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Quadratic forms were first studied over Z, by all of the great number theorists from
Fermat to Dirichlet. Although much more generality is now available (and useful,
and interesting!), it is probably the case that even to this day integral quadratic
forms receive the most attention.

By the late 19th century it was realized that it is easier to solve equations with
coefficients in a field than in an integral domain R which is not a field (like Z!) and
that a firm understanding of the set of solutions in the fraction field of R is pre-
requisite to understanding the set of solutions in R itself. In this regard, a general
theory of quadratic forms with Q-coefficients was developed by H. Minkowski in
the 1880s and extended and completed by H. Hasse in his 1921 dissertation.

The early 20th century saw the flowering of abstract algebra both as an important
research area and as a common language and habitat for large areas of preexisting
mathematics. The abstract definition of a field was first given by E. Steinitz in a
landmark 1910 paper [Ste]. The study of quadratic forms over abstract fields was
given a push by the work of E. Artin and O. Schreier in the 1920’s, culminating in
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2 PETE L. CLARK

Artin’s 1927 solution of Hilbert’s 17th problem: every positive semidefinite rational
function with R-coefficients is a sum of squares of rational functions.

It is natural to regard these developments as preludes and assert that the alge-
braic theory of quadratic forms properly begins with a seminal 1937 paper of E.
Witt. The paper [Wit] contains the following advances:

• A recognition that many formal aspects of the Hasse-Minkowski theory carry
over largely unchanged to the case of quadratic fields over an arbitrary field K of
characteristic different from 2;

• The Witt Cancellation Theorem, which may be viewed as the “fundamental
theorem” in this area of mathematics;

• The construction of a commutative ring W (K) whose elements are equivalence
classes of certain quadratic forms over K.

In these notes we give a detailed treatment of the foundations of the algebraic
theory of quadratic forms, starting from scratch and ending with Witt Cancella-
tion and the construction of the Witt ring.

Let K denote a field of characteristic different fom 2 but otherwise arbitrary.

1. Four equivalent definitions of a quadratic form

There are several equivalent but slightly different ways of thinking about quadratic
forms over K. The standard “official” definition is that a quadratic form is a
polynomial q(t) = q(t1, . . . , tn) ∈ K[t1, . . . , tn], in several variables, with coefficients
in K, and such that each monomial term has total degree 2: that is,

q(t) =
∑

1≤i≤j≤n

aijtitj ,

with aij ∈ K.

But apart from viewing a polynomial purely formally – i.e., as an element of the
polynomial ring K[x] – we may of course also view it as a function. In particular,
every quadratic form q(x) determines a function

fq : Kn → K, x = (x1, . . . , xn) 7→
∑

1≤i≤j≤n

aijxixj .

The function fq has the following properties:

(i) For all α ∈ K, fq(αx) = α2fq(x), i.e., it is homogeneous of degree 2.
(ii) Put Bf (x, y) :=

1
2 (fq(x+ y)− fq(x)− fq(y)).

(Note that 1
2 exists in K since the characteristic of K is different from 2!)

Then we have, for all x, y, z ∈ Kn and α ∈ K, that

Bf (x, y) = Bf (y, x)
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and
Bf (αx+ y, z) = αBf (x, z) +Bf (y, z).

In other words, Bf : Kn ×Kn → K is a symmetric bilinear form.

Moreover, we have

Bf (x, x) =
1

2
(fq(2x)− 2fq(x)) =

1

2
(4fq(x)− 2fq(x)) = fq(x).

Thus each of fq and Bf determines the other.

Now consider any function f : Kn → K which satisfies (i) and (ii), a homo-
geneous quadratic function. Let e1, . . . , en be the standard basis of Kn and for
any 1 ≤ i, j ≤ n, put bij = Bf (ei, ej). Let B be the n × n symmetric matrix with
entries bij . Then Bf can be expressed in terms of B. We make the convention of
identifying x ∈ Kn with the n × 1 matrix (or “column vector”) whose (i, 1) entry
is xi. Then, for all x, y ∈ Kn, we have

yTBx = Bf (x, y).

Indeed, the left hand side is also a bilinear form on Kn, so it suffices to check equal-
ity on pairs (ei, ej) of basis vectors, and this is the very definition of the matrix B.
Thus each of Bf and B determines the other.

Moreover, taking x = y, we have

xTBx = f(x).

If on the left-hand side we replace x ∈ Kn by the indeterminates t = (t1, . . . , tn),
we get the polynomial

n∑
i=1

biit
2
i +

∑
1≤i<j≤n

bij + bjititj =
n∑

i=1

biit
2
i +

∑
1≤i<j≤n

2bijtitj .

It follows that any homogeneous quadratic function is the fq of a quadratic form
q =

∑
i,j aijtitj , with

aii = bii, aij = 2bij∀i < j.

We have established the following result.

Theorem 1.1. For n ∈ Z+, there are canonical bijections between the following
sets:
(i) The set of homogeneous quadratic polynomials q(t) = q(t1, . . . , tn).
(ii) The set of homogeneous quadratic functions on Kn.
(iii) The set of symmetric bilinear forms on Kn.
(iv) The set of symmetric n× n matrices on Kn.

Example: When n = 2, one speaks of binary quadratic forms. Explicitly:

q(t1, t2) = at21 + bt1t2 + ct22.

fq(x1, x2) = ax2
1 + bx1x2 + cx2

2 = [x1x2]

[
a b

2
b
2 c

] [
x1

x2

]
.

Bf (x1, x2, y1, y2) = ax1y1 +
b

2
x1y2 +

b

2
x2y1 + cx2y2.



4 PETE L. CLARK

Two remarks are in order.

First, now that we know Theorem 1.1, it looks quite pedantic to distinguish be-
tween the polynomial q(t) and the function x 7→ fq(x), and we shall not do so from
now on, rather writing a quadratic form as q(x) = q(x1, . . . , xn).

Second, we note with mild distaste the presence of 2’s in the denominator of the
off-diagonal entries of the matrix. Arguably the formulas would be a little cleaner
if we labelled our arbitrary binary quadratic form

q(x1, x2) = ax2
1 + 2bx1x

2
2 + cx2

2;

this normalization is especially common in the classical literature (and similarly for
quadratic forms in n variables). But again, since 2 is a unit in K, it is purely a
cosmetic matter.1

The set of all n-ary quadratic forms over K has the structure of a K-vector space

of dimension n(n+1)
2 . We denote this space by Qn.

2. Action of Mn(K) on n-ary quadratic forms

Let Mn(R) be the ring of n×n matrices with entries in K. Given any M = (mij) ∈
Mn(K) and any n-ary quadratic form q(x) = q(x1, . . . , xn), we define another n-ary
quadratic form

(M • q)(x) := q(MTx) = q(m11x1 + . . .+mn1xn, . . . ,m1nx1 + . . .mnnxn).

Thus we are simply making a linear change of variables. In terms of symmetric
matrices, we have

(M • q)(x) = xTBM•qx = (MTx)TBqM
Tx = xTMBMTx,

so that

(1) BM•q = MBqM
T .

This relation among matrices is classically known as congruence, and is generally
distinct from the more familiar conjugacy relation B 7→ M−1BM when M is in-
vertible.2 This is an action in the sense that In•q = q and for all M1,M2 ∈ Mn(K),
we have

M1 • (M2 • q) = M1M2 • q
for all n-ary quadratic forms q. In other words, it is an action of the multiplicative
monoid (Mn(K), ·). Restricting to GLn(K), we get a group action.

We say that two quadratic forms q and q′ are equivalent if there exists M ∈
GLn(K) such that M • q = q′. This is evidently an equivalence relation in which
the equivalence classes are precisely the GLn(K)-orbits. More generally, any sub-
group G ⊂ GLn(K) certainly acts as well, and we can define two quadratic forms

1This is to be contrasted with the case of quadratic forms over Z, in which there is a technical
distinction to be made between a quadratic form with integral coefficients aij and one with integral

matrix coefficients bij . And things are much different when 2 = 0 in K.
2The two coincide iff M is an orthogonal matrix, a remark which is helpful in relating the

Spectral Theorem in linear algebra to the diagonalizability of quadratic forms. More on this
shortly.
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to be G-equivalent if they lie in the same G-orbit.

Example: We may consider GLn(Z)-equivalence of quadratic forms over Q or R.

Example: In general, we claim that the two binary forms q1(x, y) = xy and
q2(x, y) = x2 − y2 are (GL2(K)-)equivalent. Indeed:[

1 1
1 −1

] [
0 1

2
1
2 0

] [
1 1
1 −1

]
=

[
1 0
0 −1

]
.

Example: Viewing q1 and q2 as binary forms overQ, they are not GL2(Z)-equivalent.
If so, the sets q1(Z2) and q2(Z2) would be the same. But evidently q1(Z2) = Z,
whereas a simple mod 4 argument shows that 2 /∈ q2(Z2).

Now suppose M ∈ GLn(K), and take determinants in (1) above. We get:

(2) det(BM•q) = det(M)2 det(Bq).

So equivalent symmetric matrices need not have the same determinant.

Exercise: Find all fields K (of characteristic not equal to 2) for which any two
equivalent quadratic fields have the same determinant.

However, we ought not give up so easily. On the one hand, having zero deter-
minant is an equivalence invariant. We say that a quadratic form q is degenerate
if det(B) = 0. Thus degeneracy depends only on the equivalence class. Most qua-
dratic forms arising in nature are nondegenerate. Moreover, we will shortly see a
result which allows us to, in a canonical way, strip away the degenerate part of any
quadratic form, leaving a nondegenerate form, so we may as well concentrate our
attention on nondegenerate forms.

Suppose that q is nondegenerate, so det(B) ∈ K×. Then (2) shows that the class
of det(B) in the quotient group K×/K×2 is an equivalence invariant. The elements
of the group K×/K×2 are called square classes of K and play a quite prominent
role in the algebraic theory of quadratic forms. By definition, for any quadratic
form q, the discriminant d(q) is the coset of det(B) in K×/K×2.

So we have at the moment two invariants of a quadratic form: its dimension n,
and its discriminant d(q). Sometimes this is already enough to classify quadratic
forms up to equivalence.

Definition: A field K is quadratically closed if every nonzero element of K is a
square: K× = K×2. Equivalently, K does not admit any quadratic field extension.
So, for instance, the field C of complex numbers is quadratically closed, as is any
algebraically closed field or any separably closed field.

It turns out to be the case that over a quadratically closed field, any two nonde-
generate quadratic forms of the same dimension are equivalent. In particular, any
nondegenerate n-ary quadratic form over C is GLn(C)-equivalent to x2

1 + . . .+ x2
n.
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Is the case for nondegenerate quadratic forms over R? Certainly not! For instance,
consider the following forms:

q1(x, y) = x2 + y2.

q2(x, y) = x2 − y2.

q3(x, y) = −x2 − y2.

I claim that no two of these forms are equivalent. Indeed, their corresponding
quadratic functions have different images:

q1(R2) = [0,∞), q2(R2) = R, q3(R2) = (−∞, 0].

To explain carefully why this distinguishes the equivalence classes of forms, we
introduce another fundamental definition: if α ∈ K×, we say that a quadratic
form q represents α iff α is in the image of the associated function, i.e., iff there
exists x ∈ Kn such that q(x) = α. But now suppose that q represents α and let
M ∈ GLn(R). Choose x ∈ Kn such that q(x) = α. Then

(M · q)(M−1x) = q(MM−1x) = q(x) = α.

That is:

Proposition 2.1. Equivalent quadratic forms represent exactly the same set of
scalars.

Following T.-Y. Lam, we define

D(q) = q(Kn) \ {0}
to be the set of all nonzero values of K represented by q. Unlike the dimension or
the determinant, D(q) is a “second order” invariant, i.e., rather than being a single
number or field element, it is a set of field elements.

On the other hand, D(q) = D(q′) need not imply that q ∼= q′. Indeed, over R
the two forms

(3) q1 = x2
1 − x2

2 + x2
3 + x2

4, q2 = x2
1 − x2

2 − x2
3 − x2

4

have the same dimension, the same discriminant, and both represent all real num-
bers. The analyst’s proof of this is to observe that they clearly represent arbitrarily
large positive and arbitrarily small negative values and apply the Intermediate Value
theorem. The algebraist’s proof is that q1(x1, x2, 0, 0) = q2(x1, x2, 0, 0) = x2

1 − x2
2,

which by Example X.X above is equivalent toH(x, y) = xy, which visibly represents
all elements of K×. But in fact they are not equivalent, as was first established by
the 19th century mathematician J.J. Sylvester. We will be able to establish this,
and indeed to describe all isomorphism classes of quadratic forms over R, once we
have developed the basic theory of isotropic and hyperbolic subspaces.

Let q be an n-ary quadratic form over K. Then, with respect to the GLn(K)-
action on the space of all n-ary quadratic forms, consider the isotropy subgroup

Oq = {M ∈ GLn(K) | M • q = q}.

Exercise: Let B be the symmetric matrix of the n-ary quadratic form q.
a) Show that Oq = {M ∈ GLn(K) | MTBM = B}.
b) Show that if q ∼ q′, then Oq is conjugate (in GLn(K)) to Oq′ . In particular, the
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isomorphism class of Oq is an equivalence invariant of q.
c) Suppose q = x2

1+ . . .+x2
n. Show that Oq is the standard orthogonal group O(n).

d) For those who know the definition of linear algebraic groups, confirm that Oq

has the natural structure of a linear algebraic group. If q is nondegenerate, what
is the dimension of Oq?
e) If K is a topological field, then Oq is a K-analytic Lie group. In case K = R,
show that Oq is compact iff q is either positive or negative definite.
f) Let q1 and q2 be the real quadratic forms of (3). Are their isotropy subgroups
isomorphic?

Similarities: Let Gm(K) = K× be the multiplicative group of K. Since Gm is
the center of GLn(K) – i.e., the scalar matrices – the above action of GLn(K) on
Qn restricts to an action of Gm. However, there is another action of Gm on Qn

which is relevant to the study of quadratic forms: namely α · q = αq, i.e., we scale
all of the coefficients of q by α ∈ Gm. If q′ = α ·q, we say that q and q′ are similar.

The two actions are related as follows:

α • q = α2 · q.
Since the • action of GLn(K) preserves equivalence of quadratic forms (by defini-
tion), it follows that there is an induced action of K×/K×2 on the set of equivalence
classes.

Exercise: Let q be an n-ary quadratic form. Let D(q) = {α ∈ Gm | α · q ∼ q}.
a) Show that D(q) is a subgroup of Gm.
b) Compute D(q) for the form x2

1 + . . .+ x2
n over R.

c) Compute D(q) for the hyperbolic plane H = x2 − y2 over any field K.

3. The category of quadratic spaces

In the previous section we saw some advantages of the symmetric matrix approach
to quadratic forms: it gave a very concrete and transparent perspective on the
actions of GLn(K) and Gm on Qn. In this section we turn to the coordinate-free
approach to quadratic forms, that of a finite-dimensional K-vector space V en-
dowed with a symmetric bilinear form B : V × V → K. To be precise, we call such
a pair (V,B) a quadratic space.3

We pause to recall the meaning of nondegeneracy in the context of bilinear forms.
Namely, let V be any K-vector space and B : V × V → K be any bilinear form.
Then B induces a linear map LB from V to its dual space V ∨ = Hom(V,K),
namely v 7→ B(v, ). We say that B is nondegenerate if LB is an isomorphism.
In this purely algebraic context, this is only possible if V is finite-dimensional – if
V is an infinite-dimensional K-vector space, then dimV ∨ > dimV , so they are not
isomorphic by any map, let alone by LB – in which case, since dimV = dimV ∨, it
is equivalent to LB being injective. In other words, to test for the nondegeneracy
of a bilinear form B, it suffices to show that if v ∈ V is every vector such that

3Probably it would be even more pedantically correct to call it a “symmetric bilinear space”,

but this is not the standard terminology. As we have seen, the data of B and the associated
quadratic function q are interchangeable in our present context.
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B(v, w) = 0 for all w ∈ W , then necessarily v = 0.

In the case of quadratic forms we have now given two definitions of nondegen-
eracy: one in terms of any associated symmetric matrix, and the other in terms of
the associated symmetric bilinear form. So we had better check that they agree:

Proposition 3.1. The two notions of nondegeneracy coincide for quadratic forms:
that is, a symmetric bilinear form B on a finite-dimensional vector space is non-
degenerate iff its defining symmetric matrix (with respect to any basis of V ) has
nonzero determinant.

Proof. Choose a basis e1, . . . , en for V and define a matrix B with (i, j) entry
bij = B(ei, ej). Then we have

B(v, w) = wTBv.

If the matrix B is singular, then there exists a nonzero v ∈ V such that Bv = 0,
and then the above equation implies B(v, w) = 0 for all w ∈ W . Conversely, if
B is nonsingular, then for any nonzero v ∈ V , Bv is not the zero vector, so there
exists at least one i, 1 ≤ i ≤ n for which the ith component of Bv is nonzero. Then
B(v, ei) ̸= 0. �

A map of quadratic spaces (V,BV ) → (W,BW ) is a K-linear map L : V → W
which “respects the bilinear form structure”: precisely:

∀v1, v2 ∈ V,BW (L(v1), L(v2)) = BV (v1, v2).

An isometric embedding is a morphism of quadratic spaces whose underlying
linear map is injective.

Proposition 3.2. Let f : (V,Bv) → (W,BW ) be a map of quadratic spaces. If BV

is nondegenerate, then f is an isometric embedding.

Proof. Let v ∈ V be such that f(v) = 0. Then, for all v′ ∈ V , we have

0 = BW (0, f(v′)) = BW (f(v), f(v′)) = BV (v, v
′).

Thus by the definition of nondegeneracy we must have v = 0. �

Exercise: Let ι : (V,BV ) → (W,BW ) be an isometric embedding of quadratic
spaces. Show that the following are equivalent:
(i) There exists an isometric embedding ι′ : (W,BW ) → (V,BV ) such that ι′◦ι = 1V ,
ι ◦ ι′ = 1V ′ .
(ii) ι is surjective.
An isometric embedding satisfying these conditions will be called an isometry.

The category of quadratic spaces over K has as its objects the quadratic spaces
(V,BV ) and morphisms isometric embeddings between quadratic spaces.

If (V,BV ) is a quadratic space and W ⊂ V is a K-subspace, let BW be the re-
striction of BV to W .

Exercise: Show that (W,BW ) ↪→ (V,BV ) is an isometric embedding.

Does the category of quadratic spaces have an initial object? Yes, a zero-dimensional



QUADRATIC FORMS CHAPTER I: WITT’S THEORY 9

vector space V = {0} with the unique (zero) map V ×V → K. Note that this bilin-
ear form is nondegenerate according to the definition. (Presumably the determinant
of a “0 × 0” matrix is 1, but we do not insist upon this.) This may seem like a
pointless convention, but it is not: it will be needed later to give the identity ele-
ment of the Witt group of K.

Exercise: Show that the category of quadratic spaces over K has no final object.

The category of quadratic spaces admits finite direct sums. In other words, given
two quadratic spaces V and W , there exists a quadratic space V ⊕W together with
isometries V → V ⊕W , W → V ⊕W , such that every pair of isometries V → Z,
W → Z factors uniquely through V ⊕W . Indeed, the underlying vector space on
V ⊕W is the usual vector space direct sum, and the bilinear form is

BV⊕W ((v1, w1), (v2, w2)) := BV (v1, v2) +BW (w1, w2).

Fixing bases e1, . . . , em of V and e′1, . . . , e
′
n of W , if the symmetric matrices for the

BV and BW are B1 and B2, respectively, then the matrix for BV⊕W is the block
matrix [

B1 0
0 B2

]
.

It is common to refer to the categorical direct sum of quadratic spaces as the or-
thogonal direct sum. However, in our work, whenever we write down an external
direct sum, we will always mean this “orthogonal” direct sum.

One can also define a tensor product of quadratic spaces (V,BV ) and (W,BW ).
Again the underlying vector space is the usual tensor product V ⊗ W , and the
bilinear form is given on basis elements as

BV⊗W (v1 ⊗ w1, v2 ⊗ w2) := BV (v1, v2) ·BW (w1, w2),

and extended by bilinearity. The associated symmetric matrix is the Kronecker
product. In particular, if with respect to some bases (ei), (e

′
j) of V and W we

have diagonal matrices B1 = ∆(a1, . . . , am), B2 = ∆(b1, . . . , bn), then the matrix
of BV⊗W is the diagonal mn×mn matrix ∆(aibj).

4. Orthogonality in quadratic spaces

Let (V,B) be a quadratic space, and let W1, W2 be subspaces. We say W1 and
W2 are orthogonal subspaces if for all v1 ∈ W1, we have v2 ∈ W2, B(v1, v2) = 0.
The notation for this is W1 ⊥ W2.

Exercise: Let (V1, B1), (V2, B2) be quadratic spaces. Identifying Vi with its iso-
metric image in V1 ⊕ V2, show that V1 ⊥ V2. State and prove a converse result.

Let (V,B) be a quadratic space, andW ⊂ V a subspace. We define the orthogonal
complement

W⊥ = {v ∈ V | ∀w ∈ W, B(v, w) = 0}.
In other words, W⊥ is the maximal subspace of V which is orthogonal to W .

Exercise: Show that W 7→ W⊥ gives a self-dual Galois connection.
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Example: If K = R, a quadratic space (V,B) is an inner product space if
B is positive definite: B(v, v) ≥ 0 for all v ∈ V and B(v, v) = 0 =⇒ v = 0. In
this special case the notions of orthogonal direct sum, orthogonal complement (and
orthogonal basis!) are familiar from linear algebra.

However, in general a quadratic space may have nonzero vectors v for whichB(v, v) =
0, and this lends the theory a different flavor.

Definition: Let (V,B) be a nondegenerate quadratic space. A vector v ∈ V is
said to be isotropic if q(v) = B(v, v) = 0 and anisotropic otherwise. V itself
is said to be isotropic if there exists a nonzero isotropic vector and otherwise
anistropic. Thus an inner product space is (in particular) an anisotropic real qua-
dratic space.

Definition: The radical of V is rad(V ) = V ⊥.

Exercise: Show that a quadratic space (V,B) is nondegenerate iff rad(V ) = 0.

Exercise: Show that rad(V ⊕W ) = rad(V )⊕ rad(W ).

Proposition 4.1. (Radical Splitting) Let (V,B) be any quadratic space. Then
there exists a nondegenerate subspace W such that

V = rad(V )⊕W

is an internal orthogonal direct sum decomposition.

Proof. Since by definition rad(V ) is orthogonal to all of V , any complementary
subspace W to rad(V ) in the sense of usual linear algebra will give rise to an
orthogonal direct sum decomposition V = rad(V )⊕W . It follows from the preceding
exercise that W is nondegenerate. �
Remark: The complementary subspace W is in general far from being unique.

Remark: It is of interest to have an algorithmic version of this result. This will fol-
low immediately from the algorithmic description of the diagonalization procedure
given following Theoerem 5.1.

Proposition 4.2. Let (V,B) be a quadratic space, and W ⊂K V a nondegenerate
subspace. Then V = W ⊕W⊥.

Proof. By Exercise X.X, since W is nondegenerate, rad(W ) = W ∩W⊥ = 0, so it
makes sense to speak of the subspace W ⊕W⊥ of V . Now let z ∈ V , and consider
the associated linear form Z ∈ Hom(W,K) given by Z(v) := B(z, v). Since W is
nondegenerate, there exists w ∈ W such that for all v ∈ W ,

Z(v) = B(z, v) = B(w, v).

Thus w′ = z − w ∈ W⊥ and z = w + w′. �
Proposition 4.3. Let (V,B) be a nondegenerate quadratic space and W ⊂ V an
arbitrary subspace. Then we have:

(4) dimW + dimW⊥ = dimV.
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(5) (W⊥)⊥ = W.

Proof. a) Consider the linear map L : V → W∨ given by v 7→ (w 7→ B(v, w)).
Evidently Ker(L) = W⊥. Moreover, this map factors as the composite V → V ∨ →
W∨, where the first map is surjective by nondegeneracy and the second map is
evidently surjective (any linear form on a subspace extends to a linear form on the
whole space). Therefore L is surjective, so we get

dimV = dimW⊥ + dimW∨ = dimW⊥ + dimW.

b) The inclusion W ⊂ (W⊥)⊥ is a tautology which does not require the non-
degeneracy of V : indeed every vector in W is orthogonal to every vector which
is orthogonal to every vector in W ! On the other hand, by part a) we have
dimW⊥ + dim(W⊥)⊥ = dimV , so dimW = dim(W⊥)⊥. Since W is finite-
dimensional, we conclude W = (W⊥)⊥. �

Corollary 4.4. For a nondegenerate quadratic space (V,B) and W ⊂K V , TFAE:
(i) W ∩W⊥ = 0.
(ii) W is nondegenerate.
(iii) W⊥ is nondegenerate.

Exercise X.X: Prove Corollary 4.4.

5. Diagonalizability of Quadratic Forms

Let q ∈ Qn be an n-ary quadratic form. We say that q is diagonal if either of the
following equivalent conditions are satisfied:

(D1) Its defining quadratic polynomial is of the form
∑

i aix
2
i .

(D2) Its defining symmetric matrix is diagonal.

Exercise: Show that a diagonal form is nondegenerate iff ai ̸= 0 for all i.

Exercise: a) Let σ ∈ Sn be a permutation, and let Mσ be the matrix obtained by
applying the permutation σ to the columns of the n×n identity matrix. Show that
if D = ∆(a1, . . . , an) is any diagonal matrix, then MT

σ DM = ∆(aσ(1), . . . , aσ(n)).
In particular, reordering the diagonal entries of a diagonal quadratic form does not
change its equivalence class.
b) For α ∈ K×, find an explicit matrix M such that

MT∆(a1, . . . , an)M = ∆(α2a1, . . . , an).

c) Show that any two nondegenerate diagonal quadratic forms over a quadratically
closed field are equivalent.
d) Use the spectral theorem from linear algebra to show that any real quadratic
form is equivalent to a diagonal form. Deduce that any nondegenerate real qua-
dratic form is equivalent to ∆(1, . . . , 1,−1, . . . ,−1) where there are 0 ≤ r instances
of 1 and 0 ≤ s instances of −1, with r + s = n.

In general, let us say that an quadratic form q ∈ Qn(K) is diagonalizable if
it is GLn(K)-equivalent to a diagonal quadratic form. (By convention, we decree
the trivial quadratic form to be diagonalizable.) We can now state and prove one
of the most basic results of the theory.
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Theorem 5.1. Every quadratic form over K is diagonalizable.

Before giving the proof, let us state the result in two equivalent forms, both using
the language of quadratic spaces. A diagonalizable quadratic space (V,B) is one
for which there exist one-dimensional subspaces W1, . . . ,Wn such that

V = W1 ⊕ . . .⊕Wn.

Equivalently, there exists an orthogonal basis (e1, . . . , en) for V , i.e., one for
which B(ei, ej) = 0 for all i ̸= j.

Proof. We go by induction on the dimension of V , the case n = 0 being trivial.
Suppose the result is true for all quadratic spaces over K of dimension less than
n, and let (V,B) be an n-dimensional quadratic space. If B is identically zero,
the result is obvious, so let us assume not. If the asociated quadratic form q(x) =
B(x, x) were identically zero, then by the polarization identity, so would B be.
Thus we may assume that there exists v1 ∈ V with q(v1) ̸= 0. Then W1 = ⟨v1⟩ is
nondegenerate, and by Proposition 4.2 we have V = W1 ⊕W⊥

1 . We are finished by
induction! �

This theorem and proof can be restated in the language of symmetric matrices.
Namely, let B be an n× n symmetric matrix with coefficients in K. Then by per-
forming a sequence of simultaneous row-and-column operations on B – equivalently,
multiplying on the right by an elementary matrix E and on the left by its transpose
– we can bring B to diagonal form.

Here is an algorithm description: if B = 0, we’re done. Otherwise, there exists a
nonzero entry bij . By taking E to be the elementary matrix corresponding to the
transposition (1i), we get a nonzero entry α = b′j1. If j = 1, great. If not, then
by adding the jth row to the first row – and hence also the jth column to the first
column – we get a matrix B′′ with b′′11 = 2α (which is nonzero since K does not
have characteristic 2!). Then, since every element of K is a multiple of 2α, by usual
row (+ column) reduction we can get an congruent matrix B′′′ with b′′′1j = 0 for all
j > 1. In the above proof, this corresponds to finding an anisotropic vector and
splitting off its orthogonal complement. Now we proceed by induction.

Remark: As alluded to above, Theorem 5.1 is direct generalization of Proposition
4.1 (Radical Splitting), and the algorithmic description given above in particular
gives an effective procedure that Proposition.

Corollary 5.2. Let V be a nondegenerate quadratic space.
a) For any anisotropic vector v, there exists an orthogonal basis (v, e2, . . . , en).
b) If α ∈ K× is represented by q, then (V, q) ∼= αx2

1 + α2x
2
2 + . . .+ αnx

2
n.

Proof. Part a) is immediate from the proof of Theorem 5.1, and part b) follows
immediately from part a). �

Corollary 5.3. Let q be a nondegenerate binary form of discriminant d which
represents α ∈ K×. Then q ∼= ⟨α, αd⟩. In particular, two nondegenerate binary
forms are isometric iff they have the same discriminant and both represent any one
element of K×.

Proof. By Corollary 5.2, q ∼= αx2
1 +α2x

2
2. The discriminant of q is on the one hand

d (mod K)×2 and on the other hand αα2 (mod K)×2 so there exists a ∈ K× such
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that αα2 = da−2. So

q ∼= αx2
1 +

(
d

αa2

)
x2
2 = αx2

1 + αd
( x2

αa

)2 ∼= αx2
1 + αdx2

2.

�

Exercise: Show that the usual Gram-Schmidt process from linear algebra works to
convert any basis to an orthogonal basis, provided we have q(x) ̸= 0 for all x ̸= 0.

In view of Theorem 5.1 it will be useful to introduce some streamlined notation for
diagonal quadratic forms. For any α ∈ K, we let ⟨α⟩ denote the one-dimensional
quadratic space equipped with a basis vector e with q(e) = α. For α1, . . . , αn, we
write ⟨a1, . . . , an⟩ for

⊕n
i=1⟨ai⟩, or in other words, for the quadratic form corre-

sponding to the matrix ∆(a1, . . . , an).

Exercise: Convert this proof into an algorithm for diagonalizing quadratic forms.
(Hint: explain how to diagonalize a corresponding symmetric matrix using simul-
taneous row and column operations.)

Remark: The result of Theorem 5.1 does not hold for fields of characteristic 2.
For instance, the binary quadratic form q(x, y) = x2 + xy + y2 over F2 is not
GL2(F2)-equivalent to a diagonal form. One way to see this is to observe that
q is anisotropic over F2, whereas any diagonal binary form is isotropic: certainly
ax2+ by2 is isotropic if ab = 0; and otherwise ax2+ by2 = (x+ y)2 and an isotropic
vector is (x, y) = (1, 1).

6. Isotropic and hyperbolic spaces

Recall that a quadratic space V is isotropic if it is nondegenerate and there exists
a nonzero vector v such that q(v) = 0.

The basic example of an isotropic space is the hyperbolic plane, given by H(x, y) =
xy, or in equivalent diagonal form as H(x, y) = 1

2x
2 − 1

2y
2. A quadratic space is

hyperbolic if it is isometric to a direct sum of hyperbolic planes.

A subspace W of a quadratic space (V,B) is totally isotropic if B|W ≡ 0.4

We come now to what is perhaps the first surprising result in the structure theory
of nondegenerate quadratic forms. It says that, in some sense, the hyperbolic plane
is the only example of an isotropic quadratic space. More precisely:

Theorem 6.1. Let (V,B) be an isotropic quadratic space. Then there is an iso-
metric embedding of the hyperbolic plane into (V,B).

Proof. Since B is nondegenerate, there exists w ∈ V with B(u1, w) ̸= 0. By suitably
rescaling w, we may assume that B(u1, w) = 1. We claim that there exists a unique

4We have some misgivings here: if 0 ̸= W ⊂ V is a totally isotropic subspace, then viewed as
a quadratic space in its own right, W is not isotropic, because isotropic subspaces are required

to be nondegenerate. Nevertheless this is the standard terminology and we will not attempt to
change it.
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α ∈ K such that q(αu1 + w) = 0. Indeed,

q(αu1 + w) = α2q(u1) + 2αB(u1, w) + q(w) = 2α+ q(w),

so we may take α = −q(w)
2 . Putting u2 = αu1 + w, we have q(u1) = q(u2) = 0 and

B(u1, u2) = B(u1, αu1 + w) = αq(u1) +B(u1, w) = 1,

so that the quadratic form q restricted to the span of u1 and u2 is, with respect to
the basis u1, u2, the hyerbolic plane: q(xu1 + yu2) = xy. �
Here is a generalization.

Theorem 6.2. Let (V,B) be a nondegenerate quadratic space and U ⊂ V a totally
isotropic subspace with basis u1, . . . , um. Then there exists a totally isotropic sub-
space U ′, disjoint from U , with basis u′

1, . . . , u
′
m such that B(ui, u

′
j) = δ(i, j). In

particular ⟨U,U ′⟩ ∼=
⊕m

i=1 H.

Proof. We proceed by induction on m, the case m = 1 being Theorem 6.1. Since
B is nondegenerate, there exists w ∈ V with B(u1, w) ̸= 0. By suitably rescaling
w, we may assume that B(u1, w) = 1. We claim that there exists a unique α ∈ K
such that q(αu1 + w) = 0. Indeed,

q(αu1 + w) = α2q(u1) + 2αB(u1, w) + q(w) = 2α+ q(w),

so we may take α = −q(w)
2 . Putting u2 = αu1 + w, we have q(u1) = q(u2) = 0 and

B(u1, u2) = B(u1, αu1 + w) = αq(u1) +B(u1, w) = 1,

so that the quadratic form q restricted to the span of u1 and u2 is, with respect to
the basis u1, u2, the hyerbolic plane: q(xu1 + yu2) = xy.

Now assume the result is true for all totally isotropic subspaces of dimension
smaller than m. Let W = ⟨u2, . . . , um⟩. If we had W⊥ ⊆ ⟨u1⟩⊥, then taking
“perps” and applying Proposition 4.3 we would get ⟨u1⟩ ⊂ W , a contradiction.
So there exists v ∈ W⊥ such that B(u1, v) ̸= 0. As above, the subspace H1

spanned by u1 and v is a hyperbolic plane and hence contains a vector u′
1 such

that B(u′
1, u

′
1) = 0, B(u1, u

′
1) = 1. By construction we have H1 ⊂ W⊥; taking

perps gives W ⊂ H⊥
1 . Since H⊥

1 is again a nondegenerate quadratic space, we may
apply the induction hypothesis to W to find a disjoint totally isotropic subspace
W ′ = ⟨u′

2, . . . , u
′
n⟩ with each ⟨ui, ui⟩ a hyperbolic plane. �

The following is an immediate consequence.

Corollary 6.3. Let W be a maximal totally isotropic subspace of a nondegenerate
quadratic space V . Then dimW ≤ 1

2 dimV . Equality holds iff V is hyperbolic.

It will convenient to have a name for the subspace U ′ shown to exist under the hy-
potheses of Theorem 6.2, but there does not seem to be any standard terminology.
So, to coin a phrase, we will call U ′ an isotropic supplement of U .

We define a quadratic form q to be universal if it represents every element of
K×. Evidently the hyperbolic plane H = xy is universal: take x = α, y = 1.

Corollary 6.4. Any isotropic quadratic space is universal.

Proof. This follows immediately from Theorem 6.1. �
Exercise X.X: Give an example of an anisotropic universal quadratic form.



QUADRATIC FORMS CHAPTER I: WITT’S THEORY 15

Corollary 6.5. For any α ∈ K×, the rescaling α ·H is isomorphic to H.

Proof. α·H is a two-dimensional isotropic quadratic space. Apply Theorem 6.1. �

Corollary 6.6. Any quadratic space V admits an internal orthogonal direct sum
decomposition

V ∼= rad(V )⊕
n⊕

i=1

H⊕ V ′,

where n ∈ N and V ′ is anisotropic.

Proof. By Proposition 4.1 we may assume V is nondegenerate. If V is anisotropic,
we are done (n = 0). If V is isotropic, then by Theorem 6.1 there is a hyperbolic
subspace H ⊂ V . Since H is nondegenerate, by Proposition 4.2 V = H⊕H⊥, with
H⊥ nondegenerate of smaller dimension. We are finished by induction. �

Remark: This is half (the easier half) of the Witt Decomposition Theorem.
The other, deeper, half is a uniqueness result: the number n and the isometry class
of V ′ are independent of the choice of direct sum decomposition.

Theorem 6.7. (First Representation Theorem) Let q be a nondegenerate quadratic
form, and let α ∈ K×. TFAE:
(i) q represents α.
(ii) q ⊕ ⟨−α⟩ is isotropic.

Proof. If q represents α, then by Remark X.X, q is equivalent to a form ⟨α, α2, . . . , αn⟩.
Then q ⊕ ⟨−α⟩ contains (an isometric copy of) ⟨α,−α⟩ = α ·H ∼= H so is isotropic.
Conversely, we may assume q = ⟨α1, . . . , αn⟩, and our assumption is that there
exist x0, . . . , xn, not all 0, such that

−αx2
0 + α1x

2
1 + . . .+ αnx

2
n = 0.

There are two cases. If x0 ̸= 0, then α1(x1/x0)
2 + . . . + αn(xn/x0)

2 = α, so q
represents α. If x0 = 0, then x = (x1, . . . , xn) is a nonzero isotropic vector for q, so
q is isotropic and thus represents every element of K×, including α. �

This has the following easy consequence, the proof of which is left to the reader.

Corollary 6.8. For a field K and n ∈ Z+, TFAE:
(i) Every nondegenerate n-ary quadratic form over K is universal.
(ii) Every nondegenerate (n+ 1)-ary quadratic form over K is isotropic.

Lemma 6.9. (Isotropy Criterion) Let m,n ∈ Z+, let f(x1, . . . , xm) and g(y1, . . . , yn)
be nondegenerate quadratic forms, and put h = f − g. TFAE:
(i) There is α ∈ K× which is represented by both f and g.
(ii) The quadratic form h is isotropic.

Proof. (i) =⇒ (ii): Suppose there are x ∈ Km, y ∈ Kn such that f(x) = g(y) = α.
Then h(x, y) = α−α = 0 and since f(x) = α ̸= 0, some coordinate of x is nonzero.
(ii) =⇒ (i): Let (x, y) ∈ Km+n \ {(0, . . . , 0)} be such that h(x, y) = f(x) −
g(y) = 0. Let α be the common value of f(x) and f(y). If α ̸= 0, we’re done.
Otherwise at least one of f and g is isotropic: say it is f . Then f contains H and
therefore represents every element of K×, so in particular represents g(e1) ̸= 0,
where e1, . . . , en is an orthogonal basis for Kn. �
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7. Witt’s theorems: statements and consequences

In this section we state the fundamental result of Witt on which the entire algebraic
theory of quadratic forms is based. It turns out that there are two equivalent
statements of Witt’s result: as an extension theorem and as a cancellation
theorem. We now state these two theorems, demonstrate their equivalence, and
derive some important consequences. The proof of the Witt Cancellation Theorem
is deferred to the next section.

Theorem 7.1. (Witt Cancellation Theorem) Let U1, U2, V1, V2 be quadratic spaces,
with V1 and V2 isometric. If U1 ⊕ V1

∼= U2 ⊕ V2, then U1
∼= U2.

Theorem 7.2. (Witt Extension Theorem) Let X1 and X2 be isometric quadratic
spaces. Suppose we are given orthogonal direct sum decompositions X1 = U1 ⊕ V1,
X2 = U2 ⊕ V2 and an isometry f : V1 → V2. Then there exists an isometry
F : X1 → X2 such that F |V1 = f and F (U1) = U2.

Let us demonstrate the equivalence of Theorems 7.2 and 7.1. Assume Theorem 7.2,
and let U1, U2, V1, V2 be as in Theorem 7.1. Put X1 = U1 ⊕ V1, X2 = U2 ⊕ V2, and
let f : V1 → V2 be an isometry. By Theorem 7.2, U1 and U2 are isometric.

Conversely, assume Theorem 7.1, and let X1, X2, U1, U2, V1, V2 be as in The-
orem 7.2. Then Witt Cancellation implies that U1

∼= U2, say by an isometry
fU : U1 → U2. Then F = fU ⊕ f : X1 → X2 satisfies the conclusion of Theorem
7.2.

Remark: The statement of Theorem 7.2 is taken from [Cop, Prop. VII.18]. The
advantage has just been seen: its equivalence with the Witt Cancellation Theorem
(in the most general possible form) is virtually immediate. Each of the following
results, which contain further assumptions on nondegeneracy, is sometimes referred
to in the literature as “Witt’s Isometry Extension Theorem”.

Corollary 7.3. Let X be a quadratic space and V1, V2 ⊂ X be nondegenerate
subspaces. Then any isometry f : V1 → V2 extends to an isometry F of X.

Proof. Put U1 = V ⊥
1 , U2 = V ⊥

2 . Because of the assumed nondegeneracy of V1 and
V2, we have X = U1 ⊕ V1 = U2 ⊕ V2. Theorem 7.2 now applies with X = X1 = X2

to give an isometry F of X extending f . �
Remark: The conclusion of Corollary 7.3 may appear weaker than that of Theorem
7.2, but this is not so. Since V1 and V2 are nondegenerate, any extended isometry
F must map U1 to U2: since f(V1) = V2, f(U1) = f(V ⊥

1 ) = f(V1)
⊥ = V ⊥

2 = U2.

Corollary 7.4. Let X be a nondegenerate quadratic space and Y1 ⊂ X any sub-
space. Then any isometric embedding f : Y1 → X is an extends to an isometry F
of X.

Proof. Put Y2 = f(Y1). Note that if Y1 is nondegenerate, then so is Y2 and we
may apply Corollary 7.3. Our strategy of proof is to reduce to this case. Using
Proposition 4.1 we may write Y1 = U1 ⊕W1 with U1 totally isotropic and W1 non-
degenerate. Evidently U1 ⊂ W⊥

1 ; since X and W1 are nondegenerate, by Corollary
4.4 W⊥

1 is nondegenerate as well. We may therefore apply Theorem 6.2 to find an
isotropic supplement U ′

1 to U1 inside W⊥
1 . Let V1 = ⟨U1, U

′
1⟩⊕W1. Then V1 is non-

degenerate and the natural inclusion Y1 ↪→ V1 is, of course, an isometric embedding.
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We may apply the same reasoning to Y2
∼= U2 ⊕W2 to get an isotropic supplement

U ′
2 to U2 inside W⊥

2 and Y2 ↪→ V2 = ⟨U2, U
′
2⟩ ⊕W2. Since Ui = rad(Yi) and Y1 and

Y2 are isometric, U1
∼= U2, and then ⟨U1, U

′
1⟩ and ⟨U2, U

′
2⟩ are hyperbolic spaces of

the same dimension, hence isometric. By Witt Cancellation, W1
∼= W2. It follows

that V1 and V2 are isometric, and we finish by applying Corollary 7.3. �

This has the following interesting consequence.

Theorem 7.5. Let V be a nondegenerate quadratic space. Then, for any 0 ≤
d ≤ 1

2 dimV , the group of isometries of V acts transitively on the set of all totally
isotropic subspaces of dimension d.

Exercise: Let X be the quadratic space ⟨1,−1, 0⟩. Let V1 = ⟨e1+e2⟩ and V2 = ⟨e3⟩.
a) Show that there exists an isometry f : V1 → V2.
b) Show that f does not extend to an isometry of X.

Corollary 7.3 is equivalent to a weak version of Witt Cancellation in which we
make the additional hypothesis that V1 (hence also V2) is nondegenerate. The one
application of being able to cancel also degenerate subspaces is the following result.

Theorem 7.6. (Witt Decomposition Theorem) Let (V,B) be a quadratic space.
Then there exists an orthogonal direct sum decomposition

V ∼= rad(V )⊕
I⊕

i=1

H⊕ V ′,

where V ′ is an anistropic quadratic space. Moreover the number I = I(V ) and the
isometry class of V ′ are independent of the choice of decomposition.

Proof. The existence of such a decomposition has already been shown: Corollary
6.6. The uniqueness follows immediately from the Witt Cancellation Theorem and
the fact that any isotropic quadratic form contains an isometrically embedded copy
of the hyperbolic plane (Theorem 6.1). �

Remark: Theorem 7.6 is a good excuse for restricting attention to nondegenerate
quadratic forms. Indeed, unless indication is expressly given to the contrary, we
will henceforth consider only nondegenerate quadratic forms.

Thus, assuming that V is nondegenerate, the natural number I(V ) is called the
Witt index of V . By Exercise X.X, it can be characterized as the dimension of
any maximal totally isotropic subspace of V .

Theorem 7.7. (Sylvester’s Law of Inertia)
Let n ∈ Z+ and r, s ∈ N with r + s = n. Define

qr,s = [r]⟨1⟩ ⊕ [s]⟨−1⟩,

i.e., the nondegenerate diagonal form with r 1’s and s −1’s along the diagonal.
Then any n-ary quadratic form over R is isomorphic to exactly one form qr,s.

Exercise: Use the Witt Decomposition Theorem to prove Theorem 7.7.
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7.1. The Chain Equivalence Theorem.

In this section we present yet another fundamental theorem due E. Witt, albeit
one of a more technical nature. This theorem will be needed at a key juncture
later on in the notes, namely in order to show that the Hasse-Witt invariant is
well-defined. The reader should feel free to defer reading about the proof, and even
the statement, of the result until then.

Let q1 = ⟨a1, . . . , an⟩, q2 = ⟨b1, . . . , bn⟩ be two diagonal n-ary quadratic forms
over K. We say that q1 and q2 are simply equivalent if there exist not neces-
sarily distinct indices i and j such that ⟨ai, aj⟩ ∼= ⟨bi, bj⟩ and for all k ̸= i, j, ak = bk.

The following exercises are very easy and are just here to keep the reader awake.

Exercise X.X: If q and q′ are simply equivalent, then they are isometric.

Exercise X.X: If n ≤ 2, then two n-ary quadratic forms q and q′ are simply equiv-
alent iff they are isometric.

Exercise: If q and q′ are chain equivalent, then so are q ⊕ q′′ and q′ ⊕ q′′.

Despite the name, simple equivalence is not an equivalence relation: it is (obviously)
reflexive and symmetric, but it is not transitive. For instance, let a ∈ K \ {0,±1}
and n ≥ 3, then the forms q = ⟨1, . . . , 1⟩ and q′ = ⟨a2, . . . , a2⟩ are not simply equiv-
alent, since at least three of their diagonal coefficients differ. However, if we put
q1 = ⟨a2, a2, 1 . . . , 1⟩ q2 = ⟨a2, a2, a2, a2, 1, . . . 1⟩ and so forth, changing at each step
two more of the coefficients of q to a2: if n is odd, then at the (final) n+1

2 th step, we
change the nth coefficient only. Then q is simply equivalent to q1 which is simply
equivalent to q2 . . . which is simply equivalent to qn which is simply equivalent to q′.

Let us temporarily denote the relation of simple equivalence by ∼. Since it is
not transitive, it is natural to consider its transitive closure, say ≈. As for any
transitive closure, we have q ≈ q′ iff there exists a finite sequence q0, . . . , qn+1 with
q0 = q, qn+1 = q′ and qi ∼ qi+1 for all i. The reader may also verify that the tran-
sitive closure of any reflexive, symmetric relation remains reflexive and symmetric
and is thus an equivalence relation. In this case, we say that two quadratic forms
q and q′ are chain equivalent if q ≈ q′.

Note that in our above example of two chain equivalent but not simply equiv-
alent quadratic forms, q and q′ are in fact isometric. Indeed this must be true in
general since the relation of simple equivalence is contained in that of the equiva-
lence relation of isometry, so therefore the equivalence relation generated by simple
equivalence must be contained in the equivalence relation of isometry. (Or just stop
and think about it for a second: perhaps this explanation is more heavy-handed
than necessary.) So a natural question5 is how does chain equivalence compare to
isometry. Is it possible for two isometric quadratic forms not to be chain equivalent?

Theorem 7.8. (Witt’s Chain Equivalence Theorem) For two n-ary quadratic forms
q = ⟨α1, . . . , αn⟩, q′ = ⟨β1, . . . , βn⟩, TFAE:

5Well, as natural as the relation of simple equivalence, anyway.
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(i) q ≈ q′ (q and q′ are chain equivalent).
(ii) q ∼= q′ (q and q′ are isometric).

Proof. The implication (i) =⇒ (ii) has been established above. It remains to show
that (ii) =⇒ (i).
Step 0: Using Proposition 4.1 (Radical Splitting), we easily reduce to the case in
which q and q′ are nondegenerate, i.e., αi, βj ∈ K× for all i, j. (Moreover this will
be the case of interest to us in the sequel.)
Step 1: Because the symmetric group Sn is generated by transpositions, it follows
that for any permutation σ of {1, . . . , n} and any α1, . . . , αn ∈ K×, the (isometric!)
quadratic forms ⟨α1, . . . , αn⟩ and ⟨ασ(1), . . . , ασ(n)⟩ are chain equivalent.
Step 2: We prove that any two isometric nondegenerate n-ary quadratic forms q
and q′ are chain equivalent, by induction on n. The cases n = 1, 2 have already been
discussed, so assume n ≥ 3. Any form which is chain equivalent to q is isometric
to q′ and hence represents β1. Among all n-ary forms ⟨γ1, . . . , γn⟩ which are chain
equivalent to q, choose one such that

(6) β1 = γ1a
2
1 + . . .+ γℓa

2
ℓ

with minimal ℓ. We claim that ℓ = 1. Suppose for the moment that this is the
case. Then α is chain equivalent to a form ⟨β1a

−2
1 , γ2, . . . , γn⟩ and hence to a form

q1 = ⟨β1, γ2, . . . , γn⟩. Then, by Witt Cancellation, the form ⟨γ2, . . . , γn⟩ is isometric
to ⟨β2, . . . , βn⟩, and by induction these latter two forms are chain equivalent. By
Exercise X.X, the forms q1 and q′ are chain equivalent, hence q and q′ are chain
equivalent.
Step 4: We verify our claim that ℓ = 1. Seeking a contradiction we suppose that
ℓ ≥ 2. Then no subsum in (6) can be equal to zero. In particular d := γ1a

2
1+γ2a

2
2 ̸=

0, hence by Corollary 5.3 we have ⟨γ1, γ2⟩ ∼= ⟨d, γ1γ2d⟩. Using this and Step 1,

q ≈ ⟨γ1, . . . , γn⟩ ≈ ⟨d, γ1γ2d, γ3, . . . , γn⟩ ∼= ⟨d, γ3, . . . , γn, γ1γ2d⟩.

But β1 = d+ γ3a
2
3 + . . .+ γℓa

2
ℓ , contradicting the minimality of ℓ. �

8. Orthogonal Groups

8.1. The orthogonal group of a quadratic space.

Let V be a quadratic space. Then the orthogonal group O(V ) is, by definition,
the group of all isometries from V to V , i.e., the group of linear automorphisms M
of V such that for all v, w ∈ V , B(v, w) = B(Mv,Mw). Identifying V with Kn

(i.e., choosing a basis) and B with the symmetric matrix (B(ei, ej)), the definition
becomes

O(V ) = {M ∈ GLn(K) | ∀v, w ∈ Kn, vTBw = vTMTBMw}

= {M ∈ GLn(K) | M • q = q}
where q is the associated quadratic form. In other words, O(V ) is none other than
the isotropy group Oq of q for the GLn(K)-action on n-ary quadratic forms.

Remark: It is tempting to try to provide a conceptual explanation for the some-
what curious coincidence of isotropy groups and automorphism groups. But this
would involve a digression on the groupoid associated to a G-set, a bit of abstract
nonsense which we will spare the reader...for now.
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Although we introduced isotropy groups in §1.2 and remarked that the isotropy
group of the form [n]⟨1⟩ is the standard orthogonal group O(n), we did not provide
much information about orthogonal groups over an arbitrary field. Essentially all
we know so far is that equivalent forms have conjugate (in particular isomorphic)
orthogonal groups. Here is one further observation, familiar from linear algebra.

By definition, for all M ∈ O(V ) we have MTBM = B; taking determinants
gives det(M)2 detB = detB. If (V,B) is nondegenerate, then detB ̸= 0, and we
conclude that detM = ±1. This brings us to:

Proposition 8.1. Let V be a nondegenerate quadratic space. We have a short
exact sequence of groups

1 → O+(V ) → O(V )
det→ {±1} → 1.

Proof. In other words, O+(V ) is by definition the subgroup of matrices in O(V )
of determinant 1. It remains to see that there are also elements in O(V ) with
determinant −1. However, we may assume that V is given by a diagonal matrix,
and then M = ∆(1, . . . , 1,−1) is such an element. �

Exercise 8.1: Show that if V is degenerate, O(V ) contains matrices with determi-
nant other than ±1.

Definition: We write O−(V ) for the elements of O(V ) of determinant −1. Of
course this is not a subgroup, but rather the unique nontrivial coset of O+(V ).

8.2. Reflection through an anisotropic vector.

We now introduce a fundamental construction which will turn out to generalize
the seemingly trivial observation that if q is diagonal, ∆(1, . . . , 1,−1) is an explicit
element in O−(V ). Indeed, let (V,B, q) be any quadratic space, and let v ∈ V be
an anisotropic vector. We define an element τv ∈ O−(V ) as follows:

τv : x 7→ x− 2B(x, v)

q(v)
v.

Note that in the special case in which V = Rn and B is positive definite, τv is
reflection through the hyperplane orthogonal to v. In the general case we call τv a
hyperplane reflection. We justify this as follows:

Step 1: τv is a linear endomorphism of V . (An easy verification.)

Step 2: Put W = ⟨v⟩⊥, so that V = W ⊕ ⟨v⟩. Let e1, . . . , en−1 be an orthogo-
nal basis for W , so that (e1, . . . , en−1, v) is an orthogonal basis for V . Then, with
respect to this basis, the matrix representation of τv is indeed ∆(1, . . . , 1,−1). It
follows that τv is an isometry, τ2v = 1V and det(τv) = −1.

Proposition 8.2. Let (V,B, q) be any quadratic space. Suppose that x, y ∈ V are
anisotropic vectors with q(x) = q(y). Then there is M ∈ O(V ) such that Mx = y.
Moreover, we can choose M to be either a reflection or a product of two reflections.

Proof. Case 1: Suppose q(x) ̸= ⟨x, y⟩. Then x− y is anisotropic: indeed

⟨x− y, x− y⟩ = q(x)− 2⟨x, y⟩+ q(y) = 2(q(x)− ⟨x, y⟩) ̸= 0.
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Then

τx−yx = x− 2⟨x, x− y⟩
⟨x− y, x− y⟩

(x− y) = x− 2(q(x)− ⟨x, y⟩)
⟨x− y, x− y⟩

(x− y) = y.

Case 2: Suppose q(x) = ⟨x, y⟩. Then, since charK ̸= 2, ⟨−x, y⟩ ̸= q(x). Using Case
1 with −x in place of x we get

τ−x−yτxx = τ−x−y − x = y.

�
Exercise 8.2: a) Let M ∈ O(V ), and let v ∈ V be an anisotropic vector. Show:

MτvM
−1 = τMv.

b) Let v ∈ V be an anisotropic vector. Deduce that the conjugacy class of τv in
O(V ) is {τw | q(w) = q(v)}.

8.3. Proof of Witt Cancellation.

We can now give the proof of the Witt Cancellation Theorem. First a slight sim-
plification: if U1, U2, V1, V2 are quadratic spaces such that V1

∼= V2 and U1 ⊕ V1
∼=

U2 ⊕ V2, then we have U2 ⊕ V2
∼= U2 ⊕ V1, hence U1 ⊕ V1

∼= U2 ⊕ V1. So we may
assume: V1 = V2 = V , U1 ⊕ V ∼= U2 ⊕ V . We wish to conclude that U1

∼= U2.

Step 1: V is totally isotropic, say of dimension r and U1 is nondegenerate, say
of dimension s. Choose bases, and let B1 (resp. B2) be the symmetric matrix as-
sociated to U1 (resp. U2), so that we are assuming the existence of M ∈ GLr+s(K)
such that

MT

[
0r 0r,s
0s,r B2

]
M =

[
0r 0r,s
0s,r B1

]
.

But writing M as a block matrix

[
A B
C D

]
, we find that the s × s submatrix in

the lower right hand corner of the left hand side is DTM2D. Thus M1 = DTM2D.
Since M1 is nonsingular, so is D, and we conclude that U1

∼= U2.

Step 2: V is totally isotropic. Choose orthogonal bases for U1 and U2, and suppose
WLOG that the matrix for U1 has exactly r zeros along the diagonal, whereas the
matrix for U2 has at least r zeros. Then we can replace V by V ⊕ [r]⟨0⟩ and assume
that U1 is nondegenerate, reducing to Case 1.

Step 3: dimV = 1, say V = ⟨a⟩. If a = 0 we are done by Case 2, so we may
assume a ̸= 0. Explicitly, choose a basis x, e2, . . . , en for W1 = ⟨a⟩ ⊕ U1 with
q(x) = a and a basis (x′, e′2 . . . , e

′
n) for W2 = ⟨a⟩ ⊕ U2 with q(x′) = a, and let

F : W1 → W2 be an isometry. Put y = F−1(x′) and U ′
1 = F−1(U2), so that

W1 = ⟨x⟩ ⊕ U1 = ⟨y⟩ ⊕ U ′
1.

By Proposition 8.2, there exists τ ∈ O(W1) such that τ(x) = y. Because ⟨x⟩ and
⟨y⟩ are nondegenerate, we have U1 = ⟨x⟩⊥ and U ′

1 = ⟨y⟩⊥, so that τ(U1) = U ′
1.

Thus U1
∼= U ′

1
∼= U2.

Step 4: General case: Write V = ⟨a1, . . . , an⟩. By Step 3 we can cancel ⟨a1⟩,
and then ⟨a2⟩, and so forth: i.e., an obvious inductive argument finishes the proof.
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8.4. The Cartan-Dieudonné Theorem.

In this section we state and prove one of the fundamental results of “geometric
algebra,” a theorem of E. Cartan and J. Dieudonné. Because this result is not used
in the remainder of these notes and the proof is somewhat intricate, we encourage
the beginning reader to read the statement and then skip to the next section.

We need one preliminary result.

Lemma 8.3. Let V be a hyperbolic quadratic space, and let σ ∈ O(V ) be an
isometry which acts as the identity on a maximal totally isotropic subspace of V .
Then σ ∈ O+(V ).

Proof. Let M be a maximal isotropic subspace on which σ acts as the identity. Put
r = dimM , so 2r = dimV . Let N be an isotropic supplement to M (c.f. Theorem
6.2). For x ∈ M , y ∈ N we have σx = x and

⟨x, σy − y⟩ = ⟨x, σy⟩ − ⟨x, y⟩ = ⟨x, σy⟩ − ⟨x, σy = 0.

Thus σy − y ∈ M⊥ = M . Let x1, . . . , xr be a basis for M and y1, . . . , yr be a basis
for N . It is then easy to see that the determinant of σ with respect to the basis
x1, . . . , xr, y1, . . . , yr is equal to 1. �

Theorem 8.4. (Cartan-Dieudonné) Let V be a nondegenerate quadratic space of
dimension n. Then every element of the orthogonal group O(V ) may be expressed
as a product of n reflections.

Proof. We follow [OM00, pp. 102-103].
Step 1: Suppose that there exists σ ∈ O(V ) satisfying the following condition: for
every anisotropic vector x, the vector σx−x is nonzero and isotropic. Then n ≥ 4,
n is even and σ ∈ O+(V ).
Certainly we cannot have n = 1, for then O(V ) = {±1} and it is clear that neither
1 nor −1 satisfies the hypotheses. If n = 2, then let x be an anisotropic vector.
Since σx−x is isotropic and nonzero, σx must be linearly independent from x. We
then compute that the determinant of the quadratic form with respect to the basis
x, σx is equal to 0, contradicting nondegeneracy. So we may assume n ≥ 3.

By assumption we have q(σx− x) = 0 for all anisotropic x ∈ V . We claim that
in fact this holds for all x ∈ V . To see this, let y ∈ V be a nonzero isotropic vector.
There exists a hyperbolic plane containing y and splitting V , hence a vector z with
q(z) ̸= 0 and ⟨y, z⟩ = 0. Then for all ϵ ∈ K× we have q(y + ϵz) ̸= 0, hence by
assumption

q(σ(y + ϵz)− (y + ϵz)) = 0, q(σz)− z) = 0.

It follows that for all ϵ ∈ K× we have

(7) q(σy − y) + 2ϵ⟨σy − y, σz − z⟩ = 0.

If in equation (7) we substitute ϵ = 1 and then ϵ = −1 and add, we get q(σy−y) = 0,
as claimed. In other words, if we put W := (σ − 1)V , then q|W ≡ 0. Now for any
x ∈ V and y ∈ W⊥ we have

⟨x, σy − y⟩ = ⟨σx, σy − y⟩ − ⟨σx− x, σy − y⟩
= ⟨σx, σy − y⟩ = ⟨σx, σy⟩ − ⟨σx, y⟩

= ⟨x, y⟩ − ⟨σx, y⟩ = −⟨σx− x, y⟩ = 0.
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Thus σy − y is perpendicular to all of V ; by nondegeneragy, we conclude σy = y.
Our hypothesis now implies that q|W⊥ = 0. Thus

W ⊂ W⊥ ⊂ W⊥⊥ = W,

so W = W⊥. Therefore dimV = dimW + dimW⊥ = 2dimW is even, hence at
least 4. Moreover V is hyperbolic and W is a maximal totally isotropic subspace
on which σ acts as 1. By Lemma 8.3, we have σ ∈ O+(V ), completing Step 1.
Step 2: We now prove the theorem, by induction on n. The case n = 1 is trivial,
so we assume n > 1.
Case 1: Suppose there exists an anisotropic vector x ∈ V such that σx = x. Then
H = (Kx)⊥ is a hyperplane which is left invariant by σ. (Indeed, let h ∈ H. Then
⟨σh, x⟩ = ⟨h, σ−1x⟩ = ⟨h, αx⟩ = 0. So σh ⊂ (Kx)⊥ = H.) By induction, σ|H
is a product of at most n − 1 reflections τxi in anisotropic vectors xi ∈ H. We
may naturally view each τxi as a reflection on all of V and the same product of
reflections agrees with σ on H. Moreover, it also agrees with σ on Kx, since σ and
all of the reflections are equal to the identity on Kx. Thus σ is itself equal to the
product of the at most n− 1 reflections τi.

Case 2: Next suppose that there is an anisotropic vector x such that σx − x is
anisotropic. Note that

2⟨σx, σx− x⟩ = 2 (⟨x, x⟩ − ⟨σx, x⟩) = ⟨σx− x, σx− x⟩.
From this it follows that

(τσx−xσ)(x) = σx− 2⟨σx, σx− x⟩
⟨σx− x, σx− x⟩

(σx− x) = σx− (σx− x) = x,

i.e., τσx−xσ leaves x fixed. By the previous case, it follows that τσx−xσ is a product
of at most n− 1 reflections, hence σ is a product of at most n reflections.

The remaining case is that for every anisotropic vector x ∈ V , we have that
σx − x is isotropic and nonzero. Now we apply Step 1 to conclude that n is even
and σ ∈ O+(V ). Let τ be any reflection. Then σ′ := τσ ∈ O−(V ), so that by Step
1 and the first two cases of Step 2, σ′ must be a product of at most n reflections.
Therefore σ is itself a product of at most n+1 reflections. But since n is even, if σ
were a product of exactly n+1 reflections we would have σ ∈ O−(V ), contradiction.
Therefore σ is a product of at most n reflections, qed. �
Remark: Much of the time in the algebraic and arithmetic study of quadratic
forms, the case of K = R is essentially trivial. Here we find an exception to this
rule: Theorem 8.4 is already an important and useful result when applied to a
positive definite quadratic form on Rn.

Corollary 8.5. Let σ ∈ O(V ) be a product of r reflections. Then the dimension
of the space W = {v ∈ V | σv = v} of σ-fixed vectors is at least n− r.

Exercise 8.3: Prove Corollary 8.5. (Hint: each of the r reflections determines a
hyperplane Hi; show that

∩
i Hi ⊂ W .

Exercise 8.4: Exhibit an element of O(V ) which is not a product of fewer than
n reflections.

Corollary 8.6. Suppose that σ ∈ O(V ) may be expressed as a product of n reflec-
tions. Then it may be expressed as a product of n reflections with the first reflection
arbitrarily chosen.
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Proof. Let σ = τ1 · · · τn and let τ be any reflection. Applying Cartan-Dieudonné
to τσ, there exists r ≤ n such that

τσ = τ ′1 · · · τ ′r,

and thus

σ = ττ ′1 · · · τ ′r.
We have det(σ) = (−1)n = (−1)r+1, so r + 1 is at most n + 1 and has the same
parity as n, and thus r + 1 ≤ n. �

8.5. Further Results on the Structure of Orthogonal Groups.

Let V be a nondegenerate quadratic space over a field K: as usual, we assume
that charK ̸= 2. Also, to avoid trivialities we assume that V ̸= 0. Our main
goal in this section is to determine the centers of the groups O(V ) and O+(V ).
In general this requires some fairly intricate calculations and casewise analysis, so
we begin with two special cases in which a more straightforward approach succeeds.

Exercise 8.5: Let q = x2
1 + . . . + x2

n, and let V be the associated quadratic space.
For 1 ≤ i ≤ n, let ei be the ith standard basis vector of Kn.
a) For 1 ≤ i ≤ n, let τi = τei . Show that τi = diag(1, . . . ,−1, . . . , 1).
b) Show by direct calculation that if M ∈ GLV is such that Mτi = τiM for all
1 ≤ i ≤ n, then M is diagonal.
c) Show that if M ∈ O(V ) is diagonal, then each of its diagonal entries is {±1}.
d) Show that every permutation matrix lies in O(V ).
e) Deduce that ZO(V ) = {±1}.

Exercise 8.6: Consider the hyperbolic plane H as a quadratic space V over K.
a) Show that

O+(V ) =

{(
a 0
0 1

a

)
| a ∈ K×

}
,

which is isomorphic as a group to K×.
b) Show that

O−(V ) =

{(
0 b
1
b 0

)
| b ∈ K×

}
.

c) Suppose #K > 3. Show: ZO(V ) = {±1}. Deduce ZO(V )∩O+(V ) ( ZO+(V ).
d) Suppose K ∼= F3. Show: O

+(V ) = {±1} and O(V ) = ZO(V ) = Z/2Z× Z/2Z.

Exercise 8.7: Use Exercise 8.6a) to give another proof of the fact that O+(V )
is commutative when dimV = 2. (Hint: O+(V ) ⊂ O+(V/K).)

It is often the cases that the center of a “nice subgroup” G ⊂ GLV is the set
of scalar matrices in G. Let’s first nail down two basic cases.

Proposition 8.7. Let K be an arbitrary field – for once we do not assume that
charK = 2 – and let n ∈ Z+.
a) The center of GLn(K) consists of all scalar matrices {diag(α, . . . , α) | α ∈ K×}.
b) The center of SLn(K) consists of all scalar matrices {diag(α, . . . , α) | αn = 1}.



QUADRATIC FORMS CHAPTER I: WITT’S THEORY 25

Proof. a) Let Z be the center of GLn(K). It is clear that every scalar matrix lies
in Z. To prove the converse, let M = (mij) ∈ Z, let 1 ≤ i ̸= j ≤ n, and let Eij

be the matrix obtained from the identity matrix by changing the (i, j)-entry from
0 to 1: thus Eij ∈ GLn(K). Since M ∈ Z we have EijM = MEij ; one checks that
this holds iff mij + mjj = mij + mii and mii = mii + mji, i.e., iff mji = 0 and
mii = mjj . Since this holds for all i ̸= j, M is a scalar matrix.
b) Let Z be the center of SLn(K), and let M ∈ Z. Since for all 1 ≤ i ̸= j ≤
n, Eij ∈ SLn(K), the computation of part a) shows that M is scalar. Since
det diag(α, . . . , α) = αn, diag(α, . . . , α) lies in SLn(K) iff αn = 1. �

Lemma 8.8. Let V be a two-dimensional nondegenerate quadratic space. Let τ1 ∈
O(V ) \O+(V ), and let M1,M2 ∈ O+(V ). Then:
a) τ1 is a reflection, and there are reflections τ2, τ3 such that M1 = τ1τ2, M2 = τ1τ3.
b) τ1M1τ

−1
1 = M−1

1 .
c) O+(V ) is commutative.
d) If M2

1 = 1, then M1 = ±1.
e) The following are equivalent:
(i) O+(V ) = {±1}.
(ii) O+(V ) is a 2-torsion group.
(iii) O(V ) is commutative.
(iv) ZO(V ) ) {±1}.

Proof. a) This follows from Corollary 8.5 (to the Cartan-Dieudonné Theorem).
b) Keeping in mind that τi = τ−1

i for all i, we have

τ1M1τ
−1
1 = τ1τ1τ2τ

−1
1 = τ−1

2 τ−1
1 = (τ1τ2)

−1 = M−1
1 .

c) As above, we have

M−1
2 M1M2 = (τ1τ3)

−1(τ1τ2)(τ1τ3) = τ3τ1τ1τ2τ1τ3 = τ3(τ2τ1)τ3 = τ1τ2 = M1.

d) For any M ∈ GL(V ) such that M2 = 1, M satisfies the polynomial t2 − 1 =
(t + 1)(t − 1), so its minimal polynomial has distinct linear factors and thus M is
diagonalizable with diagonal entries ±1. The condition detM = 1 rules out the
possibility that both +1 and −1 are eigenvalues.
e) (i) =⇒ (ii) is immediate.
(ii) =⇒ (iii): By part c), O+(V ) is commutative. By part b), if every element
of O+(V ) has order 2, then every elmeent of O(V ) \ O+(V ) commutes with every
element of O+(V ).
(iii) =⇒ (iv): Since O+(V ) ⊃ {±1} and [O(V ) : O+(V )] = 2, #O(V ) ≥ 4. Thus
if O(V ) is commutative, O(V ) = ZO(V ) ) {±1}.
(iv) =⇒ (i): We show the contrapositive: suppose M ∈ O+(V ) \ {±1}. By part
d), M2 ̸= 1, and then by part b), τ ∈ O(V ) \ O+(V ), τMτ−1 = M−1, so τ does
not commute with M . It follows that ZO(V ) = {±1}.

�

Lemma 8.9. Let V be a nondegenerate quadratic space of dimension n ≥ 3. Then:

ZO+(V ) = ZO(V ) ∩O+(V ).

Proof. It is clear that ZO(V ) ∩ O+(V ) ⊂ ZO+(V ). For the converse, let M ∈
ZO+(V ): we must show that M ∈ ZO(V ). Let x be an anisotropic vector, and let
e1, . . . , en be an orthogonal basis with e1 = x. Let W1 be the K-span of en, e1, and
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let W2 be the K-span of e1, e2. Since n ≥ 3, W1 ∩W2 = Ke1. Put τi = τei .
We claim MWi ⊂ Wi for i = 1, 2. Indeed,

−Me1 = M(τ1τ2e1) = τ1τ2Me1 = τ1(Me1 − 2
⟨Me1, e2⟩
⟨e2, e2⟩

e2)

= Me1 − 2
⟨Me1, e1⟩
⟨e1, e1⟩

e1 − 2
⟨Me1, e2⟩
⟨e2, e2⟩

e2,

and thus

Me1 =
⟨Me1, e1⟩
⟨e1, e1⟩

e1 −
⟨Me1, e2⟩
⟨e2, e2⟩

e2.

Similar calculations show Me2 ∈ W2 and – using en, e1 in place of e1, e2 – we get
MWi ⊂ Wi. It follows that MW1 ∩W2 ⊂ W1 ∩W2, so Mx = ax for some a ∈ K.

Since this holds for all anisotropic x, in particular it holds for each ei – say
Mei = aiei – i.e., M is diagonal with respect to the basis e1, . . . , en. The reflections
τi are also diagonal with respect to this basis, so Mτi = τiM for all 1 ≤ i ≤ n. It
follows that for every anisotropic vector x and every c1, . . . , cn ∈ K,

Mτx(c1e1 + . . .+ cnen) = −
n∑

i=1

Mτxτiciei = −
n∑

i=1

τxτiMciei

= −τx(
n∑

i=1

τiaiciei) = τx

n∑
i=1

aiciei = τxM(c1e1 + . . .+ cnen),

and thus Mτx = τxM . By the Cartan-Dieudonné Theorem, M ∈ ZO(V ). �

Exercise 8.8: Let K = F3.
a) Show that there are up to isomorphism two nondegenerate binary quadratic
forms over K: the hyperbolic plane H and q = x2

1 + x2
2.

b) Let V be the quadratic space associated to q. Show:
(i) O(V ) ∼= D4, the dihedral group on 4 elements.
(ii) O+(V ) ∼= C4, the cyclic group of order 4.
(iii) ZO(V ) = {±1}, ZO+(V ) ∼= C4, and ZO(V ) ∩O+(V ) ( ZO+(V ).

Exercise 8.9: Let ∆ ∈ K× be such that −∆ /∈ K×2, so that the quadratic form
q = x2 +∆y2 is anisotropic. Let T∆ = {(x, y) ∈ K2 | x2 +∆y2 = 1}.
a) Let L = K(

√
−∆). Consider the injection ι : T∆ ↪→ L× given by (x, y) 7→

x+
√
−∆y. Show that ι(T ) is a subgroup of L×. Show in fact that it is the kernel

of the norm map

NL/K : L× → K×, x+
√
−∆y 7→ (x+

√
−∆y)(x−

√
−∆y).

b) Let V be the quadratic space associated to q. Show that

O+(V ) =

{[
x y

−y∆ x

]
| x2 +∆y2 = 1

}
.

c) Show that as groups, O+(V ) ∼= T∆.

Theorem 8.10. Let (V, q) be a nondegenerate quadratic space.
a) We have ZO(V ) = {±1} except in the single case K ∼= F3 and V ∼= H, in which
case O(V ) = ZO(V ) ∼= Z/2Z× Z/2Z.
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b) Suppose n = 2 and V ∼= H. Then O+(V ) ∼= K×.
c) Suppose n = 2 and V is anisotropic. Let L = K(

√
−disc q). Then

O+(V ) ∼= Ker(N : L× → K×).

d) Suppose n ≥ 3. Then:
(i) If n is even, ZO+(V ) = {±1}.
(ii) If n is odd, ZO+(V ) = {1}.

Proof. Of course when n = 1, O(V ) = {±1}, so the result of part a) holds. Hence-
forth we may assume n ≥ 2.
a) First observe that {±1} ⊂ ZO(V ). Now let M ∈ ZO(V ).
Step 1: We claim that M commutes with τx for all anisotropic x. Explicitly, for all
such x and for all y ∈ V ,

My − 2
⟨y, x⟩
⟨x, x⟩

Mx = (M ◦ τx)(y) = (τx ◦M)(y) = My − 2
⟨My, x⟩
⟨x, x⟩

x

and thus
⟨y, x⟩Mx = ⟨My, x⟩x.

Since x ̸= 0, by nondegeneracy there is y ∈ V with ⟨x, y⟩ ̸= 0, we deduce Mx = axx
for some ax ∈ K, and then that

a2x⟨x, x⟩ = ⟨axx, axx⟩ = ⟨Mx,Mx⟩ = ⟨x, x⟩ ̸= 0,

so ax = ±1. Now let e1, . . . , en be an orthogonal basis for V , so Mei = aiei for all
i with ai ∈ {±1} for all i. We claim that all the ai’s are equal. If #K > 3, for all
1 ≤ i, j ≤ k, there is bij ∈ K× such that

⟨ei, ei⟩+ b2ij⟨ej , ej⟩ ≠ 0,

and then
aiei + bijajej = M(ei + bijej) = cij(ei + bijej)

for some cij ∈ {±1}. It follows that ai = aj and thus M = α is a scalar matrix.
Then since for all v, w ∈ V , ⟨v, w⟩ = ⟨Mv,Mw⟩ = α2⟨v, w⟩, so α ∈ {±1}.
Step 2: Now suppose K ∼= F3. Then q is isometric to either

q1 = x2
1 + . . .+ x2

n

or to
q2 = x2

1 + . . .+ x2
n−1 − x2

n.

The n = 2 case is handled by Exercise 8.8, so we may assume n ≥ 3. Further, in
Exercise 8.5 we showed that ZO(V, q1) = {±1}, so we may suppose that V = (V, q2).
The argument of the previous step still shows that Mei = aiei with ai ∈ {±1}. In
particular M is diagonal with respect to the basis e1, . . . , en. If σ : {1, . . . , n} →
{1, . . . , n} is a permutation fixing n, then the corresponding permutation matrix Pσ

lies in O(V ). As in Exercise 8.5, this shows ai = aj for all 1 ≤ i, j ≤ n−1. Replacing
M by −M if necessary, we may assume a1 = . . . = an−1 = 1, and it suffices to rule
out the possibility an = 1, i.e., M = τen . But q(en) = q(e1 + e2) = −1. Since en
and e1 + e2 are linearly independent, τe1+e2 ̸= τen , but by Exercise 8.2b), τe1+e2

and τen are conjugate in O(V ), contradicting the assumption that τen ∈ ZO(V ).
b) This was done in Exercise 8.6.
c) The case of q∆ = x2 + ∆y2 was treated in Exercise 8.9. A general anisotropic
binary quadratic form q of discriminant ∆ is of the form αq∆ for some α ∈ K×,
and O+(αq∆) = O+(q∆).
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d) Since n ≥ 3, Lemma 8.9 applies. This, part a), and the fact that the determinant
of the scalar matrix −1 is 1 if n is even and −1 if n is odd gives the result. �

Lemma 8.11. Let V be a nondegenerate quadratic space. The sequence

1 → O+(V ) → O(V ) → {±1} → 1

is split: there is an order 2 subgroup C of O(V ) such that C ∩O+(V ) = {1}. Thus

O(V ) = O+(V )o C.

Proof. Indeed, for any anisotropic vector x ∈ V , we may take C = {1, τx}. �

Theorem 8.12. Suppose #K > 3, and let V be a nondegenerate quadratic space
of dimension n ≥ 2.
a) There is a non-normal subgroup C such that O(V ) = O+(V )o C.
b) If n is odd, there is a normal subgroup C such that O(V ) = O+(V ) o C (and
thus O(V ) = O+(V )× C).
c) If n is even, there is no normal subgroup C such that O(V ) = O+(V )o C (and
thus O(V ) ̸= O+(V )× C).

Proof. Observe that an order 2 subgroup C of any group G is normal iff it is central,
i.e., iff C ⊂ Z(G). By Proposition 8.10a), ZO(V ) = {±1}. a) Take C = {1, τx} for
an anisotropic vector x as in the proof of Lemma 8.11. By considering eigenvalues
we see that τx ̸= ±1 and thus τx /∈ ZO(V ).
b) The scalar matrix −1 has determinant (−1)n. Thus −1 /∈ O+(V ) iff n is odd.
So when n is odd we may take C = {±1}.
c) On the other hand, when n is even, ZO(V ) = {±1} ⊂ O+(V ), so there is no
order 2 central element c ∈ O(V ) \O+(V ). �

Remark: Thanks to Max Kieff for bringing Theorem 8.12 to my attention. In fact
we met by chance in a cafe in Athens, GA, and upon learning that I was a math-
ematician he asked me how to prove that O(n) = O+(n) × C iff n is odd (for the
standard quadratic form x2

1 + . . .+ x2
n over R). Unfortunately my first answer was

part a) of Theorem 8.12, i.e., the construction of a non-normal complement C in
every case. Soon enough I realized that my answer was not satisfactory, and these
considerations led to the present section of these notes. (Eventually I suggested
the rest of the theorem. The proof that ZO(n) = {±1} is easier for the form
x2
1 + . . .+ x2

n over R than in the general case, whence Exercise 8.5.)

The following exercise gives a more basic example that a normal subgroup N of a
group G may have both normal and non-normal complements.

Exercise 8.10: Let A be any non-commutative group, let G = A × A, and let
N = {(a, 1) | a ∈ A}. Then N is a normal subgroup of G, and G/N ∼= A.
a) Let H1 = {(1, a) | a ∈ A}. Show that G = N oH1 and H1 is normal in G (so
indeed G = N ×H1).
b) Let H2 = {(a, a) | a ∈ A}. Show that G = N oH2 and H2 is not normal in G.

Exercise 8.11: Let K ∼= Fq be a finite field of cardinality q, let n ∈ Z+, and
let V,W be two nondegenerate n-dimensional quadratic spaces over K.
a) Suppose n is odd. Show that O(V1) ∼= O(V2).
b) Suppose n is even. Show that the following are equivalent:
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(i) V ∼= W .
(ii) Either V and W are both hyperbolic or neither one is hyperbolic.
(iii) O(V ) ∼= O(W ).

Exercise 8.12: Let K ∼= Fq be a finite field of cardinality q, and let V be an n-
dimensional non-degenerate quadratic space over K.
a) Suppse that n = 2k + 1 is odd. Show:

#O(V ) = 2qk
k−1∏
i=0

(
q2k − q2i

)
.

b) Suppose n = 2k is even and −1 ∈ K×2. Show:

#O(V ) = 2(qk − 1)

n−1∏
i=1

(
q2k − q2i

)
.

c) Suppose n = 2k is even and −1 /∈ K×2. Show:

#O(V ) = 2(qk + (−1)k+1)
k−1∏
i=1

(
q2k − q2i

)
.

9. The Witt Ring

We have not yet touched the key part of the Witt Decomposition Theorem: namely,
that given an arbitrary quadratic space V , it strips away the degenerate and hyper-
bolic parts of V and leaves an anisotropic form V ′ which is uniquely determined up
to equivalence. In the literature one sees V ′ referred to as the “aniostropic kernel”
of V . However, I prefer the more suggestive terminology anisotropic core.

Let us also introduce the following notation: let [q] be an equivalence class of
quadratic forms over K. Let w[q] denote the anisotropic core, an equivalence class
of anisotropic quadratic forms. We note that the operations ⊕ (orthgonal direct
sum) and ⊗ (tensor product) are well-defined on equivalence classes of quadratic
forms. The Witt Decomposition Theorem immediately yields the identity

(8) w[q1 ⊕ q2] = w[w[q1]⊕ w[q2]].

Let W (K) be the set of isomorphism classes of anisotropic quadratic forms over K.
Then (8) shows that ⊕ induces a binary operation on W (K): for anisotropic q1, q2,

[q1] + [q2] := w[q1 ⊕ q2].

One checks immediately that this endows W (K) with the structure of a commu-
tative monoid, in which the additive identity is the class of the zero-dimensional
quadratic form (which we have, fortunately, decreed to be anisotropic).

This operation is strongly reminiscent of the the operation Brauer defined on
the set of all isomorphism classes of K-central finite dimensional division algebras
over a field: by Wedderburn’s theorem, D1 ⊗ D2 is isomorphic to Mn(D3), for a
division algebra D3, uniquely determined up to isomorphism, and Brauer defined
[D1]+[D2] = [D3]. Indeed, just as repeatedly extracting the “core division algebra”
makes this law into a group, in which the inverse of [D1] is given by the class of the
opposite algebra [Dopp

1 ], it turns out that repeated extraction of anisotropic cores
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makes W (K) into a group. Explicitly, the inverse of [q] = [⟨a1, . . . , an⟩] in W (K)
is given by [−1 · q] = [⟨−a1, . . . ,−an⟩]. Indeed,

[q] + [−1 · q] = w[⟨a1, . . . , an,−a1, . . . ,−an⟩] =
n∑

i=1

w[⟨ai,−ai⟩] =
n∑

i=1

w[H] = 0.

Exercise: Define another binary operation on W (K) as

[q1] · [q2] := w[q1 ⊗ q2].

Show that (W (K),+, ·) is a commutative ring, the Witt ring of K.

In §X.X you are asked to compute the Witt rings for some simple fields K.

9.1. The Grothendieck-Witt Ring. The description of the Witt ring W (K)
given in the previous section is meant to be in the spirit of Witt’s 1937 paper.
More recently it has been found useful to describe W (K) as a quotient of another

commutative ring, the Grothendieck-Witt ring Ŵ (K). We give a description of
this approach here.

We begin with an observation which was essentially made in the previous sec-
tion: the set M(K) of equivalence classes of nondegenerate quadratic forms over
K has the natural structure of a commutative semiring under ⊕ and ⊗. Moreover
it carries a natural N-grading (given by the dimension) and therefore the only ele-
ment in M(K) with an additive inverse is the additive identity 0 (the class of the
zero-dimensional quadratic form). It was one of A. Grothendieck’s many abstract
but useful insights that every monoid wants to be a group. More precisely, given
a monoid (M,+) which is not a group, there is a group G(M) and a monoid ho-
momorphism M → G(M) which is universal for monoid homomorphisms into a
group. The best known case is the construction of (Z,+) as the group completion
of the monoid (N,+).

If we assume that M is comutative, the general construction is essentially more
complicated in only one respect. Namely, we define G(M) to be the quotient of
M ⊕M modulo the equivalence relation (a, b) ∼ (c, d) iff there exists m ∈ M with
m + a + d = m + b + c. What is perhaps unexpected is the introduction of the
“stabilizing” element m ∈ M . We ask the reader to check that without this, ∼
need not be an equivalence relation! As is, the relation ∼ is not only an equivalence
relation but is compatible with the addition law on the monoid M ⊕M : that is, if
(a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2), then

(a1, b1) + (c1, d1) = (a1 + c1, b1 + d1) ∼ (a2 + c2, b2 + d2) = (a2, b2) + (c2, d2).

It follows that the set G(M) := (M×M)/ ∼ has a unique binary operation + which
makes it into a commutative monoid such that the natural map M ×M → G(M),
(a, b) 7→ [a, b], is a homomorphism of monoids. In fact the monoid (G(M),+) is a
commutative group, since for any (a, b) ∈ M ×M ,

[a, b] + [b, a] = [a+ b, a+ b] = [0, 0] = 0.

Exercise: Let (M,+) be any commutative monoid.
a) Let G : M → G(M) by x 7→ [x, 0]. Show that G is a homomorphism of monoids.
b) Show that G : M → G(M) is universal for monoid homomorphisms into a group.
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Exercise: Let M be the monoid (N ∪ {∞},+), where ∞ + m = m + ∞ = ∞
for all m ∈ M . Show that G(M) is the trivial group.

Exercise X.X is an extreme example of “loss of information” in the passage from M
to G(M). We may also ask when the homomorphism G is injective. By definition
of the relation ∼, [x, 0] = G(x) = G(y) = [y, 0] holds iff there exists m ∈ M such
that x+m = y +m. A commutative monoid (M,+) is said to be cancellative if
for all x, y,m ∈ M , x+m = y +m =⇒ x = y. Thus we have shown:

Proposition 9.1. For a commutative monoid M , TFAE:
(i) M injects into its group completion.
(ii) M is cancellative.

Now we return to the case of the commutative monoid EQ(K) of equivalence classes
of nondegenerate quadratic forms. It follows immediately from the Witt Cancella-
tion theorem that M(K) is a cancellative monoid, and thus M(K) injects into its

Grothendieck group, which is by definition Ŵ (K). Concretely put, the elements of

Ŵ (K) are formal differences [q1] − [q2] of isomorphism classes of quadratic forms.
There is a monoid homomorphism

dim : M(K) → Z
given by [q] 7→ dim q. By the universal property of the group completion, dim
factors through a group homomorphism

dim : Ŵ (K) → Z.
(In less fancy language, we simply put dim([q1]− [q2]) = dim[q1]− dim[q2].)

6

Proposition 9.2. As an abelian group, Î is generated by expressions of the form
⟨a⟩ − ⟨1⟩ for a ∈ K×.

Proof. An element x of Î is of the form q1 − q2, where q1 = ⟨a1, . . . , an⟩, q2 =
⟨b1, . . . , bn⟩. Thus

x =

n∑
i=1

⟨ai⟩ −
n∑

i=1

⟨bi⟩ =
n∑

i=1

(⟨ai⟩ − ⟨1⟩)−
n∑

i=1

(⟨bi⟩ − ⟨1⟩) .

�

Corollary 9.3. As an abelian group, I is generated by equivalence classes of qua-
dratic forms ⟨1,−a⟩ for a ∈ K×.

Proof. Indeed ⟨1,−a⟩ = ⟨1⟩ + ⟨−a⟩ ≡ ⟨1⟩ + ⟨−a⟩ − ⟨a,−a⟩ = ⟨1⟩ − ⟨a⟩, so this
follows from Proposition 9.2. �

Recall that we also have a product operation, ⊗, which makes M(K) into a com-
mutative semiring. It is easy to check that the group completion of a commuta-
tive semiring (R,+, ·) can be naturally endowed with the structure of a commuta-
tive ring, the multiplication operation on G(R) being defined as [a, b] · [c − d] :=

6In more fancy language, the dimension map is naturally a homomorphism of monoids

M(K) → (N,+). By the functoriality of the Grothendieck group construction, this induces a
homomorphism of additive groups M(K) → Z.
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[ac + bd, ad + bc]. Thus Ŵ (K) has the structure of a commutative ring, the
Grothendieck-Witt ring of K.

Exercise: Let Î be the kernel of the homomorphism dim : Ŵ (K) → Z. Show

that dim is in fact a ring homomorphism, and thus Î is an ideal of Ŵ (K).

To get from the Grothendieck-Witt ring back to the Witt ring, we would like
to quotient out by all hyperbolic spaces. It is not a priori clear whether this is
compatible with the ring structure, but fortunately things work out very nicely.

Proposition 9.4. The subgroup of Ŵ (K) generated by the class [H] of the hyper-

bolic plane is an ideal of Ŵ (K).

Proof. Since any element of Ŵ (K) is a formal difference of equivalence classes of
nondegenerate quadratic forms, it suffices to show that for any nondegenerate qua-
dratic form q, [q] · [H] ∈ Z[H]. And indeed, if [q] = [⟨a1, . . . , an⟩] is a nondegnerate
quadratic form, then

[H] · [q] = [H⊗ q] = [⟨1,−1⟩ ⊗ ⟨a1, . . . , an⟩] = [

n⊕
i=1

⟨ai,−ai⟩] = [

n⊕
i=1

H] = n[H].

�

Theorem 9.5. There is a canonical isomorphism Ŵ (K)/⟨[H]⟩ = W (K).

Proof. Indeed taking the anisotropic core gives a surjective homomorphism from
the semiring M(K) to the Witt ring W (K). By the universal property of group

completion, it factors through a ring homomorphism Φ : Ŵ (K) → W (K). Ev-
idently [H] ∈ KerΦ. Conversely, let [q1] − [q2] be an element of the kernel of
Φ. For i = 1, 2, by Witt Decomposition we may write [qi] = Ii[H] + [q′i] with
Ii ∈ N and q′i anisotropic. Then Φ([q1]) = Φ([q2] implies [q′1] = [q′2], so that
[q1]− [q2] ∼= (I1 − I2)[H] ∈ ⟨[H]⟩. �

Exercise: Put I = Φ(Î), so that I is an ideal of the Witt ring, the fundamental
ideal. Show that the dimension homomorphism factors through a surjective ring
homomorphism dim : W (K) → Z/2Z, with kernel I.

10. Additional Exercises

Exercise: Recall that an integral domain R is a valuation ring if for any two
elements x, y ∈ R, either x | y or y | x. It is known that a Noetherian valuation
ring is either a field or a discrete valuation ring. Let R be a valuation ring in which
2 is a unit – e.g. Zp for odd p or k((t)) for char(k) ̸= 2 – and let n ∈ Z+. Show
that every n×n symmetric matrix is congruent to a diagonal matrix. (Hint: adapt
the algorithmic description of diagonalization following Theorem 5.1.)

Exercise: Over which of the following fields does there exist a nondegenerate uni-
versal anisotropic quadratic form?
a) K = C. b) K = R. c) K = Fq, q odd. d) K = Qp. e) K = Q.

Exercise: Let q1 and q2 be binary quadratic forms over K. Show that q1 ∼= q2
iff det(q1) = det(q2) and q1 and q2 both represent at least one α ∈ K×.
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Exercise ([Lam73, Thm. 3.2]): For a two dimensional quadratic space (V, q), the
following are equivalent:
(i) V is regular and isotropic.
(ii) V is regular with discriminant −1.
(iii) V is isometric to the hyperbolic plane H = ⟨1,−1⟩.

Exercise X.X: a) Let V1 and V2 be quadratic spaces. Show that every totally
isotropic subspace W of V1 ⊕ V2 is of the form W ∩ V1 ⊕ W ∩ V2, with W ∩ Vi a
totally isotropic subspace of Vi.
b) Same as part a) but with “totally isotropic subspace” replaced everywhere by
“maximal totally isotropic subspace”.
c) Show that any two maximal totally isotropic subspaces of a quadratic space have
the same dimension, namely dim(radV ) + I(V ).

Exercise: Let K be a quadratically closed field. Show that W (K) ∼= Z/2Z.

Exercise: Show that W (R) ∼= Z.

Exercise: Let K = Fq be a finite field of odd order q.
a) Show that every (nondegenerate) binary quadratic form over Fq is universal.
b) Deduce that every quadratic form in at least three variables over Fq is isotropic.7

c) Show there is exactly one class of anisotropic binary quadratic form over Fq.
d) Deduce that #W (K) = 4.
e) Show that the additive group of W (K) is cyclic iff −1 /∈ K×2.

Exercise: Let p be an odd prime. Show that as commutative groups,

W (Qp) ∼= W (Fp)⊕W (Fp).

Exercise ([Cas, Lemma 2.5.6]): Show that the additive group (Ŵ (K),+) of the
Grothendieck-Witt ring of K is isomorphic to the quotient of the free commutative
group on the set of generators {[a] | a ∈ K×} by the relations:

[ab2] = [a],∀a, b ∈ K×,

[a] + [b] = [a+ b] + [ab(a+ b)],∀a, b ∈ K× | a+ b ∈ K×.

Exercise ([Cas, Cor. to Lemma 2.5.6]): Show that the additive group (W (K),+)
of the Witt ring of K is isomorphic to the quotient of the free comutative group
on the set of generators {[a] | a ∈ K×} by the relations of the previous Exercise
together with [1] + [−1] = 0.

Exercise: Let a, b ∈ K×. Show that ⟨a, b, ab⟩ is isotropic iff ⟨1, a, b, ab⟩ is isotropic.

Exercise: Suppose that for a given field K, we have an algorithm to tell us whether

7Alternately, this is a special case of the Chevalley-Warning theorem.
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a quadratic form is isotropic and, if so, to find a nonzero isotropic vector. Con-
struct from this an algorithm to decide whether two quadratic forms are equivalent.
(Hint: Use Lemma 6.9 and repeated Witt Cancellation.)
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