
ON THE STRATIFICATION CONJECTURE FOR CM TORSION SUBGROUPS

PETE L. CLARK

Abstract. Work of Bourdon–Clark–Pollack shows that the set of degrees d ∈ Z+ for which the

classification of torsion subgroups of CM elliptic curves over all number fields of degree d is the

same as the classification of CM torsion of elliptic curves over Q has positive asymptotic density.
Based on this, I conjectured that for every d0 ∈ Z+, the set of d ∈ Z+ such that the classification

of CM torsion in degree d as the same as in degree d0 has positive density. This was proven for

all odd d0 by Bourdon–Pollack in 2017. Here we give the first results on even d0: the conjecture
holds for d0 = 2 and for d0 = 2p0 for a set of primes p0 of relative density one. However, we will

also explain why the conjecture seems likely to be false for d0 = 2p0 where p0 lies in an infinite

set of prime numbers, including p0 = 3.

1. Introduction

In this paper, for integers x ≤ y, we denote by [x, y] the set of integers z such that x ≤ z ≤ y.

For a subset S ⊆ Z+, if limN→∞
#(S∩[1,N ])

N exists, we call it the density of S and denote it

by δ(S). We define the upper density δ(S) (resp. the lower density δ(S)) by replacing the limit
by a limit superior (resp. by a limit inferior); thus for all S ⊆ Z+ we have 0 ≤ δ(S) ≤ δ(S) ≤ 1,
and the existence of δ(S) is equivalent to the equality δ(S) = δ(S).

For d ∈ Z+, let G(d) denote the set of isomorphism classes of groups of the form E(F )[tors] with
F a number field of degree d and E/F an elliptic curve. For every such elliptic curve E/F , there
are positive integers M | N such that E(F ) ∼= Z/MZ× Z/NZ, so we may and shall regard G(d) as
a set of such groups Z/MZ× Z/NZ. Let GCM(d) be the subset of G(d) obtained by imposing the
condition that the elliptic curves E/F have complex multiplication: that is, EndF (E) is strictly
larger than Z and thus is an order in an imaginary quadratic field [Si86, Cor. III.9.4].

Remark 1.1.

a) Work of Merel [Me96] implies that for all d ∈ Z+, the set G(d) is finite. By [BCS17, Thm.
2.1a)], if d1 | d2 then G(d1) ⊆ G(d2) Work of Mazur [Ma77] then gives

∀d ∈ Z+, G(d) ⊇ G(1) = {Z/NZ for N ∈ {[1, 10], 12} ∪ {Z/2Z× Z/2nZ for n in [1, 4]}.

b) Earlier work of Silverberg [Si88], [Si92] implies that for all d ∈ Z+, the set GCM(d) is finite.
Once again [BCS17, Thm. 2.1a)] implies that if d1 | d2 then GCM(d1) ⊆ GCM(d2). Work
of Olson [Ol74] then gives

∀d ∈ Z+, GCM(d) ⊇ GCM(1) = {Z/NZ for N ∈ [1, 4] ∪ {6}} ∪ {Z/2Z× Z/2Z}.

This paper concerns the study of arithmetical statistical phenomena on torsion subgroups of elliptic
curves over number fields that are particular to the CM case. For d ∈ Z+ we define TCM(d) (resp.
T¬CM(d)) to be the maximum size of #E(F )[tors] as F ranges over number fields of degree d and
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E/F ranges over elliptic curves with complex multiplication (resp. without complex multiplication).
These functions have very different growth behaviors. We know [CP17, Thm. 1.1]

(1) lim sup
d

TCM(d)

d log log d
=

eγπ√
3
,

so the “upper order” of TCM(d) is log log d. For the non-CM case, we know [CP17, Thm. 6.4]

lim sup
d

T¬CM(d)√
d log log d

≥
√

π2eγ

3
.

It is a folk conjecture that T (d) (or, equivalently in view of (1), T¬CM(d)) should grow no faster
than some power of d, but the best known bounds (due to Merel, Parent and Oesterlé [Pa99]) are
worse than exponential in d. For the lower order, we know [BCS17, Thm. 1.4]

(2) lim inf
d

TCM(d) = 6 = TCM(1),

while [CMP18, §2.1]

lim inf
d

T¬CM(d)√
d

> 0.

In particular, we have limd→∞ T¬CM(d) = ∞, and it follows that for all d1 ∈ Z+, the set of
d2 ∈ Z+ such that G(d1) = G(d2) is finite.1 In this regard also, the CM case is quite different.
Bourdon–Clark–Stankewicz showed [BCS17, Thm. 1.4]

for all primes p ≥ 7, TCM(p) = TCM(1)

– notice that this implies (2) above – and then Bourdon–Clark–Pollack showed [BCP17, Thm. 1.3]
that the set of d ∈ Z+ such that TCM(1) = TCM(d) has positive density. Thus whereas the mapping
d 7→ G(d) has finite fibers (and may be injective), the mapping d 7→ GCM(d) has at least one fiber
that is not only infinite but of positive density. This suggests a more refined study in the CM case.

For d1, d2 ∈ Z+, we write d1 ∼ d2 if GCM(d1) = GCM(d2).
2 This is an equivalence relation,

and we denote the ∼-equivalence class of d ∈ Z+ by [d]∼. For d, d0 ∈ Z+, if d ∼ d0 we say that d
is a d0-Olson degree; if moreover d0 | d, then we say that d is a strongly d0-Olson degree. For
d0 ∈ Z+, let [d0]S denote the set of all strongly d0-Olson degrees.

About ten years ago, I made the following conjecture:

Conjecture 1.2 (Stratification of Torsion in the CM Case).

a) For all d0 ∈ Z+, the set [d0]S of strongly d-Olson degrees has positive lower density.
b) For all d ∈ Z+, the set [d0]∼ has a density. Moreover, let d1 < d2 < . . . < dn < . . . be a set

of representatives for the distinct ∼-equivalence classes of Z+ (so every positive integer is
dn-Olson for exactly one n). Then

∞∑
n=1

δ([dn]∼) = 1.

1Since G(d) is only known for d ∈ {1, 2, 3}, it is not surprising that there are no known examples of d1 < d2 with
G(d1) = G(d2). However when G(d1) is known, one can often show computationally that G(d1) ̸= G(d2): e.g. from

Mazur’s Theorem and the table on [vH14, p. 4] it follows that for all d ≥ 2 we have G(1) ⊊ G(d).
2This notation signals our exclusive focus on the CM case; otherwise we would write ∼CM.
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In [BP17], Bourdon–Pollack showed that for every odd d0 ∈ Z+, the set [d0]∼ of d0-Olson degrees
has positive density. They also proved “the odd degree part” of Conjecture 1.2b): namely, if
e1 < . . . < en < . . . is a set of representatives for the distinct odd ∼-equivalence classes of Z+ (so
that every odd positive integer is en-Olson for exactly one n), then

∞∑
n=1

δ([en]∼) =
1

2
.

Very little is known about d0-Olson degrees and strongly d0-Olson degrees when d0 is even. An
early work [CCRS14] computes GCM(d) for d ≤ 13 and thereby shows there is no 2 < d < 14
with 2 ∼ d. The existence of a 2-Olson degree d > 2 was shown only recently by Bourdon–Chaos
[BC23], who showed that 38 is 2-Olson.3 The work of Bourdon–Chaos does much more: in [BC23,
Thm. 1.2] they compute GCM(2p) for all primes p ≥ 7; moreover for each G ∈ GCM(2p) \ GCM(2),
they determine all imaginary quadratic orders O for which there is an elliptic curve E/F with
[F : Q] = 2p, E(F )[tors] ∼= G and EndF (E) ∼= O. The following is an equivalent statement of the
part of [BC23, Thm. 1.2] that determines GCM(2p):

Theorem 1.3 (Bourdon–Chaos). Let p ≥ 7 be a prime number.

a) The set GCM(2p) consists of the following groups Z/MZ× Z/NZ:
• Z/NZ | N ∈ {1, 2, 3, 4, 6, 7, 10}, in all cases.
• Z/2Z× Z/2nZ | n ∈ {1, 2, 3}, in all cases.
• Z/3Z× Z/3Z, in all cases.
• Z/49Z, if p = 7.

• Z/(2p+1)Z, if 2p+1 is prime and
(

∆
2p+1

)
= 1 for some ∆ ∈ {−11,−19,−43,−67,−163}.

• Z/2(2p+ 1)Z, if 2p+ 1 is prime and
(

∆
2p+1

)
= 1 for some ∆ ∈ {−7,−8}.

• Z/2Z× Z/2(2p+ 1)Z, if 2p+ 1 is prime and
(

−7
2p+1

)
= 1.

• Z/2(4p+ 1)Z, if 4p+ 1 is prime.
• Z/(6p+ 1)Z, if 6p+ 1 is prime.

b) We have [2p]∼ ̸= [2]∼ if and only if at least one of the following occurs:

(i) 2p+ 1 is prime, and
(

∆
2p+1

)
= 1 for some ∆ ∈ {−7,−8,−11,−19,−43,−67,−163}.

(ii) 4p+ 1 is prime.
(iii) 6p+ 1 is prime.

Theorem 1.3 implies that asymptotically 100% of the degrees of the form 2p for a prime number p
are 2-Olson [BC23, Remark 1.7], so by the Prime Number Theorem, the number of 2-Olson degrees
d ≤ X is at least X

2 logX (1 + o(1)). In her 2024 PhD thesis [Bi24], I. Bildik determined GCM(2pq)

for primes 2 < p < q. She finds that 2pq is 2-Olson unless there is a ∈ {2, 4, 6} such that at least
one of ap + 1, aq + 1, apq + 1 is prime, which she shows is asymptotically 0% of the degrees of
the form 2pq. By Landau’s asymptotics for 2-almost primes [La09], it follows that the number of

2-Olson degrees d ≤ X is at least X log logX
2 logX (1 + o(1)). These results show that the set of 2-Olson

degrees is infinite and not too sparse, though they leave open the question of whether a positive
proportion of positive integers are 2-Olson.

Our first result in this paper is to answer this question in the affirmative:

3It turns out that 38 is the smallest d > 2 such that d ∼ 2: cf. Proposition 1.9b).
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Theorem 1.4. Let D be the set of d ∈ Z+ such that:

(i) d ≡ 2 (mod 4) and 3 ∤ d; and
(ii) For a prime number ℓ, if ℓ− 1 | 12d, then ℓ ∈ {2, 3, 5, 7, 13, 19, 37, 73}.

Then:

a) We have D ⊆ [2]S: that is, every d ∈ D is strongly 2-Olson.
b) The set D has positive lower density.

Remark 1.5. The intersection of D with the set 2P := {2p | p is prime} is

{2p | p is prime and for all a ∈ {2, 4, 6, 8, 12, 24}, ap+ 1 is not prime}.

Comparing to Theorem 1.3 we see that indeed D ∩ 2P is a proper subset of [2]∼ ∩ 2P, but both sets
have the same asymptotic behavior as does 2P, i.e., have X

2 logX (1 + o(1)) elements up to X.

Fix k ∈ Z+, and let 2Pk := {2p1 · · · pk | p1, . . . , pk are all prime}. Then the intersection of D
with 2Pk contains the set of 2p1 · · · pk ∈ 2Pk with 2 < p1 < . . . < pk such that for every nonempty
subset s ⊆ {1, . . . , k}, for no a ∈ {2, 4, 6, 8, 12, 24} is a

∏
i∈s pi + 1 prime. When k = 2, the same

arguments of [Bi24, §3.2] can also be used to show that D ∩ 2P2 has the same asymptotic behavior
as 2P2. I believe the same should hold for all k, in which case we would have

#
(
D ∩ 2Pk ∩ [1, X]

)
=

X(log logX)k−1

2(k − 1)! logX
(1 + o(1)),

but I have not tried to prove this for k ≥ 3.

The proof of Theorem 1.4a) is an algebraic argument that relies on recent work of Bourdon–Clark
and Clark–Saia [BC20a], [BC20b], [CS] on degrees of CM points on certain elliptic modular curves.
In §2 we recall some of this work and use it to show many results of the form: if d,M,N are
positive integers such that M | N and there is a CM elliptic curve defined over a degree d num-
ber field such that Z/MZ × Z/NZ injects into E(F ), then this forces a certain divisibility on d
– often that 3 | d or 4 | d – which gives a contradiction for d lying in the set D appearing in
the statement of Theorem 1.4. The proof of Theorem 1.4b) is of an entirely different character, re-
lying (only) on the work of Erdős–Wagstaff on shifted prime divisors [EW80], as we will recall in §3.

The method of proof of Theorem 1.4 is rather flexible: one may try to use it to show that [d0]S
has positive lower density for any fixed d0. Each of the following conditions is auspicious for the
success of this method: (i) 4 ∤ d0; (ii) 3 ∤ d0; (iii) we know GCM(d0) explicitly. Thus it is natural to
explore the cases in which d0 is odd and d0 = 2p for a prime p > 3.

We will show that [d0]S has positive lower density for all odd d0 (Theorem 5.2). When d0 is minimal
– there is no d < d0 with d ∼ d0 – this follows from the work of Bourdon–Pollack [BP17], while
in the general case we deduce it from one of their results using work of Pomerance–Wagstaff [PW23].

Let p > 2 be prime. In view of Theorem 1.3, we treat separately the case in which 2p + 1 is
prime and the case in which it is not, the latter being the case of relative density one. We will
show: for all p > 2 for which 2p+1 is not prime, the set [2p]S has positive lower density (Corollary
5.4). In fact we prove a stronger result (Theorem 5.3) implying that Conjecture 1.2a) holds for a
set of even integers of positive density. This and Theorem 5.2 imply that the lower density of the
set of integers for which Conjecture 1.2a) holds exceeds 1

2 .
When 2p + 1 is prime, things are more complicated: now the set GCM(2p) varies depending on
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the set of class number one imaginary quadratic fields in which 2p + 1 splits. If enough of these
splitting conditions hold, we can still prove that [2p]S has positive lower density (Theorem 5.6).
In the absence of such splitting conditions, our method fails. But in fact, for some of these values
of p the failure of the method uncovers a phenomenon that casts serious doubt on the truth of
Conjecture 1.2 for d0 = 2p. To be precise, Propositions 5.8 and 5.9 imply:

Theorem 1.6.

a) Suppose that every sufficiently large odd positive integer D is the class number of an imag-
inary quadratic field Q(

√
−ℓ) for a prime ℓ ≡ 23 (mod 24). Then [6]∼ is finite.

b) Let p > 3 be a prime such that p ≡ 1, 2, 6 (mod 7) and 2p+1 is prime. Suppose that every
sufficiently large odd positive integer D is the class number of an imaginary quadratic field
Q(

√
−ℓ) for a prime ℓ ≡ 7 (mod 8) such that 2p+1 splits in Q(

√
−ℓ). Then [2p]S is finite.

It is a standard conjecture – very much out of current reach – that every positive integer is the
class number of some imaginary quadratic field. More precisely, for h ∈ Z+ let F(h) denote the set
of discriminants of imaginary quadratic fields of class number h. Then K. Soundararajan has made
the more precise conjecture [So07, p. 14, (C1)]

h

log h
≪ #F(h) ≪ h log h.

Since for odd h > 1, imaginary quadratic fields of class number h must have discriminant −p or −4p
for a prime p ≡ 3 (mod 4), if Soundararajan’s conjecture holds, then the failure of the hypotheses
in Theorem 1.6 would imply a dramatic lack of equidistribution of elements of F(h) into congruence
classes modulo 24 or modulo 4(2p + 1). Moreover the hypothesis of part a) is supported by some
computations that we will mention soon.

One way of trying to repair Conjecture 1.2a) was suggested to me by P. Pollack: namely, we
may conjecture that for all d0 ∈ Z+, the set [d0]S is either finite or of positive lower density. Al-
though likely to be true, it seems to me that there ought to be a more “optimistic” reformulation.
Let me now prove a small piece of optimism. We will need the following result [BCP17, Thm.
1.1(i)] that also made use of the work of Erdős–Wagstaff on shifted prime divisors.

Theorem 1.7 (Bourdon–Clark–Pollack). For all ϵ > 0, there is Bϵ ∈ Z+ with the following
property: the set of all d ∈ Z+ such that that there is a degree d number field F and a CM elliptic
curve E/F with #E(F )[tors] > Bϵ has upper density less than ϵ.

This has the following consequence:

Corollary 1.8. Let d0 ∈ Z+. Then there is d1 ∈ Z+ such that d0 | d1 and the set [d1]∼ of d1-Olson
degrees has positive upper density.

Proof. Applying Theorem 1.7 with ϵ = 1
2d0

, we get that the set of S of degrees d ∈ d0Z+ such that
every torsion subgroup of a CM elliptic curve defined over a number field of degree d has size at
most Bϵ has lower density at least 1

2d0
, hence also upper density at least 1

2d0
. As d ranges over

elements of S, only finitely many diferent sets GCM(d) can arise. Because the limsup of a finite
sum is at most the sum of the limsups, at least one GCM(d) must have positive upper density. □

For instance, Corollary 1.8 does not imply that a positive proportion of degrees are 4-Olson – it is
not currently known whether any d > 4 is 4-Olson – but it does imply that there is some d0 divisible
by 4 such that the d0-Olson degrees have positive upper density. I wonder whether Corollary 1.8
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holds with “lower density” in place of “upper density.” If so, this would be one optimistic salvaging
of Conjecture 1.2a). The method we introduce here would allow us to prove this for d0 = 6 with
an explicit value of d1. Alas, we have to stop somewhere, so we leave this to a future work.

In §6 we prove some further computational results. If d0 ∈ Z+ is minimal in its ∼-equivalence
class, it is natural to ask whether every element of [d0]∼ must be a multiple of d0. We prove that
this is true for several small values of d0 and for all odd d0. We also establish the following result.

Proposition 1.9.

a) We have

δ([2]∼) ≤ 0.036891, δ([10]∼) ≤ 0.009227, δ([14]∼) ≤ 0.006149, δ([22]∼) ≤ 0.0036891.

b) The set of 2-Olson degrees d ≤ 1000 is

{2, 38, 62, 118, 142, 218, 298, 314, 334, 394, 422, 466, 454, 458, 538, 634, 674, 698,
706, 722, 758, 766, 778, 802, 842, 878, 898, 914, 926, 958}.

c) The set of 10-Olson degrees d ≤ 2000 is {2, 1490, 1970}.
d) The set of 14-Olson degrees d ≤ 2000 is {14, 266, 994, 1526}.
e) The set of 22-Olson degrees d ≤ 2000 is {22, 1298, 1562}.
f) The set of 6-Olson degrees d < 45762 is {6}.

2. Preliminaries

For groups H and G, we write H ↪→ G to mean that there is an injective group homomorphism
from H to G; we also say that H embeds in G. If H is a group and G is a set of groups, we write
H ↪→ G to mean that for some G ∈ G we have H ↪→ G; we also say that H embeds in G.

Given an elliptic curve E defined over a number field F and an embedding Z/MZ×Z/NZ ↪→ E(F )
with M | N and N ≥ 3, there is an induced closed point P1 on the modular curve X1(M,N). We
have maps of modular curves

X1(M,N)
π→ X0(M,N)

J→ X(1) ∼= P1

cf. [CS, §0.1], and we put P0 := π(P1) ∈ X0(M,N) and P = J(P0) ∈ X(1). The field Q(P ) is (by
definition) Q(j(E)). If E has CM by the order of discriminant ∆ = f2∆K and conductor f in the
imaginary quadratic field K, then we denote the field Q(j(E)) by Q(f) and call it the rational ring
class field of conductor f. Up to isomorphism, Q(f) depends only on ∆ and thus only on K and f
[CS, §1.2]. We denote by K(f) the field K(j(E)); this is the ring class field of conductor f. We have

[Q(f) : Q] = h∆,

the class number of the order of discriminant ∆. Thus we have that d is divisible by

[Q(P1) : Q] = [Q(P1) : Q(P0)][Q(P0) : Q(f)]h∆,

which gives us three sources for divisibility. In this work we will only make use of the parity of
h∆, which comes from Gauss’s genus theory: h∆ is odd if and only if ∆ ∈ {−4,−8,−12,−16} or
∆ = −2ϵℓ2L+1 where ϵ ∈ {0, 2}, ℓ ≡ 3 (mod 4) is a prime, and L ∈ Z+ [CS, §1.10.1].

The work [CS] determines the possible values for [Q(P1) : Q(P0)] and [Q(P0) : Q(f)] in every

case. For brevity, we call [Q(P1) : Q(P0)] the first factor of d. The first factor divides φ(N)
2

and is always divisible by φ(N)
w∆

, where w∆ is the cardinality of the unit group of the order O of
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discriminant ∆. Thus the first factor is φ(N)
2 whenever ∆ /∈ {−3,−4}; it is also φ(N)

2 whenever

M ≥ 2. When M = 1 and ∆ = −3, the first factor is φ(N)
2 unless N is of Type I: that is, divisible

neither by 9 nor by any prime p ≡ 2 (mod 3). (In the remaining case – namely ∆ = −3, M = 1

and N of Type I – the elliptic curve E/F can be chosen so that the first factor is φ(N)
6 .) When

M = 1 and ∆ = −4, the first factor is φ(N)
2 unless N is of Type II: that is, divisible neither by 4

nor by any prime p ≡ 3 (mod 4). (In the remaining case – namely ∆ = −4, M = 1 and N of Type

II – the elliptic curve E/F can be chosen so that the first factor is φ(N)
4 .)

The following result shows that in most cases the complementary factor [Q(P0) : Q] is even:

Theorem 2.1. Let P0 ∈ X0(M,N) be a closed CM point of odd degree. If M ≥ 2, then (M,N) =
(2, 2). If M = 1, then N ∈ {1, 2, 4} or N ∈ {ℓa, 2ℓa} for a prime ℓ ≡ 3 (mod 4) and a ∈ Z+.

Proof. See [CS, (1.12)]. □

Proposition 2.2. Let d ∈ Z+ and let ℓ > 2 be a prime number, and let ∆ be an imaginary quadratic
discriminant. Suppose there is a degree d number field F and a ∆-CM elliptic curve E/F such that
Z/ℓZ ↪→ E(F )[tors].

a) If ℓ ≡ 1 (mod 9), then 3 | d.
b) If ℓ ≡ 1 (mod 3), then 3 | d or ∆ = −3.
c) If ℓ ≡ 1 (mod 8), then 4 | d.
d) If ℓ ≡ 1 (mod 4), then 4 | d or ∆ = −4.
e) If ℓ ≡ 1 (mod 12), then 3 | d or 4 | d.

Proof. a) If ℓ ≡ 1 (mod 9), then the first factor of d is ℓ−1
m for m ∈ {2, 4, 6}, hence is divisible by 3.

b) If ℓ ≡ 1 (mod 3) and ∆ ̸= −3, then the first factor of d is divisible by ℓ−1
m for m ∈ {2, 4}, hence

is divisible by 3.
c),d) If ℓ ≡ 1 (mod 8), then the first factor of d is divisible by ℓ−1

m for m ∈ {2, 4, 6}, hence is even.

Similarly, if ℓ ≡ 1 (mod 4) and ∆ ̸= −4, then the first factor of d is divisible by ℓ−1
m for m ∈ {2, 6},

hence is even. By Theorem 2.1, the complementary factor is also even. So 4 | d.
e) This is immediate from parts b) and d). □

We have Z/7Z,Z/10Z ∈ GCM(2) [CCRS14, §4.2], so the hypotheses on ∆ in parts b) and d) of
Proposition 2.2 are necessary.

Corollary 2.3. Let F be a number field of degree d, let ℓ ≡ 1 (mod 4) be a prime, and let E/F be
a CM elliptic curve. If Z/ℓZ ↪→ E(F )[tors] and #E(F )[tors] is odd, then 4 | d.

Proof. Suppose that F is a number field of degree d with 4 ∤ d and that E/F is a ∆-CM elliptic
curve such that Z/ℓZ ↪→ E(F ). By Proposition 2.2d), we have ∆ = −4. Any −4-CM elliptic curve
E/F admits a Weierstrass equation of the form y2 = x3 +Ax, so we have Z/2Z ↪→ E(F ), and thus
#E(F )[tors] cannot be odd. □

Theorem 2.4.

a) Let N ∈ Z≥5 and d ∈ Z+ be such that Z/NZ ↪→ GCM(d). Then:

(i) Either φ(N)
2 | d or φ(N)

3 | d.
(ii) If N is not of Type I, then φ(N)

2 | d.
(iii) If N is neither of Type I nor of Type II and is not of the form ℓa or 2ℓa for a prime

ℓ ≡ 3 (mod 4) and a ∈ Z+, then φ(N) | d.



8 PETE L. CLARK

(iv) If N is of Type I and not of Type II and is not of the form ℓa or 2ℓa for a prime ℓ ≡ 3

(mod 4) and a ∈ Z+, then φ(N)
3 | d.

b) Let ℓ > 2 be a prime such that Z/2ℓZ ↪→ GCM(d). Then ℓ−1
2 | d.

Proof. a) (i), (ii) We may work throughout with ∆-CM elliptic curves with ∆ ∈ {−3,−4}, since
for all other ∆’s the first factor of d is φ(N)

2 .
First suppose that N is not of Type I. If N is also not of Type II, then the first factor of d is

φ(N)
2 and we’re done, so suppose that N is of Type II, in which case the first factor of d is divisible

by φ(N)
4 . Since N > 2 is of Type II, there is a prime ℓ ≡ 1 (mod 4) such that ℓ | N , and then

Theorem 2.1 implies that the complementary factor is also even, so φ(N)
2 | d.

Next suppose that N is of Type II. Then as above the complementary factor is even, so overall

d is divisible by φ(N)
2 or φ(N)

3 , as desired.
Thus we may assume that N is of Type I and not of Type II. If ∆ = −4 then since N is not of

Type II the first factor of d is φ(N)
2 , so we may assume that ∆ = −3. Since N is of Type I it is

divisible by a prime ℓ ≡ 1 (mod 3). By Theorem 2.1, the complementary factor of d is even unless
N = ℓa or 2ℓa for some a ∈ Z+, so we may assume that N is of this form. Since φ(2ℓa) = φ(ℓa), we
may assume that N = ℓa. In this case, by [CS, §1.8.1, Case 1.2 and §2.7.1], the unique primitive

degree of a −3-CM point on X1(ℓ
a) is φ(ℓa)

3 , completing the proof.

(iii) The first factor of d is φ(N)
2 and by Theorem 2.1 the complementary factor is even.

(iv) The first factor of d is divisible by φ(N)
6 and by Theorem 2.1 the complementary factor is even.

b) We may apply a)(ii) with N = 2ℓ. □

Proposition 2.5. Let d,N ∈ Z+, and suppose that Z/NZ ↪→ GCM(d).

a) If 4 | N and N > 4, then 4 | φ(N) | d.
b) If 2a | N for some a ≥ 3, then 2a−1 | d.
c) If ℓa | N for some prime ℓ > 2 and some a ≥ 2, then ℓa−1 | d.

Proof. a) Theorem 2.4a)(iii) gives φ(N) | d. By hypothesis N is either divisible by 8 or by 4ℓ for
some prime ℓ > 2; either way we find 4 | φ(N).
b) This is immediate from part a).

c) If ℓ = 3, then N is not of Type I, so the first factor of d is φ(N)
m for m ∈ {2, 4}, which is divisible

by ℓa−1. If ℓ > 3, then the first factor of d is φ(N)
m for m ∈ {2, 4, 6}, which is divisible by ℓa−1. □

For future use, we record some specifics. In the following result, the reader may check that all
statements follow immediately from Theorem 2.4 or Proposition 2.5.

Corollary 2.6. Let N, d ∈ Z+, and suppose that Z/NZ ↪→ GCM(d).

a) If N = 8, then 4 | d.
b) If N = 9, then 3 | d.
c) If N = 11, then 5 | d.
d) If N = 12, then 4 | d.
e) If N = 14 then 3 | d.
f) If N = 15, then 8 | d.
g) If N = 20, then 8 | d.
h) If N = 21, then 4 | d.
i) If N = 22, then 10 | d.
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j) If N = 24, then 16 | d.
k) If N = 25, then 10 | d.
l) If N = 26, then 6 | d.

m) If N = 27, then 9 | d.
n) If N = 28, then 12 | d.
o) If N = 33, then 20 | d.
p) If N = 35, then 24 | d.
q) If N = 58, then 14 | d.
r) If N = 74, then 18 | d.

Remark 2.7. In each of the 18 parts of Corollary 2.6, a positive integer eN is specified with the
property that Z/NZ ↪→ GCM(d) implies eN | d. In all cases, the value eN given is best possible:
that is, eN the greatest common divisor of all degrees of number fields F such that there is a CM
elliptic curve E/F with Z/NZ ↪→ E(F ). Indeed:

a) For N ∈ {8, 9, 11, 12, 14, 15, 20, 21, 25, 26, 27, 28, 35, 58, 74}, the number eN is the least de-
gree of a CM point on X1(N), as follows from [Sgit].

b) The data of [Sgit] also shows that the least degree of a CM point on X1(49) is 14. However,
by [BP17, Thm. 1.2], there is a CM point on X1(49) of degree 147 = 3 · 72. Thus in this
case there is more than one primitive degree of CM points on X1(N), but the gcd of all such
primitive degrees is e49 := 7.

Proposition 2.8. Let M ∈ Z≥3. Let F be a number field of degree d, and let E/F be an elliptic
curve such that Z/MZ× Z/MZ ↪→ E(F ). Then φ(M) | [F : Q].

Proof. The hypotheses imply that each geometric M -torsion point on E is F -rational. By the
Galois equivariance of the Weil eM pairing, this implies that F contains a primitive Mth root of
unity ζM , so φ(M) = [Q(ζM ) : Q] | d. □

Proposition 2.9. Let F be a number field of degree d, and let E/F be a ∆-CM elliptic curve.

a) If Z/4Z× Z/4Z ↪→ E(F ), then 4 | d.
b) Suppose Z/3Z× Z/3Z ↪→ E(F ).

(i) If 3 ∤ ∆, then 4 | d.
(ii) If ∆ < −3 and 3 | ∆, then 6 | d.

c) If ∆ = −3 and Z/3Z× Z/6Z ↪→ E(F ), then 6 | d.

Proof. Suppose that E/F has complex multiplication by the imaginary quadratic order O = O∆

of discriminant ∆ = f2∆K in the imaginary quadratic field K. Let w∆ be the number of roots of
unity in O. Suppose that for some M ≥ 3 we have Z/MZ×Z/MZ ↪→ E(F ). By [Co89, Thm. 11.1]
and [BCS17, Lemma 3.15], the field F contains the ring class field K(f) of O. Let

CM := (O/MO)×

be the modulo M Cartan subgroup. By [BC20a, Cor. 1.5 and Lemma 2.2b)], we have

(3) M2
∏
p|M

(
1−

(
∆

p

)
1

p

)(
1− 1

p

)
= #CM (O) | w∆[F : K(f)].

to show that [F : K(f)] is even.
• If ∆ ̸= −4, then 4 | #C4(O), so (3) gives 4 | 6[F : K(f)], so 2 | [F : K(f)].
• If ∆ = −4, then #C4(O) = 8, so (3) gives 8 | 4[F : K(f)], so 2 | [F : K(f)].
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b) Suppose Z/3Z× Z/3Z ↪→ E(F ).
(i) Suppose that 3 ∤ ∆. First suppose that ∆ ̸= −4. Then (3) gives: 4 | #C4(O) | 2[F : K(f)], so
[F : K(f)] is even. Now suppose that ∆ = −4: then #C3(O) = 8, so (3) gives: 8 | 4[F : K(f)], so
again [F : K(f)] is even.
(ii) If 3 | ∆ and ∆ ̸= −3, then 3 | #C3(O) | 4[F : K(f)], so 3 | d.
Before moving on, we remark that Z/3Z × Z/3Z ∈ GCM(2) (see e.g. [CCRS14, §4.2] or [BCS17,
Thm. 1.4]). It follows from our proof so far that if Z/3Z×Z/3Z ↪→ E(F ) for a ∆-CM elliptic curve
defined over a quadratic field F , then ∆ = −3, as was already established in [BCS17, Thm. 1.4].4

c) If E/F is a −3-CM elliptic curve and Z/3Z × Z/6Z ↪→ E(F ), then [BC20b, Thm. 4.1] implies

that 3 | [F : Q(
√
−3)], so 6 | d. □

Proposition 2.10. Let ℓ ≡ 1 (mod 4), let F be a number field of degree d, and let E/F be a CM
elliptic curve such that Z/2Z× Z/2ℓZ ↪→ E(F ). Then 4 | d.

Proof. Because M > 1 and ℓ ≡ 1 (mod 4), the first factor of d is φ(2ℓ)
2 = ℓ−1

2 is even, and by
Theorem 2.1, the complementary factor is also even, so 4 | d. □

Theorem 2.11. Let N, d ∈ Z+ with N ≥ 3. Suppose there is a degree d number field F and a
∆-CM elliptic curve E/F such that Z/NZ× Z/NZ ↪→ E(F ).

a) If N is divisible by a prime ℓ ≡ 1 (mod 4), then 4 | d.
b) If N is divisible by a prime ℓ ≡ 3 (mod 4) with ℓ > 3, then either 4 | d or 2ℓ | d.
c) If N is divisible by a prime power ℓa ≥ 3, then ℓ2a−2(ℓ− 1) | d.

Proof. In all cases we are assuming that there is a prime ℓ such that Z/ℓZ × Z/ℓZ ↪→ E(F ), so
Proposition 2.8 implies ℓ− 1 = φ(ℓ) | d. When ℓ ≡ 1 (mod 4) this means 4 | d, proving part a).

Write ∆ = f2∆K . For the next parts, we will use a result of Bourdon–Clark [BC20a, Thm. 1.4]:
because Z/NZ× Z/NZ ↪→ E(F ), we have that

(4)
2h∆

w∆
N2

∏
p|N

(
1−

(
∆

p

)
1

p

)(
1− 1

p

)
| d.

b) Let K = Q(
√
∆) be the CM field. By [BCS17, Lemma 3.15], since ℓ > 2 we have K ⊆ F , while

by Proposition 2.8 we have Q(ζℓ) ⊆ F . The unique quadratic subfield of Q(ζℓ) is Q(
√
−ℓ), so if

K ̸= Q(
√
−ℓ), then F contains two different quadratic fields and thus 4 | d. So we may assume

that K = Q(
√
−ℓ), in which case (4) shows that ℓ | d (the hypothesis ℓ > 3 is used to ensure that

ℓ ∤ w∆). Since F ⊇ Q(
√
−ℓ) we have that d is even and thus 2ℓ | d.

c) The left hand side of (4) is a positive integer. If we start with N that is divisible by ℓ and not
by ℓ2 and then replace N by ℓa−1N , we see that the left hand side is divisible by ℓ2a−2. Again,
Proposition 2.8 implies ℓ− 1 | d, so ℓ2a−2 | d. Thus ℓ2a−2(ℓ− 1) | d. □

Corollary 2.12. Let d ∈ Z+ be such that neither 3 nor 4 divides d, and let M,N ∈ Z+ be such
that 2 ≤ M ≤ N ≤ 10 and M | N . If Z/MZ× Z/NZ ↪→ GCM(d), then

(M,N) ∈ {(2, 2), (2, 4), (2, 6), (3, 3)}.

Proof. Parts a) and b) of Theorem 2.6 rule out N ∈ {8.9}. It now suffices to rule out

(M,N) ∈ {(4, 4), (5, 5), (3, 6), (7, 7), (4, 8), (3, 9), (2, 10)}.

4Notice that Proposition 2.8 implies that the CM field must be Q(
√
−3) but does not give that the order must

be the maximal order rather than either of the two nonmaximal orders of class number 1.
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The case (M,N) = (4, 4) is ruled out by Proposition 2.9. Because φ(5) = 4 and φ(7) = 6, the cases
(M,N) ∈ {(5, 5), (7, 7)} are ruled out by Proposition 2.8. The case (M,N) = (3, 6) is ruled out by
Proposition 2.9. The case (M,N) = (2, 10) is ruled out by Proposition 2.10. □

3. Proof of Theorem 1.4

3.1. Proof of Theorem 1.4a. By [CCRS14, §4.2], we have

GCM(2) =


{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10} ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3} ∪
{Z/3Z× Z/3Z}

.

We observe that for M | N , if Z/MZ × Z/NZ ↪→ GCM(2) but Z/MZ × Z/NZ /∈ GCM(2), then
M = 1 and N = 5. By Corollary 2.3, if for d ∈ Z+ we have Z/5Z ↪→ GCM(d), then 4 | d. So:

Remark 3.1. Let d ∈ Z+ with d ≡ 2 (mod 4). Then GCM(d) ⊋ GCM(2) if and only if any of the
following hold:

a) There is a group T ∈ GCM(d) with an element of order ℓ for some prime ℓ ≥ 11.
b) There is a group T ∈ GCM(d) with an element of order N for some

N ∈ {9, 12, 14, 15, 20, 21, 25, 35, 49}.

c) One of the following groups embeds in GCM(d):

Z/2Z× Z/10Z, Z/3Z× Z/6Z,Z/4Z× Z/4Z,Z/5Z× Z/5Z, Z/7Z× Z/7Z.

We will prove Theorem 1.4a) by showing that for d ∈ D, none of the conditions of Remark 3.1 hold.

• Let d ∈ D, and let ℓ be a prime number such that Z/ℓZ ↪→ GCM(d). Thus there is a degree
d number field F and a CM elliptic curve E/F such that Z/ℓZ ↪→ E(F ). This induces a closed
CM point P on X1(ℓ) such that [Q(P ) : Q] | d. In the terminology of §2, the first factor of d is

divisible by φ(ℓ)
m = ℓ−1

m for some m ∈ {2, 4, 6}. Thus ℓ − 1 | 12d, so by definition of d we have
ℓ ∈ {2, 3, 5, 7, 13, 19, 37, 73}. Because d is divisible neither by 3 nor by 4, Proposition 2.2 rules out
ℓ ∈ {13, 19, 37, 73}, and it follows that ℓ ≤ 7 as desired.

• Let d ∈ Z+, let N ∈ {9, 12, 14, 15, 20, 21, 25, 35, 49} and suppose Z/NZ ↪→ GCM(d). Theo-
rem 2.6 shows that if N ̸= 49, then d is divisible either by 3 or 4, so d /∈ D. If Z/49Z ↪→ GCM(d),

then d is divisible by φ(49)
m for some m ∈ {2, 4, 6}, hence 7 | 12d. But since 29 is prime, by definition

of D we have 29− 1 = 22 · 7 ∤ 12d, so 7 ∤ d. This rules out N = 49.

The groups in Remark 3.1c) are ruled out by Corollary 2.12.

3.2. Proof of Theorem 1.4b). For d ∈ Z+, a shifted prime divisor of d is a divisor of the form
p − 1 for a prime number p. Theorem 1.4b) will be a quick consequence of the following striking
analytic result [EW80, Thm. 3]:

Theorem 3.2 (Erdős–Wagstaff). For d ∈ 2Z+, let Sd be the set of all n ∈ Z+ such that n has the
same shifted prime divisors as d. Then Sd has positive density.
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Proof of Theorem 1.4b): We start with the set S72 of all positive integers having the same shifted
prime divisors as 72. Thus for n ∈ S72 and a prime ℓ, we have ℓ − 1 | n if and only if ℓ ∈
{2, 3, 5, 7, 13, 19, 37, 73}. So every element of S72 is divisible by 72. By Theorem 3.2 the set

A :=
1

36
S72 =

{
n

36

∣∣∣∣ n ∈ S72

}
is a subset of 2Z+ of positive density. For d ∈ A and a prime ℓ, if ℓ−1 | 12d, then ℓ−1 | 36d ∈ S72, so
ℓ ∈ {2, 3, 5, 7, 13, 19, 37, 73}. Because 17 is prime, no element of S72 is divisible by 24 = 17−1, so no
element of A is divisible by 4. Because 109 is prime, no element of S72 is divisible by 22 ·33 = 109−1,
hence no element of S72 is divisible by 27, hence no element of A is divisible by 3. Thus A ⊆ D, so
D has positive lower density: indeed δ(D) ≥ 36δ(S72).

4. Positive Lower Density of [10]S, [14]S and [22]S

4.1. Statement of the Results. Here are the main results of this section, which immediately
imply that that the sets of strongly 10-Olson, strongly 14-Olson and strongly 22-Olson degrees each
have positive lower density.

Theorem 4.1. Let D5 be the set of positive integers d satisfying both of the following conditions:

(i) d ≡ 2 (mod 4), gcd(3 · 7 · 11 · 31, d) = 1, 5 | d and 25 ∤ d.
(ii) For a prime ℓ, we have ℓ− 1 | 36d ⇐⇒ ℓ ∈ {2, 3, 5, 7, 11, 13, 19, 31, 37, 41, 61, 73, 181}.

Then:

a) We have D5 ⊆ [10]S.
b) The set D5 has positive density.

Theorem 4.2. Let D7 be the set of positive integers d satisfying both of the following conditions:

(i) d ≡ 2 (mod 4), gcd(3 · 5 · 29 · 43, d) = 1, 7 | d and 49 ∤ d.
(ii) For a prime ℓ, we have ℓ− 1 | 36d ⇐⇒ ℓ ∈ {2, 3, 5, 7, 13, 29, 37, 43, 73, 127}.

Then:

a) We have D7 ⊆ [14]S.
b) The set D7 has positive density.

Theorem 4.3. Let D11 be the set of positive integers d satisfying both of the following conditions:

(i) d ≡ 2 (mod 4), gcd(3 · 5 · 7 · 23 · 67, d) = 1 and 11 | d.
(ii) For a prime ℓ, we have ℓ− 1 | 36d ⇐⇒ ℓ ∈ {2, 3, 5, 7, 13, 19, 23, 37, 67, 73, 89, 199, 397}.

Then:

a) We have D11 ⊆ [22]S.
b) The set D11 has positive density.

4.2. Proof of Theorem 4.1a), 4.2a) and 4.3a). The proofs of Theorem 4.1a), Theorem 4.2a)
and Theorem 4.3a) have the same structure, so we will run the steps in parallel.

Step 0: • By [CCRS14, §4.10] we have

GCM(10) =


{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10, 11, 22, 31, 50} ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3, 11} ∪
{Z/3Z× Z/3Z}

.
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Thus the only groups Z/MZ×Z/NZ that embed in GCM(10) but are not elements of GCM(10) are
Z/5Z and Z/25Z. Let d ∈ D5. Since 4 ∤ d, Corollary 2.3 implies that neither Z/5Z nor Z/25Z is
an element of GCM(d). So to prove Theorem 4.1a) it suffices to show: for d ∈ D5 and M,N ∈ Z+

with M | N , if Z/MZ× Z/NZ ↪→ GCM(d), then Z/MZ× Z/NZ ↪→ GCM(10).

• By Theorem 1.3, we have

GCM(14) =


{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10, 43, 49, 58} ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3} ∪
{Z/3Z× Z/3Z}

.

Thus the only groups Z/MZ × Z/NZ that embed in GCM(14) but are not elements of GCM(14)
are Z/5Z and Z/29Z. For the same reasons as the previous paragaph, to prove Theorem 4.2a) it
suffices to show: for d ∈ D7 and M,N ∈ Z+ with M | N , if Z/MZ × Z/NZ ↪→ GCM(d), then
Z/MZ× Z/NZ ↪→ GCM(14).

• By Theorem 1.3 we have

GCM(22) =


{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10, 23, 46, 67} ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3, 23} ∪
{Z/3Z× Z/3Z}

.

Thus the only group Z/MZ×Z/NZ that embeds in GCM(22) but is not an element of GCM(22) is
Z/5Z. For the same reasons as above, to Prove Theorem 4.3a) it suffices to show: for d ∈ D11 and
for M,N ∈ Z+ with M | N , if Z/MZ× Z/NZ ↪→ GCM(d), then Z/MZ× Z/NZ ↪→ GCM(22).

Step 1: • Let d ∈ D5, and let ℓ be a prime number such that Z/ℓZ ↪→ GCM(d). The first fac-

tor of d is divisible by φ(ℓ)
m = ℓ−1

m for some m ∈ {2, 4, 6}, so ℓ− 1 | 36d and thus

ℓ ∈ {2, 3, 5, 7, 11, 13, 19, 31, 37, 41, 61, 73, 181}
by definition of D5. Because d is divisible by neither 3 nor 4, Proposition 2.2 shows that ℓ is not
congruent to 1 modulo 8, 9 or 12, so we find that ℓ ∈ {2, 3, 5, 7, 11, 31} and thus Z/ℓZ ↪→ GCM(10).

• Let d ∈ D7, and let ℓ be a prime number such that Z/ℓZ ↪→ GCM(d). As above we have
ℓ− 1 | 36d, so by definition of D7 we have

ℓ ∈ {2, 3, 5, 7, 13, 29, 37, 43, 73, 127},
and Proposition 2.2 shows ℓ ∈ {2, 3, 5, 7, 29, 43} and thus Z/ℓZ ↪→ GCM(14).

• Let d ∈ D11, and let ℓ be a prime number such that Z/ℓZ ↪→ GCM(d). As above we have
ℓ− 1 | 36d, so by definition of D11 we have

ℓ ∈ {2, 3, 5, 7, 13, 19, 23, 37, 67, 73, 89, 199, 397},
and Proposition 2.2 shows ℓ ∈ {2, 3, 5, 7, 23, 67} and thus Z/ℓZ ↪→ GCM(22).

Step 2: • Let d ∈ D5, and let N ∈ Z+ be such that Z/NZ ↪→ GCM(10).
Step 2a): Suppose N is not divisible by 11, 25 or 31.

◦ Suppose 7 | N . If 72 | N , then the first factor of d is divisible by φ(49)
m = 42

m for some m ∈ {2, 4, 6}
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hence is divisible by 7, contradicting the definition of D5. By Theorem 2.6, since d is divisible by
neither 3 nor 4, N is not divisible by 14, 21 or 35. So N = 7 and Z/NZ ↪→ GCM(10).
◦ Suppose 7 ∤ N and 5 | N . Theorem 2.6 implies that N is not divisible by 15 or by 20. So
N ∈ {5, 10} and Z/NZ ↪→ GCM(10).
◦ Suppose 7 ∤ N , 5 ∤ N and 3 | N . Theorem 2.6 implies that N is not divisible by 9 or by 12. So
N ∈ {3, 6} and Z/NZ ↪→ GCM(10).
◦ Suppose 7 ∤ N , 5 ∤ N , 3 ∤ N and 2 | N . Theorem 2.6 implies that N is not divisible by 8, so
N ∈ {2, 4} and Z/NZ ↪→ GCM(10).
Step 2b): Suppose 11 | N and write N = 11a for a ∈ Z+. If 11 | a then the first factor of d would
be divisible by 11, which is not the case. If 4 | a, then the first factor of d would be divisible by
φ(44)

2 = 20. If a is divisible by an odd prime ℓ, then the first factor of d and the complementary
factor of d would both be even, so 4 | d. So N ∈ {11, 22} and Z/NZ ↪→ GCM(10).

Step 2c): Suppose 25 | N . If 125 | N , then the first factor of d would be divisible by φ(125)
4 hence by

25, contradicting the definition of D5. If N is divisible either by 100 or by 25ℓ for a prime ℓ /∈ {2, 5},
then the first factor and the complementary factor of d are both even so 4 | d. Thus N = 25 or 50
and Z/NZ ↪→ GCM(10).
Step 2d): Suppose 31 | N . If 312 | N , then the first factor of d would be divisible by 31, which
is not the case. If N is divisible by 31ℓ for some prime ℓ /∈ {2, 31}, then the first factor and the
complementary factor of d are both even so 4 | d. Thus N = 31 and Z/NZ ↪→ GCM(10).

• Let d ∈ D7, and let N ∈ Z+ be such that Z/NZ ↪→ GCM(14).
Step 2a): Suppose N is not divisible by 29, 43 or 49. Identical arguments to the those made above
show that N ∈ {1, 2, 3, 4, 5, 6, 7, 10}, so Z/NZ ↪→ GCM(14).
Step 2b): Suppose 29 | N and write N = 29a. If 29 | a then 29 | d, which is not the case. If 4 | a
then the first factor of d would be divisible by φ(4·29)

2 = 28. If a is divisible by a prime ℓ /∈ {2, 29},
then as above 4 | d. Thus N ∈ {29, 58} and Z/NZ ↪→ GCM(14).
Step 2c): Suppose 43 | N and write N = 43a for a ∈ Z+. If 43 | a then 43 | d, which is not the

case. If 2 | a then 2 · 43 | N and the first factor of d is divisible by φ(2·43)
2 = 21. If a is divisible by

a prime ℓ /∈ {2, 43}, then both the first factor of d and the complementary factor are even, so 4 | d.
Thus N = 43 and Z/NZ ↪→ GCM(14).
Step 2d): Suppose 49 | N and write N = 49a for a ∈ Z+. If 7 | a then 72 | d, which is not the case.

If 2 | a then the first factor of d is divisible by φ(98)
2 = 42. If for a prime ℓ /∈ {2, 7} we have that

7 | a then as above 4 | d.

• Let d ∈ D11, and let N ∈ Z+ be such that Z/NZ ↪→ GCM(22).
Step 2a): Suppose N is not divisible by 23 or 67. Identical arguments to those made above show
that N ∈ {1, 2, 3, 4, 5, 6, 7, 10}, so Z/NZ ↪→ GCM(22).
Step 2b): Suppose 23 | N and write N = 23a for a ∈ Z+. If 23 | a, then 23 | d, which is not the

case. If 4 | a, then the first factor of d is φ(4·23)
2 = 22 and the complementary factor is even, so

4 | d. If ℓ | a for some prime ℓ /∈ {2, 23}, then the first factor and the complementary factor of d
are both even, so 4 | d. So N ∈ {23, 46} and Z/NZ ↪→ GCM(22).
Step 3b): Suppose 67 | a and write N = 67a for a ∈ Z+. If 67 | a then 67 | d which is not the case.

If 2 | a then the first factor of d is φ(2·67)
2 = 33. If ℓ | a for some prime ℓ /∈ {2, 67}, then the first fac-

tor and the complementary factor of d are both even, so 4 | d. Thus N = 67 and Z/NZ ↪→ GCM(22).
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Step 3: • Let d ∈ D5, let M,N ∈ Z+ with M ≥ 2 and M | N , and suppose Z/MZ × Z/NZ ↪→
GCM(d), so by Step 2 we have N ∈ {1, 2, 3, 4, 6, 7, 10, 11, 22, 31, 50}.
• If N ≤ 10, then Corollary 2.12 shows Z/MZ× Z/NZ ↪→ GCM(2) ⊆ GCM(10).
◦ By Proposition 2.8, if 5 | M then 4 | d, and if 31 | M then 3 | d.
◦ Suppose 11 | M , so Z/11Z× Z/11Z ↪→ GCM(d). Theorem 2.11b) implies that d is divisible by 4
or 11, a contradiction either way.
◦ Now let us address the cases of N ≥ 11. If N = 11 then as just seen, we cannot have M = 11.
Similarly, if N = 22, we cannot have M = 11, while we have Z/2Z×Z/22Z ∈ GCM(10). If N = 31
then we cannot have M = 31 as above. If N = 50 then as above we cannot have 5 | N , while by
Proposition 2.10 we cannot have 2 | N . Thus in all cases we find that Z/MZ× Z/NZ ↪→ GCM(d)
implies Z/MZ× Z/NZ ↪→ GCM(10), completing the proof of Theorem 4.1a).

• Let d ∈ D7, let M,N ∈ Z+ with M ≥ 2 and M | N , and suppose Z/MZ× Z/NZ ↪→ GCM(d), so
by Step 2 we have N ∈ {1, 2, 3, 4, 5, 6, 7, 10, 29, 43, 49, 58}.
◦ The case of N ≤ 10 is again handled by Corollary 2.12.
◦ If N ∈ {29, 43} then M = N and Proposition 2.8 shows that d is divisible by φ(29) = 28
or by φ(43) = 42. If N = 49, then 7 | M so Z/7Z × Z/7Z ↪→ GCM(d), and Proposition 2.8
shows φ(7) = 6 | d. If N = 58 then 29 | M , so Z/29Z × Z/29Z ↪→ GCM(d), and Proposition
2.8 shows φ(29) = 28 | d. Thus in all cases we find that Z/MZ × Z/NZ ↪→ GCM(d) implies
Z/MZ× Z/NZ ↪→ GCM(14), completing the proof of Theorem 4.2a).

• Let d ∈ D11, let M,N ∈ Z+ with M ≥ 2 and M | N , and suppose Z/MZ×Z/NZ ↪→ GCM(d), so
by Step 2 we have N ∈ {1, 2, 3, 4, 5, 6, 7, 10, 23, 46, 67}.
◦ The case of N ≤ 10 is again handled by Corollary 2.12.
◦ If N = 23 then M = 23, and Theorem 2.11b) implies that d is divisible by 4 or by 23, which is
not the case. Similarly, if N = 67 then M = 67 and Theorem 2.11b) implies that d is divisible by
4 or by 67, which is no the case. Thus in all cases we find that Z/MZ× Z/NZ ↪→ GCM(d) implies
Z/MZ× Z/NZ ↪→ GCM(22), completing the proof of Theorem 4.3a).

4.3. Proof of Theorems 4.1b), 4.2b) and 4.3b). For an even positive integer d0, recall that
Sd0

denotes the set of positive integers having the same shifted prime divisors as does d0: for all
primes ℓ, we have ℓ−1 | d0 ⇐⇒ ℓ−1 | d and that by Theorem 3.2, the set Sd0 has positive density.

Let n be a positive integer such that gcd(6, n) = 1, and consider the set S72n. Since 73 is prime
and 73− 1 = 72 | 72n, every d ∈ S72n is a multiple of 72 = 23 · 32. Thus

Dn :=
1

36
S72n

is a subset of 2Z+ of positive density. We claim: for n ∈ {5, 7, 11}, the set Dn is the set Dn defined
in the statements of Theorems 4.1, 4.2 and 4.3. This will prove Theorems 4.1b), 4.2b) and 4.3b).

For d ∈ Z+, condition (ii) of Theorem 4.1 is that 36d has the same shifted prime divisors as
does 72 · 5, so this condition means d ∈ Dn and thus Dn ⊆ Dn. Conversely, we will show that
every d ∈ Dn satisfies the divisibilities and nondivisibilities asserted in condition (i) of Theorem
4.1, so Dn = Dn. Similarly, condition (ii) of Theorem 4.1 is that 36d has the same shifted prime
divisors as does 72 · 7 and condition Theorem 4.3 is that 36d has the same shifted prime divisors
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as does 72 · 11, and again we will show that the divisibilities and nondivisibilities asserted in con-
dition (i) of Theorem 4.2 (resp. Theorem 4.3) are satisfied by every d ∈ D7 (resp. by every d ∈ D11).

(The last paragraph of the proof is not fun to read, but there is a point: our present approach
involves some checking with specific prime numbers. This serves to motivate the first result of the
next section, Theorem 5.1, which renders such numerics unnecessary at the cost of making the
positive density subset of [d0]S less explicit. Of course, for any one – or any three! – d0 one can
enlist a computer to confirm that the needed primes exist, and the reader may prefer doing so.)

Since 17 is prime and 17− 1 = 24 ∤ 72n, no element of Dn is divisible by 4. Since 109 is prime and
109− 1 = 22 · 33 ∤ 72n, no element of S72 is divisible by 23 · 33, so no element of Dn is divisible by 3.
If 5 ∤ n, then since 11 is prime and 11− 1 = 2 · 5 ∤ 72n, no element of Dn is divisible by 5. If 7 ∤ n,
then since 29 is prime and 29− 1 = 22 · 7 ∤ 72n, no element of Dn is divisible by 7. If 11 ∤ n, then
since 23 is prime and 23− 1 = 2 · 11 ∤ 72, no element of Dn is divisible by 11. If 23 ∤ n, then since
139 is prime and 139− 1 = 2 · 3 · 23 ∤ 72n, no element of Dn is divisible by 23. If 52 ∤ n, then since
101 is prime and 101 − 1 = 22 · 52 ∤ 72n, no element of Dn is divisible by 25. If 29 ∤ n, then since
59 is prime and 59− 1 = 2 · 29 ∤ 72m, no element of Dn is divisible by 29. If 31 ∤ n, then since 373
is prime and 373− 1 = 22 · 3 · 31 ∤ 72n, no element of Dn is divisible by 31. If 43 ∤ n, then since 173
is prime and 173− 1− 22 · 43 ∤ 72n, no element of Dn is divisible by 43. If 72 ∤ n, then since 197 is
prime and 197 − 1 = 22 · 72 ∤ 72n, no element of Dn is divisible by 49. If 67 ∤ d, then since 269 is
prime and 269− 1 = 22 · 67 ∤ 72n, no element of Dn is divisible by 67.

5. On [d0]S when d0 is odd or d0 = 2p

Now we turn to proving results of the form that [d0]S has positive density for d0 lying in a certain
infinite set of positive integers. For this, there is one aspect of our method that needs to be changed.
Previously, for a fixed and rather small n ∈ Z+, in order to establish various statements of the form
“No element of 1

36S72n is divisible by m,” we found some positive integer c | 36 and a prime number
ℓ such that ℓ − 1 ∤ 72n and ℓ − 1 = cm. This worked because since n was rather small, so was m,
and small numbers are much more likely to be prime. However, the density of m ∈ Z+ such that
cm + 1 is prime for some c | 36 is 0. So when working with arbitrarily large values of n we need
another ingredient in order to impose nondivisibility conditions on elements of 1

36S72n. Fortunately,
the result we need appears in recent work of Pomerance–Wagstaff [PW23] that we describe next.

5.1. A result of Pomerance–Wagstaff.

Theorem 5.1 (Pomerance–Wagstaff). Let n ∈ Z+ be even, and let R ∈ Z+. Let Mn,R be the set
of positive integers d satisfying all of the following conditions:

(i) d has the same shifted prime divisors as n.
(ii) n | d.
(iii) gcd( dn , R) = 1.

Then the set Mn,R has positive density.

Proof. Condition (iii) is equivalent to requiring that d
n not be divisible by any ℓ lying in a fixed

finite set L of prime numbers. When L = {ℓ}, this is [PW23, Lemma 1]. The proof for any finite
L is identical: instead of applying the main argument of the proof to A := An ∪ {ℓ}, one applies to
it A := An ∪ L. □
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5.2. Positive lower density of [d0]S for all odd d0.

Theorem 5.2. Let d0 ∈ Z+ be odd. Then the set [d0]S of strongly d0-Olson degrees has positive
lower density.

Proof. For a negative integer ∆ ≡ 0, 1 (mod 4), let h∆ denote the class number of the (unique, up
to isomorphism) imaginary quadratic order of dsicriminant ∆. Put

R :=
∏

primes ℓ such that ℓ−1|2d0

ℓ(ℓ− 1)h−ℓ.

Let n ∈ M2d0,R. Then n ≡ 2 (mod 4), so every element d ∈ 1
2M2d0,R is of the form d = ed0

with gcd(e,R) = 1. Let ℓ ≡ 3 (mod 4) be a prime such that h−ℓ
ℓ−1
2 | d = ed0. Then ℓ − 1 is a

shifted prime divisor of 2d hence also a shifted prime divisor of 2d0, so gcd(h−ℓ
ℓ−1
2 , e) = 1 and thus

h−ℓ
ℓ−1
2 | d0. Moreover, for such a prime ℓ we have ordℓ(d0) = ordℓ(d). It follows from [BP17, Thm.

1.2] that for any odd d ∈ Z+, the set GCM(d) depends only on the set of primes ℓ ≡ 3 (mod 4)
such that h−ℓ

ℓ−1
2 | d and the ℓ-adic valuations ordℓ(d) of these primes, and thus:

GCM(d0) = GCM(d).

That is, every d ∈ 1
2M2d0,R is strongly d0-Olson. By Theorem 5.1, this set of strongly d0-Olson

degrees has positive density, so the set of all strongly d0-Olson degrees has positive lower density. □

5.3. Positive lower density of [2p]S when 2p+1 is not prime. Let p be a prime number such
that 2p+ 1 is not prime (as is the case for asymptotically 100% of primes). In this section we will
prove that the set [2p]S of strongly 2p-Olson degrees has positive lower density. The least p for
which 2p+ 1 is not prime is p = 7, is handled by Theorem 4.2, so we may assume that p > 7.

Theorem 5.3. Let p > 7 be a prime number such that 2p + 1 is not prime. Let d0 ∈ Z+ be such
that 2p | d0 and 36d0 has the same shifted prime divisors as does 72p. If 4p + 1 is prime (resp. if
6p+ 1 is prime), we assume that 4p+ 1 ∤ d0 (resp. that 6p+ 1 ∤ d0). Then the set [d0]S of strongly
d0-Olson degrees has positive lower density.

Proof. By Theorem 1.3, we have

GCM(d0) =



{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10} ∪
{Z/2(4p+ 1)Z} if 4p+ 1 is prime ∪
{Z/(6p+ 1)Z} if 6p+ 1 is prime ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3} ∪
{Z/3Z× Z/3Z}

.

In other words GCM(d0)\GCM(2) is contained in {Z/2(4p+1)Z,Z/(6p+1)Z}; the group Z/2(4p+1)Z
actually occurs if and only if 4p+1 is prime and the group Z/(6p+1)Z actually occurs if and only
if 6p+ 1 is prime. Since 73 is prime and 73− 1 = 23 · 32 | 72p, also 72 | 36d0, so d0 is even. Since
17 is prime and 17 − 1 = 24 ∤ 72p, also 24 ∤ 36d0, so d0 ≡ 2 (mod 4). Because 109 is prime and
109− 1 = 22 · 33 ∤ 72p, 3 ∤ d0. Since 31 is prime and 31− 1 = 2 · 3 · 5 ∤ 72p, we have 5 ∤ d0. Because
29 is prime and 29− 1 = 22 · 7, we have 7 ∤ d0.

With notation as in Theorem 5.1, we consider the set

M := M36d0,(4p+1)·(6p+1)
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of multiples of 36d0 such that gcd((4p + 1)(6p + 1), d
d0
) = 1 and 36d has the same shifted prime

divisors as does 36d0. Thus each 36d ∈ M has the same shifted prime divisors as does 72p, so d ≡ 2
(mod 4) and gcd(3 · 5 · 7, d) = 1. We put

D :=
1

36
M,

so by Theorem 5.1 the set D has positive density. We claim that for all d ∈ D we have GCM(d) =
GCM(2p), which will complete the proof.
Step 0: Let d ∈ D, so 2p | d0 | d. Since d ≡ 2 (mod 4), Corollary 2.3 now implies that neither
Z/5Z nor Z/(4p+1)Z is an element of GCM(d). So, as usual, it suffices to show that for d ∈ D and
positive integers M | N , if Z/MZ× Z/NZ ↪→ GCM(d), then Z/MZ× Z/NZ ∈ GCM(2p).
Step 1: Let ℓ > 7 be a prime number such that Z/ℓZ ↪→ GCM(d). Then ℓ− 1 | 36d, so ℓ− 1 | 72p
and thus – using here that 2p+ 1 is not prime – we get ℓ ∈ Pp, where:

(5) Pp := {13, 37, 73, 4p+ 1, 6p+ 1, 8p+ 1, 12p+ 1, 18p+ 1, 24p+ 1, 36p+ 1, 72p+ 1}.

Proposition 2.2 now implies that ℓ ∈ {4p+ 1, 6p+ 1}.

Step 2: Let d ∈ D and let N ∈ Z+ be such that Z/NZ ↪→ GCM(d).
Step 2a): Suppose N is not divisible by any prime ℓ > 7. As we’ve now seen several times, since
gcd(3 · 5 · 7, d) = 1, it follows that N ∈ {1, 2, 3, 4, 6, 7, 10} so Z/NZ ↪→ GCM(2p).
Step 2b): Suppose 4p+ 1 is prime and N is divisible by 4p+ 1. If N is divisible by (4p+ 1)2, then
d would be divisible by 4p + 1. But our assumptions rule this out 4p + 1 divides neither d0 nor
d
d0
. If N is divisible by 4(4p + 1), then since 4(4p + 1) is not of Type II, the first factor of d is

divisible by φ(4(4p+1))
2 = 4p. If N is divisible by ℓ(4p+ 1) for some prime ℓ /∈ {2, 4p+ 1} then the

first factor and the complementary factor of d are both even, so 4 | d. Thus N ∈ {4p+1, 2(4p+1)}
and Z/NZ ↪→ GCM(2p).
Step 2c): Suppose 6p+1 is prime and N is divisible by 6p+1. For the same reasons as in Step 3b),
N is not divisble by (6p+1)2. If N is divisible by 2(6p+1), then since 2(6p+1) is neither of Type I

nor Type II, we have 3 | φ(2(6p+1))
2 | d. If N is divisible by ℓ(6p+1) for some prime ℓ /∈ {2, 6p+1},

then as above we get 4 | d.

Step 3: Let d ∈ D, let M,N ∈ Z+ with M ≥ 2 and M | N , and suppose Z/MZ×Z/NZ ↪→ GCM(d),
so by Step 2 we have N ∈ {1, 2, 3, 4, 6, 7, 10, 4p + 1, 2(4p + 1), 6p + 1}. As above, if N ≤ 10, then
Z/MZ×Z/NZ ↪→ GCM(2) ⊆ GCM(2p). If N = 4p+1 then 4p+1 is prime; if so, then M = 4p+1
and Proposition 2.8 implies that 4p = φ(4p + 1) | d. The case N = 2(4p + 1) can only occur if
4p+ 1 is prime; the previous sentence rules out the case 4p+ 1 | M and Proposition 2.10 rules out
M = 2. If N = 6p+1 then 6p+1 is prime; if so, then M = 6p+1 and Proposition 2.8 implies that
6p = φ(6p+ 1) | d. Thus Z/MZ× Z/NZ ↪→ GCM(2p), completing the proof. □

Regarding the somewhat complicated hypothesis of Theorem 5.3: first of all, we may certainly take
d0 = 2p, which together with Theorem 4.2 yields the aforementioned result:

Corollary 5.4. Let p be a prime number such that 2p + 1 is not prime. Then the set [2p]S of
strongly 2p-Olson degrees has positive lower density.

The point though is that by Theorem 5.1, for each prime p > 7 such that 2p + 1 is prime, the set
of positive integers d0 that satisfy the hypotheses of Theorem 5.3 has positive density. Thus even
applying Theorem 5.3 with p = 13, for instance, we get:
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Corollary 5.5. Let E be the set of even positive integers d0 such that [d0]S has positive lower
density. Then E itself has positive lower density.

5.4. Analysis of [2p]S for p > 2 such that 2p + 1 is prime. We now consider the set [2p]S of
strongly 2p-Olson degrees for a prime p such that 2p + 1 is also prime. Actually we only consider
the case p > 2: the case of p = 2 involves a discussion of GCM(d) when d is divisible by 4, in which
many of the tools we’ve developed here do not apply. As mentioned above, we will consider p = 3,
but let us save it until the end.

Let p > 3 be a prime such that 2p+ 1 is also prime. Let d0 ∈ Z+ satisfy:
• 2p | d0;
• 36d0 has the same shifted prime divisors as does 72p; and
• gcd((2p+ 1), (4p+ 1)(6p+ 1), d0) = 1.

Put
M := M36d0,(2p+1)(4p+1)(6p+1),

and put

D :=
1

36
M.

This is very similar to the setting of the proof of Theorem 5.3; the main change is that now, if d ∈ D
and ℓ > 7 is a prime such that Z/ℓZ ↪→ GCM(d), then with Pp as in (5) we find that ℓ ∈ Pp∪{2p+1}.
Let us see for which additional positive integers M | N this allows Z/MZ× Z/NZ ↪→ GCM(d):

• Suppose 2p+ 1 | N . If (2p+ 1)2 | N , then 2p+ 1 | d, which is not the case. If 4(2p+ 1) | N , then
the first factor and complementary factors of d are even, so 4 | d. If for a prime ℓ /∈ {2, 2p+ 1} we
have ℓ(2p+ 1) | N , then as above we get 4 | d. So N ∈ {2p+ 1, 2(2p+ 1)}.

• Let d ∈ D, let M,N ∈ Z+ with M ≥ 2 and M | N , and suppose Z/MZ × Z/NZ ↪→ GCM(d).
If N = 2p + 1 then M = 2p + 1 and Theorem 2.11b) implies that d is divisible either by 4 or by
2p + 1. It follows that if N = 4(2p + 1) then M cannot be divisible by 2p + 1. It follows that
GCM(d) ⊆ T (p), where

T (p) :=



{Z/NZ | N = 1, 2, 3, 4, 6, 7, 10} ∪
{Z/2Z× Z/2nZ | n = 1, 2, 3} ∪
{Z/3Z× Z/3Z} ∪
{Z/2(4p+ 1)Z} if 4p+ 1 is prime ∪
{Z/(6p+ 1)Z} if 6p+ 1 is prime ∪
{Z/(2p+ 1)Z,Z/2(2p+ 1)Z,Z/2Z× Z/2(2p+ 1)Z.}

.

Now we compare to GCM(d0) = GCM(2p). By Theorem 1.3, we find that T (p) = GCM(2p)

if and only if p ≡ 4, 5 (mod 7) (equivalently,
(

−7
2p+1

)
= 1) and

(
∆

2p+1

)
= 1 for some ∆ ∈

{−11,−19,−43,−67,−163}. Thus we have proved:

Theorem 5.6. Let p > 7 be a prime number such that 2p + 1 is prime, p ≡ 4, 5 (mod 7) and(
∆

2p+1

)
= 1 for some ∆ ∈ {−11,−19,−43,−67,−163}. Let d0 ∈ Z+ be such that 2p | d0, gcd((2p+

1)(4p+ 1)(6p+ 1), d0) = 1 and 36d0 has the same shifted prime divisors as does 72p. Then the set
[d0]S of strongly d0-Olson degrees has positive lower density.
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Because 11 ≡ 4 (mod 7) and
(−11

23

)
= 1, Theorem 5.6 implies that [22]S has positive lower density,

as already follows from Theorem 4.2. However Theorem 4.2 produces a more explicit positive den-
sity subset D11 of [22]S .

The least prime p > 3 to which neither Corollary 5.4 nor Theorem 5.6 applies is p = 23. In
this case, because

(−11
47

)
= 1, by [BC23, Thm. 1.2] we have Z/47Z ∈ GCM(46). However, because(

−3

47

)
=

(
−4

47

)
=

(
−7

47

)
=

(
−8

47

)
= −1,

by [BC23, Thm. 1.2], neither Z/(2 · 47)Z nor Z/2Z× Z/(2 · 47)Z lies in GCM(46). This turns out
to not only to be an obstruction to our method of proving that [46]S has positive lower density:
in fact, it casts serious doubt on whether [46]S is even infinite, as we will now explain. Let K
be an imaginary quadratic field with fundamental discriminant ∆K ≡ 1 (mod 8) and such that(
∆K

47

)
= 1. Then 2 splits in K, so the 2-ray class field K(2) of K and the Hilbert class field K(1)

of K coincide. It follows (already from the classical Main Theorem of Complex Multiplication)
that if E/K(1) is any ∆K-CM elliptic curve, then Z/2Z × Z/2Z ↪→ E(K(1)). Moreover, since 47

splits in K, there is an invertible ideal I in ZK of norm 47, so that E[I] is a cyclic K(1)-rational
subgroup scheme of E [BC20a, Lemma 2.4] and thus E has a K(1)-rational 47-isogeny. Thus we
have a K(1)-rational ∆-CM point on the modular curve X0(2, 2 ·47). The natural modular covering

π : X1(2, 2 · 47) → X0(2, 2 · 47) of degree φ(47)
2 then shows that there is a closed ∆-CM point on

X1(2, 2 · 47) of degree dividing 2h∆K
· φ(47)

2 = 46h∆K
. (In fact, using [CS, Thm. 0.4.1], one finds

that the residue field of this point has degree precisely 46h∆K
.) We have proved:

Lemma 5.7. For every imaginary quadratic field K with discriminant ∆K such that ∆K ≡ 1
(mod 8) and

(
∆K

47

)
= 1, we have Z/2Z× Z/2 · 47Z ↪→ GCM(46h∆K

). In particular we have

46h∆K
/∈ [46]S .

Because 46 is a minimal degree, every d ∈ Z+ such that d ∼ 46 is a multiple of 46; by Remark 6.1c)
d must be of the form 46D with D odd. The class number hK will be odd if ∆ = −ℓ for a prime
ℓ ≡ 3 (mod 4). Thus for every prime ℓ ≡ 7 (mod 8) such that

(−ℓ
47

)
= 1, the degree 46h−ℓ is not

46-Olson. However, we expect that every sufficiently large odd number D is of the form h−ℓ for a
prime ℓ ≡ 7 (mod 8) such that

(−ℓ
47

)
= 1. If so, [46]∼ is finite.

In the above discussion, it was not crucial that
(−3
47

)
=

(−4
47

)
=

(−8
47

)
= −1; if one of these

symbols had been 1, then we would have Z/2 · 46Z ∈ GCM(46) but still Z/2Z × Z/2 · 46Z would
not embed in GCM(46), so the outcome would have been the same.

Exactly the same arguments establish the following result:

Proposition 5.8. Let p > 3 be a prime such that 2p+1 is prime. Suppose that p ≡ 1, 2, 6 (mod 7).
If d ∼ 2p, then d = 2pD for an odd D ∈ Z+ that is not of the form h−ℓ for any prime ℓ ≡ 7 (mod 8)

such that
(

−ℓ
2p+1

)
= 1.

Again Proposition 5.8 leads us to believe that Conjecture 1.2a) is false for d = 2p and a prime p
satisfying the conditions of Proposition 5.8 and that on the contrary, in this case [2p]∼ is finite.

Suppose that p > 5 is a prime such that 2p + 1 is prime, p ≡ 4, 5 (mod 7) but
(

∆
2p+1

)
= −1
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for all ∆ ∈ {−11,−19,−43,−67,−163}. Then
Z/(2p+ 1)Z /∈ GCM(2p), but Z/2(2p+ 1)Z,Z/Z× Z/2(2p+ 1)Z ∈ GCM(2p).

In this case if ℓ ≡ 3 (mod 4) is a prime such that
(

−ℓ
2p+1

)
= 1, then Z/(2p+ 1)Z ↪→ GCM(2ph−ℓ),

but since also Z/(2p+1)Z ↪→ GCM(2p), this is not enough to conclude that 2ph−ℓ is not a 2p-Olson
degree. For such primes p, our method of proof fails but not in a way that directly points to the
falsity of Conjecture 1.2a) for d = 2p. We leave this case unresolved for now.

Finally, we consider p = 3. From [CCRS14, §4.6] we have that Z/2Z × Z/2 · 9Z does not em-
bed in GCM(6). However, let ℓ ≡ 23 (mod 24) be a prime number, and let K := Q(

√
−ℓ). Then

again K(2) = K(1) and 3 splits in K, so for all a ∈ Z+ there is an invertible ideal I in ZK

such that ZK/I is isomorphic as a Z-module to Z/3aZ. Thus any −ℓ-CM elliptic curve E/K(1) has

Z/2Z×Z/2Z ↪→ E(K(1)) and aK(1)-rational cyclic 3a-isogeny, which yields a−ℓ-CM closed point on

X0(2, 2 ·9) of degree 2h−ℓ and thus a −ℓ-CM closed point on X1(2, 2 ·9) of degree 2h−ℓ · φ(9)
2 = 6h−ℓ.

We have shown:

Proposition 5.9. Let d ∈ Z+. Suppose d ∼ 6. Then d = 6D for an odd D ∈ Z+ that is not of the
form h−ℓ for any prime ℓ ≡ 23 (mod 24).

We find it very plausible that every sufficiently large odd number D is of the form h−ℓ for such a
prime ℓ ≡ 23 (mod 24). In fact, computations suggest that every odd D /∈ {1, 9} is of this form.
By Remark 6.1h), if d ∼ 6 then 9 ∤ d. So it seems likely that [6]∼ is finite, and it may well be the
case that [6]∼ = {6}.

6. Some Complements

6.1. d0-Olson vs. Strongly d0-Olson. We say that d0 ∈ Z+ is minimal if d0 is the least element
of [d0]∼: that is, there is no positive integer d1 < d0 such that GCM(d1) = GCM(d0). If every d0-
Olson degree is a strongly d0-Olson degree, then d0 must be minimal. We do not know whether the
converse is true in general, but in this section we will establish it for certain values of d0. Trivially
this holds for d0 = 1.

For M,N, d0 ∈ Z+, we say that (Z/MZ × Z/NZ, d0) is an S-pair if for all d ∈ Z+, the group
Z/MZ × Z/NZ is an element of GCM(d) if and only if d0 | d. Whenever there is an S-pair with
second coordinate d0, a degree is d0-Olson if and only if it is strongly d0-Olson.

Remark 6.1. For all minimal d0 ≤ 20 we can find an S-pair with second coordinate d0, and thus
for all d0 ≤ 20, we have that [d0]∼ = [d0]S if and only if d0 is minimal. Indeed:

a) By Proposition 2.8 and [CCRS14, §4.2], (Z/3Z× Z/3Z, 2) is an S-pair, so 2-Olson degrees
are strongly 2-Olson. Moreover 1-Olson degrees are odd.

b) By Theorem 2.6b) and [CCRS14, §4.3], (Z/9Z, 3) is an S-pair.
c) By Proposition 2.9a) and [CCRS14, §4.4], (Z/4Z×Z/4Z, 4) is an S-pair. Moreover, if d is

2-Olson, then d ≡ 2 (mod 4).
d) By Proposition 2.6c) and [CCRS14, §4.5], (Z/11Z, 5) is an S-pair.
e) By Proposition 2.6l) and [CCRS14, §4.6], (Z/26Z, 6) is an S-pair.
f) By [BCS17, Thm. 1.4], every prime p ≥ 7 is 1-Olson, hence no such p is minimal.
g) By Proposition 2.6f) and [CCRS14, §4.8], (Z/15Z, 8) is an S-pair.
h) By Proposition 2.6k) and [CCRS14, §4.9], (Z/27Z, 9) is an S-pair.
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i) By Proposition 2.6i) and [CCRS14, §4.10], (Z/50Z, 10) is an S-pair.
j) By Proposition 2.6l) and [CCRS14, §4.12], (Z/2Z× Z/28Z, 12) is an S-pair.
k) By Proposition 2.6n) and [BC23, Thm. 1.2(8)], (Z/58Z, 14) is an S-pair.
l) There is no strong S-pair with second coordinate 15: by [BP17, §7] we have

GCM(15) \ (GCM(3) ∪ GCM(5)) = {Z/22Z},

while by [CCRS14, §4.10] we have Z/22Z ∈ GCM(10). Nevertheless, if for d ∈ Z+ we have
GCM(d) ⊇ GCM(15), then GCM(d) contains both GCM(3) and GCM(5), so by parts b) and
d) we have 15 | d. Thus we find that 15-Olson degrees are strongly 15-Olson.

m) By Corollary 2.6 and Remark 2.7, (Z/24Z, 16) is an S-pair.
n) By Corollary 2.6 and Remark 2.7, (Z/74Z, 18) is an S-pair.
o) By Corollary 2.6 and Remark 2.7, (Z/33Z, 20) is an S-pair.

Theorem 6.2. Let p be a prime number such that 2p is not a 2-Olson degree. Then every 2p-Olson
degree is strongly 2p-Olson.

Proof. By Remark 6.1, for every prime p ≤ 7, every 2p-Olson degree is strongly 2p-Olson, so we
may (and shall) assume that p > 7. By Theorem 1.3b), 2p is not 2-Olson if and only if at least
one of the following occurs: (i) 2p+1 is prime and splits in some imaginary quadratic field of class
number 1 and discriminant ∆ ≤ −7;5 (ii) 4p+ 1 is prime; or (iii) 6p+ 1 is prime.

Let d ∈ Z+ be such that GCM(2p) ⊆ GCM(d). We will show that 2p | d, giving the desired result.
Since GCM(d) ⊇ GCM(2p) ⊇ GCM(2), Remark 6.1a) gives 2 | d. Thus it suffices to show that p | d.
Case 1: Suppose that 2p + 1 is prime and splits in an imaginary quadratic field of class number
1. By [BC23, Thm. 1.2(3), (4),(5)], we have Z/(2p + 1)Z ↪→ GCM(2p), hence by assumption on d
there is a degree d number field F and a CM elliptic curve E/F such that Z/(2p + 1)Z ↪→ E(F ).

Since 2p+ 1 is neither of Type I nor Type II, the first factor of d is divisible by φ(2p+1)
2 = p.

Case 2: Suppose 4p+1 is prime. By [BC23, Thm. 1.2(8)], we have Z/2(4p+1)Z ∈ GCM(2p), hence
there is a degree d number field F and a CM elliptic curve E/F with E(F )[tors] ∼= Z/2(4p + 1)Z.
Since 2(4p+ 1) is not of Type I, the first factor of d is divisible by φ(2(4p+1))

4 = p.
Case 3: Suppose 6p+1 is prime. By [BC23, Thm. 1.2(7)], we have Z/(6p+1)Z ↪→ GCM(2p), hence
there is a degree d number field F and a CM elliptic curve E/F with E(F )[tors] ∼= Z/(6p + 1)Z.
Since 6p+ 1 is not of Type II, the first factor of d is divisible by φ(6p+1)

6 = p. □

Theorem 6.3. If d0 ∈ Z+ is minimal and odd, then every d0-Olson degree is strongly d0-Olson.

Proof. Let us call a group Z/MZ×Z/NZ odd if there is some odd d ∈ Z+ such that G ∈ GCM(d).
Work of Aoki [Ao95], [Ao06] and Bourdon–Clark–Stankewicz [BCS17, Thm. 5.3] determines which
groups Z/MZ × Z/NZ are odd. Moreover, by [BP17, Thm. 1.2], for each odd Z/MZ × Z/NZ, if
d0(M,N) is the least odd degree d such that Z/MZ×Z/NZ ∈ GCM(d), then every odd d such that
Z/MZ × Z/NZ ∈ GCM(d) is a multiple of d0(M,N). Thus for any odd d, GCM(d) is determined
as the set of odd groups Z/MZ × Z/NZ such that d0(M,N) | d. From this it follows that if d0 is
odd and minimal and d is odd, then GCM(d0) ⊆ GCM(d) if and only if d0 | d. □

5In fact this restriction on ∆, while present in Theorem 1.3b), is not necessary: since p > 3 and p and 2p+ 1 are
both primes, 2p+ 1 cannot split in either Q(

√
−3) or Q(

√
−4).
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6.2. Proof of Proposition 1.9.
a) First let d0 = 2, and suppose that d ∈ [d0]∼, i.e., d is a strongly 2-Olson degree. By Remark
6.1, we have d ≡ 2 (mod 4). Because Z/6Z × Z/6Z ∈ GCM(6) \ GCM(2) [CCRS14, §4.6], we have
3 ∤ d. Because Z/22Z ∈ GCM(10) \ GCM(2) [CCRS14, §4.10], we have 5 ∤ d. Fix a positive integer
X. Using the aforementioned facts and Theorem 1.3, there is an obvious algorithm to compute the
set S(X) (resp., the set T (X)) of primes p ≤ X such that d = 2p is 2-Olson (resp., is not 2-Olson).
If d is 2-Olson, then d ≡ 2 (mod 4) and gcd(d, p) = 1 for all p ∈ T (X), so

δ([2]∼) ≤
φ(

∏
p∈T (X) p)

4
∏

p∈T (X)

.

Taking X := 2 · 107 gives the upper bound of Proposition 1.9a).
Now let p0 ∈ {5, 7, 11}, put d0 := 2p0 and and let d ∈ [d0]∼, i.e., d is a strongly 2p0-Olson degree.
The argument here is almost identical to that above: indeed, the only difference is that the condition
gcd(d, p0) = 1 that we got for d0 = 2 is replaced by the condition that p0 | d. (By comparing the
sets GCM(2p) and GCM(2p0), we check that for all other primes p > 3, if GCM(2p) ⊋ GCM(2) then
also GCM(2p) is not contained in GCM(2p0).) Thus the upper bound we get on δ([2p0]∼) is 1

p0−1

times the upper bound we got on δ([2]∼), up to rounding up in order to get an inequality.
b) We find that

S(500) = {19, 31, 59, 71, 109, 149, 157, 167, 197,

211, 223, 227, 229, 317, 337, 349, 353, 379, 383, 389, 401, 421, 439, 463, 479}.
Let d ≤ 1000 with d ≡ 2 (mod 4). If p ∈ S(500), then 2p is 2-Olson, while if d is divisible by any
element of T (500) then d is not 2-Olson. The only d that does not satisfy either of these conditions
is d = 722 = 2 · 192. The set of primes ℓ such that ℓ − 1 | 722 is {2, 3, 5, 13, 229, 457}. Because of
the presence of 229 and 457, we have 722 /∈ D. However the proof of Theorem 1.4a) will still work
to show that 722 ∈ [2]∼ as long as we can show that neither Z/229Z nor Z/457Z can embed in
E(F ) for a ∆-CM elliptic curve E defined over a number field F of degree d = 722. Each of these
subgroups is ruled out by Proposition 2.2e).
c) Let d ∈ Z+. By part a), in order for d ∼ 10 we need 10 | d, 4 ∤ d and p ∤ d for all primes p /∈ {2, 5}
such that [2p] is not 2-Olson. We also need 25 ∤ d: by [Sgit] we have Z/101Z ↪→ GCM(50), while
Z/101Z does not embed in GCM(10). Further we need 31 ∤ d: otherwise 310 | d and by [Sgit] we
have Z/311Z ↪→ GCM(310) ⊆ GCM(d), while Z/311Z does not embed in GCM(10). Let us call the
necessary conditions we have imposed on d thus far the non/divisibility conditions.

For each d ≤ 2000 satisfying the non/divisibility conditions, we compute the shifted prime
divisors ℓ− 1 of 2d and 3d. If every such ℓ lies in {2, 3, 7, 11, 31}, then Theorem 2.4 shows that for
all primes ℓ, we have

Z/ℓZ ↪→ GCM(d) =⇒ Z/ℓZ ↪→ GCM(10),

and then the proof of Theorem 4.1 applies to show that d ∼ 10. In this we way find that 1490 and
1970 lie in [10]∼ = [10]S . Every other d ≤ 2000 that satisfies the non/divisibility conditions, one of
2d and 3d has at least one shifted prime divisor ℓ−1 for ℓ /∈ {2, 3, 7, 11, 31}. Comparing with [Sgit],
we always at least one such ℓ such that Z/ℓZ ↪→ GCM(d′) for some d′ | d, so d is not 10-Olson.
d), e) The method of proof is identical to that of part c).
f) By Proposition 5.9, if d ∼ 6, then d = 6D for an odd number D that is not the class number of
an imaginary quadratic field Q(

√
−ℓ) for any prime ℓ ≡ 23 (mod 24). By recording class numbers

of imaginary quadratic fields Q(
√
−ℓ) for such primes ℓ ≤ 23 + 24 · 106, we find that for each odd
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D < 7267 except D ∈ {1, 9}, there is such an ℓ such that Q(
√
−ℓ) has class number D. By Remark

6.1h), if d ∼ 6, then 9 ∤ d. So it follows that if d ∼ 6 and d < 7627 · 6 = 45762, then d = 6.
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