
EUCLIDEAN QUADRATIC FORMS AND ADC-FORMS: I

PETE L. CLARK

We denote by N the non-negative integers (including 0).

Throughout R will denote a commutative, unital integral domain and K its fraction
field. We write R• for R \ {0} and ΣR for the set of height one primes of R.

If M and N are monoids (written multiplicatively, with identity element 1), a
monoid homomorphism f : M → N is nondegenerate if f(x) = 1 ⇐⇒ x = 1.

Introduction

The goal of this work is to set up the foundations and begin the systematic arith-
metic study of certain classes of quadratic forms over a fairly general class of integral
domains. Our work here is concentrated around that of two definitions, that of Eu-
clidean form and ADC form.

These definitions have a classical flavor, and various special cases of them can be
found (most often implicitly) in the literature. Our work was particularly motivated
by the similarities between two classical theorems.

Theorem 1. (Aubry, Davenport-Cassels) Let A = (aij) be a symmetric n × n
matrix with coefficients in Z, and let q(x) =

∑
1≤i,j≤n aijxixj be a positive definite

integral quadratic form. Suppose that for all x ∈ Qn, there exists y ∈ Zn such that
q(x − y) < 1. Then if d ∈ Z is such that there exists x ∈ Qn with q(x) = d, there
exists y ∈ Zn such that q(y) = d.

Consider q(x) = x2
1 + x2

2 + x2
3. It satisfies the hypotheses of the theorem: approxi-

mating a vector x ∈ Q3 by a vector y ∈ Z3 of nearest integer entries, we get

(x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2 ≤ 3

4
< 1.

Thus Theorem 1 shows that every integer which is the sum of three rational squares
is also the sum of three integral squares. The Hasse-Minkowski theory makes the
rational representation problem routine: d ∈ Q• is Q-represented by q iff it is R-
represented by q and Qp-represented by q for all primes p. The form q R-represents
the non-negative rational numbers. For odd p, q is smooth over Zp and hence
isotropic: it Qp-represents all rational numbers. Finally, for a ∈ N there are no
primitive Z2-adic representations of 4a · 7, so q does not Q2-adically represent 7,
whereas the other 7 classes in Q×

2 /Q
×2
2 are all Q2-represented by q. We conclude:
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2 PETE L. CLARK

Corollary 2. (Gauss-Legendre Three Squares Theorem) An integer n is a sum of
three integer squares iff n ≥ 0 and n is not of the form 4a(8k + 7).

One may similarly derive Fermat’s Theorem on sums of two integer squares. The
argument does not directly apply to sums of four or more squares since the hypoth-
esis is not satisfied: if qn(x) = x2

1+ . . .+x2
n and we take x = ( 12 , . . . ,

1
2 ), the best we

can do is to take y to have all coordinates either 0 or 1 which gives q(x− y) = n
4 .

1

This proof of Corollary 2 is essentially due to L. Aubry [1], but was long forgot-
ten until it was rediscovered by Davenport and Cassels in the 1960s. They did not
publish their result, but J.-P. Serre included it in his influential text [25], and it is
by now quite widely known.

On the other hand there are the following results.

Theorem 3. (Pfister [23]) Let F be a field, char(F ) ̸= 2, let q(x) be a quadratic
form over F , and view it by base extension as a quadratic form over the polynomial
ring F [t]. Suppose that for d ∈ F [t], there exists x = (x1, . . . , xn) ∈ F (t)n such that
q(x) = d. Then there exists y = (y1, . . . , yn) ∈ F [t]n such that q(y) = d.

Corollary 4. (Cassels [8]) Fix n ∈ Z>0. A polynomial d ∈ F [t] is a sum of squares
of n rational functions iff it is a sum of squares of n polynomials.

Theorems 1 and 3 each concern certain quadratic forms q over a domain R with
fraction field K, and the common conclusion is that for all d ∈ R, q R-represents d
iff it K-represents d. This is a natural and useful property for a quadratic form R
over an integral domain to have, and we call such a form an ADC form.

The relationship between the hypotheses of the Aubry-Davenport-Cassels and Cassels-
Pfister theorems is not as immediate. In the former theorem, the hypothesis on q is
reminiscent of the Euclidean algorithm. To generalize this to quadratic forms over
an arbitrary domain we need some notion of the size of q(x − y). We do this by
introducing the notion of a norm function | · | : R → N on an integral domain.
Then we define an anisotropic quadratic form q(x) = q(x1, . . . , xn) over (R, | · |) to
be Euclidean with respect to the norm if for all x ∈ Kn, there exists y ∈ Rn

such that |q(x − y)| < 1. We justify this notion by carrying over the proof of the
Aubry-Davenport-Cassels theorem to this context: we show that for any normed
ring (R, | · |), a Euclidean quadratic form q/R is an ADC form. This suggests a
strategy of proof of the Cassels-Pfister theorem: first, find a natural norm on the
domain R = F [t], and second show that any “constant” quadratic form over R is
Euclidean with respect to this norm. This strategy is carried out in Section 2.5; in
fact we get a somewhat more general (but still known) result.

After establishing that every Euclidean form is an ADC form, a natural followup
is to identify all Euclidean forms and ADC forms over normed rings of arithmetic
interest, especially complete discrete valuation rings (CDVRs) and Hasse domains:
i.e., S-integer rings in global fields. This is a substantial project that is begun but
not completed here. In fact much of this paper is foundational: we do enough work
to convince the reader (or so I hope) that Euclidean and ADC forms lead not just

1On the other hand, one can easily deduce Lagrange’s Four Squares Theorem from the Three
Squares Theorem and Euler’s Four Squares Identity.
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to a generalization of parts of the arithmetic theory of quadratic forms to a larger
class of rings, but that these notions are interesting and useful even (especially?)
when applied to the most classical cases.

The structure of the paper is as follows: §1 lays some groundwork regarding normed
domains. This is a topic lying at the border of commutative algebra and number
theory, and it is not really novel: it occurs for instance in [19] (a work with profound
connections to the present subject – so much so that we have chosen to leave them
to a future paper), not to mention the expository work [11] in which the theory
of factorization in integral domains is “remade” with norm functions playing an
appropiately large role. But to the best of my knowledge this theory has never
been given a systematic exposition. This includes the present work: we began with
a significantly longer treatment and pared it down to include only those results
which actually get applied to the arithmetic of quadratic forms. (In particular,
in an effort to convince the reader that we are doing number theory and not just
commutative algebra, we have excised all references to Krull domains, which in
fact provide a natural interpolation between UFDs and Dedekind domains.) §2
introduces Euclidean quadratic forms and ADC forms and proves the main theo-
rem advertised above: that Euclidean implies ADC. In §3 we prove some results
on the effect of localization and completion on Euclideanness and the ADC prop-
erty. These results may not seem very exciting, but the relative straightforwardness
of the proofs is a dividend paid by our foundational results on normed domains.
Moreover, they are absolutely crucial in §4 of the paper, where we completely dis-
pose of Euclidean forms over a CDVR and then move to an analysis of Euclidean
and ADC forms over Hasse domains and in particular over Z and F[t]. The reader
who skips lightly through the rest to get to this material will be forgiven in advance.

Acknowlegements: It is a pleasure to thank F. Lemmermeyer, J.P. Hanke, D.
Krashen and W.C. Jagy, who each contributed valuable insights.

1. Normed Rings

1.1. Elementwise Norms.

A norm on a ring R is a function | · | : R → N such that
(N0) |x| = 0 ⇐⇒ x = 0,
(N1) ∀x, y ∈ R, |xy| = |x||y|, and
(N2) ∀x ∈ R, |x| = 1 ⇐⇒ x ∈ R×.

A normed ring is a pair (R, | · |) where | · | is a norm on R. A ring admit-
ting a norm is necessarily an integral domain. We denote the fraction field by K.

Let R be a domain with fraction field K. We say that two norms | · |1, ·| · |2
on R are equivalent – and write | · |1 ∼ |·|2 if for all x ∈ K, |x|1 < 1 ⇐⇒ |x|2 < 1.

Remark: Let (R, | · |) be a normed domain with fraction field K. By (N1) and
(N2), | · | : (R•, ·) → (Z+, ·) is a homomorphism of commutative monoids. It
therefore extends uniquely to a homomorphism on the group completions, i.e.,
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| · | : K× → Q>0 via |xy | =
|x|
|y| . This map factors through the group of divisi-

bility G(R) = K×/R× to give a map K×/R× → Q>0, which need not be injective.

Example 1.1: The usual absolute value | · |∞ on Z (inherited from R) is a norm.

Example 1.2: Let k be a field, R = k[t], and let a ≥ 2 be an integer. Then
the map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | · |a on R and the norms
obtained for various choices of a are equivalent. As we shall see, when k is finite,
the most natural normalization is a = #k. Otherwise, we may as well take a = 2.

Example 1.3: Let R be a discrete valuation ring (DVR) with valuation v : K× → Z
and residue field k. For any integer a ≥ 2, we may define a norm on R, | · |a : R• →
Z>0 by x 7→ av(x). (Note that these are the reciprocals of the norms x 7→ a−v(x)

attached to R in valuation theory.) Using the fact that G(R) = K×/R× ∼= (Z,+)
one sees that these are all the norms on R. That is, a DVR admits a unique norm
up to equivalence.

Example 1.4: Let R be a UFD. Then Prin(R) is a free commutative monoid on the
set ΣR of height one primes of R [4, VII.3.2]. Thus, to give a norm map on R it is
necessary and sufficient to map each prime element π to an integer nπ ≥ 2 in such
a way that if (π) = (π′), nπ = nπ′ .

1.2. Ideal norms.

For a domain R, let I+(R) be the monoid of nonzero ideals of R under multiplica-
tion and I(R) be the monoid of nonzero fractional R-ideals under multiplication.

An ideal norm on R is a nondegenerate homomorphism of monoids | · | : I+(R) →
(Z>0, ·). We extend the norm to the zero ideal by putting |(0)| = 0. In plainer
language, to each nonzero ideal I we assign a positive integer |I|, such that |I| =
1 ⇐⇒ I = R and |IJ | = |I||J | for all ideals I and J .

1.3. Finite Quotient Domains.

A commutative ring R has the property of finite quotients (FQ) if for all nonzero
ideals I of R, the ring R/I is finite [6], [10], [20].

Obviously any finite ring satisfies (FQ). On the other hand, it can be shown that
any infinite ring satisfying property (FQ) is necessarily a domain. We define an
finite quotient domain to be an infinite integral domain satisfying (FQ) which
is not a field. A finite quotient domain is a Noetherian domain of Krull dimension
one, hence it is a Dedekind domain iff it is integrally closed.

Example 1.5: The rings Z and Fp[t] are finite quotient domains. From these many
other examples may be derived using the following result.

Proposition 5. Let R be a finite quotient domain with fraction field K.
a) Let L/K be a finite extension, and let S be a ring with R ⊂ S ⊂ L. Then, if not
a field, S is a finite quotient domain.
b) The integral closure R̃ of R in K is a finite quotient domain.
c) The completion of R at a maximal ideal is a finite quotient domain.
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Proof. Part a) is [20, Thm. 2.3]. In particular, it follows from part a) that R̃ is

a finite quotient domain. That R̃ is a Dedekind ring is part of the Krull-Akizuki
Theorem. Part c) follows immediately from part a) and [10, Cor. 5.3]. �
Let R be a finite quotient domain. For a nonzero ideal I of R, we define |I| = #R/I.
It is natural to ask whether I 7→ |I| gives an ideal norm on R.

Proposition 6. Let I and J be nonzero ideals of the finite quotient domain R.
a) If I and J are comaximal – i.e., I + J = R – then |IJ | = |I||J |.
b) If I is invertible, then |IJ | = |I||J |.
c) The map I 7→ |I| is an ideal norm on R iff R is integrally closed.

Proof. Part a) follows immediately from the Chinese Remainder Theorem. As for
part b), we claim that the norm can be computed locally: for each p ∈ ΣR, let |I|p
be the norm of the ideal IRp in the local finite norm domain Rp. Then

|I| =
∏
p

|I|p.

To see this, let I =
∩n

i=1 qi be a primary decomposition of I, with pi = rad(qi). It
follows that {q1, . . . , qn} is a finite set of pairwise comaximal ideals, so the Chinese
Remainder Theorem applies to give

R/I ∼=
n∏

i=1

R/qi.

Since R/qi is a local ring with maximal ideal corresponding to pi, it follows that
|qi| = |qiRpi |, establishing the claim.
Using the claim reduces us to the local case, so that we may assume the ideal
I = (xR) is principal. In this case the short exact sequence of R-modules

0 → xR

xJ
→ R

xJ
→ R

(x)J
→ 0

together with the isomorphism
R

J

·x→ xR

xJ
does the job.
c) If R is integrally closed (hence Dedekind), every ideal is invertible so this is an
ideal norm. The converse is [6, Thm. 2]. �
In all of our applications, R is either an S-integer ring in a global field or a com-
pletion of such at a height one prime. By the results of this section, the map
I 7→ |I| = #R/I is an ideal norm on these rings. We will call this norm canonical.
We ask the reader to verify that the norm of Example 1.1 is canonical, as are the
norms | · |#k of Examples 1.2 and 1.3 when the field k is finite.

1.4. Euclidean norms.

A norm | · | on R is Euclidean if for all x ∈ K, there is y ∈ R such that |x−y| < 1.
Whether R is Euclidean for | · | depends only on the equivalence class of the norm.

Example 1.6: The norm | · |∞ on Z is Euclidean. The norms | · |a on k[t] are
Euclidean. For a DVR, the norms | · |a (c.f. Example 4) are Euclidean: indeed, for
x ∈ K•, x ∈ K \R ⇐⇒ v(x) < 0 ⇐⇒ |x|a = av(x) < 1, so we may take y = 0. In
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a similar way, to any semilocal PID R one can attach a natural family of Euclidean
norms (including the canonical norm if R is a finite quotient domain).

Example 1.7: S = ZK is the ring of integers in a number field K. It is a clas-
sical problem to determine whether R is Euclidean for the canonical norm, or
norm-Euclidean. Note that a norm-Euclidean number field has class number
one. Conditional on the Generalized Riemann Hypothesis, it is known that every
number field of class number one except Q = K(

√
−D) for D = 19, 43, 67, 163 is

Euclidean for some non-canonical norm.2 This is to be contrasted with the standard
conjecture that there are infinitely many class number one real quadratic fields and
the fact that there are only finitely many norm-Euclidean real quadratic fields [3].

2. Euclidean quadratic forms and ADC forms

2.1. Euclidean quadratic forms.

Let (R, | · |) be a normed ring of characteristic not 2. A quadratic form over
R is a polynomial q ∈ R[x] = R[x1, . . . , xn] which is homogeneous of degree 2.
Throughout this note we only consider quadratic forms which are non-degenerate
over the fraction field K of R. A nondegenerate quadratic form q/R is isotropic
if there exists a = (a1, . . . , an) ∈ Rn \ {(0, . . . , 0)} such that q(a) = 0; otherwise q
is anisotropic. A form q is anisotropic over R iff it is anisotropic over K. A qua-
dratic form q/R is universal if for all d ∈ R, there exists x ∈ Rn such that q(x) = d.

A quadratic form q on a normed ring (R, | · |) is Euclidean if for all x ∈ Kn \Rn,
there exists y ∈ Rn such 0 < |q(x − y)| < 1. (Again, this definition depends only
on the equivalence class of the norm.)

Remark: An anisotropic quadratic form q is Euclidean iff for all x ∈ Kn there
exists y ∈ Rn such that |q(x− y)| < 1.

Proposition 7. The norm | · | on R is a Euclidean norm iff the quadratic form
q(x) = x2 is a Euclidean quadratic form.

Proof. Noting that q is an anisotropic quadratic form, this comes down to:

∀x, y ∈ K, |x− y| < 1 ⇐⇒ |q(x− y)| = |(x− y)2| = |x− y|2 < 1.

�

Example 2.1: Let n, a1, . . . , an ∈ Z+. Then the integral quadratic form q(x) =
a1x

2
1 + . . .+ anx

2
n is Euclidean iff

∑
i ai < 4.

2.2. Euclideanity. For a quadratic form q over a normed ring (R, |·|) with fraction
field K, define for x ∈ Kn,

E(q, x) = inf
y∈Rn

|q(x− y)|

and
E(q) = sup

x∈Kn

E(q, x).

2In fact the definition of a norm function one finds in the literature is a little weaker than ours,
in that multiplicativity is replaced by the condition |x| ≤ |xy| for all x, y ∈ R•.
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Let us call E(q) the Euclideanity of q. Thus an anisotropic form q is Euclidean
if E(q) < 1 and is not Euclidean when E(q) > 1. The case E(q) = 1 is ambiguous:
the form q is not Euclidean iff the supremum in the definition of E(q) is attained,
i.e., iff there exists x ∈ Kn such that E(q, x) = 1. A non-Euclidean form with
E(q) = 1 will be said to be boundary-Euclidean.

We define the Euclideanity E(R) of R itself to be the Euclideanity of q(x) = x2.

Example 2.2: Take R = Z with its canonical norm and n, a1, . . . , an ∈ Z+, as
in Example 2.1 above. Then

E(a1x
2
1 + . . .+ anx

2
n) =

a1 + . . .+ an
4

.

The forms with E(q) = 1 are boundary-Euclidean.

2.3. ADC-forms.

A quadratic form q(x) = q(x1, . . . , xn) over R is an ADC-form if for all d ∈ R, if
there exists x ∈ Kn such that q(x) = d, then there exists y ∈ Rn such that q(y) = d.

Example 2.3: Any universal quadratic form is an ADC-form. If R = Z and q
is positive definite and positive universal – i.e., represents all positive integers
– then q is an ADC-form. Thus for each n ≥ 5 there are infinitely many positive
definite ADC-forms, e.g. x2

1 + . . .+ x2
n−1 + dx2

n for d ∈ Z+.

Example 2.4: Let R̃ be the integral closure of R in K. Then q(x) = x2 is not

an ADC-form iff there exists a ∈ R̃ \ R such that a2 ∈ R. In particular x2 is an
ADC-form if R is integrally closed.

Example 2.5: Let R be a UFD and a ∈ R•. Then q(x) = ax2 is ADC iff a is
squarefree.

Example 2.6: Suppose R is an algebra over a field k, and let q/k be isotropic.
Then the base extension of q to R is universal. Indeed, since q is isotropic over k,
it contains the hyperbolic plane as a subform. That is, after a k-linear change of
variables, we may assume q = x1x2+q′(x3, . . . , xn), and the conclusion is now clear.

Example 2.7: The isotropic form q(x, y) = x2 − y2 is not an ADC-form over Z:
it is universal over Q but not over Z.

Theorem 8. Let (R, | · |) be a normed ring not of characteristic 2 and q/R a
Euclidean quadratic form. Then q is an ADC form.

Proof. For x, y ∈ Kn, put x · y := 1
2 (q(x+ y)− q(x)− q(y)). Then (x, y) 7→ x · y is

bilinear and x · x = q(x). Note that for x, y ∈ Rn, we need not have x · y ∈ R, but
certainly we have 2(x · y) ∈ R.

Let d ∈ R, and suppose there exists x ∈ Kn such that q(x) = d. Equivalently,
there exists t ∈ R and x′ ∈ Rn such that t2d = x′ · x′. Choose x′ and t such that
|t| is minimal. It is enough to show that |t| = 1, for then by (N1) t ∈ R×.

Seeking a contradiction, we suppose |t| > 1. Then x = x′

t ∈ K \R; applying the



8 PETE L. CLARK

Euclidean hypothesis, there is y ∈ R such that if z = x− y,

0 < |q(z)| < 1.

Now put

a = y · y − d, b = 2dt− 2(x′ · y), T = at+ b, X = ax′ + by.

Then a, b, T ∈ R, and X ∈ Rn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d+ ab(2dt− b) + b2(d+ a)

= d(a2t2 + 2abt+ b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)
= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).

Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �

Remark: This proof is modelled on that of [25, pp. 46-47].

Example 2.8: Let R = Z with its canonical norm, and consider q1(x, y) = x2 + 3y2

and q2(x, y) = 2x2 + 2y2. Both of these forms are non-Euclidean forms with Eu-
clideanity 1, i.e., boundary-Euclidean forms. It happens that q1 is nevertheless an
ADC-form, a fact whose essential content was well known to the great number the-
orists of the 18th century. For instance, one can realize q1 as an index 2-sublattice
of the maximal lattice (see §2.6) q′(x, y) = x2 + xy + y2 which is Euclidean (this
corresponds to the fact that the ring of integers of Q(

√
−3) is a Euclidean domain)

and then reduce the problem of integer representations of q1 to that of integer
representations of q′ with certain parity conditions. But in fact Weil [29, pp. 292-
295] modifies the proof of Aubry’s theorem (i.e., essentially the same argument
used to prove Theorem 8) to show directly that the boundary-Euclidean form q1
is ADC. His argument also works for the boundary-Euclidean forms x2

1 + x2
2 + 2x2

3

and x2
1 + x2

2 + x2
3 + x2

4. However, it does not work for q2: indeed, q2(
1
2 ,

1
2 ) = 1 but

q2 evidently does not Z-represent 1, so q2 is not ADC.
Is there a supplement to Theorem 8 giving necessary and sufficient conditions

for a boundary-Euclidean form to be ADC? We leave this as an open problem.

2.4. The Generalized Cassels-Pfister Theorem.

Lemma 9. Let q be an anisotropic quadratic form over a field k. Then q remains
anisotropic over the rational function field k(t).

Proof. If there exists a nonzero vector x ∈ k(t)n such that q(x) = 0, then (since k[t]
is a UFD) there exists y = (y1, . . . , yn) such that y ∈ Rn, gcd(y1, . . . , yn) = 1 and
q(y) = 0. The polynomials y1, . . . , yn do not all vanish at 0, so (y1(0), . . . , yn(0)) ∈
kn \ (0, . . . , 0) is such that q(y1(0), . . . , yn(0)) = 0, i.e., q is isotropic over k. �

Theorem 10. (Generalized Cassels-Pfister Theorem) Let F be a field of charac-
teristic not 2, R = F [t], and K = F (t). Let q =

∑
i,j aij(t)xixj be a quadratic form

over R. We suppose that either:
(i) q is anisotropic and each aij has degree 0 or 1, or
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(ii) Each aij has degree 0, i.e., q is the extension of a quadratic form over k.
Then q is an ADC form.

Proof. Suppose first that q is isotropic over K and extended from a quadratic form
q over k. By Lemma 9, q/k is isotropic. Then by Example 2.6, q/R is universal.

Now suppose that q is anisotropic over K and that each aij has degree 0 or 1.
By Theorem 8, it suffices to show that as a quadratic form over R = k[t] endowed
with the norm | · | = | · |2 of Example 1.2, q is Euclidean.

Given an element x = ( f1(t)g1(t)
, . . . , fn(t)

gn(t)
) ∈ Kn, by polynomial division we may

write fi
gi

= yi +
ri
gi

with yi, ri ∈ k[t] and deg(ri) < deg(gi). Putting y = (y1, . . . , yn)

and using the non-Archimedean property of | · |, we find

(1) |q(x− y)| = |
∑
i,j

ai,j(
ri
gi
)(
rj
gj

)| ≤
(
max
i,j

|ai,j |
)(

max
i

|ri
gi
|
)2

< 1.

�

Remark: Example 2.5 shows that the conclusion Theorem 10 does not extend to
all forms with maxi,j deg(aij) ≤ 2.

2.5. Maximal Lattices.

When studying quadratic forms over integral domains it is often convenient to
use the terminology of lattices in quadratic spaces. Let R be a domain with frac-
tion field K, let V be a finite-dimensional vector space, and let q : V → K be a
quadratic form. An R-lattice Λ in V is a finitely generated R-submodule of V
such that Λ⊗R K = V . A quadratic R-lattice is an R-lattice Λ in the quadratic
space (V, q) such that q(Λ) ⊂ R.

In particular, if q : Rn → R is a quadratic form, then tensoring from R to K
gives a quadratic form q : Kn → K and taking V = Kn, Λ = Rn gives a quadratic
R-lattice. Conversely, a quadratic lattice Λ in Rn which is free as an R-module
may be identified with a quadratic form over R.

A quadratic R-lattice Λ is said to be maximal if it is not strictly contained in
another quadratic R-lattice.3 If R is Noetherian, then discriminant considerations
show that every quadratic R-lattice is contained in a maximal quadratic R-lattice.

Proposition 11. Let (R, | · |) be a normed ring and q/R a Euclidean quadratic
form. Then the associated quadratic R-lattice Λ = Rn is maximal.

Proof. For if not, there exists a strictly larger quadratic R-lattice Λ′. Choose
x ∈ Λ′\Λ, so x ∈ Kn\Rn. For all y ∈ Λ = Rn, x−y ∈ Λ′, so |q(x−y)| ∈ |R| = N. �

Example 2.9: Let (R, | · |) = (Z, | · |∞), and let a ∈ Z•. Then:
a) The form ax2 is maximal iff it is ADC iff a is squarefree.
b) The form x2 + ay2 is maximal iff a is squarefree and a ≡ 1, 2 (mod 4).

Example 2.9: The form x2
1 + . . .+ x2

n is maximal iff it is Euclidean iff n ≤ 3.

3For the sake of brevity, we will sometimes simply say that the quadratic form q is maximal if
its associated free quadratic lattice is maximal.
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3. Localization and Completion

In this section we show that Euclidean forms and ADC forms behave nicely under
localization and completion, at least if we restrict to domains R for which norm
functions (resp. ideal norm functions) have the simplest structure, namely UFDs
(resp. Dedekind domains).

3.1. Localization and Euclideanity.

Suppose first that (R, | · |) is a normed UFD, and S is a saturated multiplica-
tively closed subset. We shall define a localized norm | · |S on the localization
S−1R. To do so, recall that S−1R is again a UFD and its principal prime ideals
(π) are precisely those for which π ∩ S = ∅. Therefore we may view the monoid
Prin(S−1R) as a submonoid of Prin(R) by taking it to be the direct sum over all
the height one prime ideals (π) of R with (π) ∩ S = ∅: let ι be this embedding
of monoids. We define the localized norm |· |S : Prin(S−1R) → Z+ by |x|S := |ι(x)|.

Remark 3.1: Here are two easy and useful properties of the localized norm:

• Any x ∈ R• may be written as sxx
′ with sx ∈ S and x′ prime to S, and we

have
|x|S = |sxx′|S = |x′|S = |x′|.

• For any x ∈ R•, |x|S ≤ |x|.
Theorem 12. Let (R, | · |) be a UFD with fraction field K, let S ⊂ R• be a
saturated multiplicatively closed subset, and let RS be the localization of R at S.
Let q(x) ∈ R[x] be a quadratic form, and suppose that E ∈ R>0 is a constant such
that for all x ∈ Kn, there exists y ∈ Rn such that |q(x − y)| ≤ E. Then for all
x ∈ Kn, there exists yS ∈ Rn

S such that |q(x− yS)|S ≤ E.

Proof. Let x ∈ Kn. We must find Y ∈ Rn
S such that |q(x − Y )|S ≤ E. Writing

x = a
b with a ∈ Rn and b ∈ R• and clearing denominators, it suffices to find

yS ∈ Rn
S such that

|q(a− byS)|S ≤ E|b|2S .
As above, we may factor b as sbb

′ with sb ∈ S and b′ prime to S, so |b′|S = |b′|.
Applying our hypothesis to the element a

b′ of Kn we may choose y ∈ Rn such that

|q(a− b′y)| ≤ E|b′|2. Now put yS = y
sb
, so

|q(a− byS)|S = |q(a− b′y)|S ≤ |q(a− b′y)| ≤ E|b′|2 = E|b′|2S = E|b|2S .
�

Corollary 13. Retain the notation of Theorem 12 and write qS for q viewed as a
quadratic form on the normed ring (RS , | · |S). Then:
a) E(qS) ≤ E(q).
b) If q is Euclidean, so is qS.

Proof. a) By definition of the Euclideanity, for all ϵ > 0 and all x ∈ Kn, there
exists y ∈ Rn such that |q(x− y)| ≤ E(q) + ϵ. Therefore Theorem 12 applies with
E = E(q) + ϵ to show that for all x ∈ K, there exists yS ∈ RS with |q(x− yS)|S ≤
E(q) + ϵ, i.e., E(qS) ≤ E(q) + ϵ. Since ϵ was arbitrary, we conclude E(qS) ≤ E(q).
b) If in the statement of Theorem 12 we take E = 1 and replace all the inequalities
with strict inequalities, the proof goes through verbatim. �
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The rings of most interest to us are Hasse domains, which of course need not be
UFDs but are always Dedekind domains. Thus it will be useful to have Dedekind
domain analogues of the previous discussion.

Let R be a Dedekind domain endowed with an ideal norm | · |. Let R′ be an over-
ring of R, i.e., a ring intermediate between R and its fraction field K: let ι : R ↪→ S
be the inclusion map. Then the induced map on spectra ι∗ : SpecR′ → SpecR is
also an injection, and S is completely determined by the image W := ι∗(SpecR′).
Namely [18, Cor. 6.12]

R′ = RW :=
∩

p∈W

Rp.

This allows us to identify the monoid I(RW ) of ideals of RW as the free submonoid
of the free monoid I(R) on the subset W of SpecR and thus define an overring

ideal norm | · |W on RW as the composite map I(RW ) → I(R)
|·|→ Z+.

Remark 3.1.2.: As above, we single out the following properties of | · |W :

• Every ideal I ∈ R may be uniquely decomposed as WII
′ where WI is divisi-

ble by the primes of W and I ′ is prime to W , and we have

|I|W = |WII
′|S = |I ′|S = |I ′|.

• For all ideals I, |I|W ≤ |I|.
Theorem 14. Let R be a Dedekind domain with fraction field K, | · | an ideal norm
on R, W ⊂ ΣR and RW =

∩
p∈W Rp the corresponding overring. Let q(x) ∈ R[x] be

a quadratic form, and suppose that E ∈ R>0 is a constant such that for all x ∈ Kn,
there exists y ∈ Rn such that |q(x − y)| ≤ E. Then for all x ∈ Kn, there exists
yW ∈ Rn

W such that |q(x− yW )|W ≤ E.

Proof. The argument is similar to that of Theorem 12. The only point which
requires additional attention is the existence of a decomposition of b ∈ R• as b =
wbb

′ with wb divisible only prime ideals in W and b′ prime to W . But this follows
by weak approximation (or the Chinese Remainder Theorem) applied to the finite
set of prime ideals p ∈ W which appear in the prime factorization of (b). �
Also as before, we deduce the following result.

Corollary 15. Retain the notation of Theorem 14 and write qW for q viewed as a
quadratic form on the ideal normed ring (RW , | · |W ). Then:
a) E(qW ) ≤ E(q).
b) If q is Euclidean, so is qW .

3.2. Localization and Completion of ADC-forms.

Theorem 16. Let R be a domain, S ⊂ R• a saturated multiplicatively closed subset
and RS = S−1R the localized domain. If a quadratic form q(x) ∈ R[x] is ADC,
then q viewed as a quadratic form over RS is ADC.

Proof. Let d ∈ R•
S be K-represented by qS , i.e., there exists x ∈ Kn such that

q(x) = d. We may write d = a
s with s ∈ S. If x = (x1, . . . , xn), then by sx we

mean (sx1, . . . , sxn). Thus q(sx) = s2q(x) = sa ∈ R. Since q is ADC over R, there
exists y ∈ Rn such that q(y) = sa. But then s−1y ∈ Rn

S and q(s−1y) = a
s . �
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Corollary 17. Let R be a Dedekind domain with fraction field K, let v : K• → Z be
a nontrivial discrete valuation which is “R-regular” in the sense that R is contained
in the valuation ring v−1(N) ∪ {0}. Let Kv be the completion of K with respect to
v and Rv its valuation ring. Suppose q ∈ R[x] is an ADC form. Then the base
extension of q to Rv is an ADC-form.

Proof. Under the hypotheses of the theorem, v = vp for a nonzero prime ideal p of
R. Let S = R \ p, and put RS = S−1R. By the previous theorem, the extension of
q to RS is an ADC form. Now suppose D ∈ R•

v is such that there exists X ∈ Kn
v

with q(X) = D. We may choose x ∈ Kn which is sufficiently v-adically close to X
so that q(x) = d ∈ RS and D

d = u2
d for some ud ∈ R×

v . (This is possible because:
Rn

S is dense in Rn
v , q, being a polynomial function, is continuous for the v-adic

topology, and R×2
v is an open subgroup of R•

v: e.g. [14, Thm 3.39].) Since q is
ADC over RS , there exists y ∈ Rn

S such that q(y) = d. Thus q(udy) = u2
dd = D,

showing that D is Rv-represented by q. �

4. CDVRs and Hasse Domains

4.1. Basic definitions.

Let (R, v) be a discrete valuation ring (DVR) with fraction field K and residue
field k. As usual, we require that the characteristic of K be different from 2; how-
ever, although it is invariably more troublesome, we certainly must admit the case
in which k has characteristic 2: such DVRs are called dyadic. We will be especially
interested in the case in which R is complete, a CDVR.

A Hasse domain is the ring of S-integers in a number field K or the coordi-
nate ring of a regular, integral algebraic curve over a finite field k = Fq. (The
terminology is taken from [22].) In particular, a Hasse domain is a Dedekind finite
quotient domain.

Let ΣK denote the set of all places of K, including Archimedean ones in the number
field case. Let ΣR = ΣK \ S denote the subset of ΣK consisting of places which
correspond to maximal ideals of R; these places will be called finite. The comple-
tion Rv of a Hasse domain R at v ∈ ΣR is a CDVR with finite residue field.

If R is a Hasse domain and Λ is a quadratic R-lattice in the quadratic space (V, q),
then to each v ∈ ΣR we may attach the local lattice Λv = Λ ⊗R Rv. Being a
finitely generated torsion-free module over the PID Rv, Λv is necesssarily free. In
particular, we may define δv, the valuation of the discriminant over Rv and then
the global discriminant may be defined as the ideal ∆(Λ) =

∏
v∈ΣR

pδvv .

Lemma 18.
a) The R-lattice Λ is maximal iff Λv is a maximal Rv-lattice for all v ∈ ΣR.
b) For any nondyadic place v such that δv(Λ) ≤ 1, the lattice Λv is Rv-maximal.

Proof. For part a), see [22, § 82K]. For part b), see [22, 82:19]. �

4.2. Classification of Euclidean forms over CDVRs.

In this section R is a CDVR with fraction field K of characteristic different from
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2, endowed with the norm | · |a (for some a ≥ 2) of Example 1.3. In this setting we
can give a very clean characterization of Euclidean forms.

Theorem 19. A quadratic form over a complete discrete valuation domain is Eu-
clidean for the canonical norm iff the corresponding quadratic lattice is maximal.

For the proof we require the following preliminary results.

Theorem 20. (Eichler’s Maximal Lattice Theorem) Let q be an anisotropic qua-
dratic form over a complete discrete valuation field K with valuation ring R. Then
there is a unique maximal R-lattice for q, namely

Λ = {x ∈ Kn | q(x) ∈ R}.

Proof. See [13] or [14, Thm. 8.8]. �

Theorem 21. Let (V, q) be a finite-dimensional quadratic space over K and Λ ⊂ V
a maximal quadratic R-lattice. Then there exists a decomposition

V =

r⊕
i=1

HK ⊕ V ′

with q|V ′ anisotropic such that

Λ =
r⊕

i=1

HR ⊕ Λ′,

where Λ′ = Λ ∩ V ′.

Proof. See [27, Lemma 29.8], wherein the result is stated for complete discrete
valuation rings with finite residue field. However, it is easy to see that the finiteness
of the residue field is not used in the proof. �

Proof of Theorem 19: By Proposition 11, it is enough to show that any maximal
q/R is Euclidean.

Suppose first that q is anisotropic over R. In this case, the Euclideanness of q
follows immediately from Eichler’s Maximal Lattice Theorem: indeed, we have

Rn = {x ∈ Kn | |q(x)|a ≥ 1}.
Therefore, x ∈ Kn \Rn ⇐⇒ |q(x)|a = |q(x− 0)|a < 1.
We now deal with the general case. By Theorem 21, we may write Λ =

⊕r
i=1 HR⊕Λ′

with Λ′ anisotropic. With respect to a suitable R-basis of Λ, q takes the form

q(X) = q(x, x′) = x1x2 + . . .+ x2r−1x2r + q′(x′),

where x′ = (x2r+1, . . . , xn) and q′ is anisotropic. Let X = (x, x′) ∈ Kn \ Rn. We
must find Y = (y, y′) ∈ Rn such that v(q(X − Y ))) < 0. By symmetry, we may
assume that v(x1x2) ≥ . . . ≥ v(x2r−1x2r) and v(x2r) ≤ v(x2r−1).
Case 1: v(x2r) ≥ 0. Then x = (x1, . . . , x2r) ∈ R2r so that we must have x′ ∈
Kn−2r \Rn−2r. Put Y = (y, y′) = 0. Then v(x1x2 + . . .+ x2r−1x2r) ≥ 0, whereas
by Eichler’s Maximal Lattice Theorem, v(q′(x′)) < 0, so

v(q(X)) = v(x1x2 + . . .+ x2r−1x2r + q′(x′)) < 0.

Case 2: v(x2r) < 0. We choose y′ = 0 and y1 = . . . = y2r−2 = 0. Also define

α = q2(x
′), β = x1x2 + . . .+ x2r−3x2r−2.
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If v(α+ β + x2r−1x2r) ≤ v(x2r), then since v(x2r) < 0, we may take y = 0, getting

v(q(X)) = v(α+ β + x2r−1x2r) < 0.

If v(α+ β + x2r−1x2r−2) > v(x2r), we may take y2r−1 = 1, y2r = 0, getting

v(q(X − Y )) = v(α+ β + x2r−1x2r − x2r) = v(x2r) < 0.

Corollary 22. Let R be a Hasse domain and q/R a quadratic form. Then q is
locally Euclidean iff the corresponding lattice Λq is maximal.

Proof. This is an immediate consequence of Theorem 19 and Lemma 18. �

4.3. ADC forms over Hasse domains.

Let q/R be a nondegenerate quadratic form. We define the genus g(q) as fol-
lows: it is the set of R-isomorphism classes of quadratic forms q′ such that: for
each v ∈ S, q ∼=Kv q′, and for each v ∈ ΣR, q ∼=Rv q′.

Theorem 23. For any nondegenerate quadratic form q over a Hasse domain R,
the genus g(q) of q is finite.

Proof. [22, Thm. 103:4]. �

This allows us to define the class number h(q) of a quadratic form q as #g(q).
Of particular interest are forms of class number one, i.e., for which q is (up to
isomorphism) the only form in its genus.

A quadratic form q/R is regular if it R-represents every element of R which is
represented by its genus. In other words, q is regular if for all d ∈ R, if there is
q′ ∈ g(q) and x ∈ Rn such that q′(x) = d, then there is y ∈ Rn such that q(y) = d.

Theorem 24. Let q/R be a nondegenerate quadratic form over a Hasse domain,
and let d ∈ R. Suppose that for all v ∈ S, q Kv-represents d and for all v ∈ ΣR, q
Rv-represents d. Then there exists q′ ∈ g(q) such that q′ R-represents d.

Proof. [22, 102:5]. �

Theorem 25. For a form q over a Hasse domain R, the following are equivalent:
(i) q is an ADC form.
(ii) q is regular and “locally ADC”: for all p ∈ Σ(R), q is ADC over Rp.

Proof. (i) =⇒ (ii): Suppose q is ADC. By our theorems on localization, q is
locally ADC. Now let d ∈ R be represented by the genus of q: i.e., there exists
q′ ∈ g(q) such that q′ R-represents d. Since for all v ∈ ΣK , q′ ∼=Kv q, it follows that
q Kv-represents d for all v. By Hasse-Minkowski, q K-represents d, and since q is
an ADC-form, q R-represents d.
(ii) =⇒ (i): Suppose q is regular and locally ADC, and let d ∈ R be K-rationally
represented by q. Then for all v ∈ Σ(R), d is Kv-represented by q, hence using the
local ADC hypothesis, is Rv-represented. Moreover, for all places v ∈ Σ(K)\Σ(R),
d is Kv-represented by q. By Theorem 24, there exists q′ ∈ g(q) which R-represents
d, and then by definition of regular, q R-represents d. �

A quadratic form q over a Hasse domain R is sign-universal if for all d ∈ R, if q
Kv-represents d for all real places v ∈ ΣK , then q R-represents d.



EUCLIDEAN QUADRATIC FORMS AND ADC-FORMS: I 15

Proposition 26. Let n ≥ 4, and let q(x1, . . . , xn) be a nondegenerate quadratic
form over a Hasse domain R. Then q is ADC iff it is sign-universal.

Proof. Indeed, by the Hasse-Minkowski theory of quadratic forms over global fields,
any nondegenerate quadratic form in at least four variables over the fraction field
K is sign-universal. The result follows immediately from this. �

4.4. Conjectures on Euclidean Forms over Hasse Domains.

Conjecture 27. For any Hasse domain R, there are only finitely many isomor-
phism classes of anisotropic Euclidean forms q/R.

Conjecture 28. Let q be an anisotropic Euclidean quadratic form over a Hasse
domain R. Then q has class number one.

Conjecture 28 has a striking consequence. Consider the set S1 of all class number
one totally definite quadratic forms defined over the ring of integers of some totally
real number field. Work of Siegel shows that S1 is a finite set. Thus Conjecture 28
implies the following result, which we also state as a conjecture.

Conjecture 29. As R ranges through all rings of integers of totally real number
fields, there are only finitely many totally definite Euclidean quadratic forms q/R.

4.5. Definite Euclidean forms over Z.

In the case of R = Z, Conjecture 27 is intimately related to fundamental prob-
lems in the geometry of numbers. Especially, the classification of definite Euclidean
forms q/Z can be rephrased as the classification of all integral lattices in Euclidean
space with covering radius strictly less than 1.

This problem has been solved by G. Nebe [21], subject to the following proviso.
Nebe’s paper contains 69 Euclidean lattices. Before becoming aware of [21] W.C.
Jagy and I had been independently searching for Euclidean lattices. Our search was
not exhaustive, i.e., we looked for and found Euclidean lattices in various places
but without any claim of finding all of them. When we learned of Nebe’s work we
compared out list to hers and found that her list contained several lattices that we
did not have. However, one of our lattices does not appear on Nebe’s list,

q(x1, x2, x3, x4, x5) = x2
1 + x1x4 + x2

2 + x2x5 + x2
3 + x3x5 + x2

4 + x4x5 + 2x2
5.

We contacted Professor Nebe and she informed us that this lattice was not included
due to a simple oversight in her casewise analysis. So we get the following result.

Theorem 30. (Nebe) There are precisely 70 positive definite Euclidean quadratic
forms over Z. All of these lattices have class number one.

The second sentence in Theorem 30 follows easily by explicit computation, for in-
stance using the command GenusRepresentatives in the MAGMA software pack-
age. Thus Theorem 30 verifies Conjecture 28 for definite forms over Z.

4.6. Definite ADC forms over Z.

The work of this paper allows us to classify (in a certain sense) primitive defi-
nite ADC forms over Z. Indeed, by Theorem 25, it suffices to classify the regular
primitive positive definite forms over Z and for each such form q determine whether
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it is locally ADC. The theory of quadratic forms over p-adic integer rings is com-
pletely understood, to the extent that for a fixed quadratic form q/Z, determining
for all primes p the set of all elements of Zp (resp. Qp) which are Zp-represented
(resp. Qp-represented) by q is a finite problem. So if we could reduce ourselves to a
finite set of regular forms, the problem would be solved modulo a finite calculation.
Let us see how this procedure works out for forms in various dimensions.

Unary forms: Let a ∈ Z•. Recall Example 2.5: a unary form qa(x) = ax2 is
ADC iff a is squarefree.

In fact we have shown that for any UFD or Dedekind domain R and a ∈ R•, the
unary form qa(x) = ax2 is ADC iff ordp(a) ≤ 1 for every height one prime ideal p of
R. But it seems premature to present such results here, since this is an easy special
case of a not so easy general problem. Let us say a form q(x) is imprimitive if it
can be written as aq′(x) with a ∈ R•\R×. Then we would like to know: if q′(x) is a
primitive ADC form, for which a ∈ R• is aq′(x) an ADC form? We can answer this
for unary forms but not in general. We leave the general problem of imprimitive
forms for a later work.

So up to unit equivalence the unique primitive ADC unary form over Z is x2.

Binary forms: The classical genus theory shows that a regular binary form
q(x, y) = ax2+bxy+cy2 has class number one in the above sense. There is however
a subtlety here in that classes and genera of binary quadratic forms q(x, y)/Z are
classically expressed in terms of proper equivalence (i.e., SL2(Z)-equivalence).
To get from the proper genera to the genera one needs to identify each class with
its inverse in the class group: we get a quotient map which has fibers of cardinality
one over the order two elements of the class group and cardinality 2 otherwise.
Thus, in addition to the binary quadratic forms which have proper (form) class
number one – i.e., the idoneal discriminants ∆ = b2 − 4ac such that the quadratic
order of disciminant ∆ has 2-torsion class group – we need to consider bi-idoneal
forms in the sense of [15] and [28], i.e., forms of order 4 in a class group of type
Z/4Z × (Z/2Z)a for a ≥ 0. (C.f. Remarks 2.5, 2.6 and 4.6 of [28] for a clear ex-
planation of the relationship between binary forms of GL2(Z)-genus one and class
groups of the above form.) Voight computes a list of 425 bi-idoneal discriminants,
shows that this list is complete except for possibly one further (very large) value,
and shows that the Generalized Riemann Hypothesis (GRH) implies the complete-
ness of his list. These results allow us to give a complete enumeration of primitive
binary definite ADC forms over Z, conditionally on GRH.

Again the issue of imprimitive forms requires some additional consideration.4

Example 4.1: Let q′ = x2 + y2. Then q′ is Euclidean hence ADC. The form
aq′ is ADC iff a is squarefree and not divisible by any prime p ≡ 1 (mod 4).

Ternary forms:

Theorem 31. (Jagy-Kaplansky-Schiemann [16]) There are at most 913 primitive
positive definite regular forms q(x1, x2, x3)/Z.

4Added, October 2011: we can now handle the imprimitive forms as well.
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More precisely, in [16] the authors write down an explicit list of 913 definite ternary
forms such that any regular form must be equivalent to some form in their list. Fur-
ther they prove regularity of 891 of the forms in their list, whereas the regularity
of the remaining 22 forms is conjectured but not proven.

Fortunately, all 22 of the forms whose regularity was not shown in [16] turn out
not to be ADC-forms. To show this one need only supply a non-ADC certifi-
cate, i.e., a pair (a, b) ∈ Z2 such that q Z-represents a2b but not b. Jagy has found
non-ADC certificates for all 22 of the possibly nonregular ternary forms above and
indeed for the majority of the 913 regular forms as well: his computations leave
a list of 104 primitive definite ternary regular forms which are probably ADC. As
above, we are left with a (nontrivial) finite local calculation to confirm or deny the
ADC-ness of each of these 104 forms.

Quaternary Forms: By Proposition 26, a quadratic form q/Z in at least four
variables is ADC iff it is sign-universal. Thus the following result solves the prob-
lem for us when n = 4.

Theorem 32. (Bhargava-Hanke [2]) There are precisely 6436 positive definite sign-
universal forms q(x1, x2, x3, x4)/Z.

So there are precisely 6436 positive definite quaternary ADC forms over Z.

Beyond Quaternary Forms: It seems hopeless to classify positive definite sign-
universal forms in 5 or more variables. In contrast to all cases above, there are most
certainly infinitely many such primitive forms, e.g. x2

1 + . . . + x2
n−1 +Dx2

n. More
generally, any form with a sign-universal subform is obviously sign-universal, and
this makes the problem difficult. However, there is the following relevant result.

Theorem 33. (Bhargava-Hanke [2]) A positive definite form q(x1, . . . , xn)/Z is
sign-universal if and only if it integrally represents the first 290 positive integers.

Thus a positive definite integral form q(x1, . . . , xn), n ≥ 4, is ADC iff it represents
the integers listed in Theorem 33. This gives a kind of classification for definite
ADC forms in at least five variables, and one can probably do no better than this.

4.7. Definite ADC forms over F[t].

Let F be a finite field of odd order, δ ∈ F× \ F×2, R = F[t] be endowed with
its canonical norm, K = F(t), and ∞ be the infinite place of K (corresponding to

the valuation v∞( fg ) = deg(g)− deg(f)), so that K∞ = K((1t )).

Recall that K has u-invariant 4: i.e., the maximum dimension of an anisotropic
quadratic form over R is 4. We call a quadratic form q/R definite if q is anisotropic
as a quadratic form over K∞: in particular, such forms are aniostropic.

Thus we we get a problem analogous to the R = Z case: find all definite forms
over F[t] which are Euclidean and which are ADC forms. There are however some
significant differences from the R = Z case. We saw one above: we can a priori
restrict to forms of dimension at most 4. Here is another striking difference.

Theorem 34. (Bureau [5]) Suppose that #F > 3. Then every regular definite form
q/F[t] has class number one.
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In particular – excepting F = F3 – we have Euclidean implies ADC implies regular
implies class number one – so Conjecture 28 holds for definite Euclidean forms over
F[t]. Moreover, there are only finitely many definite quadratic forms over F[t] of
any given class number, so this verifies Conjecture 27 for definite forms over R.

We end with a few preliminary results towards the classification of Euclidean and
ADC forms over F[t], mostly to showcase the connection to Theorem 10.

Theorem 35. For a definite quaternary form q/F[t], the following are equivalent:
(i) q is ADC.
(ii) q is universal.
(iii) The discriminant of q has degree 2.

Proof. (i) ⇐⇒ (ii) is a case of Proposition 26.
(ii) ⇐⇒ (iii): this is a result of W.K. Chan and J. Daniels [9, Cor. 4.3]. �

Theorem 36. For a diagonal definite quaternary form q over F[t], the following
are equivalent:
(i) q is Euclidean.
(ii) q is universal.
(iii) The discriminant of q has degree 2.

Proof.
(i) =⇒ (ii) follows from Theorem 8 and Proposition 26.
(ii) =⇒ (iii) is immediate from the previous result.
(iii) =⇒ (i): Suppose

q = p1x
2
1 + p2x

2
2 + p3x

2
3 + p4x

2
4

Without loss of generality, we may assume that deg(p1) ≤ deg(p2) ≤ deg(p3) ≤
deg(p4). If deg(p3) = 0, then q contains a 3-dimensional constant subform and
is thus isotropic. Since

∑
i deg(pi) = 2, the only other possibility is deg(p1) =

deg(p2) = 0, deg(p3) = deg(p4) = 1, and now the fact that q is Euclidean follows
from the Generalized Cassels-Pfister Theorem. �

Theorem 37. If q is a diagonal definite ternary form over F[t] with deg(∆(q)) ≤ 2,
then q is ADC.

Proof. By [9, Thm. 3.5] any definite ternary form over F[t] with deg(∆(q)) ≤ 2
has class number one, hence is regular. Therefore, by Theorem 25 it is sufficient to
show that q is locally ADC.

If deg(∆(q)) ≤ 1, then sinceR is nondyadic, the corresponding lattice is maximal,
hence locally ADC by Theorem 25 and Corollary 22.

Suppose deg(∆(q)) = 2 and write q = p1(t)x
2
1+p2(t)x

2
2+p3(t)x

2
3 with deg(p1) ≤

deg(p2) ≤ deg(p3). If deg(p3) = 1, then by the Generalized Cassels-Pfister Theorem
q is Euclidean. Otherwise deg(p1) = deg(p2) = 0 and deg(p3) = 2. If p3 is
squarefree then so is ∆(q), hence q is maximal and thus locally ADC. Otherwise
there exist a ∈ F×, b ∈ F such that p3 = a(t−b)2, but then q is equivalent over K to
the constant form p1x

2
1+ p2x

2
2+ ax2

3 and is therefore isotropic, a contradiction. �

Again, a complete classification – over any fixed finite field F – is reduced to a finite
calculation. We hope to give precise classification theorems in a future work.
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