example 5.1: Consider the formula

ψ(b, c) : ∃x x2 + bx+ c = 0

it defines the subset of F 2 of coefficients for which the quadratic formula has a so-
lution in the field F . Can this subset be defined by a formula without a quantifier?

It depends on F !
Suppose F is algebraically closed field; then the domain of validity is all of F 2,

e.g. given by the formula

b = b, c = c

which is certainly quantifier-free.
Suppose now F := R the field of real numbers (or more generally, a real-closed

field). Then the domain of validity is given by a polynomial inequality in R2, namely
that b2 − 4c ≥ 0. We claim that this locus cannot be defined without quantifiers.

To see this, let us first give a more explicitly geometric description of the con-
structible subsets of Fn. The “basic” constructible sets are the algebraic sets, i.e.,
{x ∈ Fn | P (x) = 0} for some P ∈ F [t1, . . . , tn].

23 Using the logical operations
¬,∧,∨, we see that the class of constructible sets must be closed under comple-
mentation, union and intersection, i.e., it must form an algebra of sets.24 Indeed,
the constructible sets are, almost by definition, the least algebra containing the
algebraic sets.

Exercise 5.2: Let F be a field. Show that a subset S ⊂ Fn is constructible iff
there exist Zariski closed subsets V1, . . . , Vn and Zariski open subsets U1, . . . , Un

22Indeed, I have taken the liberty of saying “constructible” instead of the more standard
“definable without quantifiers” precisely so as to stress the analogy with the classical geometric

case.
23One can make sense of the notion of an algebraic subset of a structure Mn in the general

case. It is, roughly, the locus of a single formula which does not use either quantifiers, ∨,∧ or ¬.
24Indeed, for any structure M , the constructible subsets of Mn form an algebra of sets, as do

the definable sets. This is not such a good exercise since there is almost nothing to say, but the
reader should make sure she believes it.
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such that S =
∪n

i=1 Vi∩Ui.
25 Show also that the union may be taken to be disjoint.

Here is an analogous characterization of definable sets (in any structure).

Theorem 46. The definable sets {Dn ⊂ 2M
n}n≥1 are the smallest family of subsets

satisfying the following properties:
•Mn ∈ Dn

• if fM is an n-function, its graph is in Dn+1

• if RM is an n-ary relation, its graph is in Dn

• for 1 ≤ i, j ≤ n, {(x1, . . . , xn) : xi = xj} ∈ Dn

• if X ∈ Dn, M ×X ∈ Dn+1

• Dn is closed under finite union, finite intersection, and complementation
• If X ∈ Dn+1 then any coordinate projection of X to Dn is definable
• If X ∈ Dn+m and b ∈Mm, then {a ∈Mn : (a, b) ∈ X} ∈ Dn

Proof. See [Mar, Prop. 1.3.4].26 �
Exercise 5.3: Let F be a a field, and P : Fn → Fn a polynomial map.
a) If S ⊂ Fn is definable, show that P (S) ⊂ Fn is definable.
b) Let P (x) = x2 : R → R. Find a constructible subset S ⊂ R such that P (S) is
not constructible.

Exercise 5.4: a) Let S ⊂ Rn be a constructible set. Show that at least one of
S and Rn \ S has zero Lebesgue measure.
b) Show that the subset of R2 defined by ψ(b, c) is not constructible.

Exercise 5.5: Show that for any L-structure X and any n ∈ Z+, each one ele-
ment subset {(a1, . . . , an)} is definable.

By the previous two exercises, for any L-structure M , the smallest possibility for
the algebra of definable subsets of M = M1 is the algebra of finite/cofinite sets,
i.e., subsets A ⊂ M such that either A or M \ A is finite. An L-structure M is
strongly minimal if every definable subset of M is finite or cofinite. Of course
this is automatic if M itself is finite. More interestingly, let F be any field. Then
the Zariski-closed subsets of F are precisely the finite ones, from which it follows
that the constructible subsets of F are precisely the co/finite sets. As we have seen
above, at least for some fields F , there are definable sets which are not constructible,
so F is not strongly minimal. However, the following important theorem shows, in
particular, that any algebraically closed field is a strongly minimal structure.

Theorem 47. (Tarski) Let L be the language of rings, let F be an algebraically
closed field, and let φ(x) = φ(x1, . . . , xn) be an L-formula, in the language of rings,
with n unbound variables. Then there exists a quantifier free L-formula ψ(x) such
that

ACF |= (∀v1 . . .∀vn (ϕ(v1, . . . , vn) ⇐⇒ ψ(v1, . . . , vn))).

In particular, a subset of Fn is definable iff it is constructible.

25A subset of a topological space which is the intersection of a closed and an open set is called
locally closed.

26It turns out that we do not need this result but only special cases which are easy to prove

from scratch. I am including it here because I gave it in my lecture and the attendees may wish
to check that they took down the somewhat complicated statement correctly.
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Although the proof of this theorem is not especially difficult, before proving it we
wish to derive some important consequences.

Corollary 48. (Chevalley’s Theorem) Let F be an algebraically closed field and
P = (P1, . . . , Pn) : F

n → Fn be a polynomial map. Then P maps constructible sets
to constructible sets.

Proof. By Exercise 5.3, over any field a polynomial map carries definable sets to
definable sets. By Tarski’s theorem, the classes of constructible and definable sets
coincide over an algebraically closed field. �

Corollary 49. The theory ACF of algebraically closed fields is model complete.

Proof. Let K ⊂ L be an embedding of algebraically closed fields. Let φ(v1, . . . , vn)
be a formula, so by Tarski’s theorem there exists an equivalent quantifier-free for-
mula ψ(v1, . . . , vn). Because quantifier-free formulas are preserved by substructure
and extension, for any (a1, . . . , an) ∈ Kn we have

K |= φ(a1, . . . , an) ⇐⇒ K |= ψ(a1, . . . , an)

⇐⇒ L |= ψ(a1, . . . , an) ⇐⇒ L |= φ(a1, . . . , an).

�

5.2. Quantifier Elimination: Definition and Implications.

The property of ACF expressed in Tarski’s theorem is of much more general interest.

We say that a theory T admits elimination of quantifiers if for each L-formula
φ(x) = φ(x1, . . . , xn), there exists a quantifier free L-formula ψ(x) such that

ACF |= (∀v1 . . .∀vn (ϕ(v1, . . . , vn) ⇐⇒ ψ(v1, . . . , vn))).

Then the proof of Corollary 50 goes through verbatim to give the following result.

Proposition 50. A theory which admits quantifier elimination is model complete.

In fact quantifier elimination gives more than just model completeness: it has the
geometric consequence that the algebras of definable and constructible sets coin-
cide. In the case of ACF, this is expressed via Chevalley’s Theorem, which is a
indeed a result of classical algebraic geometry.

Along with proving Tarski’s Theorem 47, our main order of business in this section
is to prove that the theory RCF of real-closed fields is model-complete. Is it possible
to prove this using quantifier elimination?

Taken literally, we have already seen that the answer is no. Indeed, we saw that
the definable subsets of Rn include more than just the constructible sets: using
quantifiers we can also define the order relation < on R and thus the algebra of de-
finable sets certainly contains the semialgebraic sets, i.e., the algebra generated
by polynomial equations and also polynomial inequalities.

However, there is a way out. Namely, we work instead in the language L =
{+,−, ·, <, 0, 1} of ordered fields. As we have discussed, a real-closed field admits
a unique ordering so that there is a fundamental equivalence of structures: define
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RCOF to be the union of the theory of ordered fields with the theory of real-closed
fields. Then every model of RCOF is uniquely a model of RCF and conversely. In
particular, the embeddings of structures between two real-closed fields are exactly
the same in the language of fields as in the language of ordered fields. One can
check that this implies that RCF is model-complete iff RCOF is model-complete.

The following considerations formalize this and clarify the relationship between
quantifier elimination and model completeness. Let L ⊂ L′ be languages and let T
an L-theory. Consider an L′-theory T ′ such that T ′ ∩L = T . We say that (L′, T ′)
is a supercool extension of (L, T ) if both of the following hold:

(SCE1) for every L’-formula φ(x) there exists an L-formula ψ(x) such that

T |= ∀x(φ(x) ⇐⇒ ψ(x))

(SCE2) For every embedding ι : X → Y of models of T , we may extend X and Y
to models X ′ and Y ′ of T ′ such that ι is an embedding of L′-structures.

In particular, every model X of T ′ is also a model of T and the L′-definable subsets
of Xn are precisely the L-definable subsets of Xn. However, the L′-constructible
subsets of Xn may well be richer than the L-constructible subsets of Xn.

Example 5.6: RCOF is a supercool extension of RCF.

Proposition 51. Let (L′, T ′) be a supercool expansion of (L, T ). Then T is model-
complete iff T ′ is model-complete.

Proof. If T is model complete and ι : X ↪→ Y is an embedding of L′-structures, it is
also an embedding of L-structures, hence an elementary embedding. Since by (SC1)
every L′-formula has an equivalent L-formula, it follows that ι is an elementary
embedding of L-structures. Conversely, suppose that L′ is model complete and
ι : X ↪→ Y is an embedding of L-structures. By (SC2), we may extend X and Y to
models of T ′ such that ι is an embedding of L′-structures. By assumption, ι is an
elementary embedding of L′-structures, so a fortiori it is an elementary embedding
of L-structures. �

Theorem 52. Consider the following conditions on a theory T :
(i) There exists a supercool extension T ′ of T which admits quantifier elimination.
(ii) T is model-complete.
Then (i) =⇒ (ii).

Proof. If (i) holds, T ′ is model-complete. By Proposition 51, T is model-complete.
�

Exercise 5.7: a) In the statement of Theorem 52, does (ii) imply (i)? (This would be
nice, since then any model-complete theory admits an extension which has quantifier
elimination and also the same class of definable sets.)
b) If not, can you tweak the definition of “supercool extension” to make this work?27

Theorem 53. (Tarski-Robinson) The theory RCOF admits quantifier elimination.
In particular:

27Admittedly, this is more of an exercise for me than for you. I’ll work on it...
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a) RCOF (hence also RCF) is model complete.
b) If R is a real-closed field, a subset of Rn is definable iff it is semialgebraic.

This has a geometric consequence analogous to Chevalley’s Theorem. First let’s
consider an example: for a real-closed field R, the subset of R2 cut out by x2+y2 =
1 is an algebraic set – the unit circle. On the other hand, its projection onto
the x-axis is the interval [−1, 1]: this is not algebraic nor even constructible, but
it is semialgebraic. This is an instance of the robustness of semialgebraic sets
as guaranteed by the following result, an immediate consequence of the Tarski-
Robinson Theorem.

Corollary 54. (Tarski-Seidenberg) Let R be a real-closed field. The image of a
semialgebraic set S ⊂ Rn under a coordinate projection to Rm, m < n, is again
semialgebraic.

This result is of foundational importance in the burgeoning subject of real algebraic
geometry. Indeed, we recommend that the interested reader consult [?], in which
the Tarski-Seidenberg theorem plays the starring role in Chapter 1.

5.3. A criterion for quantifier elimination.

Acknowledgment: In this section, we are following David Marker’s text [Mar] (as
well as certain related lecture notes of Marker’s) especially closely. Some of the
proofs are taken verbatim from [Mar, Ch. 3].

For L a language, the set of terms in L is the smallest set containing the con-
stant symbols, the fixed countably infinite set {xn}∞n=1 of variables, and, for each
n-ary function f in L, all expressions of the form f(t1, . . . , tn where t1, . . . , tn are
terms.

An atomic L-formula is a formula either expressing an equality of two terms
t1 = t2 or R(t1, . . . , tn), where R is an n-ary relation and t1, . . . , tn are terms.

Let X be an L-structure and, as before, let LX be the language L augmented
with constant symbols for each element of X. The atomic diagram D(X) is the
set of atomic formulas φ(x1, . . . , xn) which are true in X together with the negated
atomic formulas which are true in X.

Lemma 55. (Diagram Lemma) Let Y be an LX-structure which is a model of
D(X). Then there exists an L-emebedding X ↪→ Y .

Proof. Since we have an interpretation of each constant symbol of X in Y , this
gives a map of sets ι : X → Y . Moreover, since for distinct elements x1 ̸= x2 of
X, x1 ̸= x2 lies in D(X), is is also true in Y . Therefore ι is an injection. That ι
preserves functions and relations is an easy exercise involving the definitions which
is left to the reader. �

Theorem 56. Let L be a language with a constant symbol c, let T be an L-theory
and φ(v) an L-formula with unbound variables v = (v1, . . . , vn). TFAE:
(i) There exists a quantifier-free L-formula ψ(v) such that

(2) T |= ∀v (φ(v) ⇐⇒ ψ(v)).



42 PETE L. CLARK

(ii) For any two models X,Y of T and an L-structure A such that A ⊂ X, A ⊂ Y ,
then for all a ∈ An, X |= φ(a) ⇐⇒ Y |= ψ(a).

Proof. (i) =⇒ (ii): Let ψ(v) be a quantifier-free formula satisfying (2), and let
a ∈ An. Then, because quantifier-free formulas are preserved by all embeddings of
structures, we have that φ(a) is true in X iff ψ(a) is true in A iff ψ(a) is true in Y
iff φ(a) is true in Y .

(ii) =⇒ (i): First, if T |= ∀v φ(v), then T |= ∀v (φ(v) ⇐⇒ c = c). Second, if
T |= ∀v ¬φ(v), then T |= ∀v (φ(c) ⇐⇒ c ̸= c). Thus we may assume that both
T ∪ {∃v φ(v)} and T ∪ {¬∃vφ(v)} are satisfiable.

Now let Γ(v) be the set of quantifier-free formulas ψ(v) such that T |= ∀v (φ(v) =⇒
ψ(v)). Let d = (d1, . . . , dn) be new constant symbols.

Claim: φ(d) ∈ T ∩ Γ(d).
Suppose first that the claim holds. Then, by completeness and finite character of
syntactic implication, there are ψ1, . . . , ψn ∈ Γ such that

T |= ∀v

(
m∧
i=1

ψi(v) =⇒ φ(v)

)
,

and thus

T |= ∀v

(
m∧
i=1

ψi(v) ⇐⇒ φ(v)

)
and

∧m
i=1 ψi(v) is quantifier-free.

Proof of Claim: suppose not, and let X be a model of T ∪ Γ(d) ∪ {¬φ(d)}. Let A
be the substructure of X generated by d (i.e., the intersection of all substructures
of X containing d). Put

Σ = T ∪D(A) ∪ φ(d).
If Σ is unsatisfiable, then there are quantifier-free formulas ψ1(d), . . . , ψm(d) ∈
D(A) such that

T |= ∀v

(
m∧
i=1

ψi(v) =⇒ ¬φ(v)

)
.

But then, contrapositively,

T |= ∀v

(
φ(v) =⇒

m∨
i=1

¬ψi(v)

)
,

so
∨m

i=1 ¬ψi(v) ∈ Γ and thus A |=
∨m

i=1 ¬ψi(d), a contradiction. Thus Σ is satisfi-
able.

Let Y be a model of Σ, so that in particular φ(d) holds in Y . Moreover, since
Σ ⊃ D(A), by the Diagram Lemma (Lemma 55) we may embed A ↪→ Y . But ¬φ(d)
holds in X, so that by our assumption (ii), ¬φ(d) holds in Y , contradiction. �
The next result says that to prove quantifier elimination it suffices to remove one
existential quantifier at a time.

Lemma 57. Let T be an L-theory. Suppose that for each quantifier-free L-formula
θ(v, w) there is a quantifier-free formula ψ(v) such that

T |= (∀v∃w θ(v, w) ⇐⇒ ψ(v)) .

Then T admits quantifier elimination.
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Proof. Let φ(v) be an L-formula. We wish to show that there exists a quantifier-free
L-formula ψ(v) such that

T |= (∀v (φ(v) ⇐⇒ ψ(v))).

We prove this by an induction on the complexity of φ.
Step 0: Of course, if φ is itself quantifier-free, there is nothing to show.
Now suppose that for i = 0, 1,

T |= ∀v (θi(v) ⇐⇒ ψi(v)),

where each ψi is quantifier-free.
Step 1a: Suppose φ(v) = ¬θ0(v), then

T |= ∀v (φ(v) ⇐⇒ ¬ψ0(v)).

Step 1b: Suppose φ(v) = θ0(v) ∧ θ1(v), then
T |= ∀v (φ(v) ⇐⇒ (ψ0(v) ∧ ψ1(v))).

In either case, φ is equivalent to a quantifier-free formula.
Step 2: Suppose that

T |= ∀v (θ(v, w) ⇐⇒ ψ0(v, w)),

where ψ0 is quantifier-free and φ(v) = ∃w θ(v, w). Then

T |= ∀v (φ(v) ⇐⇒ ∃wψ0(v, w)).

By our assumptions, there is a quantifier-free formula ψ(v) such that

T |= ∀v (∃w ψ0(v, w) ⇐⇒ ψ(v)).

But then
T |= ∀v (φ(v) ⇐⇒ ψ(v)).

�
Corollary 58. Let T be an L-theory. Suppose that for all quantifier-free formulas
φ(v, w), if X and Y are models of T , A is a common substructure of X and Y , and
all a ∈ An such that there exists b ∈ X with X |= φ(a, b), then there exists c ∈ Y
such that Y |= φ(a, c). Then T admits quantifier elimination.

5.4. Model-completeness of ACF.

In this section we will use the criterion of Corollary 58 to prove the model-completeness
of ACF. We work in the language L = {+,−, ·, 0, 1}. (The reader will soon see why
having − is useful here.) Suppose K and L are algebraically closed fields, and A is a
common substructure of K and L. What we must show is that, for a quantifer-free
formula φ(v, w), a ∈ An and b in K such that φ(b, a) holds in K, there exists c ∈ L
such that φ(c, a) is true in L.

First a litle algebra: as an L-substrcture of K (or L...), A is a subring of a field –
here we use that − is part of the structure; otherwise it need only be a semiring! –
hence an integral domain. Let k be the fraction field of A and F an algebraic clo-
sure. Since K and L are algebraically closed fields containing A, they also contain
(up to unique k-algebra isomorphism) F . Therefore it will suffice to show the fol-
lowing: for a ∈ Fn and b in K such that φ(b, a) holds in K, there exists c ∈ F such
that φ(c, a) holds in F . Indeed, since φ is quantifier-free and F is a substructure



44 PETE L. CLARK

of L, necessarily then φ(c, a) holds in L. (Thus we have taken L out of the picture
entirely. See §5.6 for more perspective on this.)

We may put the formula φ into disjunctive normal form: that is, there are
positive integers N and M and a family {θi,j(v, w)}1≤i≤N, 1≤j≤M such that

∀v

φ(v, a) ⇐⇒
N∨
i=1

M∧
j=1

θi,j(v, a)

 .

Thus we reduce to the case in which φ(x, y) is a conjunction of atomic and negated
atomic formulas. But that just means that there are polynomials

p1, . . . , pn, q1, . . . , qm ∈ F [X]

such that ϕ(v, a) is equivalent to(
n∧

i=1

pi(v) = 0

)
∧

(
m∧
i=1

qi(v) ̸= 0

)
.

If at least one of the pi is nonzero, then b is algebraic over F , so b ∈ F and there is
nothing to show. Otherwise the formula is equivalent to finitely many one-variable
polynomials not vanishing, so almost any element of the (infinite!) field F will do.

5.5. Model-completeness of RC(O)F.

In this section we will use the criterion of Corollary 58 to prove the model-completeness
of RCOF (real-closed ordered fields). We work in the language L = {+,−, ·, < 0, 1}
of ordered rings.

Now some algebra of ordered fields: as an L-substructure of K (or L...), A is a
subring of an ordered field, hence an ordered integral domain. Let k be the fraction
field of A – it is easy to see that the order extends uniquely to k. Now let F be
the real-closure of (k,<), unique up to k-algebra isomorphism. Because of this
uniqueness property of the real-closure of an ordered field, we get that F may be
embedded, as an L-structure, in K and L. Therefore it will suffice to show the
following: for a ∈ Fn and b in K such that φ(b, a) holds in K, there exists c ∈ F
such that φ(c, a) holds in F . Indeed, since φ is quantifier-free and F is a substruc-
ture of L, necessarily then φ(c, a) holds in L. As above, φ is logically equivalent
to a disjunction of conjunctions of formulas of the form p(v, w) = 0, p(v, w) > 0;
arguing as above, there are polynomials p1, . . . , pn, q1, . . . , qm ∈ F [X] such that

ϕ(v, a) ⇐⇒

(
n∧

i=1

pi(v) = 0

)
∧

(
m∧
i=1

qi(v) > 0

)
.

If any pi is not identically zero, b is algebraic over F but F (b) < K is formally real,
so F real-closed implies b ∈ F . So it comes down to

ϕ(v, a) ⇐⇒
m∧
i=1

qi(v) > 0.

We are thus given that qi(b) > 0 for all i. I claim that we can find ci, di ∈ F such
that ci < b < di and qi(x) is positive on the interval (ci, di). We are now in the
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endgame of the proof of the single most important result of our course. The killing
blow comes from an unexpected source!

Theorem 59. (Intermediate Value Theorem)
Let F be an ordered field.
a) Endow F with the linear topology obtained by taking (a, b) := {x : a < x < b} as
a basis for the open sets. Then polynomial functions are continuous on F .
b) Assume F is moreover real-closed, and let f ∈ F [x] be such that f(a) < 0,
f(b) > 0. Then f vanishes somewhere on (a, b).

Proof. Since addition and multiplication are clearly continuous with respect to the
linear topology, part a) is obvious. For part b), we may assume f is irreducible
(some factor must change signs). We know that f is then either linear (no problem),
or f(x) = x2 + cx+ d where c2 − 4d < 0. But then

f(x) = (x+ c/2)2 + (d− c2/4)2

and indeed f is positive for all x. �
Indeed, by the intermediate value theorem, qi(v) can only change sign on F by
passing through a root of qi, of which there are only finitely many. This establishes
the claim. Now take c = max ci and d = min di and let b′ be any element in (c, d);
this completes the proof.

5.6. Algebraically Prime Models.

In the proofs of quantifier elimination in both ACF and RCOF, things turned
out to be pleasantly simpler than they could have been, in a common way. Namely,
the criterion of Corollary 55 a priori requires us to consider models X and Y which
are somewhat indirectly related: they have a common substructure A, but A need
not be a model of T . It would be nice if we had a more direct relationship between
X and Y , e.g. if X were a substructure of Y .

But, in essence, the proofs of quantifier elimination for ACF and RCOF reduce
to a substructure situation. This occurs because there is a canonical “minimal” way
to pass from an integral domain (resp. ordered integral domain) to an algebraically
closed field (resp. real-closed ordered field). This algebraic property can be phrased
model-theoretically and leads to a useful alternate version of Corollary 55.

A sentence is said to be universal if the existential quantitifer does not appear
in it. A theory T has a universal axiomization if there exists a set Γ of universal
sentences such that Γ = T , i.e., such that Γ and T have the same models.

Theorem 60. For a theory T , TFAE:
(i) T has a universal axiomization.
(ii) If X is a model of T and Y is a substructure of X, then Y is a model of T .

Proof. (i) =⇒ (ii): Suppose T has a universal axiomatization; without loss of
generality we may as well assume that T consists entirely of universal sentences.
It is clear that if φ is a universal sentence and Y ⊂ X is an L-substructure of a
structure X such that X |= φ, then also Y |= φ.
(ii) =⇒ (i): Suppose that the set of models of T is closed under passage to
substructures. Let Γ be the set of all universal sentences in T . We want to show
that Γ = T . By definition, every model of T is a model of Γ. Conversely, let Y be
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a model of Γ. We want to show that Y is a model of T , and by (ii) it suffices to
construct a model X of T and an embedding of structures Y ↪→ X.

Claim: T ∪D(Y ) is a satisfiable LY -theory. If not, by compactness, there exists
a finite subset ∆ = {ψ1, . . . , ψn} ⊂ D(Y ) such that T ∪∆ is not satisfiable. Let c
be the vector of new constant symbols from Y used in the L-formulas ψ1, . . . , ψn;
say ψi = φi(c), where φi is a quantifier-free L-formula. If there were a model of
T ∪ {∃v

∧
i φi(v)}, then taking v = c shows that T ∪∆ is satisfiable. Thus

T |= ∀v

(∨
i

¬φi(v)

)
.

But this is a universal sentence, i.e.,

Γ |= ∀v

(∨
i

¬φi(v)

)
,

contradicting the fact that Y is a model of Γ.
By the Diagram Lemma (Lemma 55) there exists a model X of T and an L-

embedding Y ↪→ X, qed. �
Example 5.8: In the language {+,−, ·, 0, 1} of rings, the theory of integral domains
has a universal axiomatization, since a substructure of a domain is a domain. (And
indeed the usual axiomatization of integral domains is universal.) Since Z is an
L-substructure of Q which is not a field, the theory of fields does not have a univer-
sal axiomatization. Similarly, in the language {+, 0, ·, <, 0, 1} of ordered rings, the
theory of ordered integral domains has a universal axiomatization but the theory
of ordered fields does not.

For a theory T , we put T∀ to be the set of all universal sentences φ such that
T |= φ; T∀ is said to be the theory of universal consequences of T .

Proposition 61. a) The models of the theory of universal consequences of ACF
are precisely the integral domains.
b) The models of the theory of universal consequences of RCOF are precisely the
ordered integral domains.

Exercise 5.9: Prove Proposition 61.

A theory T has algebraically prime models if for each model A of T∀ there
exists a model X of T and an embedding ι : A ↪→ X such that for every model Y
of T and every embedding j : A ↪→ Y , there exists an embedding i : X ↪→ Y such
that j = i ◦ ι.

Lemma 62. The theories ACF and RCOF each admit algebraically prime models.

Proof. For ACF this says that to each integral domain A we must find an embedding
ι into an algebraically closed field F such that every embedding from A into an
algebraically closed field K factors through ι. It is easy to see that we may take
F to be an algebraic closure of the fraction field of A. Similarly, for RCOF this
says that to an ordered integral domain A we must find an embedding ι into a
real-closed field F such that every embedding from A into a real-closed field K
factors through ι. The fraction field k of an ordered integral domain is an ordered
field; let F be a real-closure of the ordered field (k,<). That ι : A ↪→ F has the
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desired property follows from the uniquness of the real-closure of an ordered field:
any two real-closures of the same ordered field k are isomorphic as k-algebras. �

This leads to a simplified version of Corollary 58.

Theorem 63. (Criterion for quantifier elimination) Let T be a theory such that:
(i) T has algebraically prime models, and
(ii) for any models X ⊂ Y of T , any quantifier-free formula φ(v, w) and any
a ∈ Xn, if Y |= ∃wφ(a,w) then also X |= ∃wφ(a,w). Then T admits quantifier
elimination.

Exercise 5.10: Deduce Theorem 63 from Corollary 58.

We highly recommend that the reader look back at the proofs of quantifier elimi-
nation in ACF and RCOF and verify that, without saying so in so many words, we
used Lemma 58 to reduce Corollary 55 to Theorem 59.

Chapter 3 of [Mar] contains other instances of elimination of quantifiers using The-
orem 59, e.g. nontrivial ordered torsionfree divisible abelian groups.

6. Ultraproducts and ultrapowers in model theory

6.1. Filters and ultrafilters.

A filter F on a set X is a nonempty family of nonempty subsets of X satisfy-
ing the following properties:

(F1) A1, A2 ∈ F =⇒ A1 ∩A2 ∈ F , and
(F2) A1 ∈ F , A2 ⊃ A1 =⇒ A2 ∈ F .

That is, a filter is a family of nonempty subsets that is stable under finite in-
tersections and passage to supersets.

Example 6.1: For ∅ ̸= Y ⊂ X, define FY = {A ⊂ X | Y ⊂ A} to be the fam-
ily of all subsets of X containing the fixed nonempty subset Y . This is a filter.
Such filters are called principal.

Example 6.2: Let X be an infinite set. A subset Y ⊂ X is said to be cofinite
if X \ Y is finite. The collection of all cofinite subsets of X is a nonprincipal filter,
the Fréchet filter.

A filter F on a set X is free if
∩

A∈F A = ∅.

Exercise 6.3: Let F be a free filter on X.
a) Show that F is not principal.
b) Show that F contains the Fréchet filter.

Exercise 6.4: a) Let {Fi}i∈I be an indexed family of filters on X. Show that
F =

∩
i∈I Fi is a filter, indeed the largest filter which is contained in each Fi.

b) Let X be a set with at least two elements. Exhibit filters F1 and F2 on X such
that there is no filter F containing both F1 and F2.
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The collection of all filters on a set X is partially ordered under containment.
By Exercise 6.4a), this poset contains arbitrary joins – i.e., any collection of filters
admits a greatest lower bound; on the other hand, Exercise 6.4b) shows that when
|X| > 1 the poset of filters on X is not directed. If F1 ⊂ F2 we say that F2 refines
F1 or is a finer filter than F1.

Definition: An ultrafilter on X is a maximal element in the poset of filters on
X, i.e., a filter which is not properly contained in any other filter on X.

The following is probably the single most important property of ultrafilters.

Theorem 64. Let F be a filter on X.
a) F is an ultrafilter iff: for all Y ⊂ X, exactly one of Y,X \ Y lies in F .

Proof. Let F be an ultrafilter on X and Y ⊂ X. Suppose first that for all A ∈ F ,
(A ∩ Y ) ̸= ∅. Let F ′ = {A ∩ Y | A ∈ F} and let F ′ be the collection of all subset
of X containing at least one element of F ′. It is easy to see that F ′ is a filter on
X which contains F . Since F is an ultrafilter, we must have F = F ′ and thus
Y = X ∩ Y ∈ F ′ = F . Now suppose that there exists A ∈ F such that A ∩ Y = ∅.
Equivalently, A ⊂ X \ Y and since A ∈ F , X \ Y ∈ F .
Now suppose that F is a filter on X which, given any subset of X, contains as
an element either that subset or its complement. Suppose F ′ is a filter properly
containing F , so that there exists some subset Y ∈ F ′\F . But thenX\Y ∈ F ′ ⊂ F
so that F ′ contains both Y andX\Y and thus contains their intersection, the empty
set: contradiction. �
Corollary 65. Let F be an ultrafilter on X, let A ∈ F , and let A1, A2 be subsets
of X such that A1 ∪A2 = A. Then at least one of A1 and A2 lies in F .

Proof. Assume not. Then by Theorem 64, both X \ A1 and X \ A2 lie in F , and
hence so does

(X \A1) ∩ (X \A2) = X \ (A1 ∪A2) = X \A.
Thus F contains both A and its complement X \A, contradiction. �
Corollary 66. Let F be an ultrafilter on X. Then the following are equivalent:
(i) F is not free.
(ii) F is principal.
(iii) There exists x ∈ X such that F is the collection of all subsets containing x.

Proof. The imlications (iii) =⇒ (ii) =⇒ (i) clearly hold (for arbitrary filters).
Suppose that F is not free, i.e., there exists x ∈

∩
A∈F A. Then X \ {x} is not an

element of F , so by Theorem 64 we have {x} ∈ F , so that F is the principal filter
on the singleton set {x}. �
Remark: There exist (non ultra)filters which are neither free nor principal, for
instance the filter {{0},R} on R. But no matter.

Proposition 67. a) For a family A of nonempty subsets of a set X, the following
are equivalent:
(i) I has the finite intersection property: if A1, . . . , An ∈ I, then

∩n
i=1Ai ̸= ∅.

(ii) There exists a filter F ⊃ A.
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A family F satisfying these equivalent conditions is called a filter subbase.28

b) For any filter subbase A, there is a unique minimal filter F containing A, called
the filter generated by A.

Proof. a) Certainly the finite intersection property (f.i.p., for short) is necessary for
A to extend to a filter. Conversely, given a family of sets A satisfying f.i.p., we build
the filter it generates in much the same way that we build the topology generated
by a subbase. Namely, let F be the family of all finite intersections of elements of
A,29 and let F be the family of all subsets of X containing some element of F . It
is easy to check that F is a filter.
b) Every filter G containing every element of A must contain all supersets of all
finite intersections of elements of A, so the filter F constructed in part a) above is
the unique minimal filter containing A. �
Exercise 6.5: Let F1 and F2 be two filters on a set X. Show that the following are
equivalent:
(i) For all A ∈ F1 and all B ∈ F2, A ∩B ̸= ∅.
(ii) The set F1 ∪ F2 satisfies the finite intersection condition.
(iii) There exists a filter F containing both F1 and F2.
When these equivalent conditions are satisfied, we say that the filters F1 and F2

are compatible. This should be thought of in analogy to the situation of ideals I1
and I2 such that the ideal I1 + I2 is proper.

The next result collects some further properties of filters, indeed exactly those
that we will need for our model-theoretic applications.

Proposition 68.
a) Let F be a filter on X. Then there exists an ultrafilter containing F .
b) Any infinite set admits a nonprincipal ultrafilter. Indeed, let Y ⊂ X with Y
infinite. Then there exists a nonprincipal ultrafilter F on X such that Y ∈ F .

Proof. a) It is easy to see that the union of a chain of filters on X is a filter on X.
Therefore Zorn’s Lemma applies to give a maximal element in the poset of filters
containing a given filter F , i.e., an ultrafilter containing F .
b) Let F0 be the Fréchet filter (of cofinite subsets of X), and let FY = {A ⊂
X | A ⊃ Y } be the principal filter on Y . Since Y is infinite, if B ⊂ X is any
cofinite set, Y ∩ B ̸= ∅. It follows that the filters F0 and FY are compatible in
the sense of Exercise 6.5, so there exists an ultrafilter F containing both of them.
Since F contains the Fréchet filter, it is nonprincipal. �
Exercise 6.6 (harder; not used later): Show that in fact, for any infinite set X, the

number of nonprincipal ultrafilters on X is 22
|X|

.

6.2. Filters in Topology: An Advertisement.

The night before giving the lecture on ultrafilters and ultraproducts, it occurred to
me that ultrafilters might not be part of the working vocabulary of my audience.
So I sent out an email advising them to book up on them a little bit and providing
a link to some notes on general topology. At the lecture itself, I found out that

28One also has the notion of a filter base. But we won’t use it, so let’s skip the definition.
29This would be a filter base, had we defined such a thing. (Sorry!)
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indeed most of my audience had not studied filters before.30

So here is a quick précis of the use of filters and ultrafilters in topology. For
more details, please see [GT, Ch. II, §5].

Let f : X → Y be a function and F a filter on X. Then the family of subsets
{f(A) | A ∈ F} of Y satisfies the finite intersection condition, so is the subbase for
a unique filter on Y , which we denote f(F).

Let X be a topological space and x a point of X. Then the set Nx of neigh-
borhoods of x, i.e., of subsets N of x such that x lies in the interior of N , is a filter
on X. It is the principal ultrafilter Fx iff x is an isolated point of X.

A filter F on X is said to converge to x if F ⊃ Nx, i.e., if every neighbor-
hood of x lies in F . We write F → x. Again, for a trivial example, note that the
principal ultrafilter Fx converges to x no matter what the topology on X is. We
say that a filter converges if it converges to at least one point. (If X is Hausdorff,
a filter converges to at most one point.)

A point x ∈ X is said to be a limit point of a filter F if the filters Nx and
F are compatible, i.e., are simultaneously contained in some filter. In other words,
x is a limit point of F if every neighborhood of x meets every element A ∈ F .

With these definitions, get a theory of convergence via filters paralleling that of
sequences in a metrizable (or first countable) space. Here some of the most impor-
tant tenets of this theory.

Theorem 69.
a) Let X be a topological space. The closure of a subset A of X is the set of all
x ∈ X such that there exists a filter F on X with A ∈ F and F → x.
b) Let X and Y be topological spaces and f : X → Y be a map of sets. Then f is
continuous iff: for all x ∈ X and all filters F on X, F → x iff f(F) → f(x).
c) Let X =

∏
iXi be a product of spaces and πi : X → Xi be the projection map,

F a filter on X and x = (xi) ∈ X. Then F → x iff for all i ∈ I, πi(F) → xi.
d) A space X is quasi-compact iff every ultrafilter on X converges.

Each of these statements is straightforward to prove. And they have a nonitrivial
consequence.

Exercise 6.7: Deduce from Theorem 69 Tychonoff’s theorem, that a product X =∏
iXi of nonempty spaces if quasi-compact iff each factor Xi is quasi-compact.

There are of course many proofs of Tychonoff’s theorem, but this one has the
merit of making the result look completely evident and natural.

30I had thought that they were covered in a standard undergraduate topology course. In
retrospect, I think they were not covered in my undergraduate topology course (which used

Munkres’ book, as many such courses do) and indeed I may have learned about them for the first
time when I started studying model theory in late 2002.
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6.3. Ultraproducts and Los’ Theorem.

The notion of a product of structures is a fundamental one in mathematics. For
instance, one has the product of sets, groups, rings, topological spaces, schemes. . .
For many (but not all) of these products, the unifying theme is a certain universal
mapping property.

Suppose we have a family {Xi}i∈I of models of a theory T . It would be nice,
wouldn’t it, to be able to define some kind of product model X =

∏
iXi? (This is

not much in the way of motivation, but we will soon see just how nice it would be!)
Unfortunately, this only works halfway: we may define a product of L-structures,
but the product of models of a theory T need not be a model of T .

Indeed, let L be a language and {Xi} a family of L-structures. Put X =
∏

iXi,
the Cartesian product. We may endow X with an L-structure, as follows: for every
constant symbol c ∈ L, we put cX =

∏
i cXi . For every n-ary function symbol

f ∈ L, we define fX to be the evident function from (
∏

iXi)
n →

∏
iXi, i.e., the

one whose i-coordinate is fXi . Similarly, for every n-ary relation symbol R ∈ L, we
define RX as the product relation, i.e.,

∏
iRXi ⊂

∏
iX

n
i = (

∏
iXi)

n.

Exercise 6.8: If you know and care about such things, show that the product we
have defined satisfies the universal mapping property in the sense of category theory.

Thus for instance, if L is the language of rings, we may take a product of rings. For
example, take I to be the set of prime numbers and for p ∈ I, put Ri = Fp. Then
the product

∏
i Fp is again an L-structure (and even a ring). However, suppose T

is the theory of fields. Then each Fp is a model of T but the product certainly is
not: it is not even a domain.

All this is remedied by passing to a certain quotient of the direct product. To
do this, we need an extra ingredient – the crazy part. Namely, we “choose” an
ultrafilter F on the index set I. Then, we define the relation ∼F on the Cartesian
product X =

∏
iXi by {xi} ∼F {yi} iff the set of indices i ∈ I such that xi = yi is

an element of F . We define the ultraproductX =
∏

F Xi to be the quotient X̃/F .

Exercise 6.9: Check that ∼F is indeed an equivalence relation and that the ul-
traporudct

∏
F Xi is indeed an L-structure in a natural way.

So what is going on here? Magic, I say! Actually, there is one case in which
the magic isn’t real: there is a little man behind the curtain.

Proposition 70. Let I be an index set, i0 ∈ I, and let Fi0 be the principal ultrafilter
at i0. Then the ultraproduct

∏
Fi0

Xi is isomorphic to Xi0 .

Exercise 6.10: Prove Proposition 70.

However, when we restrict to nonprincipal ultrafilters, the magic is quite real.

Example 6.11: Let L be the language of rings, I an index set, F an ultrafilter on I,
for each i ∈ I, let Ri be an integral domain. Then the ultraproduct R =

∏
F Xi is
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a domain. Indeed, let x and y be elements of R such that xy = 0. We must show
that x = 0 or y = 0. Represent x by a sequence {xi} and y by a sequence {yi}.
Then, to say that xy = 0 is to say that the set of indices i such that xiyi = 0 lies
in the filter F : let us call this set A. Let A1 be the set of indices i such that xi = 0
and let A2 be the set of indices i such that yi = 0. Since each Ri is a domain, we
have A = A1 ∪ A2. By Corollary 65, we have either A1 ∈ F or A2 ∈ F , that is,
x = 0 or y = 0: qed.

Now let us show that the ultraproduct K =
∏

F Ki of fields is again a field. So,
let 0 ̸= x ∈ K. We need to show that there exists y ∈ K such that xy = 1. Let
{xi} ∈

∏
Ki be any element representing x, and let A ⊂ I be the set of indices

such that xi ̸= 0. Define y to be the element whose i coordinate is: x−1
i if i ∈ A (so

xi is nonzero in the field Ki and thus has an inverse) and 0 otherwise. Then x•y•
has i coordinate 1 for all i ∈ A and 0 otherwise. Hence it is equal to the constant
element 1 on a set of indices which lies in F , so xy = 1 in the quotient. (Note that
we have a lot of leeway in the definition of ybullet – it does not matter at all how
we define it at coordinates not lying in A – but all of these elements become equal
in the quotient.)

Here is a more interesting example. Let F be the ultraproduct of the finite field
Fp. By the above, this is a field. So it has a characteristic – what is it?!?

Case 1: Despite what I said above, it’s instructive to consider the case of a principal
ultrafilter based at a particular prime p0. In this case, the ultraproduct is just Fp0 ,
so of course the characteristic is p0.
Case 2: If F is nonprincipal, we claim that F has characteristic 0. It suffices to
show that for any prime ℓ, 1 + . . . + 1 (ℓ times) is not zero. Well, consider the
diagonal elements x• = ℓ and y• = 0. What does it mean for x• and y• to be
equal in the ultraproduct? It means that the set A of primes p such that ℓ = 0 in
Fp lies in the filter F . But A = {p}, a finite set, which is not an element of any
nonprincipal ultrafilter. Done!

The following result is a vast generalization of these observations. It is often called
the Fundamental Theorem of Ultraproducts. Nor is the proof difficult; rather
it is almost as easy as a proof which proceeds by induction on the complexity of a
formula can be. Since we have, somewhat disreputably, not given such a proof thus
far,31 we present the proof of Los’ Theorem in all its gory detail.

Theorem 71. (Los) Let I be an index set, F an ultrafilter on I, {Xi}i∈I an
indexed family of L-structures, and put X =

∏
F Xi. For any formula ϕ in n

unbound variables and x ∈ Xn,

X |= ϕ(x)) ⇐⇒ {i : Xi |= ϕ(xi))} ∈ F .

Proof. We prove this by an induction on the complexity of the formulas. First
recall that a term is the set of L-terms is the smallest set containing the constant
symbols of L, the variable names {xi}∞i=1, and for each n-ary function, all expres-
sions of the form f(t1, . . . , tn), where the ti’s are terms.

31The fact that truth of quantifier-free formulas is preserved by embeddings of structures was

given a somewhat handwavy proof earlier in these notes. What is required to formalize it is
precisely an induction on formula complexity
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Step 1: Suppose φ is of the form t1 = t2, where t1 and t2 are terms involving
n variables x1, . . . , xn. For j = 1, 2, put

gj(i) = tj(x1(i), . . . , xn(i)).

Then t1(x1, . . . , xn) = t2(x1, . . . , xn) as elements of X iff the set of i ∈ I such that
t1(x1(i), . . . , xn(i)) = t2(x1(i), . . . , xn(i)) is an element of F . This is Los’ Theorem
in this case!

Step 2: Suppose φ is a relation R(t1, . . . , tn) = R(t). Then R(t1(x), . . . , tn(x))
holds in X iff the tuple (t1(x), . . . , tn(x)) lies in RXn ⊂ Xn iff there exists y =
(y1, . . . , yn) ∈ RXn such that (t1(x), . . . , tn(x)) = (y1, . . . , yn) iff for a set of indices
I which lies in F we have t(xi) = y(i) iff for a set o findices I which lies in F ,
R(t(xi)) ∈ RXi .

Step 3: Suppose Los’ Theorem holds for α and β and φ = α ∧ β. Then φ(x) =
α(x)∧ β(x) holds in X iff both α(x) and β(x) hold in X, iff the sets A1 (resp. A2)
of indices i such that α(xi) (resp. β(xi)) holds in Xi lie in F iff (since F is a filter)
the set A = A1 ∩ A2 of indices i such that both α(xi) and β(xi) hold lies in F iff
the set of indices i such that α(xi) ∧ β(xi) = φ(xi) holds lies in F .

Step 4: Suppose that Los’ Theorem holds for φ(x). Then it also holds for ¬φ(x).
Indeed, ¬φ(x) holds in X iff φ(x) does not hold in X iff the set A of indices i for
which φ(xi) holds in Xi is not in F . But the set A′ of indices i for which ¬φ(xi)
holds in Xi is of course I \ A, and since F is an ultrafilter and A is not in F , A′

must be in F .32

Step 5: Write x = (x1, . . . , xn) and y = (x2, . . . , xn), so x = (x1, y). Suppose
Los’ Theorem holds ψ(x); we show that it also holds for ∃v ψ(v, y).
This time we handle the two implications separately. First suppose that ∃v ψ(v, y)
holds in X. Then for some x = (x1, y) ∈ Xn, ψ(x) holds in X. It follows that the
set A of indices i such that ψ(x(i)) holds in Xi lies in F . Now the set A′ of indices
i such that ∃v ψ(v, y(i)) holds in Xi contains A, so A

′ lies in F .
Conversely, suppose that the set A of indices i such that ∃vψ(v, y(i)) lies in F .

For each such i, choose x1(i) ∈ Xi such that ψ(x1(i), y(i)) holds in Xi; for all other
indices i, define x1(i) arbitrarily. There is then an induced element x1 =

∏
F x1(i)

in the ultraproduct, and then φ(x1, y) holds in X hence so does ∃v ψ(v, y). �
Corollary 72. a) In the setup of Los’ Theorem, let T be an L-theory, and suppose
that each Xi is a model of T . Then X is a model of T .
b) In particular, if for all i, j ∈ I, Xi ≡ Xj, then X ≡ Xi for all i.

Proof. a) This is a very special case of Theorem 71: for each sentence φ ∈ T , the
set of indices i such that φi holds in Xi is the entire index set I, so is certainly an
element of F . Thus by Los’ Theorem, φ holds in X. Part b) follows immediately.

�
One way to enforce Xi ≡ Xj for all indices is simply to choose a single model X
of T and take Xi = X for all i. In this case, we abbreviate

∏
F X to XF , and we

say that XF is an ultrapower of X. Thus X ≡ XF , but XF is guaranteed to

32Note that this is the only place in the proof where we use that F is an ultrafilter!
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be a “sufficiently rich” model of T in a sense that we will not have time to make
precise. But, for example, if X is an algebraically closed field, then any nontrivial
ultrapower of X is an algebraically closed field of infinite transcendence degree.

Exercise 6.12: Let X be an L-structure and XF an ultrapower. Show that there is a
natural embedding of L-structures ι : X ↪→ XF and this embedding is elementary.

6.4. Proof of Compactness Via Ultraproducts.

Let L be a language and T be a theory such that every finite subset of T has
a model. We wish to show that T has a model. Formerly, we deduced this as an
immediate corollary of Gödel’s Completeness Theorem and the finite character of
syntactic implication. But, aside from using a proof-theoretic result that we are
not going to prove (and is generally regarded as being fundamentally “un-model-
theoretic” in nature), this was a proof by contradiction. Much more impressive
would be the following head-on attack: for each finite subtheory T ′ ⊂ T , let XT ′

be a model of T ′. Then using the XT ′ ’s as data, we construct a model X of T .

Prepare to be impressed!

We may of course assume that T is infinite; otherwise there is nothing to prove.
Let I be the set of finite subtheories of T . For φ ∈ T , let

A(φ) = {T ′ ∈ I | φ ∈ T ′},
and let A = {A(φ)}φ∈T . Evidently A is a nonempty family of nonempty subsets
of I. I claim that moreover A satisfies the finite intersection condition: indeed, for
any φ1, . . . , φn ∈ T ,

n∩
i=1

A(φ) = A(

n∧
i=1

φi) ̸= ∅.

Thus, in the terminology of Proposition 67, A is a filter subbase on I. In other
words, there is some filter containing A and hence some ultrafilter F containing
I. By hypothesis, for each finite T ′ ⊂ T , there exists at least one L-structure
modelling T ′: choose one, and call it XT ′ . Thus XT ′ is a family of L-structures
indexed by the elements of I, and F is an ultrafilter on I. So we may form the
ultraproduct:

X =
∏
F
XT ′ .

We claim that X is a model of T . Indeed, for any φ ∈ T , consider the set J of finite
subtheories T ′ of T such that XT ′ is a model of φ. It is hard to say exactly what
J is (since we chose the models XT ′ “at random”), but certainly J contains each
finite subtheory T ′ such that φ ∈ T ′, since then φ holds in every model of T ′. That
is, J ⊃ A(φ); since A(φ) ∈ F and F is a filter, J ∈ F . We are done by Los’ theorem.

So the use of ultraproducts gives a quick proof of the Compactness Theorem which,
recall, was originally deduced from Gödel’s Completeness Theorem and the finite
character of syntactic implication. We used the Completeness Theorem and the
finite character of syntactic implication at one other key juncture, namely in the
proof of Ax’s Transfer Principle (Theorem 3.10). We urge every reader to do the
following exercise.
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Exercise 6.13: In the proof of Ax’s Transfer Principle, replace all appeals to syn-
tactic considerations by an ultraproduct argument. (Suggestion: use Proposition
68b). That’s what it’s there for!)

This is a typical phenomenon. Indeed, to the best of my knowledge, in the study
of model theory one never needs to use Gödel’s Completeness Theorem but can
always make do with evident ultraproduct-theoretic analogues.

6.5. Characterization theorems involving ultraproducts.

First a result which we could have proven long ago, but is especially appropriate
now that we have proved the Compactness Theorem.

Proposition 73.
a) Let L be a language and T1, T2 be two L-theories. Suppose that for an L-
structure X, X is a model of T1 iff X is not a model of T2. Then T1 and T2 are
finitely axiomatizable.
b) In particular, a class C is finitely axiomatizable iff both C and its negation are
elementary.

Proof. a) We give two proofs, the first using the Compactness Theorem and the
second using ultraproducts as in the proof of the Compactness Theorem. Note that
either way, by symmetry it suffices to prove that T1 is finitely axiomatizable.
First proof: Suppose that T1 is not finitely axiomatizable. In other words, for every
finite subtheory T ′ of T1, there exists an L-structure which is a model of T ′ but
not of T1. By hypothesis, this means that XT ′ is a model of T ′ ∪ T2. But every
finite subset of T := T1 ∪ T2 is contained in some T ′ ∪ T2 for T ′ a finite subset of
T1. Thus the theory T is finitely satisfiable, hence satisfiable by the Compactness
Thorem. But this means that there is a structure X which models both T1 and T2,
contradiction.
Second proof: Again, suppose T1 is not finitely axiomatizable, so that for every
finite subtheory T ′ of T1 there is a model XT ′ of T ′ but not of T1. Again, by our
hypothesis XT ′ is a model of T2. Letting I be the set of finite subtheories of T1,
as in the proof of the compactness theorem, there exists an ultrafilter F on I such
that X =

∏
F XT ′ is a model of T . On the other hand, each XT ′ is a model of

T2, so by Los’s Theorem X is also a model of T2: contradiction. Thus T1 is finitely
axiomatizable. Of course, interchanging the roles of T1 and T2 we get that T2 is
finitely axiomatizable.
b) If C is the class of all models of a finite theory, then certainly it is finitely
axiomatizable and indeed is the class of all models of a single sentence φ. But then
its negation is the class of all models of ¬φ so is also finitely axiomatizable, hence
elementary. The converse follows immediately from part a). �
Theorem 74. Let C be a class of L-structures.
a) C is elementary iff it is closed under ultraproducts and elementary equivalence.
b) C is finitely axiomatizble iff both C and its negation are closed under ultraproducts
and elementary equivalence.
c) The elementary closure of C – i.e., the least elementary class containing C – is
the class of all L-structures which are elementarily equivalent to some ultraproduct
of elements of C.
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Proof. a) It is clear from the definition that an elementary class – i.e., the class of
all models of some L-theory T is closed under elementary equivalence; moreover
that an elementary class is closed under passage to ultraproducts is Corollary 72a).
Conversely, suppose that C is a class which is closed under elementary equivalence
and passage to ultraproducts. We wish to show that C is an elementary class.
Clearly the only candidate theory is the complete theory of C, i.e., the set of all
L-sentences which hold in every element of C. Let X be a model of T . What we
need to show is that X ∈ C. Let Σ be the complete theory of X – so Σ ⊃ T – and
as in the proof of the compactness theorem, let I be the family of all finite subsets
of Σ. For each T ′ = {φ1, . . . , φn} ∈ I, there exists XT ′ ∈ C which is a model of T ′,
for otherwise the sentence ¬(φ1 ∧ . . .∧φn) would belong to T \Σ, a contradiction.
Just as in the proof of the compactness theorem, there exists an ultrafilter F on I
such that the ultraproduct X ′ =

∏
F Xi is a model of T . By hypothesis, X ′ ∈ C.

Moreover, since T is the complete theory of X, this means X ≡ X ′, and thus by
hypothesis X ∈ C.
Part b) follows immediately from part a) together with Proposition 74. The proof
of part c) is similar and left to the reader. �

Theorem 75. (Keisler-Shelah) Let X and Y be L-structures. TFAE:
(i) X ≡ Y .
(ii) There exists an index set I and an ultrafilter F on I such that the ultrapowers
XF and Y F are isomorphic.

This theorem involves delicate set-theoretic considerations. Indeed, it was first
proved by H.J. Keisler in 1961 under the assumption of the Generalized Contin-
uum Hypothesis (GCH) and then unconditionally by S. Shelah in 1972. See e.g.
[CK90, Thm. 6.1.15] for a proof.

Exercise 6.14: By considering a nontrivial ultraproduct of cyclic groups of prime
order, show that the class of simple groups is not an elementary class.

Exercise 6.15 (harder):33 For all n ∈ Z+, we may view Sn as a subgroup of Aut(Z+)
by viewing it as the subgroup of permutations of Z+ which pointwise fix every in-
teger greater than n. With this convention, define the infinite alternating group
A∞ =

∪∞
n=1An as a subgroup of Aut(Z+).

a) Show that A∞ is a simple group.
b) Show that no nontrivial ultrapower of A∞ is simple.
c) Deduce that the class of simple groups is not closed under elementary equivalence.

7. A Glimpse of the Ax-Kochen Theorem

Let d ∈ Z+ and i ∈ R≥0. We say that a field K has property Ci(d) if every degree
d homogeneous polynomial in at least di + 1 variables has a nontrivial zero. It is
clear that this property is equivalent to a sentence φd in the language of fields, so
the class Ci(d) of fields is finitely axiomatizable. We also define a field to be Ci if it
is Ci(d) for every positive number d. This is the conjunction of the infinitely many
sentences φd, so Ci is an elementary class.

33The material for this exercise was furnished by Simon Thomas as an answer to a question
on Math Overflow. Thanks very much to him.
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Some relatively elementary facts:

a) a field is Ci for some i < 1 iff it is C0 iff it is algebraically closed.
b) A finite field is C1 (Chevalley).
c) If K is Ci and L/K has transcendence degree j, then L is Cj (Tsen-Lang).
d) A complete discretely valued field with algebraically closed residue field is C1

(Lang).
e) The field Fq((t)) is C2 (Lang).
f) If k is Ci, then k((t)) is Ci+1 (Greenberg).

In particular, combining Chevalley and Greenberg, we find that the locally compact
fields of positive characteristic, namely Fq((t)), are C2.

In view of Greenberg’s theorem, it is natural to speculate that a complete dis-
cretely valued field with Ci residue field is Ci+1. The simplest case of this which is
left open by Lang’s theorem is that of p-adic fields. Indeed, it was conjectured by
E. Artin that a p-adic field is C2.

34

Lang’s seminal paper [Lan52] contains the sentence “If the residue field of [the
CDVF] F is finite, it has been conjectured that F is C2. We can prove this only
in the case of power series fields, leaving the question open in the case of p-adic
fields.” This was part of Lang’s thesis work; I can only imagine his consternation at
not being able to prove the p-adic case. Lang and many others tried to prove this
throughout the 50’s and the first half of the 60’s, without success. What was known
is that p-adic fields are C2(2); in other words, a quadratic form over a p-adic field
in at least 5 variables is isotropic. This is part of the classical theory of quadratic
forms over local fields (and is discussed e.g. in the 8410 course notes). It was also
known relatively early on that a cubic form in at least 10 variables has a nontrivial
zero (due, I believe, to Davenport). And that was that!

Quite dramatically, in 1966 Guy Terjanian exhibited an anisotropic (i.e.., with-
out nontrivial zero) quartic form over Q2 in 17 variables [Ter66]. Less well-known
is a 1980 theorem of Terjanian [Ter80]: let d > 2. Then for all primes p with
p(p− 1) | d, there exists an anisotropic degree d form in d2 + 1 variables over Qp.
In particular, for no prime p is Qp C2!

On the other hand, James Ax and Simon Kochen proved in 1965 that p-adic fields
are “almost C2”. More precisely:

Theorem 76. (Ax-Kochen Diophantine Theorem) For every positive integer d,
there exists a constant P (d) such that for all primes p > d, Qp is C2(d).

Note that their proof gives precisely zero information about the constant P (d), but
Terjanian’s work gives some lower bounds on it. To the best of my knowledge, for
d ≥ 4 no explicit upper bounds on P (d) are known.

But this theorem reeks of model theory, and in particular of Ax’s Transfer Principle.
Here is what they actually proved:

34Or so people say; I am not sure if Artin’s conjecture appears in written form.
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Theorem 77. (Ax-Kochen Transfer Principle) Let F be a nonprincipal ultrafil-
ter on the set P of prime numbers. Then the fields

∏
F Qp and

∏
F Fp((t)) are

elementarily equivalent.

Exercise 6.16: Deduce Theorem 76 from Theorem 77. (Use Proposition 68b).)

The proof of Theorem comes from a penetrating analysis of the model theory of
Henselian valued fields which is interesting and useful in its own right. (Sample
result: the embedding from a Henselian valued field of characteristic 0 to its com-
pletion is an elementary embedding.) This would be a nice topic for a second
half-course on applied model theory!
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