
WELL-ORDERED SETS, ORDINALITIES AND THE AXIOM OF

CHOICE

PETE L. CLARK

1. The Calculus of Ordinalities

1.1. Well-ordered sets and ordinalities.

The discussion of cardinalities in Chapter 2 suggests that the most interesting
thing about them is their order relation, namely that any set of cardinalities forms
a well-ordered set. So in this section we shall embark upon a systematic study of
well-ordered sets. Remarkably, we will see that the problem of classifying sets up
to bijection is literally contained in the problem of classifying well-ordered sets up
to order-isomorphism.

Exercise 1.1.1: Show that for a linearly ordered set X, TFAE:
(i) X satisfies the descending chain condition: there are no infinite strictly descend-
ing sequences x1 > x2 > . . . in X.
(ii) X is well-ordered.

We need the notion of “equivalence” of of well-ordered sets. A mapping f : S → T
between partially ordered sets is order preserving (or an order homomor-
phism) if s1 ≤ s2 in S implies f(s1) ≤ f(s2) in T .

Exercise 1.1.2: Let f : S → T and g : T → U be order homomorphisms of partially
ordered sets.
a) Show that g ◦ f : S → U is an order homomorphism.
b) Note that the identity map from a partially ordered set to itself is an order
homomorphism.
(It follows that there is a category whose objects are partially ordered sets and
whose morphisms are order homomorphisms.)

An order isomorphism between posets is a mapping f which is order preserving,
bijective, and whose inverse f−1 is order preserving. (This is the general – i.e.,
categorical – definition of isomorphism of structures.)

Exercise 1.1.3: Give an example of an order preserving bijection f such that f−1

is not order preserving.

However:

Lemma 1. An order-preserving bijection whose domain is a totally ordered set is
an order isomorphism.
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Exercise 1.1.4: Prove Lemma 1.

Lemma 2. (Rigidity Lemma) Let S and T be well-ordered sets and f1, f2 : S → T
two order isomorphisms. Then f1 = f2.

Proof: Let f1 and f2 be two order isomorphisms between the well-ordered sets S
and T , which we may certainly assume are nonempty. Consider S2, the set of ele-
ments s of S such that f1(s) ̸= f2(s), and let S1 = S \ S2. Since the least element
of S must get mapped to the least element of T by any order-preserving map, S1

is nonempty; put T1 = f1(S1) = f2(S1). Supposing that S2 is nonempty, let s2 be
its least element. Then f1(s2) and f2(s2) are both characterized by being the least
element of T \ T1, so they must be equal, a contradiction.

Exercise 1.1.5: Let S be a partially ordered set.
a) Show that the order isomorphisms f : S → S form a group, the order auto-
morphism group Aut(S) of S. (The same holds for any object in any category.)
b) Notice that Lemma 2 implies that the automorphism group of a well-ordered set
is the trivial group.1

c) Suppose S is linearly ordered and f is an order automorphism of S such that for
some positive integer n we have fn = IdS , the identity map. Show that f = IdS .
(Thus the automorphism group of a linearly ordered set is torsionfree.)
d) For any infinite cardinality κ, find a linearly ordered set S with |Aut(S)| ≥ κ.
Can we always ensure equality?
e)** Show that every group G is (isomorphic to) the automorphism group of some
partially ordered set.

Let us define an ordinality to be an order-isomorphism class of well-ordered sets,
and write o(X) for the order-isomorphism class of X. The intentionally grace-
less terminology will be cleaned up later on. Since two-order isomorphic sets are
equipotent, we can associate to every ordinality α an “underlying” cardinality |α|:
|o(X)| = |X|. It is natural to expect that the classification of ordinalities will be
somewhat richer than the classification of cardinalities – in general, endowing a set
with extra structure leads to a richer classification – but the reader new to the sub-
ject may be (we hope, pleasantly) surprised at how much richer the theory becomes.

From the perspective of forming “isomorphism classes” (a notion the ontological
details of which we have not found it profitable to investigate too closely) ordinali-
ties have a distinct advantage over cardinalities: according to the Rigidity Lemma,
any two representatives of the same ordinality are uniquely (hence canonically!)
isomorphic. This in turn raises the hope that we can write down a canonical repre-
sentative of each ordinality. This hope has indeed been realized, by von Neumann,
as we shall see later on: the canonical representatives will be called “ordinals.”
While we are alluding to later developments, let us mention that just as we can
associate a cardinality to each ordinality, we can also – and this is much more
profound – associate an ordinality o(κ) to each cardinality κ. This assignment is
one-to-one, and this allows us to give a canonical representative to each cardinal-
ity, a “cardinal.” At least at the current level of discussion, there is no purely
mathematical advantage to the passage from cardinalities to cardinals, but it has a

1One says that a structure is rigid if it has no nontrivial automorphisms.
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striking ontological2 consequence, namely that, up to isomorphism, we may develop
all of set theory in the context of “pure sets”, i.e., sets whose elements (and whose
elements’ elements, and . . .) are themselves sets.

But first let us give some basic examples of ordinalities and ways to construct
new ordinalities from preexisting ones.

1.2. Algebra of ordinalities.

Example 1.2.1: Trivially the empty set is well-ordered, as is any set of cardinality
one. These sets, and only these sets, have unique well-orderings.

Example 1.2.2: Our “standard” example [n] of the cardinality n comes with a
well-ordering. Moreover, on a finite set, the concepts of well-ordering and linear
ordering coincide, and it is clear that there is up to order isomorphism a unique
linear ordering on [n]. Informally, given any two orderings on an n element set,
we define an order-preserving bijection by pairing up the least elements, then the
second-least elements, and so forth. (For a formal proof, use induction.)

Example 1.2.3: The usual ordering on N is a well-ordering. Notice that this is
isomorphic to the ordering on {n ∈ Z | n ≥ n0} for any n0 ∈ Z. As is traditional,
we write ω for the ordinality of N.

Exercise 1.2.4: For any ordering ≤ on a set X, we have the opposite ordering
≤′, defined by x ≤′ y iff y ≤ x.
a) If ≤ is a linear ordering, so is ≤′.
b) If both ≤ and ≤′ are well-orderings, then X is finite.

For a partially ordered set X, we can define a new partially ordered set X+ :=
X ∪ {∞} by adjoining some new element ∞ and decreeing x ≤ ∞ for all x ∈ X.

Proposition 3. If X is well-ordered, so is X+.

Proof: Let Y be a nonempty subset of X+. Certainly there is a least element if
|Y | = 1; otherwise, Y contains an element other than ∞, so that Y ∩X is nonempty,
and its least element will be the least element of Y .

If X and Y are order-isomorphic, so too are X+ and Y +, so the passage from
X to X+ may be viewed as an operation on ordinalities. We denote o(X+) by
o(X) + 1, the successor ordinality of o(X).

Note that all the finite ordinalities are formed from the empty ordinality 0 by
iterated successorship. However, not every ordinality is of the form o′ + 1, e.g. ω
is clearly not: it lacks a maximal element. (On the other hand, it is obtained from
all the finite ordinalities in a way that we will come back to shortly.) We will say
that an ordinality o is a successor ordinality if it is of the form o′ + 1 for some
ordinality o′ and a limit ordinality otherwise. Thus 0 and ω are limit ordinals.

2I restrain myself from writing “ontological” (i.e., with quotation marks), being like most
contemporary mathematicians alarmed by statements about the reality of mathematical objects.
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Example 1.2.6: The successor operation allows us to construct from ω the new
ordinals ω+1, ω+2 := (ω+1)+ 1, and for all n ∈ Z+, ω+ n := (ω+ (n− 1)) + 1:
these are all distinct ordinals.

Definition: For partially ordered sets (S1,≤1) and (S2,≤2), we define S1 + S2

to be the set S1

∐
S2 with s ≤ t if either of the following holds:

(i) For i = 1 or 2, s and t are both in Si and s ≤i t;
(ii) s ∈ S1 and s ∈ S2.

Informally, we may think of S1 + S2 as “S1 followed by S2.”

Proposition 4. If S1 and S2 are linearly ordered (resp. well-ordered), so is S1+S2.

Exercise 1.2.5: Prove Proposition 4.

Again the operation is well-defined on ordinalities, so we may speak of the ordinal
sum o+ o′. By taking S2 = [1], we recover the successor ordinality: o+[1] = o+1.

Example 1.2.6: The ordinality 2ω := ω + ω is the class of a well-ordered set which
contains one copy of the natural numbers followed by another. Proceeding induc-
tively, we have nω := (n− 1)ω + ω, with a similar description.

Tournant dangereuse: We can also form the ordinal sum 1 + ω, which amounts
to adjoining to the natural numbers a smallest element. But this is still order-
isomorphic to the natural numbers: 1 + ω = ω. In fact the identity 1+ o = o holds
for every infinite ordinality (as will be clear later on). In particular 1 + ω ̸= ω + 1,
so beware: the ordinal sum is not commutative! (To my knowledge it is the only
non-commutative operation in all of mathematics which is invariably denoted by
“+”.) It is however immediately seen to be associative.

The notation 2ω suggests that we should have an ordinal product, and indeed we do:

Definition: For posets (S1,≤1) and (S2,≤2) we define the lexicographic product
to be the Cartesian product S1 × S2 endowed with the relation (s1, s2) ≤ (t1, t2)
if(f) either s1 ≤ t1 or s1 = t1 and s2 ≤ t2. If the reasoning behind the nomenclature
is unclear, I suggest you look up “lexicographic” in the dictionary.3

Proposition 5. If S1 and S2 are linearly ordered (resp. well-ordered), so is S1×S2.

Exercise 1.2.7: Prove Proposition 5.

As usual this is well-defined on ordinalities so leads to the ordinal product o · o′.

Example 1.2.8: For any well-ordered set X, [2] ·X gives us one copy {(1, x) | x ∈ X}
followed by another copy {(2, x) | x ∈ X}, so we have a natural isomorphism of
[2] ·X with X +X and hence 2 · o = o + o. (Similarly for 3o and so forth.) This
time we should be prepared for the failure of commutativity: ω · n is isomorphic to
ω. This allows us to write down ω2 := ω × ω, which we visualize by starting with
the positive integers and then “blowing up” each positive integer to give a whole

3Ha ha.
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order isomorphic copy of the positive integers again. Repeating this operation gives
ω3 = ω2 ·ω, and so forth. Altogether this allows us to write down ordinalities of the
form P (ω) = anω

n+ . . .+a1ω+a0 with ai ∈ N, i.e., polynomials in ω with natural
number coefficients. It is in fact the case that (i) distinct polynomials P ̸= Q ∈ N[T ]
give rise to distinct ordinalities P (ω) ̸= Q(ω); and (ii) any ordinality formed from
[n] and ω by finitely many sums and products is equal to some P (ω) – even when
we add/multiply in “the wrong order”, e.g. ω ∗ 7 ∗ω2 ∗ 4+ω ∗ 3+11 = ω3 +ω+11
– but we will wait until we know more about the ordering of ordinalities to try to
establish these facts.

Example 1.2.9: Let α1 = o(X1), . . . , αn = o(Xn) be ordinalities.
a) Show that α1 × (α2 × α3) and (α1 × α2)× α3 are each order isomorphic to the
set X1 ×X2 ×X3 endowed with the ordering (x1, x2, x3) ≤ (y1, y2, y3) if x1 < y1 or
(x1 = y1 and (x2 < y2 or (x2 = y2 and x3 ≤ y3))). In particular ordinal multipli-
cation is associative.
b) Give an explicit definition of the product well-ordering on X1× . . .×Xn, another
“lexicographic ordering.”

In fact, we also have a way to exponentiate ordinalities: let α = o(X) and β = o(Y ).
Then by αβ we mean the order isomorphism class of the set Z = Z(Y,X) of all
functions f : Y → X with f(y) = 0X (0X denotes the minimal element of X) for all
but finitely many y ∈ Y , ordered by f1 ≤ f2 if f1 = f2 or, for the greatest element
y ∈ Y such that f1(y) ̸= f2(y) we have f1(y) < f2(y).

Some helpful terminology: one has the zero function, which is 0 for all values.
For every other f ∈ W , we define its degree ydeg to be the largest y ∈ Y such that
f(y) ̸= 0 and its leading coefficient xl := f(ydeg).

Proposition 6. For ordinalities α and β, αβ is an ordinality.

Proof: Let Z be the set of finitely nonzero functions f : Y → X as above, and let
W ⊂ Z be a nonempty subset. We may assume 0 is not in W , since the zero func-
tion is the minimal element of all of Z. Thus the set of degrees of all elements of W
is nonempty, and we may choose an element of minimal degree y1; moreover, among
all elements of minimal degree we may choose one with minimal leading coefficient
x1, say f1. Suppose f1 is not the minimal element of W , i.e., there exists f ′ ∈ W2

with f ′ < f1. Any such f ′ has the same degree and leading coefficient as f1, so the
last value y′ at which f ′ and f1 differ must be less than y1. Since f1 is nonzero at
all such y′ and f1 is finitely nonzero, the set of all such y′ is finite and thus has a
maximal element y2. Among all f ′ with f ′(y2) < f(y2) and f ′(y) = f(y) for all
y > y2, choose one with x2 = f ′(y2) minimal and call it f2. If f2 is not minimal, we
may continue in this way, and indeed get a sequence of elements f1 > f2 > f3 . . . as
well as a descending chain y1 > y2 > . . .. Since Y is well-ordered, this descending
chain must terminate at some point, meaning that at some point we find a minimal
element fn of W .

Example 1.2.10: The ordinality ωω is the set of all finitely nonzero functions
f : N → N. At least formally, we can identify such functions as polynomi-
als in ω with N-coefficients: Pf (ω) =

∑
n∈N f(n)ωn. The well-ordering makes

Pf < Pg if the at the largest n for which f(n) ̸= g(n) we have f(n) < g(n), e.g.
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ω3 + 2ω2 + 1 > ω3 + ω2 + ω + 100.

It is hard to ignore the following observation: ωω puts a natural well-ordering
relation on all the ordinalities we had already defined. This makes us look back
and see that the same seems to be the case for all ordinalities: e.g. ω itself is order
isomorphic to the set of all the finite ordinalities [n] with the obvious order relation
between them. Now that we see the suggested order relation on the ordinalities of
the form P (ω) one can check that this is the case for them as well: e.g. ω2 can be
realized as the set of all linear polynomials {aω + b | a, b ∈ N}.

This suggests the following line of inquiry:

(i) Define a natural ordering on ordinalities (as we did for cardinalities).
(ii) Show that this ordering well-orders any set of ordinalities.

Exercise 1.2.11: Let α and β be ordinalities.
a) Show that 0β = 0, 1β = 1, α0 = 1, α1 = α.
b) Show that the correspondence between finite ordinals and natural numbers re-
spects exponentiation.
c) For an ordinal α, the symbol αn now has two possible meanings: exponentiation
and iterated multiplication. Show that the two ordinalities are equal. (The proof
requires you to surmount a small left-to-right lexicographic difficulty.) In particular
|αn| = |α|n = |α|.
d) For any infinite ordinal β, show that |αβ | = max(|α|, |β|).

Tournant dangereuse: In particular, it is generally not the case that |αβ | = |α||β|:
e.g. 2ω and ωω are both countable ordinalities. In fact, we have not yet seen any
uncountable well-ordered sets, and one cannot construct an uncountable ordinal
from ω by any finite iteration of the ordinal operations we have described (nor by
a countable iteration either, although we have not yet made formal sense of that).
This leads us to wonder: are there any uncountable ordinalities?

1.3. Ordering ordinalities. Let S1 and S2 be two well-ordered sets. In analogy
with our operation ≤ on sets, it would seem natural to define S1 ≤ S2 if there exists
an order-preserving injection S1 → S2. This gives a relation ≤ on ordinalities which
is clearly symmetric and transitive.

However, this is not the most useful definition of ≤ for well-ordered sets, since
it gives up the rigidity property. In particular, recall Dedekind’s characterization
of infinite sets as those which are in bijection with a proper subset of themselves,
or, equivalently, those which inject into a proper subset of themselves. With the
above definition, this will still occur for infinite ordinalities: for instance, we can
inject ω properly into itself just by taking N → N, n 7→ n + 1. Even if we require
the least elements to be preserved, then we can still inject N into any infinite subset
of itself containing 0.

So as a sort of mild deus ex machina we will work with a more sophisticated
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order relation. First, for a linearly ordered set S and s ∈ S, we define

I(s) = {t ∈ S | t < s},
an initial segment of S. Note that every initial segment is a proper subset. Let
us also define

I[s] = {t ∈ S | t ≤ s}.

Now, given linearly ordered sets S and T , we define S < T if there exists an
order-preserving embedding f : S → T such that f(S) is an initial segment of T
(say, an initial embedding). We define S ≤ T if S < T or S ∼= T .

Exercise 1.3.1: Let f : S1 → S2 and g : T1 → T2 be order isomorphisms of linearly
ordered sets.
a) Suppose s ∈ S1. Show that f(I(s)) = I(f(s)) and f(I[s])) = I(f [s]).
b) Suppose that S1 < T1 (resp. S1 ≤ T1). Show that S2 < T2) (resp. S2 ≤ T2).
c) Deduce that < and ≤ give well-defined relations on any set F of ordinalities.

Exercise 1.3.2: a) Show that if i : X → Y and j : Y → Z are initial embed-
dings of linearly ordered sets, then j ◦ i : X → Z is an initial embedding.
b) Deduce that the relation < on any set of ordinalities is transitive.

Definition: In a partially ordered set X, a subset Z is an order ideal if for all
z ∈ Z and x ∈ X, if x < z then x ∈ Z. For example, the empty set and X itself
are always order ideals. We say that X is an improper order ideal of itself, and
all other order ideals are proper. For instance, I[s] is an order ideal, which may
or may not be an initial segment.

Lemma 7. (“Principal ideal lemma”) Any proper order ideal in a well-ordered set
is an initial segment.

Proof: Let Z be a proper order ideal in X, and s the least element of X \Z. Then
a moment’s thought gives Z = I(s).

The following is a key result:

Theorem 8. (Ordinal trichotomy) For any two ordinalities α = o(X) and β =
o(Y ), exactly one of the following holds: α < β, α = β, β < α.

Corollary 9. Any set of ordinalities is linearly ordered under ≤.

Exercise 1.3.3: Deduce Corollary 9 from Theorem 8. Is the Corollary equivalent to
the Theorem?

Proof of Theorem 8: Part of the assertion is that no well-ordered set X is order iso-
morphic to any initial segment I(s) in X (we would then have both o(I(s)) < o(X)
and o(I(s)) = o(X)); let us establish this first. Suppose to the contrary that
ι : X → X is an order embedding whose image is an initial segment I(s). Then the
set of x for which ι(x) ̸= x is nonempty (otherwise ι would be the identity map, and
no linearly ordered set is equal to any of its initial segments), so let x be the least
such element. Then, since ι restricted to I(x) is the identity map, ι(I(x)) = I(x),
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so we cannot have ι(x) < x – that would contradict the injectivity of ι – so it must
be the case that ι(x) > x. But since ι(X) is an initial segment, this means that x
is in the image of ι, which is seen to be impossible.

Now if α < β and β < α then we have initial embeddings i : X → Y and
j : Y → X. By Exercise 1.3.2 their composite j ◦ i : X → X is an initial em-
bedding, which we have just seen is impossible. It remains to show that if α ̸= β
there is either initial embedding from X to Y or vice versa. We may assume that
X is nonempty. Let us try to build an initial embedding from X into Y . A little
thought convinces us that we have no choices to make: suppose we have already
defined an initial embedding f on a segment I(s) of X. Then we must define f(s)
to be the least element of Y \ f(I(s)), and we can define it this way exactly when
f(I(s)) ̸= Y . If however f(I(s)) = Y , then we see that f−1 gives an initial em-
bedding from Y to X. So assume Y is not isomorphic to an initial segment of X,
and let Z be the set of x in X such that there exists an initial embedding from
I(z) to Y . It is immediate to see that Z is an order ideal, so by Lemma 7 we
have either Z = I(x) or Z = X. In the former case we have an initial embedding
from I(z) to Y , and as above, the only we could not extend it to x is if it is sur-
jective, and then we are done as above. So we can extend the initial embedding
to I[x], which – again by Lemma 7 is either an initial segment (in which case we
have a contradiction) or I[x] = X, in which case we are done. The last case is
that Z = X has no maximal element, but then we have X =

⋃
x∈X I(x) and a

uniquely defined initial embedding ι on each I(x). So altogether we have a map
on all of X whose image f(X), as a union of initial segments, is an order ideal.
Applying Lemma 7 yet again, we either have f(X) = Y – in which case f is an
order isomorphism – or f(X) is an initial segment of Y , in which case X < Y : done.

Exercise 1.3.4: Let α and β be ordinalities. Show that if |α| > |β|, then α > β. (Of
course the converse does not hold: there are many countable ordinalities.)

Corollary 10. Any set F of ordinalities is well-ordered with respect to ≤.

Proof: Using Exercise 1.1.1, it suffices to prove that there is no infinite descending
chain in F = {oα}α∈I . So, seeking a contradiction, suppose that we have a se-
quence of well-ordered sets S1, S2 = I(s1) for s1 ∈ S1, S3 = I(s2),. . .,Sn+1 = I(sn)
for sn ∈ Sn,. . .. But all the Sn’s live inside S1 and we have produced an infinite
descending chain s1 > s2 > s3 > . . . > sn > . . . inside the well-ordered set S1, a
contradiction.

Thus any set F of ordinalities itself generates an ordinality o(F), the ordinality
of the well-ordering that we have just defined on F !

Now: for any ordinality o, it makes sense to consider the set I(o) of ordinalities
{o′ | o′ < o}: indeed, these are well-orderings on a set of cardinality at most the
cardinality of o, so there are at most 2|o|×|o| such well-orderings. Similarly, define

I[o] = {o′ | o′ ≤ o}.
Corollary 11. I(o) is order-isomorphic to o itself.

Proof: We shall define an order-isomorphism f : I(o) → o. Namely, each o′ ∈ I(o)
is given by an initial segment I(y) of o, so define f(o′) = y. That this is an order
isomorphism is essentially a tautology which we leave for the reader to unwind.
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1.4. The Burali-Forti “Paradox”.

Do the ordinalities form a set? As we have so far managed to construct only
countably many of them, it seems conceivable that they might. However, Burali-
Forti famously observed that the assumption that there is a set of all ordinalities
leads to a paradox. Namely, suppose O is a set whose elements are the ordinalities.
Then by Corollary 10, O is itself well-ordered under our initial embedding relation
≤, so that the ordinality o = o(O) would itself be a member of O.

This is already curious: it is tantamount to saying that O is an element of itself,
but notice that we are not necessarily committed to this: (O,≤) is order isomor-
phic to one of its members, but maybe it is not the same set. (Anyway, is o ∈ o
paradoxical, or just strange?) Thankfully the paradox does not depend upon these
ontological questions, but is rather the following: if o ∈ O, then consider the initial
segment I(o) of O: we have O ∼= o ∼= I(o), but this means that O is order-isomorphic
to one of its initial segments, in contradiction to the Ordinal Trichotomy Theorem
(Theorem 8).

Just as the proof of Cantor’s paradox (i.e., that the cardinalities do not form a
set) can be immediately adapted to yield a profound and useful theorem – if S is
a set, there is no surjection S → 2S , so that 2|S| > |S| – in turn the proof of the
Burali-Forti paradox immediately gives the following result, which we have so far
been unable to establish:

Theorem 12. (Burali-Forti’s Theorem) For any cardinal κ, the set Oκ of ordinal-
ities o with |o| ≤ κ has cardinality greater than κ.

Proof: Indeed, Oκ is, like any set of ordinalities, well-ordered under our relation
≤, so if it had cardinality at most κ it would contain its own ordinal isomorphism
class o as a member and hence be isomorphic to its initial segment I(o) as above.

So in particular there are uncountable ordinalities. There is therefore a least un-
countable ordinality, traditionally denoted ω1. This least uncountable ordinality
is a truly remarkable mathematical object: mere contemplation of it is fascinating
and a little dizzying. For instance, the minimality property implies that all of its
initial segments are countable, so it is not only very large as a set, but it is ex-
tremely difficult to traverse: for any point x ∈ ω1, the set of elements less than x is
countable whereas the set of elements greater than x is uncountable! (This makes
Zeno’s Paradox look like kid stuff.) In particular it has no largest element so is a
limit ordinal.4

On the other hand its successor ω+
1 is also of interest.

Exercise 1.4.1 (Order topology): Let S be a totally ordered set. We endow S
with the order topology, which is the topology generated by by infinite rays of
the form

(a,∞) = {s ∈ S | a < s}
and

(−∞, b) = {s ∈ S | s < b}.

4In fact this only begins to express ω1’s “inaccessibility from the left”; the correct concept,
that of cofinality, will be discussed later.
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Equivalently, the open intervals (a, b) = (a,∞) ∩ (−∞, b) together with the above
rays and X = (−∞,∞)5 form a basis for the topology. A topological space which
arises (up to homeomorphism, of course) from this construction is called a linearly
ordered space.
a) Show that the order topology on an ordinal o is discrete iff o ≤ ω. What is the
order topology on ω + 1? On 2ω?
b) Show that order topologies are Hausdorff.
c) Show that an ordinality is compact iff it is a successor ordinality. In particular
I[o] is the one-point compactification of I(o) ∼= o; deduce that the order topology
on an ordinality is Tychonoff.
d)* Show that, in fact, any linearly ordered space is normal, and moreover all sub-
spaces are normal.
e) A subset Y of a linearly ordered set X can be endowed with two topologies:
the subspace topology, and the order topology for the ordering on X restricted to
Y . Show that the subspace topology is always finer than the order topology; by
contemplating X = R, Y = {−1}∪{ 1

n}n∈Z+ show that the two topologies need not
coincide.
f) Show that it may happen that a subspace of a linearly ordered space need not
be a linearly ordered space (i.e., there may be no ordering inducing the subspace
topology). Suggestion: take X = R, Y = {−1} ∪ (0, 1). One therefore has the no-
tion of a generalized order space, which is a space homeomorphic to a subspace
of a linearly ordered space. Show that no real manifold of dimension greater than
one is a generalized order space.
g) Let X be a well-ordered set and Y a nonempty subset. Show that the embed-
ding Y → X may be viewed as a net on X, indexed by the (nonempty well-ordered,
hence directed) set Y . Show that for any ordinality o the net I(o) in I[o] converges
to o.

Exercise 1.4.2: Let F be a set of ordinalities. As we have seen, F is well-ordered
under our initial embedding relation < so gives rise to an ordinality o(F). In fact
there is another way to attach an ordinality to F .
a) Show that there is a least ordinality s such that α ≤ s for all α ∈ F . (Write

α = o(Xα), apply the Burali-Forti theorem to |2
∐

α∈F Xα |, and use Exercise 1.3.4.)
We call this s the ordinal supremum of the ordinalities in F .
b) Show that an ordinality is a limit ordinality iff it is the supremum of all smaller
ordinalities.
c) Recall that a subset T of a partially ordered set S is cofinal if for all s ∈ S there
exists t ∈ T such that s ≤ t. Let α be a limit ordinality, and F a subset of I(α).
Show that F is cofinal iff α = supF .
d) For any ordinality α, we define the cofinality cf(α) to be the minimal ordinality
of a cofinal subset F of I(α). E.g., an ordinality is a successor ordinality iff it has
cofinality 1. Show that cf(ω) = ω and cf(ω1) = cf(ω1). What is cf(ω2)?
e*) An ordinality is said to be regular if it is equal to its own cofinality. Show that
for every cardinality κ, there exists a regular ordinality o with |o| > κ.
g) (For D. Lorenzini) For a cardinality κ, let o be a regular ordinality with |o| > κ.

5This calculus-style interval notation is horrible when S has a maximal or minimal element,

since it – quite incorrectly! – seems to indicate that these elements “±∞” should be excluded.
We will not use the notation enough to have a chance to get tripped up, but beware.
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Show that any linearly ordered subset of cardinality at most κ has an upper bound
in o, but I(κ) does not have a maximal element.6

1.5. Von Neumann ordinals.

Here we weish to report on an idea of von Neumann, which uses the relation I(o) ∼= o
to define a canonical well-ordered set with any given ordinality. The construction
is often informally defined as follows: “we inductively define o to be the set of all
ordinals less than o.” Unfortunately this definition is circular, and not for reasons
relating to the induction process: step back and see that it is circular in the most
obvious sense of using the quantity it purports to define!

However, it is quite corrigible: rather than building ordinals out of nothing, we
consider the construction as taking as input a well-ordered set S and returning
an order-isomorphic well-ordered set vo(S), the von Neumann ordinal of S.
The only property that we wish it to have is the following: if S and T are order-
isomorphic sets, we want vo(S) and vo(T ) to be not just order-isomorphic but equal.
Let us be a bit formal and write down some axioms:

(VN1) For all well-ordered sets S, we have vo(S) ∼= S.
(VN2) For well-ordered S and T , S ∼= T =⇒ vo(S) = vo(T ).

Consider the following two additional axioms:

(VN3) vo(∅) = ∅.
(VN4) For S ̸= ∅, vo(S) = {vo(S′) | S′ < S}.

The third axiom is more than reasonable: it is forced upon us, by the fact that
there is a unique empty well-ordered set. The fourth axiom is just expressing the
order-isomorphism I(o) ∼= o in terms of von Neumann ordinals. Now the point is
that these axioms determine all the von Neumann ordinals:

Theorem 13. (von Neumann) There is a unique correspondence S 7→ vo(S) sat-
isfying (VN1) and (VN2).

Before proving this theorem, let’s play around with the axioms by discussing their
consequences for finite ordinals. We know that vo(∅) = ∅ = [0]. What is vo([1])?
Well, it is supposed to be the set of von Neumann ordinals strictly less than it.
There is in all of creation exactly one well-ordered set which is strictly less than
[1]: it is ∅. So the axioms imply

vo([1]) = {∅}.

How about vo([2])? The axioms easily yield:

vo([2]) = {vo[0], vo[1]} = {∅, {∅}}.

Similarly, for any finite number n, the axioms give:

v0([n]) = {vo[0], vo[1], . . . , vo[n− 1]},

6This shows that one must allow chains of arbitrary cardinalities, and not simply ascending
sequences, in order for Zorn’s Lemma to hold.
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or in other words,

vo([n]) = {vo[n− 1], {vo[n− 1]}}.

More interestingly, the axioms tell us that the von Neumann ordinal ω is precisely
the set of all the von Neumann numbers attached to the natural numbers. And
we can track this construction “by hand” up through the von Neumann ordinals of
2ω, ω2, ωω and so forth. But how do we know the construction works (i.e., gives a
unique answer) for every ordinality?

The answer is simple: by induction. We have seen that the axioms imply that
at least for sufficiently small ordinalities there is a unique assignment S 7→ vo(S).
If the construction does not always work, there will be a smallest ordinality o for
which it fails. But this cannot be, since it is clear how to define vo(o) given defi-
nitions of all von Neumann ordinals of ordinalities less than o: indeed, (VN4) tells
us exactly how to do this.

This construction is an instance of transfinite induction. This is the extension
to general well-ordered sets of the principle of complete induction for the natural
numbers: if S is a well-ordered set and T is a subset which is (i) nonempty and (ii)
for all sinS, if the order ideal I(s) is contained in T , then s is in T ; then T must
in fact be all of S. We trust the proof is clear.

Note that transfinite induction generalizes the principle of complete induction,
not the principle of mathematical induction which says that if 0 is in S and
n ∈ S =⇒ n + 1 ∈ S, then S = N. This principle is not valid for any ordi-
nality larger than ω, since indeed ω is (canonically) an initial segment of every
larger ordinality and the usual axioms of induction are satisfies for ω itself. All
this is to say that in most applications of transfinite induction one must distinguish
between the case of successor ordinals and the case of limit ordinals. For example:

Exercise 1.5.1: Show that for any well-ordered set S, vo(S+) = {vo(S), {vo(S)}}.

We should remark that this is not a foundationalist treatment of von Neumann
ordinals. It would also be possible to define a von Neumann ordinal as a certain
type of set, using the following exercise.

Exercise 1.5.2: Show that a set S is a von Neumann ordinal iff:
(i) if x ∈ S implies x ⊂ S;
(ii) the relation ⊂ is a well-ordering on elements of S.

For the rest of these notes we will drop the term “ordinality” in favor of “ordi-
nal.” The reader who wants an ordinal to be something in particular can thus take
it to be a von Neumann ordinal. This convention has to my knowledge no real
mathematical advantage, but it has some very convenient notational consequences,
as for instance the following definition of “cardinal.”

1.6. A definition of cardinals. Here we allow ourselves the following result,
which we will discuss in more detail later on.
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Theorem 14. (Well-ordering theorem) Assuming the Axiom of Choice, every set
S can be well-ordered.

We can use this theorem (“theorem”?) to reduce the theory of cardinalities to a
special case of the theory of ordinalities, and thus, we can give a concrete definition
of cardinal numbers in terms of Von Neumann’s ordinal numbers.

Namely, for any set S, we define its cardinal |S| to be the smallest von Neumann
ordinal o such that o is equivalent to (i.e., in bijection with) S.

In particular, we find that the finite cardinals and the finite ordinals are the same:
we have changed our standard n element set from [1, n] to the von Neumann ordinal
n, so for instance 3 = {∅, {∅}, {∅, {∅}}}. On purely mathematical grounds, this is
not very exciting. However, if you like, we can replace our previous attitude to what
the set [n] = {1, . . . , n} “really is” (which was, essentially, “Why are you bothering
me with such silly questions?”) by saying that, in case anyone asks (we may still
hope that they do not ask), we identify the non-negative integer n with its von
Neumann ordinal. Again, this is not to say that we have discovered what 3 really
is. Rather, we noticed that a set with three elements exists in the context of pure
set theory, i.e., we do not have to know that there exist 3 objects in some box
somewhere that we are basing our definition of 3 on (like the definition of a meter
used to be based upon an actual meter stick kept by the Bureau of Standards). In

truth 3 is not a very problematic number, but consider instead n = 1010
1010

; the
fact that n is (perhaps) greater than the number of distinct particles in the universe
is, in our account, no obstacle to the existence of sets with n elements.

Let’s not overstate the significance of this for finite sets: with anything like a
mainstream opinion on mathematical objects7 this is completely obvious: we could
also have defined 0 as ∅ and n as {n − 1}, or in infinitely many other ways. It
becomes more interesting for infinite sets, though.

That is, we can construct a theory of sets without individuals – in which we
never have to say what we mean by an “object” as an element of a set, because
the only elements of a set are other sets, which ultimately, when broken up enough
(but possibly infinitely many) times, are lots and lots of braces around the empty
set. This is nice to know, most of all because it means that in practice we don’t
have to worry one bit about what the elements of are sets are: we can take them
to be whatever we want, because each set is equivalent (bijective) to a pure set. If
you would like (as I would) to take a primarily Bourbakistic view of mathematical
structure – i.e., that the component parts of any mathematical object are of no
importance whatsoever, and that mathematical objects matter only as they relate
to each other – then this is very comforting.

Coming back to the mathematics, we see then that any set of cardinals is in partic-
ular a set of ordinals, and the notion of < on cardinals induced in this way is the
same as the one we defined before. That is, if α and β are von Neumann cardinals,
then α < β holds in the sense of ordinals iff there exists an injection from α to β
but not an injection from β to α.

7The only contemporary mathematician I know who would have problems with this is Doron
Zeilberger.



14 PETE L. CLARK

Exercise 1.6.1: Convince yourself that this is true.

Thus we have now, at last, proved the Second Fundamental Theorem of Set Theory,
modulo our discussion of Theorem 14.

2. The Axiom of Choice and some of its equivalents

2.1. Introducing the Axiom of Choice.

Now we come clean. Many of the results of Chapter II rely on the following “fact”:

Fact 15. (Axiom of Choice (AC)): For any nonempty family I of nonempty sets
Si, the product

∏
i∈I Si is nonempty.

Remark: In other words, any product of nonzero cardinalities is itself nonzero. This
is the version of the axiom of choice favored by Bertrand Russell, who called it the
“multiplicative axiom.” Aesthetically speaking, I like it as well, because it seems
so simple and self-evident.

Exercise 2.1: Show that if (AC) holds for all families of pairwise disjoint sets Si, it
holds for all nonempty families of nonempty sets.

However, in applications it is often more convenient to use the following refor-
mulation of (AC) which spells out the connection with “choice”.

(AC′): If S is a set and I = {Si} is a nonempty family of nonempty subsets of
S, then there exists a choice function, i.e., a function f : I → S such that for all
i ∈ I, f(Si) ∈ Si.

Let us verify the equivalence of (AC) and (AC′).
(AC) =⇒ (AC′): By (AC), S =

∏
i∈I Si is nonempty, and an element f of

S is precisely an assignment to each i ∈ I of an element f(i) ∈ Si ⊂ S. Thus f
determines a choice function f : I → S.

(AC′) =⇒ (AC): Let I = {Si} be a nonempty family of nonempty sets. Put
S =

⋃
i∈I Si. Let f : I → S be a choice function: for all i ∈ I, f(Si) ∈ Si. Thus

{f(i)}i∈I ∈
∏

i∈I Si.

The issue here is that if I is infinite we are making infinitely many choices – possibly
with no coherence or defining rule to them – so that to give a choice function f is
in general to give an infinite amount of information. Have any of us in our daily
lives ever made infinitely many independent choices? Probably not. So the worry
that making such a collection of choices is not possible is not absurd and should be
taken with some seriousness.

Thus the nomenclature Axiom of Choice: we are, in fact, asserting some feeling
about how infinite sets behave, i.e., we are doing exactly the sort of thing we had
earlier averred to try to avoid. However, in favor of assuming AC, we can say: (i)
it is a fairly basic and reasonable axiom – if we accept it we do not, e.g., feel the
need to justify it in terms of something simpler; and (ii) we are committed to it,
because most of the results we presented in Chapter II would not be true without
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it, nor would a great deal of the results of mainstream mathematics.

Every student of mathematics should be aware of some of the “facts” that are
equivalent to AC. The most important two are as follows:

Fact 16. (Zorn’s Lemma) Let S be a partially ordered set. Suppose that every
chain C – i.e., a totally ordered subset of S – has an upper bound in S. Then S
has a maximal element.

Theorem 17. The axiom of choice (AC), Zorn’s Lemma (ZL), and the Well-
Ordering Theorem (WOT) are all equivalent to each other.

Remark: The fact that we are asserting the logical equivalence of an axiom, a
lemma and a theorem is an amusing historical accident: according to the theorem
they are all on the same logical footing.

WOT =⇒ AC: It is enough to show WOT =⇒ AC′, which is easy: let {Si}i∈I

be a nonempty family of nonempty subsets of a set S. Well-order S. Then we may
define a choice function f : I → S by mapping i to the least element of Si.

AC =⇒ ZL: Strangely enough, this proof will use transfinite induction (so that
one might initially think WOT would be involved, but this is absolutely not the
case). Namely, suppose that S is a poset in which each chain C contains an upper
bound, but there is no maximal element. Then we can define, for every ordinal o,
a subset C0 ⊂ S order-isomorphic to o, in such a way that if o′ < o, Co′ ⊂ Co.
Indeed we define C∅ = ∅, of course. Assume that for all o′ < o we have defined
Co′ . If o is a limit ordinal then we define Co :=

⋃
o′<o Co′ . Then necessarily C0

is order-isomorphic to o: that’s how limit ordinals work. If o = o′ + 1, then we
have Co′ which is assumed not to be maximal, so we choose an element x of S \Co′

and define xo := x. Thus we have inside of S well-ordered sets of all possible
order-isomorphism types. This is clearly absurd: the collection o(|S|) of ordinals
of cardinality |S| is an ordinal of cardinality greater than the cardinality of S, and
o(|S|) ↪→ S is impossible.

But where did we use AC? Well, we definitely made some choices, one for each
non-successor ordinal. To really nail things down we should cast our choices in the
framework of a choice function. Suppose we choose, for each well-ordered subset
W of X, an element xW ∈ X \W which is an upper bound for W . (This is easily
phrased in terms of a choice function.) We might worry for a second that in the
above construction there was some compatibility condition imposed on our choices,
but this is not in fact the case: at stage o, any upper bound x for Co in S \Co will
do to give us Co+1 := Co ∪ {x}. This completes the proof.

Remark: Note that we showed something (apparently) slightly stronger: namely,
that if every well-ordered subset of a poset S has an upper bound in S, then S has
a maximal element. This is mildly interesting but apparently useless in practice.

ZL =⇒ WOT: Let X be a non-empty set, and let A be the collection of pairs
(A,≤) where A ⊂ X and ≤ is a well-ordering on A. We define a relation < on A:
x < y iff x is equal to an initial segment of y. It is immediate that < is a strict
partial ordering on A. Now for each chain C ⊂ A, we can define xC to be the union
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of the elements of C, with the induced relation. xC is itself well-ordered with the
induced relation: indeed, suppose Y is a nonempty subset of xC which is not well-
ordered. Then Y contains an infinite descending chain p1 > p2 > . . . > pn > . . ..
But taking an element y ∈ C such that p1 ∈ y, this chain lives entirely inside y
(since otherwise pn ∈ y′ for y′ > y and then y is an initial segment of y′, so pn ∈ y′,
pn < p1 implies pn ∈ y), a contradiction.

Therefore applying Zorn’s Lemma we are entitled to a maximal element (M,≤M )
of A. It remains to see thatM = X. If not, take x ∈ X\M ; adjoining x to (M,≤M )
as the maximum element we get a strictly larger well-ordering, a contradiction.

Remark: In the proof of AC =⇒ ZL we made good advantage of our theory
of ordinal arithmetic. It is possible to prove this implication (or even the direct
implication AC =⇒ ZL) directly, but this essentially requires proving some of our
lemmata on well-ordered sets on the fly.

2.2. Some equivalents and consequences of the Axiom of Choice. Although
disbelieving AC is a tenable position, mainstream mathematics makes this position
slightly unpleasant, because Zorn’s Lemma is used to prove many quite basic results.
One can ask which of these uses are “essential.” The strongest possible case is if
the result we prove using ZL can itself be shown to imply ZL or AC. Here are some
samples of these results:

Fact 18. For any infinite set A, |A| = |A×A|.

Fact 19. For sets A and B, there is an injection A ↪→ B or an injection B ↪→ A.

Fact 20. Every surjective map of sets has a section.

Fact 21. For any field k, every k-vector space V has a basis.

Fact 22. Every proper ideal in a commutative ring is contained in a maximal proper
ideal.

Fact 23. The product of any number of compact spaces is itself compact.

Even more commonly one finds that one can make a proof work using Zorn’s Lemma
but it is not clear how to make it work without it. In other words, many statements
seem to require AC even if they are not equivalent to it. As a simple example, try
to give an explicit well-ordering of R. Did you succeed? In a precise formal sense
this is impossible. But it is intuitively clear (and also true!) that being able to
well-order a set S of any given infinite cardinality is not going to tell us that we
can well-order sets of all cardinalities (and in particular, how to well-order 2S), so
the existence of a well-ordering of the continuum is not equivalent to AC.

Formally, speaking one says that a statement requires AC if one cannot prove that
statement in the Zermelo-Fraenkel axiomation of set theory (ZF) which excludes
AC. (The Zermelo-Fraenkel axiomatization of set theory including the axiom of
choice is abbreviated ZFC; ZFC is essentially the “standard model” for sets.) If on
the other hand a statement requires AC in this sense but one cannot deduce AC
from ZF and this statement, we will say that the statement merely requires AC.
There are lots of statements that merely require AC:8

8This list was compiled with the help of the Wikipedia page on the Axiom of Choice.
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Theorem 24. The following facts merely require AC:
a) The countable union of countable sets is countable.
b) An infinite set is Dedekind infinite.
c) There exists a non(-Lebesgue-)measurable subset of R.
d) The Banach-Tarski paradox.
e) Every field has an algebraic closure.
f) Every field extension has a relative transcendence basis.
g) Every Boolean algebra contains a prime ideal (BPIT).
h) Every Boolean algebra is isomorphic to a Boolean algebra of sets (Stone repre-
sentation theorem).
i) Every subgroup of a free group is free.
j) The Hahn-Banach theorem (on extension of linear functionals), the open map-
ping theorem, the closed graph theorem, the Banach-Alaoglu theorem.
k) The Baire category theorem.
l) The existence of a Stone-Cech compactification of every completely regular space.

Needless to say the web of implications among all these important theorems is a
much more complicated picture; for instance, it turns out that the BPIT is an
interesting intermediate point (e.g. Tychonoff’s theorem for Hausdorff spaces is
equivalent to BPIT). Much contemporary mathematics is involved in working out
the various dependencies.

In summary, if your beliefs about sets are the same as the standard ones except
that you do not admit any form of AC (again, exactly what this means is something
that we have not spelled out), then you will find that there is an amazing array of
mathematical theorems that you will not be able to prove. If instead of being en-
tirely agnostic about AC you believe a strong enough condemnation of it (i.e., you
believe one of the many axioms which is independent of ZF and contradicts AC),
then you will be able to prove false some of the results in standard mathematics.

Notable here is the existence of a relatively mild denial of AC which allows most
familiar analytic results to remain true but implies that every subset R is Lebesgue
measurable. There are analysts who advocate the use of this axiom, noting that
it simplifies the theory: in proving Fubini-type theorems on integrals over product
measure spaces, one has to verify that the measurability of the given functions im-
plies the measurability of certain auxiliary functions, a verification which is tedious
and unpleasant (and nontrivial). Like most people who lost an hour of their lives
somewhere in their early 20’s sitting through the proof of Fubini’s theorem, I have
some sympathy for this position.

What should your attitude be towards AC? You will, of course, have to decide
for yourself, although again a sincere agnosticism or disbelief could lead you to
state and prove different theorems. My own take on AC (which is rather stan-
dard to the extent of coming uncomfortably close to parroting the corresponding
paragraph in Kaplansky’s book, but it is nevertheless how I feel) is a sort of middle-
ground: when you use a result which requires (merely or otherwise) AC, you should
acknowledge this – not necessarily with a large fanfare; if you used Zorn’s Lemma
somewhere it is plausible that your result requires AC, whether or not the set the-
orists have proven its independence from ZF – and take mental note: it means
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that there is some obstacle to making your result explicit in full generality. Now if
you are working in some fairly concrete area of mathematics (like number theory),
perhaps there are some interesting special cases of your general result which you
might be able to make explicit with a different and more perspicuous argument. In
general when you prove a theorem asserting the existence of an object, it is good to
know whether or not you can actually construct, in some algorithmic sense, such an
object. The advent of computers has done wonders for constructive mathematics,
a philosophy which only 50 years ago looked rather eccentric. You’ve proven the
existence of a genus one curve with certain properties, have you? Well, can you
program a computer to find one? (I’m afraid I can’t, usually.)

One thing that the majority of working mathematicians would probably agree with
is that while uncountable sets exist in the sense of convenience and noncontradic-
tion, they do not exist in the same visceral sense of things that you can get your
computer to spit out. Twenty-first century mathematics is at the same time more
abstract and more concrete than mathematics one hundred years before.


