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A ring R is non-dyadic if 2 ∈ R×; otherwise R is dyadic.

As a general rule, the theory of quadratic forms over a ring R goes more smoothly
if R is non-dyadic. Of course, if R is a field then this simply says that we wish to
avoid characteristic 2, but in general there is more to it than this. For instance,
the ring Z is dyadic according our definition whereas for an odd prime power q, the
ring Fq[t] is not, and indeed the theory of quadratic forms is somewhat easier over
the latter ring than the former. Of course if R is a dyadic domain of characteristic
different from 2 then R[ 12 ] is nondyadic.

The above dichotomy becomes especially clear when we consider the case of a
CDVR, i.e., a ring which is complete with respect to a discrete valuation v. Our
primary goal here is the analysis of quadratic forms over the fraction field F of
a CDVR, a complete discretely valued field. (In other words, we are treating the
local algebraic theory of quadratic forms. The local arithmetic theory is to a number
theorist even more important, but it is richer and will have to be treated later.)
Nevertheless we will certainly see the ring R play a role in our analysis.

1. Non-dyadic CDVFs

Let R be a CDVR with fraction field K, valuation v : K× → Z, maximal ideal p,
residue field k = R/p.
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Lemma 1. Let R be Henselian and nondyadic. Then for x ∈ R×, TFAE:
(i) x is a square in K×.
(ii) x is a square in R×.
(iii) The image x of x in k is a square in k×.

Proof. (i) =⇒ (ii): Suppose there exists y ∈ K with y2 = x. Then y satisfies the
monic polynomial equation t2 − x = 0 so is integral over R. But R, being a DVR,
is integrally closed, so y ∈ R. Moreover, for any elements x, y in a commutative
ring R, xy ∈ R× ⇐⇒ x, y ∈ R×, so y2 ∈ R× =⇒ y ∈ R×.
(ii) =⇒ (iii): Indeed, if there is y ∈ R× with y2 = x, then after applying the
quotient map we have y2 = x.
(iii) =⇒ (i): Let f(t) = t2 − x, let y ∈ k be such that y2 = x, and let ỹ be any

lift of y to R. Since f(ỹ) = 0, |f(ỹ)| < 1. Since R is nondyadic, f ′(ỹ) = 2y 6= 0, so
|f ′(ỹ)| = 1. So |f(ỹ)| < |f ′(ỹ)|2, and Hensel’s Lemma gives a root of f . �

We immediately deduce the following key result.

Corollary 2. Let R be a Henselian nondyadic DVR. Then the canonical map
R→ k induces an isomorphism of groups r : R×/R×2 → k×/k×2.

Remark 3. The conclusion of Corollary 2 is the only completeness property of
R that will be needed for the coming results. So we could axiomatize this result
by calling a non-dyadic DVR quadratically Henselian if the natural map r :
R×/R×2 → k×/k×2 is an isomorphism. We have nothing specific to gain from
this, so we will not use this terminology, but see e.g. [S, p. 208].

Lemma 4. Let R be a DVR.
a) There is a short exact sequence

1→ R× → K×
v→ Z→ 0.

This sequence is split, and splittings correspond to choices of a uniformizer π.
b) If R is Henselian and nondyadic, then there is a split exact sequence

1→ k×/k×2 → K×/K×2 → Z/2Z→ 0.

Proof. Part a) is immediate. Modding out by squares, we get a split short exact
sequence

1→ R×/R×2 → K×/K×2 → Z/2Z→ 0.

Further assuming that R is nondyadic and Henselian, we use the isomorphism of
Corollary 2 to get the desired result. �

In particular, any nondegenerate n-ary quadratic form has a diagonal representation
such that each coefficient has valuation 0 or 1 and thus a representaiton of the form

(1) q(x, y) = u1x
2
1 + . . .+ urx

2
r + πv1y

2
1 + . . .+ πvsy

2
s = q1(x) + πq2(y),

with ui, vj ∈ R× and r + s = n.

Theorem 5. Let R be a nondyadic DVR with fraction field K, uniformizer π and
residue field k. Let n ∈ Z+ and let r, s ∈ N with r+s = n. Let u1, . . . , ur, v1, . . . , vs ∈
R×, and let

(2) q(x, y) = u1x
2
1 + . . .+ urx

2
r + πv1y

2
1 + . . .+ πvsy

2
s = q1(x) + πq2(y),

be an n-ary quadratic form. Also write q1 and q2 for the reductions of q1 and q2
modulo π: these are nondegenerate quadratic forms over k.
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a) Suppose that q1 and q2 are anisotropic over k. Then q is anisotropic over K.
b) Suppose that K is Henselian and q is anisotropic over K. Then q1 and q2 are
both anisotropic over k.

Proof. a) Suppose q1 and q2 are both anisotropic over k and, seeking a contradiction,
that q is isotropic. By rescaling, we get a primitive vector (x, y) such that q(x, y) =
0: that is, all xi, yj lie in R and not all of them are divisible by π.
Case 1: Suppose there exists 1 ≤ i ≤ r such that v(xi) = 0. Then reducing the
equation q(x, y) = 0 modulo p gives q(x, y) = q1(x) = 0. Since xi 6= 0, q1 is isotropic
over k, a contradiction.
Case 2: Suppose π | xi for all 1 ≤ i ≤ r and v(yj) = 0 for some 1 ≤ j ≤ s. Then
π2 | q1(x), so the equation q1(x) + πq2(y) = 0 implies q2(y) = 0. Since yj 6= 0, q2
is isotropic over k, a contradiction.
b) Suppose q1 and q2 are not both anisotropic over k. If q1 is isotropic over k,
there is x ∈ kr with q1(x) = 0 and such that xi 6= 0 for at least one i. Then
∂q1
∂xi

= 2xi 6= 0 ∈ k, so by Hensel’s Lemma there is x′ ∈ Rr such that x′ (mod π) = x

and q1(x′) = 0. In particular x′i 6= 0, so q1 is isotropic over K. Since q1 is a subform
of q, also q is isotropic over K. Similarly, if q2 is isotropic over k then q2 is isotropic
over K and thus so is the subform πq2 of q, so q is isotropic over K. �

Corollary 6. For R a non-dyadic DVR with fraction field K and residue field k:
a) We have u(K) ≥ 2u(k).
b) If R is Henselian, then u(K) = 2u(k).

Proof. a) Let q be an anistropic n-ary quadratic form over k, and let q be any lift of q
to a quadratic form with R-coefficients. Then by Theorem 5a) q(x, y) = q(x)+πq(y)
is anisotropic over K. Thus u(K) ≥ 2u(k).
b) By Lemma 5, every nondegenerate n-ary quadratic form is K-equivalent to a
form q as in (2). So if K is Henselian and n > 2u(k), then max r, s > n so at least
one of q1, q2 is isotropic over k. By Theorem 6b), q is isotropic. �

Corollary 7. Let K be a CDVF with residue field Fq, q odd.
a) We have u(K) = 4.
b) Let r ∈ F×q \ F×2q . Then an explicit anisotropic quaternary form over K is

q(x, y, z, w) = x2 − ry2 + πz2 − πrw2.

Proof. Exercise. �

By looking more carefully at we have already done, we get the following result.

Theorem 8. (Springer) Let R be a nondyadic Henselian DVR with fraction field
K and residue field k. The map q 7→ (q1, q2) induces an isomorphism of Witt groups

δ : W (K)
∼→W (k)⊕W (k).

1.1. C((t)).

Let C be a field of characteristic different from 2 which is quadratically closed:
C× = C×2. We will classify quadratic forms over the field C((t)). Indeed, this is
easy. By Springer’s Theorem and Proposition II.11 we have a group isomorphism

(3) W (C((t)) ∼= W (C)×W (C) ∼= Z/2Z× Z/2Z.
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The three nontrivial anisotropic quadratic forms are

〈1〉, 〈t〉, 〈1, t〉.

By Corollary 6, we have

u(C((t)) = 2.

Thus in the terminology of §II.2, C((t)) is quadratically C1: every binary form is
universal. By Theorem II.13, since −1 ∈ C×2, this gives another derivation of (3).
We also get a complete classification of quadratic forms over C((t)): a nondegener-
ate form q is isometric to 〈1, . . . , 1, d(q)〉.

Exercise: Show that as a ring W (C((t))) ∼= Z/2Z[ε]/(ε2). In particular there is
exactly one nonzero anisotropic form q such that q ⊗ q is hyperbolic: which one?

1.2. R((t)).

Let R be a field of characteristic different from 2 which is Euclidean, i.e., for-
mally real and with [R× : R×2] = 2. We will classify quadratic forms over the field
R((t)).

By Lemma X.X, R((t)) has four square classes, represented by 1,−1, t,−t.

By Springer’s Theorem and Sylvester’s Law of Inertia (cf. §II.2) we have a group
isomorphism

(4) W (R((t)) ∼= W (R)×W (R) ∼= Z× Z.

Let us relate this structural information to the orders on R((t)), using the theory
of §II.4. By Theorem II.35, since R((t)) is formally real with torsionfree Witt ring,
it is Pythagorean: every sum of squares is already a square. In fact this is easy to
see directly: an element f ∈ R((t))• is a square iff

f =
∑
n≥d

ant
n

with d even and ad > 0, and a sum of Laurent series of this type is indeed another
series of that type. Either way, we get that the total signature map

Σ : W (R((t)))→
∏

P∈X(R((t)))

Z

is an injective group homomorphism. Thus R((t)) has at most two orderings.
In fact R((t)) has exactly two orderings: one of them, say P1, makes a nonzero

f =
∑
n≥d antn is positive iff its lowest degree term ad is positive (in R, with respect

to the unique ordering). In other words, P1 makes the uniformizer t positive and in-
finitesimal. On the other hand, τ : t 7→ −t induces a field automorphism of R((t)) –
the fixed field is R((t2)). In general, the image of an ordering under a field automor-
phism is also an ordering, sometimes the ordering we started with and sometimes
not. In this case clearly not: we get an ordering P2 in which the uniformizer −t
is positive and infinitesimal. (That was easy. What is less obvious is that there
are no more orderings, but as mentioned this follows from Pfister’s exact sequence.)
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Thus the total signature map may be identified with an injective homomorphism

Σ = (σ1, σ2) = (σP1 , σP2) : Z2 ↪→ Z2.

The map Σ is not surjective. In fact, whenever there is more than one ordering,
the total signature map cannot be surjective: since our forms are nondegenerate,
for any ordering P we have σP (q) ≡ dim q (mod 2) and thus for any two orderings
P1 and P2 on a field we have σP1

(q) ≡ σP2
(q) (mod 2).

Since

Σ(〈1, t〉) = (2, 0), Σ(〈t〉) = (1,−1),

we find that Σ(W (R((t))) is the index 2 subgroup {(x, y) ∈ Z2 | x ≡ y (mod 2)}.

Any (nondegenerate, as ever) quadratic form q over R((t)) is isometric to

(5)

a⊕
i=1

〈1〉 ⊕
b⊕
j=1

〈−1〉 ⊕
c⊕

k=1

〈t〉 ⊕
d⊕
`=1

〈−t〉

for a, b, c, d ∈ N. Thus we represent quadratic forms over R((t)) be quadruples
(a, b, c, d) ∈ N4. From our discussion we have that q1 ∼= q2 iff they have the same
dimension and total signature, i.e., iff

a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2,

a1 − b1 + c1 − d1 = a2 − b2 + c2 − d2,
a1 − b1 − c1 + d1 = a2 − b2 − c2 + d2.

Exercise: Notice that 〈t,−t〉 ∼= 〈1,−1〉, so that in (5) the a, b, c, d are not uniquely
determined by the isometry class of q. Show that the semigroup M(R((t))) of
nondegenerate quadratic forms is isomorphic to the quotient of N4 by (1, 1, 0, 0) ∼
(0, 0, 1, 1).

We now give a complete analysis of quadratic forms over R((t)).

Because R((t)) is Pythagorean, the elements represented by any form 〈a1, . . . , ai, c, c, b1, . . . , bj〉
are the same as those of 〈a1, . . . , ai, c, b1, . . . , bj〉. Thus as far as the representation
problem is concerned, we need not consider repeated coefficients, which reduces us
to the 16 quadruples (a, b, c, d) with all elements in {0, 1}. Moreover q(0,0,0,0) is the
trivial form; one down. If a = b = 1 we have the hyperbolic subform 〈1,−1〉, so
q(a,b,c,d) is isotropic; similarly, if c = d = 1 we have the hyperbolic subform 〈t,−t〉,
so q(a,b,c,d) is isotropic. If a+b+c+d ≥ 3 then we must have a+b = 1 or c+d = 1.

Exercise: Show that for each n ∈ Z+, there are (n + 1)2 isometry classes of n-
dimensional quadratic forms over R((t)).

The form q(1,0,1,0) is P1-definite hence anisotropic. It represents 1 and t. It does
not represent −1 since by the First Representation Theorem q(2,0,1,0) would be
isotropic, but it is P1-definite. Similarly it is not represent −t. Thus

D(q(1,0,1,0)) = {1, t}.
Similar arguments show

D(q(1,0,0,1)) = {1,−t},
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D(q(0,1,1,0) = {−1, t},

D(q(0,1,0,1) = {−1,−t}.
We deduce:
• Every universal form over R((t)) is isotropic. (This is a general property of for-
mally real Pythagorean fields: if q = 〈a1, . . . , an〉 represents −a1, then q ⊕ 〈a1〉 is
isotropic, and then so is q.)

In fact:

• Every anisotropic form over R((t)) represents at most two square classes and
only the square classes appearing as the coefficients of any diagonal representation.
In particular, any two square classes but {1,−1} and {t,−t} can be represented.

• Every anisotropic form is (either positive or negative) definite for an ordering
(either P1 or P2) of R((t)).

• There are four isometry classes of one-dimensional forms, all anisotropic, and
each representing a (different) unique square class.

• There are nine isometry classes of two-dimensional forms: the hyperbolic plane;
four anisotropic forms each representing a single square class q(2,0,0,0), q(0,2,0,0),
q(0,0,2,0), q(0,0,0,2); and four anisotropic forms q(1,0,1,0), q(1,0,0,1), q(0,1,1,0) and q(0,1,0,1)
each representing two square classes.

• There are 16 isometry classes of three-dimensional forms. Four of them are
isotropic (over any field K, the isotropic three-dimensional forms are all of the
form H⊕ 〈a〉 and have discriminant −a, so correspond bijectively to square classes
in K). The anisotropic ones are

q(3,0,0,0), q(0,0,3,0), q(0,0,3,0), q(0,0,0,3),

q(2,0,1,0), q(1,0,2,0),

q(2,0,0,1), q(1,0,0,2),

q(0,2,1,0), q(0,1,2,0),

q(0,2,0,1), q(0,1,0,2).

The paired up forms represent the same pair of square classes but are distinguished
by their discriminant. In particular, three-dimensional forms over R((t)) are classi-
fied by D(q) and disc q. (This is also a general property of formaly real Pythagoren
fields.)

There are four similarity classes of 3-dimensional forms; we can pick a representa-
tive from each similarity class by requiring the discriminant to be a square, getting
the anisotropic ones

q(3,0,0,0), q(1,0,2,0), q(1,0,0,2)

and the isotropic one

q(0,1,1,1).
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We conclude that there are four conics over R((t)); the first three correspond, in
order, to the three division quaternion algebras

D1 =

(
−1,−1

R((t))

)
, D2 =

(
−t,−t
R((t))

)
, D3 =

(
t, t

R((t))

)
over R((t)). In fact

BrR((t)) ∼= BrR⊕Hom(gR,Q/Z) ∼= Z/2Z⊕ Z/2Z,
so every noncommutative R((t))-central division algebra is a quaternion algebra.

Make a table of Hilbert symbols

Exercise:
a) Show that the field extension C((t))/R((t)) splits every quaternion algebra.
b) Show that in fact there are no division quaternion algebras over C((t)).
Indeed, show BrC((t)) = 0.
c) Show that the quaternion algebra D1 is not split by either R((

√
t)) or R(

√
−t)),

so has exactly one quadratic splitting field.
d) Show that the quaternion algebra D2 is not split by R((

√
t)) and is split by

R((
√
−t)), so has exactly two quadratic splitting fields.

e) Show that the quaternion algebra D3 is split by R((
√
t)) and is not split by

R((
√
−t)), so has exactly two quadratic splitting fields.

2. Murderizing quadratic forms over non-dyadic local fields

Throughout this section we specialize to the case in whichR is a nondyadic Henselian
DVR with finite residue field Fq. (Note that the nondyadic hypothesis is equiv-
alent to q being odd.) In this case the results of the previous section give an
extremely explicit description of all quadratic forms over K, and this description
is extremely useful. Otherwise put, using what we now know we can murderize
quadratic forms over K – so, in particular, over Qp for odd p – and we aim to do so!

By Theorem 6, anisotropic quadratic forms q overK correspond to pairs of anisotropic
quadratic forms over k = Fq. Since we know there are exactly four anisotropic qua-
dratic forms over Fq – including the zero-dimensional form, as always! – it follows
that there are 42 = 16 anisotropic quadratic forms over K.

Let r ∈ F×q \ F×2q . If (and only if) q ≡ 3 (mod 4), we may choose r = −1; let
us agree to do so in that case.

The four anisotropic quadratic forms over Fq are:

• The zero form 0.
• The two one-dimensional forms x2 and rx2.
• The two-dimensional form x2 − ry2.

Of course x2 − ry2 is anisotropic since r is not a square in Fq. But here is an-
other way to look at it: a binary form is isotropic iff it is hyperbolic iff it has
discriminant −1. Our form has discriminant −r, which, since r is not a square, is
not in the same square class as −1.
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The square classes in K are represented by 1, r, π, rπ.

Now let us write down all the anisotropic forms over K and what square classes
they represent!

0.1: The zero form. (It doesn’t represent anything.)
1.1: The form x2. It represents the square class 1.
1.2: The form rx2. It represents the square class r.
1.3: The form πx2. It represents the square class p.
1.4 The form rπx2. It represents the square class rπ.

On to the binary forms. We can be even more murderous than simply writing
down representatives for the 6 anisotropic binary forms. In fact we can – and
might as well! – write down all 10 different-looking binary forms and determine all
isomorphisms between them, an/isotropy, and all square classes represented. The
ten forms in question are:

2.1 〈1, 1〉.
2.2 〈1, r〉.
2.3 〈1, π〉.
2.4 〈1, rπ〉.
2.5 〈r, r〉.
2.6 〈r, π〉.
2.7 〈r, rπ〉.
2.8 〈π, π〉.
2.9 〈π, rπ〉.
2.10 〈rπ, rπ〉.

We claim that any anisotropic such form represents precisely two of the four square
classes in K. Indeed, consider 〈a, b〉.
Case i: If a, b ∈ R×, then by our description of W (K), ax2 + by2 + uπz2 = 0 are
anisotropic for u ∈ R×, so 〈a, b〉 does not represent π, rπ. Similarly ax2+by2+uz2 =
0 is isotropic, so 〈a, b〉 represents 1, r.
Case 2: if a ∈ R× and b = πu, u ∈ R×, then for v ∈ R× ax2 + uπy2 + vz2 = 0
is isotropic iff −av ∈ k×2, so it represents one out of the two unit square classes.
Moreover ax2 +uπy2 + vπz2 = 0 is isotropic iff −uv ∈ k×2, so it represents one out
of the two non-unit square classes.
Case 3: If a = πu, b = πv, then 〈a, b〉 = π〈u, v〉, so by Case 1 it represents precisely
the two nonunit square classes.

Now, the isotropy of some of these forms depends upon whether q ≡ ±1 (mod 4),
so for proper murderization we consider these cases separately (serially?).

Case 1: q ≡ 1 (mod 4). Then:

2.1 has discriminant 1 ≡ −1 (mod k×), so is isotropic (and thus represents all
four square classes).
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2.2 has discriminant r ≡ −r so is anisotropic. It represents the square classes
{1, r}.
2.3 has discriminant π so is anisotropic. It represents the square classes {1, π}.
2.4 has discriminant rπ so is anisotropic. It represents the square classes {1, rπ}.
2.5 has discriminant 1 ≡ −1 so is isotropic.
2.6 has discriminant rπ so is anisotropic. It represents the square classes {1, rπ}.
2.7 has discriminant π so is anisotropic. It represents the square classes {r, rπ}.
2.8 has discriminant 1 so is isotropic.
2.9 has discriminant r so is anisotropic. It represents the square classes {π, rπ}.
2.10 has discriminant 1 so is isotropic.

Let us retally the anisotropic square classes in the q ≡ 1 (mod 4) case:

21.1: 〈1, r〉 represents {1, r}.
21.2: 〈1, π〉 represents {1, π}.
21.3: 〈1, rπ〉 represents {1, rπ}.
21.4: 〈r, π〉 represents {r, π}.
21.5: 〈r, rπ〉 represents {r, rπ}.
21.6: 〈π, rπ〉 represents {π, rπ}.

Case 2: q ≡ 3 (mod 4). Recall that we take r = −1 here. Then:

2.1 has discriminant 1 6≡ −1 (mod k×), so is anisotropic. It represents the square
classes {1,−1}.
2.2 has discriminant r = −1 so is isotropic.
2.3 has discriminant π so is anisotropic. It represents the square classes {1, π}.
2.4 has discriminant −π so is anisotropic. It represents the square classes {1,−π}.
2.5 has discriminant 1 so is anisotropic. It represents the square classes {1,−1}.
2.6 has discriminant −π so is anisotropic. It represents the square classes {1,−π}.
2.7 has discriminant π so is anisotropic. It represents the square classes {−1,−π}.
2.8 has discriminant 1 so is anisotropic. It represents the square classes {π,−π}.
2.9 has discriminant −1 so is isotropic.
2.10 has discriminant 1 so is anisotropic. It represents the square classes {π,−π}.

But this gives us eight anisotropic forms: two too many! Two of them must be
isomorphic, and the only possible pairs are the one which represent the same square
classes. Indeed, both 2.1 and 2.5 have the same discriminant and represent a com-
mon value so are isomorphic, and the same goes for 2.8 and 2.10.

We retally so as to list only distinct anisotropic forms when q ≡ 3 (mod 4):

23.1: 〈1, 1〉 ∼= 〈−1,−1〉 represents {1,−1}.
23.2: 〈1, π〉 represents {1, π}.
23.3: 〈1,−π〉 represents {1,−π}.
23.4: 〈−1, π〉 represents {−1, π}.
23.5: 〈−1,−π〉 represents {−1,−π}.
23.6: 〈π, π〉 ∼= 〈−π,−π〉 represents {π,−π}.
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Notice that in each of the two cases we got, as advertised, precisely six classes
of anisotropic binary forms. Morever, we worked out above that any anisotropic
binary form represents precisely two out of the four square classes of K, and in fact
even more is true: of the 6 =

(
4
2

)
2-element subsets of {1, r, π, rπ}, each of them is

the set of square classes represented by a unique anisotropic binary form!

Ternary forms: Because we murderized the binary forms, understanding the ternary
forms is easy. To get an anisotropic ternary form we must start with an anisotropic
binary form 〈a, b〉 and add on c such that 〈a, b〉 does not represent the square class
−c. Thus each of the 6 anisotropic binary forms can be escalated to anisotropic
ternary forms in two different ways, giving 12 ternary forms in all. It happens that
there are only four distinct isomorphism classes here, so the 12 forms “come to-
gether” in groups of 3. Further, each of these four isomorphism classes of anisotropic
ternary forms represents exactly three out of the four square classes.

Again, we treat q ≡ 1 (mod 4) and q ≡ 3 (mod 4) separately.

Case 1: q ≡ 1 (mod 4):

For instance, the form 21.1: 〈1, r〉 can be escalated to a ternary form by adding on
−π ≡ π and −rπ ≡ rπ, giving us the two anisotropic forms:

31.1.1: 〈1, r, π〉
31.1.2 : 〈1, r, rπ〉.

Doing the same with the other six forms gives:

31.2.1: 〈1, π, r〉,
31.2.2: 〈1, π, rπ〉,
31.3.1: 〈1, rπ, r〉,
31.3.2: 〈1, rπ, π〉,
31.4.1: 〈r, π, 1〉,
31.4.2: 〈r, π, rπ〉,
31.5.1: 〈r, rπ, 1〉,
31.5.2: 〈r, rπ, π〉,
31.6.1: 〈π, rπ, 1〉,
31.6.2: 〈π, rπ, r〉.

Looking at these 12 forms, it is now clear how they “triple up”: they all have
distinct entries, so four each square class s, the three forms which omit s but con-
tain the other three square classes are obviously equivalent!

Note that the fact that these ternary anisotropic forms have coefficients lying in
distinct square classes is a consequence of −1 being a square in K: because of this,
having repeated coefficients is equivalent to having coefficients x,−x which gives a
hyperbolic plane inside q.

Therefore the most reasonable way to index these forms seems to be by the
omitted coefficient. Moreover, recall that no anisotropic ternary form q = 〈a, b, c〉
represents the square class −abc = −d(q). Since, again, −1 is a square, each of
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these anisotropic ternary forms fails to represent a unique square class: the one
which does not appear as a diagonal coefficient. Thus:

31.(1): 〈r, π, rπ〉 represents all but 1.
31.(r): 〈1, π, rπ〉 represents all but r.
31.(π): 〈1, r, rπ〉 represents all but π.
31.(rπ): 〈1, r, π〉 represents all but rπ.

Now we turn to the case q ≡ 3 (mod 4). Performing the same escalation pro-
cess gives us 6 pairs of anisotropic ternary forms:

33.1.1: 〈1, 1, π〉
33.1.2: 〈1, 1,−π〉
33.2.1: 〈1, 1, π〉
33.2.2: 〈1, π, π〉
33.3.1: 〈1, 1,−π〉
33.3.2: 〈1,−π,−π〉
33.4.1: 〈−1,−1, π〉
33.4.2: 〈−1, π, π〉
33.5.1: 〈−1,−1,−π〉
33.5.2: 〈−1,−π,−π〉
33.6.1: 〈−1, π, π〉
33.6.2: 〈1, π, π〉

Now we perform the tripling up process.

Discriminant 1: the forms 33.2.2 and 33.6.2 are both 〈1, π, π〉. The other form
of discriminant 1 is 33.3.2: 〈1,−π,−π〉. But according to our list of anisotropic bi-
nary forms, 〈π, π〉 ∼= 〈−π,−π〉, so 〈1, π, π〉 ∼= 〈1,−π,−π〉. It is now also clear that
this form represents the square classes 1, π,−π and, like any anisotropic ternary
form, does not represent −disc q = −1.

Discriminant −1: the forms 33.4.2 = 33.6.1 are both 〈−1, π, π〉. The other form of
discriminant −1 is 33.5.2: 〈−1,−π,−π〉, and as above since 〈π, π〉 ∼= 〈−π,−π〉, it is
clear that these forms are equivalent, represent the three square classes −1, π,−π
and do not represent 1.

Discriminant π: the forms 33.1.1 = 33.2.1 are both 〈1, 1, π. The other form of
discriminant π is 33.4.1: 〈−1,−1, π〉. Since 〈1, 1〉 ∼= 〈−1,−1〉, these forms are
equivalent, represent the three square classes 1,−1, π, and do not represent −π.

Discriminant −π: the forms 33.3.1 = 33.5.1 are both 〈1, 1,−π〉. The other form of
discriminant −π is 33.5.1: 〈−1,−1,−π〉. Since 〈1, 1〉 ≡ 〈−1,−1〉, these forms are
equivalent, represent the three square classes 1,−1,−π, and do not represent π.

Thus:

33.(1): 〈1, π, π〉 ∼= 〈1,−π,−π〉 represents all but −1.



12 PETE L. CLARK

33.(−1): 〈−1, π, π〉 ∼= 〈−1,−π,−π〉 represents all but 1.
33.(π): 〈1, 1, π〉 ∼= 〈−1,−1, π〉 represents all but −π.
33.(−π): 〈1, l,−π〉 ∼= 〈−1,−π,−π〉 represents all but π.

Quaternary forms:

Every anisotropic quaternary form is obtained by passing from an anisotropic
ternary form q = 〈a, b, c〉 to 〈a, b, c, d〉, where q does not represent −d.

Case q ≡ 1 (mod 4): since −1 is a square, the unique way of completing each
anisotropic ternary form to an anistropic quaternary form is by taking d to be
−disc(q) = disc q. In each case we get a quaternary form whose coefficients are the
distinct square classes, so the unique anisotropic quaternary form is

41.1: 〈1, r, π, rπ〉.

This form is universal.

Case q ≡ 3 (mod 4): performing the same escalation process with each of our four
anisotropic ternary forms, we get four superficially different anisotropic ternary
forms:

〈1, 1, π, π〉
〈1, 1,−π,−π〉
〈−1,−1, π, π〉
〈−1,−1,−π,−π〉.

Since 〈1, 1〉 ≡ 〈−1,−1〉 and 〈π, π〉 ≡ 〈−π,−π〉, all four forms above are equiva-
lent, so up to isomorphism there is again a unique anisotropic quaternary form:

43.1: 〈1, 1, π, π〉 = 〈1, 1,−π,−π〉 = 〈−1,−1, π, π〉 = 〈−1,−1,−π,−π〉.

This form is universal.

The murderization is now complete.

3. The Local Square Theorem

Let K be a Henselian discretely valued field, with valuation ring R, (choice of a)
uniformizing element π, and residue field k. For x ∈ K×, put |x| = e−v(x), so | · |
is a non-Archimedean absolute value.

We recall the following simple form of Hensel’s Lemma (see e.g. XX).

Proposition 9. (Hensel’s Lemma) Let f ∈ R[t] be a polynomial. Suppose there is
α ∈ R such that v(f(α)) > 2v(f ′(α)). Then there is β ∈ R such that f(β) = 0.

Theorem 10. (Local Square Theorem) Let K be a Henselian discretely valued field,
with valuation ring R and uniformizer π. For any α ∈ R, 1 + 4πα ∈ R×2.
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Proof. [G, Thm. 3.39] Let f(t) = πt2 + t− α. Then

v(f(α)) = v(πα2) = 1 + 2v(α) ≥ 1 > 0− v(2πα+ 1) = v(f ′(α)),

so by Hensel’s Lemma there exists β ∈ R such that f(β) = 0. Therefore the
discriminant 1 + 4πα of f is a square in K, so 1 + 4πα ∈ K×2 ∩R = R•2. �

3.1. Orderings on Laurent Series Fields.

The Local Square Theorem can be applied to recover and generalize some of the
results of §X.X.

Proposition 11. [L, Prop. VIII.4.11] Let k be a field.
a) Each ordering P on k extends to exactly two orderings on the Laurent series
field k((t)): an ordering P1 in which t is positive and smaller than every x ∈ P and
an ordering P2 in which −t is positive and smaller than every x ∈ P .
b) The field k is formally real Pythagorean iff k((t)) is.
c) If R is Euclidean, then the iterated Laurent series field Ln = R((t1)) · · · ((tn))
has 2n+1 square classes, 2n orderings and has W (Ln) ∼= Z2n .

Proof. We will prove part a) only. Parts b) and c) are similar enough to what has
been done for R((t)) so as to make good exercises.

Let

P1 = {f ∈ k((t))• | f =
∑
n≥N

ant
n with a >P 0}.

It is immediate that P1 satisfies the properties (PC1) through (PC4) and thus is (the
positive cone associated to) an ordering on k((t)). Certainly t ∈ P1. Conversely,
let P be an ordering on k((t)) containing t and such that P ∩ k = P . By the Local
Square Theorem, 1 +

∑
n≥1 ant

n is a square in k[[t]] hence also in k((t)). Then if
aN ∈ P we have

∑
n≥N

ant
n = aN t

N

1 +
∑
n≥1

aN+n

aN
tN

 ∈ P ⇐⇒ aN ∈ P.

The map τ : k((t)) → k((t)) by
∑
n≥N ant

n 7→
∑
n≥N an(−t)n is an order two

field automorphism leaving k pointwise fixed. Thus P2 = τ(P1) is an ordering of
k((−t)) = k((t)) containing P ∪ {−t}. �

Exercise: Complete the proof of Proposition 11.

4. The Hilbert Symbol, The Hilbert Invariant and Applications

In this section K is a field endowed with a norm | · | with respect to which it is
locally compact and not discrete. That is, K is either the real or complex numbers,
a finite extension of Qp, or Fq((t)). (The first two are trivial cases, and the reasons
for their inclusion here will become clear only later when we discuss global fields.)

4.1. The Hilbert Symbol.

Let a, b ∈ K. We define the Hilbert symbol (a, b) to be 1 if the quadratic
form ax2 + by2 represents 1 and −1 otherwise. Equivalently, we define it to be 1
(resp. −1) if the ternary form ax2 + by2 − z2 is isotropc (resp. anisotropic).
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Proposition 12. (First Properties of Hilbert Symbols) Let a, b, c, d ∈ K×.
a) If a ≡ c (mod K×2) and b ≡ d (mod K×2), then (a, b) = (c, d). In other words,
the Hilbert symbol factors through K×/K×2 ×K×/K×2.
b) (a, b) = (b, a).
c) (a2, b) = 1.
d) (a,−a) = (a, 1− a) = 1.

Exercise: Prove Proposition 12.

Exercise (Hilbert symbols over R and C):
a) Let K = C. Show that for all a, b ∈ C×, (a, b) = 1.
b) Let K be formally real. Show that if (a, b) = 1, then a and b are not both
negative.
c) Let K be real-closed (e.g. K = R!). Show that if a and b are not both negative,
(a, b) = 1.

Exercise (non-dyadic Hilbert symbols): a) Let K be a non-dyadic local field with
residue field Fq. Make a 4 × 4 table giving the values of the Hilbert symbol (a, b)
as a and b each run over all square classes {1, r, π, πr}. (Some of the entries in your
table well depend upon whether q is 1 or −1 modulo 4.)
b) Choose a uniformizing element π. Using this choice, for a ∈ K×, put ua = a

πv(a) .

Show that for a, b ∈ K×,

(a, b) = (−1)v(a)v(b)
q−1
2

(
ua
q

)v(b)(
ub
q

)v(a)
.

d) Viewing the Hilbert symbol as a map K×/K×2×K×/K×2 → {±1}, show it is :
(i) bilinear: (xy, z) = (x, z)(y, z), (x, yz) = (x, z)(y, z) and
(ii) nondegenerate: if (x, y) = 1 for all y ∈ K×, then x ∈ K×2.

Exercise (Hilbert symbols in Q2): Let K = Q2.
a) Fill in the 8 × 8 table of (a, b) as a and b each run over all square classes
{1, 2, 3, 5, 6, 7, 10, 14} of Q2.
b) Show that...
c) Show that the Hilbert symbol is a nondegenerate bilinear form.

The previous two exercises show, in particular, that the Hilbert symbol: K× ×
K× → {±1} is a Steinberg symbol in the sense of X.X, when K is either a nondyadic
locally compact field or Q2. Accordingly, we may define a Hilbert invariant, in
a manner we will review in the next section.

Now let K be a proper, finite extension of Q2. For a, b ∈ K× we define (a, b)
exactly as above: namely as +1 if the form ax2 + by2 − z2 is isotropic and −1 if it
is anisotropic. It turns out that again this gives a Steinberg symbol, but to show
this requires more than the very elementary calculations done above. Further, the
Hilbert symbol is nondegenerate as a bilinear map K×/K×2 ×K×/K×2 → {±1}.
If we assume these facts for now, then we will be able to give a complete classifica-
tion of quadratic forms over locally compact fields that includes the general dyadic
case. Later we will go back and explain how these facts about the Hilbert symbol
follow from standard – but deep – facts of the arithmetic of local fields.
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4.2. The Hilbert Invariant.

Let q = 〈a1, . . . , an〉 be a regular quadratic form over the non-discrete, locally
compact field K. We define the Hilbert invariant

H(a1, . . . , an) =
∏
i<j

(ai, aj).

(When n = 1, we set H(a1) = 1.) Our first order of business is to show that H is
indeed an invariant, i.e., that it depends only on the isometry class of q and not the
chosen diagonalization. For this we need a preliminary result which will be useful
in its own right.

Lemma 13. Let q = 〈a1, a2〉 be a regular binary form, and let b ∈ K×. TFAE:
(i) q represents b.
(ii) (b,− disc q) = (a1, a2).

Proof. q represents b iff a1x
2+a2y

2−bz2 = 0 is isotropic iff a1bx
2+a2by

2−z2 = 0 is
isotropic iff 1 = (a1b, a2b) = (a1, a2)(a1, b)(a2, b)(b, b) = (a1, a2)(disc q, b)(−1, b) =
(a1, a2)(−disc q, b). �

Proposition 14. Let 〈a1, . . . , an, b1, . . . , bn ∈ K×. If 〈a1, . . . , an〉 ∼= 〈b1, . . . , bn〉,
then H(a1, . . . , an) = H(b1, . . . , bn).

Proof. The result is trivial for n = 1.
Step 1: Suppose n = 2, and q = 〈a1, a2〉 ∼= 〈b1, b2〉. Then q represents b1, so by
Lemma 13 (a1, a2) = (b1,−disc q) = (b1,−b1b2) = (b1,−b1)(b1, b2) = (b1, b2).
Step 2: Suppose n > 2. By the Chain Equivalence Theorem, we may suppose that
ai 6= bi for at most two values of i. Further, since

∏
i<j(ai, aj) is independent of

the ordering of a1, . . . , an, we may suppose ai = bi for all i > 2 and (by Witt
Cancellation) that 〈a1, a2〉 ∼= 〈b1, b2〉. Thus a1a2 ≡ b1b2 (mod K×2) and (a1, a2) =
(b1, b2) by Step 1. Thus∏

i<j

(ai, aj) = (a1, a2)
∏
j>2

(a1a2, aj)
∏

2<i<j

(ai, aj)

= (b1, b2)
∏
j>2

(b1b2, bj)
∏

2<i<j

(bi, bj) =
∏
i<j

(bi, bj).

�

In view of Proposition 14 we may write H(q) instead of H(a1, . . . , an), and we call
it the Hilbert invariant of q. As we are about to see, the Hilbert invariant is
the key piece of information beyond the dimension and the discriminant needed to
classify quadratic forms over Henselian fields with finite residue fields.

Proposition 15. For forms f, g over K, we have

H(f ⊕ g) = (disc f, disc g)H(f)H(g).

Proof. Writing f = 〈a1, . . . , am〉, g = 〈b1, . . . , bn〉, we have

H(f ⊕ g) =
∏
i<j

(ai, aj)
∏
i<j

(bi, bj)
∏
i,j

(ai, bj)

= H(f)H(g)(
∏
i

ai,
∏
i

, bj) = H(f)H(g)(disc f, disc g).

�
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4.3. Applications of the Hilbert Invariant.

Throughout this section K denotes a Henselian discretely valued field with finite
residue field Fq.

Lemma 16. A ternary q/K is isotropic iff H(q) = (−1,−disc q).

Proof. Write q(x, y, z) = ax2 + by2 + cz2. First note that

(−ac,−bc) = (a, b)(a,−c)(b,−c)(−c,−c) = (a, b)(ab,−c)(−c,−1)

= (a, b)(−ab,−c) = (a, b)(−1,−1)(ab, c)(−1, abc).

Thus

H(q)(−1,−disc q) = (a, b)(a, c)(b, c)(−1,−abc)
= (a, b)(ab, c)(−1,−abc) = (a, b)(−1,−1)(ab, c)(−1, abc) = (−ac,−bc).

Since q is isotropic if −acx2−bcy2−z2 = 0 iff (−ac,−bc) = 1, the result follows. �

Lemma 17. A quaternary q/K is anisotropic iff disc q ∈ K×2 and H(q) = −(−1,−1).

Proof. We may write q = g(x)− h(y) = a1x
2
1 + a2x

2
2 − b1y21 − b2y22 . We claim q is

isotropic iff there exists d ∈ K× which is simultaneously represented by g and h.
It is immediate that if this holds then q is isotropic. Conversely, if q is isotropic
there are v, w ∈ K2, not both zero, such that g(v) = h(w). If this common value is
nonzero, then it is the d we want. If this common value is zero, then one of g and
h is the hyperbolic plane, hence universal, and the result is trivial.
Now, by Lemma 13, f and g both represent d ∈ K× iff

(d,−a1a2) = (a1, a2),

(d,−b1b2) = (b1, b2).

Note that 〈a1, a2〉 is hyperbolic iff−a1a2 ∈ K×2. In this case, (a1, a2) = (a1,−a1) =
1 and the first equation holds for all d. In this case q contains a hyperbolic sub-
form so is isotropic. Similarly for 〈b1, b2〉. Now assume that −a1a2 and −b1b2 are
both nonsquares: then (d,−a1a2) = (a1, a2) and (d,−b1b2) = (b1, b2) each hold for
precisely half of the square classes, and q is anisotropic iff these sets of d’s are com-
plementary. We claim this occurs iff a1a2K

×2 = b1b2K
×2 and (a1, a2) = −(b1, b2).

This is perhaps best seen by viewing K×/K×2 as a finite dimensional Z/2Z-vector
space and the two loci as affine hyperplanes in that space. Two affine hyperplanes
do not intersect iff they are distinct and parallel, giving the above conditions.

The condition a1a2K
×2 = b1b2K

×2 gives disc q ∈ K×2, and the condition
(a1, a2) = −(b1, b2) gives

H(f) = −(b1, b2)(a1,−b1)(a1,−b2)(a2,−b1)(a2,−b2)(−b1,−b2)

= −(b1, b2)(a1, b1)(a1,−1)(a1, b2)(a1,−1)(a2, b1)(a2,−1)(a2, b2)(a2,−1)(−1,−1)(−1, b2)(−1, b1)(b1, b2)

= −(−1,−1)(a1, b1b2)(a2, b1b2)(−1, b1b2)

= −(−1,−1)(−a1a2, b1b2) = −(−1,−1)(−a1a2, a1a2) = −(−1,−1).

�

Corollary 18. A ternary q/K represents all square classes except possibly −disc f .

Proof. Indeed, if dK×2 6= (− disc q)K×2, then the ternary form q(x, y, z)−dw2 has
nonsquare discriminant so must be isotropic. �
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Corollary 19. A form q/K in at least five variables is isotropic.

Proof. We may write q = 〈a1, a2, a3, a4, a5〉 and it suffices to find d ∈ K× which
is simultaneously represented by the ternary form 〈a1, a2, a3〉 and the binary form
-〈a4, a5〉. But indeed the ternary form represents all but possibly one square class,
and the binary form represents at least half of the square classes, hence at least two
square classes, so there must be a square class represented by both. �

Theorem 20. The dimension, discriminant and Hilbert invariant is a complete
system of invariants for regular quadratic forms over K. That is, for regular qua-
dratic forms f, g over K, TFAE:
(i) f ∼= g.
(ii) dim f = dim g, disc f = disc g and H(f) = H(g).

Proof. (i) =⇒ (ii) is clear.
(ii) =⇒ (i): The case of n = 1 is trivial. Suppose f = 〈a1, a2〉 and g = 〈b1, b2〉 have
the same discriminant and the same Hilbert invariant. By Lemma 13, (a1, a2) =
(b1, b2) = (b1,−disc g) = (b1,−disc f), so f represents b1. Therefore f and g, being
binary forms of the same discriminant representing a common value, are isometric.
Now suppose n ≥ 3. Then the form f(x) − g(y) has at least six variables so is
isotropic, hence as in the proof of Lemma 17 f and g represent a common value
d ∈ K×. Therefore we may write f = 〈d〉 ⊕ f1, g = 〈d〉 ⊕ g1. Clearly f1 and g1
have the same dimension and the same discriminant, and by Proposition 15 they
have the same Hasse invariant. The result now follows by induction on n. �

Having shown that the dimension, discriminant and Hilbert invariant serve to clas-
sify forms over K, a natural followup question is what values these invariants can
take. Clearly in dimension one the Hasse invariant is 1; also, since any binary form
of discriminant −1 is isomorphic to 〈1,−1〉, the Hasse invariant of any such form
is 1. It turns out that these are the only restrictions.

Theorem 21. Let q be a quadratic form over K.
a) If dim q = 1, H(q) = 1.
b) If dim q = 2 and disc q = −1 then H(q) = 1. For any d 6≡ −1 (mod K×2) and
any ε ∈ {±1}, there is a binary form q with disc q = d and H(q) = ε.
c) For any n ≥ 3, d ∈ K×/K×2 and ε ∈ {±1}, there is a form q with dim q = n,
disc q = d and H(q) = ε.

Proof. a) This is clear.
b) As above, this follows because any binary form of discriminant −1 is isometric
to the hyperbolic plane 〈1,−1〉 and thus has trivial Hasse invariant. Now take
d 6= −1; for any a ∈ K×, f = 〈a, ad〉 has discriminant d and Hilbert invariant
(a, ad) = (a, a)(a, d) = (−1, a)(d, a) = (−d, a). Because −d is not a square, we can
choose a so as to make the Hilbert symbol either ±1.
c) Suppose n ≥ 3 and the result has been shown for all forms of dimension n − 1.
Fix d ∈ K×, and choose a ∈ K× such that −ad is not a square. Consider 〈a〉 ⊕ g
with disc(g) = ad. Then disc f = d and H(f) = (a, ad)H(g). By induction we may
choose g such that H(g) has arbitrary sign, and so H(f) can have both signs. �

Corollary 22. Let K be a locally compact, discretely valued field. Let 2δ =
#K×/K×2.
a) There is one anisotropic form of dimension zero.
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b) There are 2δ anisotropic forms of dimension one.
c) There are 2(2δ − 1) anisotropic forms of dimension two.
d) There are 2δ anisotropic forms of dimension three.
e) There is one anisotropic form of dimension four.
Thus #W (K) = 2δ+2.

Proof. Exercise. �

Exercise: Suppose K is non-dyadic. Then #K×/K×2 = 4, so #W (K) = 16. Show
(again!) that W (K) ∼= Z/4Z× Z/4Z.

Exercise: Suppose K = Q2. Then #K×/K×2 = 8, so #W (K) = 32. Show
that W (Q2) ∼= Z/8Z× Z/2Z× Z/2Z.

5. Quadratic forms over R((t))

Theorem 23. Let k be a field of characteristic not 2.
a) Every ordering on k extends to exactly two orderings on k((t)): one in which
t > 0 and one in which t < 0.
b) The field k is formally real Pythagorean iff the field k((t)) is formally real
Pythagorean.
c) If k is Euclidean, then the iterated Laurent series field k((t1)) · · · ((tn)) is formally
real Pythagorean, has precisely 2n orderings and precisely 2n+1 square classes.

Proof. Let < be an ordering on k. For x =
∑∞
n=N ant

n ∈ k((t))•, put x > 0 ⇐⇒
aN > 0. This gives an ordering on k((t)) extending the given ordering < on k, and
in which t > 0. Now let < be an ordering on k((t)) extending the given ordering <
on k, in which t > 0. Then for x =

∑∞
n=N ant

n ∈ k((t))•, we have

x = tNaN (1 + aN+1t+ . . .+) = tnaNy,

say. Then k[[t]] is a complete DVR and y ∈ k[[t]]× such that the image of y in
the residue field k[[t]]/m = k is 1 ∈ k×. So by the Local Square Theorem there is
z ∈ k[[t]] such that y = z2. It follows that sgn(x) = sgn(aN ) and the ordering < on
k((t)) is the one specified above. Finally,∑

n

ant
n 7→

∑
n

an(−t)n

is a field automorphism of k((t)), and the image of an ordering < on k((t)) extending
the given ordering< on k and in which t > 0 under this automorphism is an ordering
extending the given ordering < on k in which t < 0. A similar argument to the
above shows that there is exactly one ordering with these properties.
b) Certainly if k((t)) is formally real, then so is its subfield k; conversely, if k is
formally real, then part a) shows in particular that k((t)) is formally real. (It is not
difficult to show this directly.) Now suppose k((t)) is formally real and Pythagorean,
and let a, b ∈ k. Then there is c ∈ k((t)) such that

a2 + b2 = c2.

Since a2 + b2 ∈ k, the element c ∈ k((t)) is therefore algebraic over k. It follows
that c ∈ k – that is, k is algebraically closed in k((t)). This case is especially
easy to show directly: by writing c =

∑∞
n=0 ant

n and comparing coefficients in the
equation c2 = a2 + b2 one finds that a20 = a2 + b2 and an = 0 for all n ≥ 1. Thus k
is Pythagorean. Conversely, suppose k is formally real Pythagorean. It is enough
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to show that if a, b ∈ k[[t]]•, then a2 + b2 is a square in k[[t]]. If a and b are both
divisible by tv then

a2 + b2 = t2v(
a

tv
)2 + (

b

tv
)2,

so, after reordering a and b if necessary, we reduce to the case in which a0 6= 0, so
a2 + b2 ∈ k[[t]]×. Then

a2 + b2 =

(∑
n

ant
n

)2

+

(∑
n

bnt
n

)2

= a20 + b20 + td

for some d ∈ k[[t]]. Thus the reduction modulo m of a2 + b2 is a20 + b20, which is a
square since k is Pythagorean, so by the Local Square Theorem, a2 +b2 is a square.
c) A Euclidean field is a formally real field with exactly two square classes, hence
carries a unique ordering. By part a), it follows by induction that k((t1) · · · ((tn))
has exactly 2n orderings. Now recall that if K is a nondyadic Henselian DVF then
K has twice as many square classes as its residue field. From this and induction it
follows that k((t1)) · · · ((tn)) has 2n+1 square classes. �

We now denote by R any real-closed field. (Of course the most natural choice is
the real numbers, but the point is that as far as quadratic forms are concerned, it
will not matter.) In this section we study quadratic forms over R((t)). Since R is
Euclidean, by Theorem 23 the field R((t)) is formally real Pythagorean with two
orderings and 4 square classes: representatives are given by 1,−1, t,−t. Thus R((t))
lies in the class of fields for which the structure of the Witt ring was determined in
Theorem X.X: we have

W (R((t))) ∼= Z〈1〉 ⊕ Z〈t〉.
Here is another way to think about this result: let <1 be the ordering on R((t))
in which t > 0 and let <2 be the ordering on R((t)) in which t < 0. The total
signature map gives a homomorphism.

Σ : W (R((t)))→ Z2, q 7→ (σ1(q), σ2(q)).

Because R((t)) is Pythagorean, Σ is injective. If q = a〈1〉+ b〈−1〉+ c〈t〉+ d〉 − t〉,
then

Σ(q) = (a− b+ c− d, a− b− c+ d),

so

Σ(W (R((t))) = {(x, y) | x ≡ y (mod 2)} ⊂ Z2.

This shows again that (W (R((t)),+) is freely generated by 〈1〉 and 〈t〉.
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