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1. Introduction to Non-Associative Algebras

1.1. First definitions.

Let F be a field. By an algebra A/F , we mean an F -vector space endowed with
an F -bilinear product · : A·A→ A. We usually denote the product of x and y as xy.

If A,A′ are F -algebras, then a morphism ϕ : A → A′ is simply an F -linear map
such that for all x, y ∈ A, ϕ(xy) = ϕ(x)ϕ(y). In this way, we obtain a category of
F -algebras. We have the usual constructions of direct sums and tensor products.

An F -algebra A is commutative if for all x, y ∈ A, we have xy = yx. More
on commutativity in §1.5.

An F -algebra A is associative if for all x, y, z ∈ A, we have (xy)z = x(yz). More
on associativity in §1.6.

Thanks to Jeroen Schillewaert for catching an error in an exercise.
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An F -algebra is unital if there exists e ∈ A such that e such that for all x ∈ A,
ex = xe = x, i.e., a two-sided multiplicative identity.1 In the sequel we will mainly
be concerned with unital F -algebras, but let us entertain the general case for a little
while. Anyway, in some circumstances the lack of unit can be overcome as follows:

Let A be any F -algebra, and let A1 = F × A as an F -vector space, endowed
with the following product: for (α, a), (β, b) ∈ F ×A, put

(α, a) · (β, b) = (αβ, βa+ αb+ ab).

Then A1 is an F -algebra with identity element e = (1, 0). Moreover, 0×A is an ideal
in A1 that is isomorphic as an F -algebra to A itself. Moreover, A1 is commutative
(resp. associative, resp. finite-dimensional) iff A is.

Exercise 1.1. Let A be a one-dimensional F -algebra. Show that either {xy | x, y ∈
A} = 0 or A ∼= F . In particular, A is commutative and associative.

Exercise 1.2. For any field F , exhibit a 2-dimensional F -algebra which has none
of the following properties: unital, commutative, associative.

For an F -algebra A, we define its opposite algebra Aop, which has the same
underlying F -vector space as A but with a new bilinear product: x • y := yx.

1.2. Structure constants.

We are especially interested in the case in which A is finite-dimensional as an
F -vector space. In such a situation, it is useful to fix a single n-dimensional vec-
tor space V =

⊕n
i=1 eiF over F and consider all possible algebra structures on

V . Obviously any n-dimensional F -algebra is isomorphic to some F -algebra with
underlying vector space F , although possibly in many different ways. For n ∈ Z+,
let An(F ) be the set of all F -algebras with underlying vector space V .

We claim that An(F ) has the natural structure of an affine space over F of di-
mension n3. Indeed, to specify an F -algebra structure A on V =

⊕n
i=1 Fei it is

enough to consider its effect on basis elements: specifically, for all i, j, k ∈ [1, n],
there exist unique constants ckij ∈ F such that

eiej =

n∑
k=1

ckijek.

These n3 constants ckij are called the structure constants of the algebra A. More-
over they are freely determined, since bilinear maps V × V → V correspond bijec-
tively to F -linear maps from V ⊗ V → V (or, if you like, tensors of type (2, 1) on
V ), which is clearly an F -vector space of dimension n3.

1.3. Base extension.

Let A be an F -algebra and K/F a field extension. Then we may form the al-
gebra AK := A ⊗F K, which we may then regard as an algebra over K, with
dimK(AK) = dimF (A). In particular, tensoring with K gives an injective map

1Any F -algebra has at most one identity e. These notes are intended for readers whose intel-
ligence would be insulted if this were set as a formal exercise.
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An(F ) ↪→ An(K), which may be regarded as the usual extension of scalars con-

struction on An3

.

Note that in the case that A is finite-dimensional, the base extension A/K can

be described as the bilinear product on VK =
⊕n

i=1 eiK with the same structure
constants as A, i.e., for all i, j, k, cki,j(AK) = cki,j(A). This makes it useful to try to
express certain algebra properties in terms of structure constants: often doing so
makes it obvious that they are preserved under base extension.

1.4. Unital algebras.

Suppose that A is an n-dimensional F -algebra with a multiplicative identity 1.
Then we may choose the vector space isomorphism A →

⊕n
i=1 eiF such that 1

maps to the first basis element e1. In this way, the unital n-dimensional F -algebras

with underlying space V become a subset of An3

. Let us call this subset Algn(F ).
It is easy to identify it explicitly: e1 is a unit for a bilinear product on V iff both
of the following hold:

• for all j, k ∈ [1, n], ck1j = δ(j, k) and

• for all i, k ∈ [1, n], cki1 = δ(i, k),
where δ(i, j) is the “Kronecker delta”: equal to 1 if the arguments are equal, oth-
erwise 0. From this it follows easily that Algn(F ) is a linear subspace of An(F ) of
dimension n(n− 1)2.

1.5. Commutativity.

An F -algebra A is commutative if for all x, y ∈ A, xy = yx. In this section
we wish to give a simple analysis of the condition of commutativity and, in partic-
ular, show that it can be usefully recast in terms of commutators.

To start from the beginning: given an F -algebra A, we would like to be able to
verify whether it is commutative. On the face of it, this involves verifying #A×A
different equalities, i.e., infinitely many if A is infinite (as it usually will be). Evi-
dently we want a simpler way to proceed. In fact it suffices to verify commutativity
on basis elements, which at least in the case of a finite dimensional F -algebra, re-
duces us to a finite problem. To establish this claim, we begin by introducing the
following formalism.

For elements x, y in any F -algebra A, we define their commutator

(1) [x, y] = xy − yx.
Thus x and y commute – i.e., xy = yx – iff [x, y] = 0, and therefore an algebra is
commutative iff all its commutators are zero.

One may wonder what we have gained here. The answer is that by introducing
the commutator we have linearized our situation. Indeed, viewing the commutator
as a map A×A→ A, one immediately verifies that it is F -bilinear: that is, for all
x, y, z ∈ A and α ∈ F , we have

(2) [αx+ y, z] = α[x, z] + [y, z]
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and

(3) [x, αy + z] = [x, z] + α[y, z].

For instance, the following calculation verifies (2):

[αx+ y, z] = (αx+ y)z − z(αx+ y) = α(xz − xz) + (yz − zy) = α[x, z] + [y, z].

Equation (3) can be checked just as easily. However, it is probably more insightful to
observe that it follows from (2) and the fact that the commutator is an alternating
multilinear map: recall that a multilinear map L : V n → W is alternating if
L(v1, . . . , vn) = 0 whenever there exist indices i 6= j such that vi = vj . In this case
we are simply asserting that for all x ∈ A,

[x, x] = xx− xx = 0.

Note that an alternating multilinear map is necessarily skew-symmetric, i.e., if we
interchange two of the arguments, we introduce a minus sign in the answer. The
verification of this reduces to the case of an alternating bilinear form L : V 2 → W
(any n-linear form with n ≥ 3 becomes a bilinear form when we evaluate at any
fixed elements the other n− 2 places): for all x, y ∈ V ,

0 = L(x+ y, x+ y) = L(x, x) + L(x, y) + L(y, x) + L(y, y) = L(x, y) + L(y, x),

so

L(y, x) = −L(x, y).

The converse holds so long as the characteristic of F is not 2: if L : V 2 → W is
skew-symmetric, then for any x ∈ V , L(x, x) = −L(x, x), so 2L(x, x) = 0. Con-
versely, in characteristic 2, skew-symmetric is the same as symmetric, which is
strictly weaker than being alternating.

The bilinearity of the commutator map is the key to the following result.

Proposition 1.1. Let A/F be an F -algebra, with basis {ei}i∈I . Then A is com-
mutative iff for all i, j ∈ I, eiej = ejei.

Proof. Let x, y ∈ A, and write them in terms of the given F -basis: x =
∑
i∈I xiei,

y =
∑
i∈I xiei (of course xi and yi are both zero except for finitely many indices).

Then

[x, y] = [
∑
i

xiei,
∑
j

yjej ] =
∑
i,j

xiyj [ei, ej ] = 0,

by our assumption that basis elements commute. �

In case A is an n-dimensional algebra with underlying vector space V , the previous
result amounts to the fact that the commutativity of F is equivalent to the following
symmetry relations on the structure coefficients: ∀i, j, k, ckij = ckji.

Exercise 1.3. Show: the loci of commutative algebra structures on V is a lin-
ear subspace of An, and compute its dimension. Do the same for unital algebra
structures.

Corollary 1.2. Let A be an F -algebra and K/F a field extension. Then A is
commutative iff A/K is commutative.



NONASSOCIATIVE ALGEBRAS 5

Proof. One can choose an F -basis of {ei} of A, note that under scalar extension
{ei ⊗ 1} is a K-basis of AK and apply Proposition 1.1. Alternately and perhaps
more directly, this amounts to the fact that a bilinear map on an F -vector space is
identically zero iff its scalar extension to K is identically zero, which is clear. �

Center: For any F -algebra A, define the center Z(A) to be the set of all x ∈ A
which commute with every element of A: equivalently, the set of x ∈ A such that
the associated F -linear map ad a : x 7→ [a, x] is identically zero.

Proposition 1.3. The center Z(A) of A is a commutative F -subalgebra of A.

Exercise 1.4. Prove Proposition 1.3.

Exercise 1.5. Use commutators to show that any two-dimensional F -algebra with
identity is commutative.

Exercise 1.6. a) Show that every commutative F -algebra is isomorphic to its op-
posite algebra.
b) Is the converse true?

1.6. Associativity.

The constructions of the previous section are quite familiar, to the extent that their
interpretation via commutators and multilinear algebra may seem heavy-handed.
However the merits of this approach is that it has analogues for several other im-
portant classes of algebras, including associativity.

An algebra A/F is associative if for all x, y, z ∈ F , (xy)z = x(yz).

Proposition 1.4. Let A/F be an algebra x1, . . . , xn ∈ F with n ≥ 2.

a) There are Cn−1 = (2n−1)!
n!(n−1)! syntactically correct ways of inserting parentheses into

the expression x1 · · ·xn so as to resolve this into a product of binary multiplications.
b) If A is associative, then all Cn−1 possible choices of parentheses evaluate to the
same element of A.

Exercise 1.7. a) Prove Proposition 1.4.
b)* Show: there are algebras in which these expressions yield Cn−1 distinct ele-
ments.

Again in direct analogy with commutativity, for any elements x, y, z in an F -algebra
A, we define their associator

[x, y, z] = (xy)z − x(yz).

Exercise 1.8. Let 1 be a two-sided multiplicative identity of A. Show: an associator
[x, y, z] in which at least one of x, y, z is equal to 1 evaluates to zero in A.

Evidently x, y, z “associate” iff their associator is zero. More usefully, the associa-
tivity of A is equivalent to the identical vanishing of all associators. Again, the
point of this construction is as follows:

Proposition 1.5. For an F -algebra A, the associator is an F -trilinear map A3 →
A.

Exercise 1.9. Prove Proposition 1.5.
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Corollary 1.6. Let A/F be an F -algebra, with basis {ei}i∈I .
a) A is associative iff for all i, j ∈ I, (eiej)ek = ei(ejek).
b) Let K/F be a field extension. Then the scalar extension A/K is associative iff
A is associative.

Exercise 1.10. Prove Corollary 1.6.

Exercise 1.11. Use associators to show that any two-dimensional F -algebra with
identity is associative.

Exercise 1.12. Let A be a two-dimensional F -algebra with identity element 1. By
the above exercises, A is commutative and associative. Choose x ∈ A \ F · 1, and
let a, b ∈ F be the unique constants such that x2 = ax+ b · 1.
a) Show that A ∼= F [t]/(t2 − at+ b).
b) Under what circumstances is A a field? An integral domain? An algebra without
nilpotent elements?

Example 1.7. (Quaternion Algebras): Let F be a field of characteristic differ-
ent from 2, let a, b ∈ F×. We will define a 4-dimensional unital F -algebra B =
B(a, b)/F on V =

⊕r
i=1 eiF explicitly in terms of structure constants. Namely, we

put:

e1 · ej = ej for all j;
e2 · e2 = a;
e3 · e3 = b;
e4 · e4 = −ab;
e2 · e3 = −e3 · e2 = e4;
e2 · e4 = −e4 · e2 = ae3.
e3 · e4 = −e4 · e3 = −be2.

Note that any two basis elements ei, ej with i, j > 1 anticommute: eiej = ejei.
(In particular, B is not a commutative algebra.)

Let us check by brute force that B is associative: this means checking that for
all 43 = 64 triples of basis elements we have [ei, ej , ek] = 0. Well, let’s cut down
the computations a bit: since e1 is indeed a two-sided identity, by Exercise 1.8 any
of the associators involving e1 will vanish. This leaves us to check the 27 associa-
tors involving only e2, e3, e4. Obviously all the associators of the form [ei, ei, ei]
are going to vanish, so that leaves us with 24 choices. That’s not so bad:

[e2, e2, e3] = (e2e2)e3 − e2(e2e3) = ae3 − e2e4 = ae3 − ae3 = 0.
[e2, e2, e4] = (e2e2)e4 − e2(e2e4) = ae4 − ae2e3 = ae4 − ae4 = 0.
[e2, e3, e2] = (e2e3)e2 − e2(e3e2) = e4e2 − e2e4 = 0.
[e2, e3, e3] = (e2e3)e3 − e2(e3e3) = e4e3 − be2 = be2 − be2 = 0.
[e2, e3, e4] = (e2e3)e4 − e2(e3e4) = e4e4 − be2e2 = −ab+ ab = 0.
[e2, e4, e2] = (e2e4)e2 − e2(e4e2) = −ae3e2 − ae2e3 = 0.
[e2, e4, e3] = (e2e4)e3 − e2(e4e3) = ae3e3 − be2e2 = ab− ba = 0.
[e2, e4, e4] = (e2e4)e4 − e2(e4e4) = ae3e4 + abe2 = −abe2 + abe2 = 0.
[e3, e2, e2] = (e3e2)e2 − e3(e2e2) = −e4e2 − ae3 = ae3 − ae3 = 0.
[e3, e2, e3] = (e3e2)e3 − e3(e2e3) = −e4e3 − e3e4 = e3e4 − e3e4 = 0.
[e3, e2, e4] = (e3e2)e4 − e3(e2e4) = −e4e4 − ae3e3 = ab− ab = 0.
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[e3, e3, e2] = (e3e3)e2 − e3(e3e2) = be2 + e3e4 = be2 − be2 = 0.
[e3, e3, e4] = (e3e3)e4 − e3(e3e4) = be4 + be3e2 = be4 − be4 = 0.
[e3, e4, e2] = (e3e4)e2 − e3(e4e2) = −be2e2 + ae3a3 = −ab+ ab = 0.
[e3, e4, e3] = (e3e4)e3 − e3(e4e3) = −be2e3 − be2e2 = 0.
[e3, e4, e4] = (e3e4)e4 − e3(e4e4) = −be2e4 + abe3 = −abe3 + abe3 = 0.
[e4, e2, e2] = (e4e2)e2 − e4(e2e2) = −ae3e2 − ae4 = ae4 − ae4 = 0.
[e4, e2, e3] = (e4e2)e3 − e4(e2e3) = −ae3e3 − e4e4 = −ab+ ab = 0.
[e4, e2, e4] = (e4e2)e4 − e4(e2e4) = −ae3e4 − ae4e3 = 0.
[e4, e3, e2] = (e4e3)e2 − e4(e3e2) = be2e2 − e4e4 = −ab+ ab = 0.
[e4, e3, e3] = (e4e3)e3 − e4(e3e3) = be2e3 − be4 = be4 − be4 = 0.
[e4, e3, e4] = (e4e3)e4 − e4(e3e4) = be2e4 − be4e2 = 0.
[e4, e4, e2] = (e4e4)e2 − e4(e4e2) = −abe2 + ae4e3 = −abe2 + abe2 = 0.
[e4, e4, e3] = (e4e4)e3 − e4(e4e3) = −abe3 + be4e2 = abe3 − abe3 = 0.

Exercise 1.13. Show: Z(B) = e1 · F .

Exercise 1.14. Suppose that either a = 1 or b = 1. Show that B ∼= M2(F ).

Example 1.8. (Quaternion algebras in characteristic 2): . . .

Nucleus: For an F -algebra A, define the nucleus Nuc(A) to be the set of all x ∈ A
such that [x,A,A] = [A, x,A] = [A,A, x] = 0, i.e., the set of all x which “associate
with every pair of elements of A”.

Exercise 1.15. Show: the nucleus of an F -algebra is an associative subalgebra.

Exercise 1.16. Show: an F -algebra A is associative iff its opposite algebra is
associative.

Exercise 1.17. Show: a quaternion algebra is isomorphic to its opposite algebra.

1.7. Alternativity. Previously we noted that the commutator [x, y] was, in gen-
eral, an alternating multilinear form. It is then natural to ask: does the same hold
for the associator [x, y, z]?

This suggests that it may be worth singling out the class of algebras A for which
the F -trilinear associator map A3 → A is alternating. This condition is equivalent
to the conjunction of the following three identities:

(LA) For all x, y ∈ A, [x, x, y] = 0, i.e., (xx)y = x(yx).
(F) For all x, y ∈ A, [x, y, x] = 0, i.e., (xy)x = x(yx).
(RA) For all x, y ∈ A, [x, y, y] = 0, i.e. (xy)y = x(yy).

(LA) and (RA) stand for, respectively, left alternative and right alternative,
whereas (F) stands for flexible.2

For later use, we introduce some more precise terminology. For distinct indices
i, j in {1, . . . , n}, say that an n-linear map L(x) = L(x1, . . . , xn) is (ij)-skew sym-
metric if interchanging the ith and jth indices of any vector x introduces a minus
sign in the map. A trilinear map is evidently skew-symmetric in the above sense iff
it is (12)-skew symmetric and (23)-skew symmetric. Now we claim that property

2No, I don’t why an algebra satisfying this identity is called flexible, but it is standard.
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(LA) implies the alternator is (12)-skew symmetric and property (RA) implies the
alternator is (23)-skew symmetric. Indeed, for x, y, z ∈ A, (LA) implies

0 = [x+ y, x+ y, z] = [x, x, z] + [x, y, z] + [y, x, z] + [y, y, z] = [x, y, z] + [y, x, z],

so [y, x, z] = −[x, y, z]. Similarly (RA) implies

0 = [x, y + z, y + z] = [x, y, y] + [x, y, z] + [x, z, y] + [x, z, z] = [x, y, z] + [x, z, y],

so [x, z, y] = −[x, y, z].

Lemma 1.9. An F -algebra A which satisfies any two of the properties (LA), (RA),
(F) also satisfies the third. Such an algebra is called alternating.

Proof. Let x, y be any elements of A.
If A satisfies (LA) and (RA) it is skew symmetric, so [x, y, x] = −[x, x, y] = 0.
If A satisfies (LA) and (F) it is (12)-skew symmetric, so [x, y, y] = −[y, x, y] = 0.
IfA satisfies (RA) and (F) it is (23)-skew symmetric, so [x, x, y] = −[x, y, x] = 0. �

Exercise 1.18. Let F be a field. Exhibit three algebras over F each satisfying
exactly one of the three properties of Lemma 1.9 above.

Exercise 1.19. Let A be an F -algebra.
a) Suppose that the characteristic of F is not 2. Show that if the alternator is
skew-symmetric, then it is alternating.
b) Give an example of an F -algebra A for which the alternator is skew-symmetric
but not alternating.

Exercise 1.20. a) Let A = e1F ⊕ e2F be the F -algebra with multiplication table
e1e1 = e1e2 = e2e1 = e2, e2e2 = e1. Show that A is not alternative.
b) By the previous exercises, every unital 2-dimensional F -algebra is associative, so
certainly alternative. Use part a) to build a 3-dimensionial unital F -algebra which
is not alternative.

Exercise 1.21. Let V and W by K-vector spaces and L : V n → W an n-linear
map. Let σ ∈ Sn. For x = (x1, . . . , xn) ∈ V n, put σ(x) = (xσ(1), . . . , xσ(n)). We
say that L is σ-skew symmetric if for all x ∈ V n, L(σ(x)) = sgn(σ)L(x).
a) Let {ei}i∈I be any K-basis for V . Suppose that for all vectors x each of whose
components is a basis element ei we have L(σ(x)) = sgn(σ)L(x). Show that L is
σ-skew symmetric.
b) Deduce that if K/F is a base extension, L is σ-skew symmetric iff its scalar
extension LK : V n ⊗K →W ⊗K is σ-skew symmetric.
c) Let A/K be an F -algebra with a F -basis {ei}i∈I . Show that to check skew sym-

metry of the alternator map A3 → A, it is enough to check that for all i, j, k ∈ I,

[ej , ei, ek] + [ei, ej , ek] = [ei, ek, ej ] + [ei, ej , ek] = 0.

In particular, if F has characteristic not 2, this shows that the alternating property
can be checked on basis elements and thus that a scalar extension of an alternating
algebra is alternating.
d) Let F be a field of characteristic 2. Exhibit an F -algebra A with an F -basis
{ei}i∈I such that for all i, j ∈ I, [ei, ei, ej ] = [ei, ej , ej ] = 0 but A is not alternating.

Nevertheless:
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Proposition 1.10. Let V and W be an F -vector spaces and L : V n → W be an
alternating n-linear map.
a) For any field extension K/F , the scalar extension LK is alternating.
b) It follows that if A is an alternating F -algebra and K/F is a field extension,
then A/K is alternating.

Proof. Let 1 ≤ i < j ≤ n. Say that L is (ij)-alternating if for any vector x =
(x1, . . . , xn) with xi = xj , L(x) = 0. Clearly L is alternating iff it is (ij)-alternating
for all pairs i < j. Let E = {ei}i∈I be an F -basis for V . Suppose that L(x) = 0 for
all vectors x with xi = xj and for all k /∈ {i, j}, xk ∈ E is a basis element. Then it
is easy to see that L is (ij)-alternating. Thus we reduce to the case of n = 2.

For this, we calculate explicitly: any x ∈ VK may be written as
∑
i xiei with

xi ∈ K. Thus

[x, x] = [
∑
i

xiei,
∑
i

xiei] =
∑
i

x2i [ei, ei] +
∑
i 6=j

xixj [ei, ej ].

The first term is zero since L : V 2 → W is alternating. As for the second, upon
putting a total ordering on I, we may rewrite it as

∑
i<j xixj([ei, ej ] + [ej , ei]).

Since L is alternating, hence skew-symmetric, this latter term is also zero. �

Exercise 1.22. Show: an algebra A is alternative iff its opposite algebra is alter-
native.

Proposition 1.11. In any alternative F -algebra A, the Moufang identities hold:
for all a, x, y ∈ A, we have

(4) (xax)y = x(a(xy)),

(5) y(xax) = ((yx)a)x,

(6) (xy)(ax) = x(ya)x.

Moreover, in any F -algebra A, (6) holds iff for all a, x, y ∈ A we have

(7) [y, xa, x] = −[y, x, a]x.

Remark: Since alternative algebras are flexible, the expression xax is unambiguous.

Proof. Let a, x, y ∈ A. Then

(xax)y − x(a(xy)) = [xa, x, y] + [x, a, xy] = −[x, xa, y]− [x, xy, a]

= −(x(xa))y + x((xa)y)− (x(xy))a+ x((xy)a)

= −[x2, a, y]− [x2, y, a]− x2(ay)− x2(ya) + x((xa)y) + (xy)a)

= x(−x(ay)− x(ya) + (xa)y + (xy)a)

= x([x, a, y] + [x, y, a]) = 0,

establishing (4). By Exercise 1.22, Aop is also alternating, and the identity (4) in
Aop is equivalent to the identity (5) in A. Using (4) we have

(xy)(ax)− x(ya)x = [x, y, ax] + x(y(ax)− (ya)x)

= −[x, ax, y]− x[y, a, x] = −(xax)y + x((ax)y − [y, a, x])

= −x(a(xy)− (ax)y + [y, a, x]) = −x(−[a, x, y] + [y, a, x]) = 0,

establishing (6). Finally, assuming (4) we get

[y, xa, x] = (y(xa))x− y(xax) = (y(xa))x− ((yx)a)x = −[y, x, a]x
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and conversely assuming (7) gives (4). �

Lemma 1.12. Let A be an F -algebra in which (7) holds: i.e., for all a, x, y ∈ A,

[y, xa, x] = −[y, x, a]x.

Then for all a, x, y, z ∈ A we have

(8) [y, xa, z] + [y, za, x] = −[y, x, a]z − [y, z, a]x.

Proof. Observe that the identity (7) is quadratic in x. In such cases there is a
corresponding linearized identity: i.e., we replace the identity ∀x ∈ V , P (x) = 0
with the identity ∀x, z ∈ V 2, P (x+ z)− P (x)− P (z) = 0. Applying this to (7) we
get

0 = [y, xa+za, x+z]+ [y, x+z, a](x+z)− [y, xa, x]− [y, x, a]x− [y, za, z]− [y, z, a]z

= [y, xa, z] + [y, za, x] + [y, x, a]z + [y, z, a]x = 0.

�

Theorem 1.13. (E. Artin) Let A be an alternative F -algebra and x, y ∈ A. Then
the F -subalgebra generated by x and y is associative.

Proof. We denote by p(x, y), q(x, y), r(x, y) any products of t elements z1 · · · zt –
i.e., possibly a diferent element for each of the Ct−1 possible choices of parentheses
– with each zi equal to either x or y. For such an expression p(x, y) we define its
degree δp to be t, i.e., the number of terms in the product: we assume that t ≥ 1.
It is enough to show that all of the associators [p, q, r] vanish.

We go by induction on N = δp+ δq+ δr. The result holds vacuously for N < 3.
By induction, we suppose that it holds for all triples with degree sum less than N .
In particular then δp < N , so that by induction the insertion of the parentheses in
p(x, y) is immaterial. Now some two of p, q, r must begin with the same letter, say
x. Since associators alternate, we may assume that q(x, y) and r(x, y) both begin
with x.
Case 1: δq = δr = 1. Then [p, q, r] = [p, x, x] = 0.
Case 2: δq > 1, δr = 1. Then, by (7), [p, q, r] = [p, xq′, x] = −[p, x, q′]x = 0 by
induction.
Case 3: If δq = 1, δr > 1, then using (23)-skew symmetry of alternators we reduce
to Case 2.
Case 4: Finally, suppose δq, δr > 1, and put q = xq′, r = xr′.

[p, q, r] = [p, xq′, xr′] = −[xr′, xq′, p]

= [xr′, pq′, x] + [xr′, x, q′]p+ [xr′, p, q′] = −[pq′, xr′, x] = [pq′, x, r′]x = 0.

Here we have used, in order, (13)-skew symmetry, (8), the induction hypothesis,
(12)-skew symmetry, and (7), and the induction hypothesis once again. �

An F -algebra A is power-associative if for all x ∈ A and any n ∈ Z+, any of
the Cn−1 different ways of parenthesizing xn give rise to the same answer. Equiv-
alently, A is power-associative if for each x ∈ A, the F -subalgebra generated by x
is associative. In lieu of the previous sentence, we get an immediate corollary to
Artin’s Theorem.

Corollary 1.14. An alternative algebra is power-associative.
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Example (Octonion Algebras in characteristic not 2): . . .

Example (Octonion Algebras in characteristic 2): . . .

2. Composition Algebras

To fix ideas we assume throughout most of this section that F is a ground field with
characteristic different from 2. At the end of the section we discuss modifications
for the characteristic 2 case.

The following is our preliminary definition of composition algebra.

Definition: A composition algebra over F is a pair (C,N), where C is a unital
F -algebra3 and N : C → F is a nondegenerate quadratic form on C such that for
all x, y ∈ C, N(xy) = N(x)N(y).

2.1. Hurwitz’s Theorem.

Many of the algebras we met in §1 are composition algebras. Indeed:

Example 2.1: F is a composition F -algebra.

Example 2.2: Binion algebras ( αF ).

Example 2.3: Quaternion algebras (α,βF ).

Example 2.4: Octonion algebras (α,β,γF ).

Remarkably, every composition algebra over a field F (of characteristic not 2) is
isomorphic to one of the algebras given in the above examples. Namely, we have
the following theorem, whose proof will be given later in the section.

Theorem 2.1. (Hurwitz Classification of Composition Algebras)
Let C/F be a composition algebra. Then dimC ∈ {1, 2, 4, 8}. Moreover:
a) If dimC = 1, then C = F . With respect to the basis 1 of C, the norm form is

N(x) = x2.

b) If dimC = 2, there exists α ∈ F× such that C ∼=
(
α
F

)
= F [t]/(t2 − α). With

respect to the basis 1, α of C, the norm form is

N = N(x1, x2) = x21 − αx22.
c) If dimC = 4, there exist α, β ∈ F× such that C is isomorphic to the quater-

nion algebra B(α, β) =
(
α,β
F

)
. With respect to the standard quaternion basis

e1, e2, e3, e4, the norm form is

N(x1, x2, x3, x4) = x21 − αx22 − βx23 + αβx24.

d) If dimC = 8, there exist α, β, γ ∈ F× such that C is isomorphic to the oc-

tonion algebra O(α, β, γ) =
(
α,β,γ
F

)
. With respect to the standard octonion basis

3In particular, we assume an embedding F ↪→ 1F ⊂ C.
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e1, e2, e3, e4, e5, e6, e7, e8, the norm form is

N(x1, . . . , x8) = x21 − αx22 − βx23 − γx24 + αβx25 + αγx26 + βγx27 − αβγx28.
Conversely, each of the algebras exhibited above is a composition algebra.

Note in particular that although a composition algebra is a priori allowed to be
infinite-dimensional over F , it turns out that the only possible dimensions are 1, 2,
4 and 8.

2.2. Composition Algebras are Quadratic and Alternative.

Recall the process of linearizing a quadratic form to get a bilinear form. Namely,
if q : V → F is a quadratic form (or, more generally, is quadratic in one of its
arguments while the other arguments are held fixed), then the associated bilinear
form is

〈x, y〉 = q(x+ y)− q(x)− q(y).

At least that is our convention here. In the algebraic theory of quadratic forms (in
characteristic not 2), it is customary to insert a factor of 1

2 in the definition of the
associated bilinear form. Thus, with our convention, we find 〈x, x〉 = 2q(x) (rather
than the more familiar 〈x, x〉 = q(x)). The advantages of this convention are first,
that as we shall see at the end, it makes some sense even in characteristic 2, and
in characteristic different from 2 leads to some simpler formulas, whereas with the
other convention many of our formulas would have 1

2 ’s in them. In particular we
have the basic linearization identity ∀x, y ∈ C,

N(x+ y) = N(x) +N(y) + 〈x, y〉.
A homomorphism of composition algebras (C,N) → (C ′, N ′) is an F -algebra ho-
momorphism ϕ : C → C ′ which is also an isometric embedding with respect to the
induced bilinear forms. In particular, a composition subalgebra (C ′, N ′) amounts
to (i.e., is, up to isomorphism) an F -subalgebra of C that is nondegenerate with
respect to N .

We define the trace map T : C → F by T (x) = 〈x, 1〉.

We now deduce some identities valid in any composition algebra (C,N). Denoting
the multiplicative identity of C by 1, we have that for all x ∈ C,

N(x) = N(1 · x) = N(1)N(x).

Since N is nondegenerate, there exists x ∈ X with N(x) 6= 0, whence

N(1) = 1

and the quadratic form N is principal (i.e., represents 1).

For all x1x2, y ∈ C,

N(x1y+x2y) = N(x1y)+N(x2y)+〈x1y, x2y〉 = N(x1)N(y)+N(x2)N(y)+〈x1y, x2y〉
and also

N(x1y+x2y) = N((x1+x2)y) = N(x1+x2)N(y) = (N(x1) +N(x2) + 〈x1, x2〉)N(y).

Comparing these gives

(9) 〈x1y, x2y〉 = 〈x1, x2〉N(y)
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and similarly

(10) 〈xy1, xy2〉 = N(x)〈y1, y2〉.
Notice that equation (9) is quadratic in y. Its linearized form is

(11) 〈x1y1, x2y2〉+ 〈x1y2, x2y1〉 = 〈x1, x2〉〈y1, y2〉.
Taking x1 = x, y1 = y, x2 = z, y2 = 1 in (11) gives

(12) 〈xy, z〉+ 〈x, zy〉 = 〈x, z〉〈y, 1〉 = T (y)〈x, z〉.
Taking x1 = y2 = x, x2 = y, y2 = 1 in (11) gives

(13) 〈x, yx〉+ 〈x2, y〉 = 〈x, y〉〈1, x〉 = T (x)〈x, y〉.
Taking x1 = x, y1 = y, x2 = y2 = 1 gives

(14) 〈xy, 1〉+ 〈x, y〉 = 〈x, 1〉〈y, 1〉.

Theorem 2.2. Let (C,N) be a composition algebra and x ∈ C. Then

(15) x2 − T (x)x+N(x)1 = 0.

Thus every element of C satisfies a quadratic equation over F .

Proof. Let y ∈ C be arbitrary and form the inner product of LHS(15) with y:

〈x2, y〉 − 〈x, 1〉〈x, y〉+ 〈1, y〉N(x) = 〈x2, y〉 − 〈x, 1〉〈x, y〉+ 〈x, yx〉 = 0.

Here the first equality is by (9) and the second is by (13). Since this holds for all
y ∈ C and the bilinear form is nondegenerate, this establishes (15). �

Remark: An algebra A/F in which each element satisfies a quadratic polynomial
with F -coefficients is called a quadratic algebra. (Similarly, one can define cubic
algebras and algebras of degree d < ∞).) Thus every composition algebra is a
quadratic algebra.

Again (15) is quadratic in x and its linearized version is

(16) xy + yx− 〈x, 1〉y − 〈y, 1〉x+ 〈x, y〉1 = 0.

We define the pure subspace of C to be 1⊥. Note that N restricted to F ·1 is just
the quadratic form x 7→ x2, so certainly F · 1 is a nondegenerate subspace. By [?,
Prop. I.6], it follows that as a quadratic space we have C = F · 1⊕ 1⊥ and further,
by [?, Cor. I.8], the pure subspace 1⊥ is also nondegenerate. In this regard, (16)
has the following pleasant consequence: for all x, y ∈ 1⊥ with 〈x, y〉 = 0, xy = −yx.
That is, any two perpendicular elements in the pure subspace anticommute. The
attentive reader should now be reminiscing about the basis elements e2, e3, e4 in a
quaternion algebra B! (More on this shortly.)

Corollary 2.3. Let (C,N) be a composition algebra and x ∈ C\F ·1. If the subspace
Cx = F · 1⊕ F · x is nondegenerate for N , then it is a composition subalgebra.

Proof. From (15) it follows that Cx ∼= F [t]/(t2 − 〈x, 1〉t+N(x)) is a commutative,
associative unital F -subalgebra of C. Therefore, ifN restricted to Cx is nonsingular,
Cx is a composition subalgebra of C. �

The following important corollary shows that our definition of a composition algebra
as a pair is unnecessarily complicated:
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Corollary 2.4. Let C be a unital F -algebra, and let N , N ′ be two quadratic forms
on C such that (C,N) and (C,N ′) are each composition algebras. Then N = N ′.

Proof. As we have seen, for any element x of the form α ·1, we must have N(α ·1) =
N ′(α·1) = α2. Otherwise, the minimal polynomial of x over F has degree at least 2,
and in view of (15) must be both x2−〈x, 1〉N +N(x) ·1 and x2−〈x, 1〉N ′ +N ′(x) ·1,
so N(x) = N ′(x). �

Corollary 2.5. Let (C,N) and (C ′, N ′) be composition algebras, and let ϕ : C →
C ′ be an isomorphism of F -algebras. Then ϕ is necessarily an isometry.

Exercise 2.1. Deduce Corollary 2.5 from Corollary 2.4.

Because of Corollaries 2.4 and 2.5, it makes sense to speak of “the composition
algebra C”, as well as “the quadratic form N associated to the composition algebra
C”. For reasons which will become clear presently, we refer to N as the norm
form of C.

Theorem 2.6. Every composition algebra is an alternative algebra.

Proof. Let (C,N) be a composition algebra. As special cases of the identity (11)
we have that for all x, y, z ∈ C,

(17) 〈xy, z〉+ 〈y, xz〉 = t(x)〈y, z〉

and

(18) 〈xy, z〉+ 〈x, zy〉 = T (y)〈x, z〉.

It follows from (17) and (10) that for all x, y, z ∈ C,

〈x(xy), z〉 = T (x)〈xy, z〉 − 〈xy, xz〉 = 〈(T (x)x−N(x)1)y, z〉 = 〈x2y, z〉.

Since z is arbitary and the bilinear form is nondegenerate, this gives that for all
x, y ∈ C, x(xy) = (xx)y, i.e., the left alternative identity (LA). Similarly, using
(18) and (9) we deduce the right alternative identity. By Lemma 1.9, C is therefore
alternative. �

Applying Theorem 2.6 to Example X.X, we immediately deduce a result that we
have claimed before but did not wish to prove by direct computation.

Corollary 2.7. An octonion algebra is alternative.

2.3. The involution.

An involution on an F -algebra A is an F -linear map ι : A→ A such that:

(I1) for all x, y ∈ A, ι(xy) = ι(y)ι(x), and
(I2) for all x ∈ A, ι(ι(x)) = x.

Note that (I1) says precisely that x 7→ ι(x) gives an isomorphism A
∼→ Aop. It

is common to use the bar notation to denote involutions, i.e., to write x for ι(x).
We shall do so here.

I claim that any composition algebra C admits an involution, namely x 7→ x =
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〈x, 1〉1− x. Note that if τ1 is reflection through the orthogonal complement 1⊥ of
the anisotropic vector 1 in the sense of quadratic form theory (c.f. [?, §I.8.2]), then

(19) x = −τ1(x).

Thus under the natural identification of the subalgebra F · 1 of C with F , we have
T (x) = x+ ι(a).

Proposition 2.8. Let x, y be elements of a composition algebra C with norm map
N and associated bilinear form 〈, 〉. Then:
a) x+ y = x+ y.
b) xx = xx = N(x) · 1.
c) x = x.
d) xy = yx.
e) N(x) = N(x).
f) 〈x, y〉 = 〈x, y〉.

Proof. Part a) is immediate. Indeed the map x 7→ x is visibly F -linear.
b) It is clear from the definition that x and x commute. Using (15), we compute
xx = x(〈x, 1〉1− x) = −(x2 − 〈x, 1〉x)1 = N(x)1.

c) We have x = −τ1(x) = −τ1(x) = τ1(τ1(x)) = x, since τ1 is a reflection. (Or just
compute directly.)
d) We compute

yx = (〈x, 1〉1− x) (〈y, 1〉1− y) = 〈x, 1〉〈y, 1〉1− 〈x, 1〉y − 〈y, 1〉x+ yx

= 〈x, 1〉〈y, 1〉1− xy − 〈x, y〉1 = 〈xy, 1〉1− xy = xy.

The third equality comes from (16) and the fourth equality from (14).
e) N(x)1 = xx = xx = N(x)1, so N(x) = N(x).
f) We have

〈x, y〉 = N(x+ y)−N(x)−N(y)

= N(x+ y)−N(x)−N(y) = N(x+ y)−N(x)−N(y) = 〈x, y〉.
�

And now, more identities!

Lemma 2.9. Let x, y, z be elements of a composition algebra C. Then:

(20) 〈xy, z〉 = 〈y, xz〉.

(21) 〈xy, z〉 = 〈x, zy〉.

(22) 〈xy, z〉 = 〈yz, x〉.

(23) x(xy) = N(x)y.

(24) (xy)y = N(y)x.

(25) x(yz) + y(xz) = 〈x, y〉z.

(26) (xy)z + (xz)y = 〈y, z〉x.
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Proof. We have

〈y, xz〉 = 〈y, (〈x, 1〉1− x)z〉 = 〈x, 1〉〈y, z〉 − 〈y, xz〉.

Using 11, the above expression is equal to

〈xy, z〉+ 〈xz, y〉 − 〈y, xz〉 = 〈xy, z〉,

establishing (20). Now applying (20) twice, we get

〈xy, z〉 = 〈y, xz〉 = 〈y, zx〉 = 〈zx, y〉 = 〈x, zy,

establishing (21). Similarly, using (20) we get

〈xy, z〉 = 〈yx, z〉 = 〈x, yz〉 = 〈yz, x〉,

establishing (22).
Next, take the inner product of x(xy) with any z ∈ C and apply (20) followed by
(10) to get

〈x(xy), z〉 = 〈xy, xz〉 = N(x)〈y, z〉 = 〈N(x)y, z〉.
Since the bilinear form is nondegenerate, (23) follows. Applying the involution to
(23) yields (24). Finally, the identities (25) and (26) are the linearizations of (23)
and (24) respectively. �

Proposition 2.10. Let C be a composition algebra and x ∈ C. Then x has a
multiplicative inverse if and only if N(x) 6= 0, and then x−1 = N(x)−1x.

Proof. Suppose x has a multiplicative inverse, i.e., there exists y ∈ C such that
xy = yx = 1. Then 1 = N(1) = N(xy) = N(x)N(y), so N(x) 6= 0. Conversely,
if N(x) 6= 0, then – since N(x), x and x all lie in the commutative, assocative
subalgebra Cx, we may unambiguously multiply the identities xx = xx = N(x) by
N(x)−1 to see that x(N(x)−1x) = (N(x)−1x)x = 1. �

Exercise 2.2. Use Theorem 2.6, Theorem 1.13 and the multiplicativity of the
quaternion norm to give a less computational proof of the associativity of quaternion
algebras.

Corollary 2.11. For any α1, α2, α3 ∈ F×, the octonion algebra
(
α1,α2,α3

F

)
is al-

ternative.

Proof. Indeed in §1 we showed that an octonion algebra is a composition algebra
by writing down an explicit norm form (“generalized eight squares identity”). �

2.4. The Internal Cayley-Dickson-Albert Process.

Let C be a composition algebra, and let D ⊂ C be a finite-dimensional proper
composition subalgebra. Then C = D ⊕D⊥ and D⊥ is also nondegnerate. Since
C is proper, D⊥ 6= {0} and thus we may choose an anisotropic vector i ∈ D⊥, i.e.,
α = N(i) 6= 0. Since D contains 1 · F , D⊥ ⊂ 1⊥, and thus i = −i.

To D and the anisotropic vector i in D⊥ we associate the nondegenerate subspace

D1 = D +Di.

Let y, z ∈ D. Then

〈z, yi〉 = 〈z, iy〉 = −〈z, iy〉 = −〈zy, i〉 = 0,
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since zy ∈ D. This shows

(27) Di ⊂ D⊥.
In particular i = 1i ∈ D⊥ ⊂ 1⊥, so i = −i.

Also, since D ⊂ i⊥, for all y ∈ D we have

(28) yi = −yi+ 〈y, i〉1 = −iy = iy.

Since D is nondegenerate, Di ∩D = 0 and thus D1 = D ⊕Di (direct sum).

Theorem 2.12. (Internal Cayley-Dickson-Albert Process) Let D ⊂ C be a proper,
finite dimensional nondegenerate subalgebra and let i ∈ D⊥ be such that α =
−N(i) 6= 0. Then D1 = D⊕Di is a nondegenerate subalgebra of C with dimD1 =
2 dimD. Moreover, for all x, y, u, v ∈ D,

(29) (x+ yi)(u+ vi) = (xu+ αvy) + (vx+ yu)i,

(30) N(x+ yi) = N(x)− αN(y),

(31) x+ yi = x− yi.

Proof.
Step 0: We know that D1 is an F -subspace of C. Since N(i) 6= 0, i ∈ C× and thus
the linear endomorphism Ri : C → C, x 7→ xi is an isomorphism. So dimD1 =
dimD + dimDi = 2 dimD.
Step 1: We prove (29). For this it is enough to derive the following three special
cases: for all x, y, u, v ∈ D, we have

(32) x(vi) = (vx)i,

(33) (yi)u = (yu)i,

(34) (yi)(vi) = −αvy.
To establish (32), we form the inner product with z ∈ C and recall that since
vi ∈ 1⊥, vi = −vi:

〈x(vi), z〉 = 〈vi, xz〉 = −〈vi, zx〉.
Applying (11) and using 〈i, x〉 = 0, the above expression is equal to

〈vx, zi〉 = −〈vx, xi〉+ 〈z, 1〉〈vx, a〉 = −〈vx, zi〉
= 〈vx, zi〉 = 〈(vx)i, z〉,

where in the last equality we have used (21). This establishes (32). Similarly, for
any z ∈ C,

〈(yi)u, z〉 = 〈yi, zu〉 = −〈yu, zi〉 = 〈yu, zi〉 = 〈(yu)i, z〉.
Finally, observe that for y ∈ D,

yi = −iy + 〈yi, 1〉 = iy.

Thus, applying the Moufang identity (4),

(yi)(vi) = (iy)(vi) = i((yv)i) = i(i(vy)) = −αvy.
Step 2: From (29) it follows that D1 is an F -subalgebra.
Step 3: As we saw just above, for all x, y ∈ D, 〈x, yi〉 = 0, and thus

N(x+ yi) = N(x) +N(y)N(i) = N(x)− αN(y),
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verifying (30). Thus the norm form on D1 is the orthogonal direct sum of the
norm form on D with a nonzero scalar multiple of the norm form on D. (Or better
yet, N on D1 is the tensor product of N on D with 〈1,−α〉!) Thus it is visibly
nondegenerate on D1.
Step 4: We have x+ yi = x+ iy = x− iy = x− yi, proving (31). �

2.5. Proof of Hurwitz’s Theorem.

Let C be any finite-dimensional composition algebra over F . Let C0 = F · 1.
If C0 ( C, choose i1 ∈ C⊥0 with N(i1) = −α1 6= 0. Then

C1 = C(α1) = C0 ⊕ C0i1

is a two-dimensional composition subalgebra of C. If it is proper, choose i2 ∈ C⊥1
with N(i2) = −α2 6= 0, so

C2 = C(α1, α2) = C1 ⊕ C1i2

is a 4-dimensional composition subalgebra of C. If C2 is proper, then choose i3 ∈ C⊥3
with N(i3) = −α3 6= 0, so

C3 = C(α1, α2, α3) = C2 ⊕ C2i3

is an 8-dimensional composition subalgebra of C. And then, a priori this construc-
tion can be continued: if dimC is infinite, it can be continued indefinitely. If dimC
is finite, then this shows that it must be of the form 2d and then we get a sequence
of subalgebras C1, . . . , Cd with dimCk = 2k for all k.

Theorem 2.13. With notation as above:
a) The algebra C(α1) is isomorphic to the binion algebra

(
α
F

)
.

b) The algebra C(α1, α2) is isomorphic to the quaternion algebra
(
α,β
F

)
.

c) The algebra C(α1, α2, α3) is isomorphic to the octonion algebra
(
α,β,γ
F

)
.

Proof. By choosing natural F -bases on both sides, one simply checks that the mul-
tiplication laws agree. We leave the details to the reader as a good exercise. �

We have now verified Theorem 2.1 for composition algebras of dimension 1, 2, 4, 8.
It remains to be shown that these are the only possible dimensions of composition
algebras (recall that this includes ruling out the possibility of an infinite-dimensional
algebra). The internal Cayley-Dickson process shows that any composition algebra
C with dimC > 8 must have an octonion subalgebra, and so what remains is to
show that if O ⊂ C is an octonion subalgebra of a composition algebra than we
must have O = C. This is accomplished in the following result.

Proposition 2.14. Let D be a composition subalgebra of a composition algebra C.
If D ( C, then D is associative.

Proof. The key idea is that if D is proper, we can choose an anisotropic i ∈ D⊥
and form D1 = D ⊕Di, which is itself a composition subalgebra of C, with norm
given as in Theorem 2.12 above. Thus, for any x, y, u, v ∈ D, we have

N((x+ yi)(u+ vi)) = N(x+ yi)N(u+ vi).

Expanding this and simplifying leads to

〈xu, vy〉 = 〈vx, yu〉,
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hence

〈(xu)y, v〉 = 〈xu, vy〉 = 〈vx, yu〉 = 〈v, (yu)x〉 = 〈x(uy), v〉.
Thus by nondegeneracy of the norm form, we have (xu)y = x(uy), i.e., the multi-
plication in D is associative. �

This completes the proof of Theorem 2.1. In summary, the argument was this:
inside any composition algebra we can repeatedly apply the Cayley-Dickson process,
starting from C0 = F , to get a sequence of composition subalgebras C0, . . . , Cd.
However, each time we apply the process, we lose some of the nice properties of
the algebra studied in §1. If we can apply the process three times, then we lose
associativity and then Proposition 2.14 shows the process must terminate.

2.6. More on the norm form of a composition algebra.

Recall that we originally introduced a composition algebra as a pair (C,N), where
C is a unital F -algebra and N : C → F is a nondegenerate quadratic form which is
multiplicative with respect to C. Later we showed that in fact a given algebra C is
a composition algebra with respect to at most one quadratic form, allowing us to
speak of the “norm form” associated to “the composition algebra C”.

In this section we establish the converse result: a composition algebra is deter-
mined up to isomorphism by the isometry class of its norm form N .

Theorem 2.15. Let C,C ′ be composition algebras over F , with norm forms N ,
N ′. If N ∼= N ′, then O ∼= O′.

Proof. Let t be an isometry of quadratic spaces (C,N)→ (C ′, N ′): that is, for all
x ∈ C, N ′(t(x)) = N(x). In particular N ′(t(1)) = 1. In particular the element t(1)
of C ′ is invertible; let t(1)−1 denote its left inverse. If we then define a new map
T : C → C ′ by T (x) := t(1)−1t(x), then

N ′(T (x)) = N ′(t(1)−1t(x)) = N(t(1)−1)N ′(t(x)) = N(t(1))−1N(x) = N(x),

so that T is again an isometry and T (1) = 1. Having established this we may as
well just assume that t(1) = 1.
The case in which dimC = 1 – i.e., C = F – is trivial, and will be excluded.
Otherwise, we know that dimC = 2i for i = 1, 2, 3 and C is accordingly, a binion,
quaternion or octonion algebra. Depending upon i, we run through the first i steps
of the following argument.
Step 1: Choose i ∈ 1⊥ with N(i) 6= 0, and put i′ = t(i). Thus N ′(i) = N(i)
and 〈i′, 1〉 = 0. The two-dimensional composition subalgebras K = F1 ⊕ Fi and
K ′ = F1 ⊕ Fi′ are thus isomorphic: indeed, α1 · 1 + α2i 7→ α11 + α2i

′ is an
isomorphism. At this stage this assertion is probably obvious, but for analogous
use let us mention that it is a consequence of the Cayley-Dickson-Albert process.
Step 2: Choose j ∈ K⊥ with N(j) 6= 0 and put j′ = t(j). Extend ϕ to K1⊕Kj by
ϕ(x + yj) = ϕ(x) + ϕ(y)j′ for x, y ∈ K. Again, using the Cayley-Dickson-Albert

process and the observation that ϕ(x) = ϕ(x), we see that ϕ gives an isomorphism
of quaternion algebras B = K1⊕Kj → B′ = K ⊕Kj′.
Step 3: Choose k ∈ B⊥ with N(k) 6= 0 and put k′ = t(k). Extend ϕ to B1 ⊕ Bk
by ϕ(x+ yk) = ϕ(x) + ϕ(y)k′. This gives an isomorphism C → C ′. �
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Thus the problem of classifying the composition algebras over F is reduced to
that of classifying norm forms. From the perspective of quadratic form theory this
problem has an immediately satisfactory answer: the norm form of a composition
algebra is precisely a (0-fold, a trivial case, or) 1-fold, 2-fold or 3-fold Pfister form.
More precisely: for a binion algebra

K =
(α
F

)
,

the norm form is
〈〈α〉〉 := 〈1,−α〉.

For a quaternion algebra

B =

(
α, β

F

)
,

the norm form is

〈〈α, β〉〉 := 〈1,−α〉 ⊗ 〈1,−β〉 = 〈1,−α,−β, αβ〉.
For an octonion algebra

O =

(
α, β, γ

F

)
,

the norm form is

〈〈α, β, γ〉〉 := 〈1,−α〉 ⊗ 〈1,−β〉 ⊗ 〈1,−γ〉
= 〈1,−α,−β,−γ, αβ, αγ, βγ,−αβγ〉.

2.7. Split Composition Algebras.

Proposition 2.16. For a composition algebra (C,N), the following are equivalent:
(i) C is a division algebra (i.e., every nonzero element has both a left and a right
inverse).
(ii) N is anisotropic: for all x ∈ C•, N(x) 6= 0.

Proof. (i) =⇒ (ii): Suppose C is a division algebra and let x ∈ C•. Then there
exists y ∈ C such that yx = 1. Taking norms gives N(y)N(x) = 1, so N(x) 6= 0.
(ii) =⇒ (i): This follows immediately from the identity xx = xx = N(x) · 1. �

A composition algebra is split if it is not a division algebra.

Corollary 2.17. a) The binion algebra
(
1
F

) ∼= F ⊕ F is split.

b) The quaternion algebra
(
1,1
F

) ∼= M2(F ) is split.

c) The octonion algebra
(
1,1,1
F

)
is split.

Exercise 2.3. Prove Corollary 2.17.

Theorem 2.18. For any field F and any 1 ≤ i ≤ 3, there is up to isomorphism a
unique split composition algebra C/F of dimension 2i.

One natural proof of Theorem 2.18 uses the basic theory of Pfister forms. Namely,
a Pfister form is isotropic iff it is hyperbolic. In particular, there is up to isometry
exactly one isotropic Pfister form of any given dimension 2i. Applying Proposition
2.16 and Theorem 2.15 we conclude that there is up to isomorphism a unique split
composition algebra of dimension 2i, given by the i-fold tensor product of the hy-
perbolic plane 〈〈−1〉〉 = 〈1,−1〉.
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However, it is also of interest to give a more self-contained proof of Theorem 2.18,
which we do now.

Proof. Since the norm form N ∼= x21+N0(x2, . . . , xn) is isotropic, there exists i ∈ 1⊥

such that N(i) = −1. Indeed choose x ∈ C• with N(x) = 0. If x ∈ 1⊥, then pick
i′ ∈ 1⊥ with 〈i′, x〉 = 1, and put i := i′−(1+N(i′)x. If x /∈ 1⊥, write x = α1+y with
α ∈ F • and y ∈ 1⊥. Since 0 = N(x) = α2 +N(y), N(y) = −α2, so put a = α−1y.
(Or, using a little bit of quadratic form theory: N(x) ∼= x21 +a2x

2
2 + . . .+anx

2
n = 0.

Let x ∈ C• be an iostropic vector. If x1 6= 0, then i = (0, x2

x1
, . . . , xn

x1
) lies in 1⊥

and has N(i) = −1. If x1 = 0, then the form N0(x2, . . . , xn) = a2x
2
2 + . . . + anx

2
n

is isotropic and thus universal.) Thus K = F1 ⊕ Fi is a composition subalgebra.
Moreover it is isotropic: N(1 + i) = 0. If C itself is a binion algebra, we are
done. Otherwise we may find j ∈ K⊥ with N(j) = β 6= 0 and the Cayley-Dickson-
Albert doubling process shows that the quadratic form N on B = K ⊕ Kj is
〈1,−β〉 ⊗ N |K ∼= NK ⊕ (−βNK). Since NK ∼= H (the hyperbolic plane), so is
−βNK , and thus N |B is a direct sum of two hyperbolic planes. If C = B, we’re
done; otherwise, applying the doubling process again shows that N is the direct
sum of three hyperbolic planes. �

It follows from Theorem 2.18 and Corollary 2.17 that up to isomorphism the unique
split binion algebra over F is F ⊗F and the unique split quaternion algebra over F
is M2(F ). These are rather elementary and familiar mathematical objects. On the
other hand, let O denote the unique (up to isomorphism) split octonion algebra over
F . This is a much more interesting mathematical object. For instance, consider
its automorphism group as a unital F -algebra. For any finite dimensional unital
F -algebra A, Aut(A) naturally embeds into GLF (A). If e1 = 1, e2, . . . , en is an
F -basis of A, then a matrix Φ ∈ GLF (A) gives rise to an F -algebra automorphism
of A iff for all 1 ≤ i, j ≤ n, Φ(eiej) = (Φei)(Φej). It follows that the subgroup
Aut(A) of GLF (A) is cut out by polynomial equations, i.e., is a linear algebraic
group.

Theorem 2.19. Let O be the split octonion algebra over the field F . Then Aut(O)
is the split form of the exceptional simple algebraic group G2.

The proof of this result is (well) beyond the scope of these notes. See for instance
[SV00, Ch. 2].

Corollary 2.20. The isomorphism classes of octonion algebras over a field F are
parameterized by the Galois cohomology set H1(F,G2).

This has many important consequences. For instance, if F is any field with u-
invariant less than 8 – e.g. a finite field, a p-adic field, a Laurent series field over a
finite field, a global field with no real places – then every G2-torsor is trivial.

Exercise 2.4. Let F be a global field with exactly a real places. Show that there are
exactly 2a isomorphism classes of G2-torsors over F . (Suggestion: use the Hasse
Principle to count the number of isomorphism classes of 3-fold Pfister forms.)
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