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3.4. An equivalent formulation 9
4. Connections with the Schwartz-Zippel Lemma 9
4.1. Schwartz-Zippel Lemma 9
4.2. Schwartz’s Theorem 10
4.3. DeMillo-Lipton and Zippel 10
5. Connections with Coding Theory 12
6. Applications to Finite Geometry 13
6.1. Partial Coverings of Grids by Hyperplanes 13
6.2. Partial Covers and Blocking Sets in Finite Geometries 15
7. Multiplicity Enhancements 17
7.1. Hasse Derivatives 17
7.2. Multiplicities 18
7.3. Multiplicity Enhanced Schwartz Theorem 20
7.4. A Counterexample 21
References 21

1. Introduction

1.1. Notation. For n ∈ Z+ we put [n] = {1, 2, . . . , n}.

For us, rings are commutative with multiplicative identity. Throughout this pa-
per R denotes a ring and F denotes a field, each arbitrary unless otherwise specified.

Following [Sc08] and [Cl14], a nonempty subset S ⊂ R is said to satisfy Con-
dition (D) if for all x 6= y ∈ S, the element x − y ∈ R is not a zero divisor. A
finite grid is a subset A =

∏n
i=1Ai of Rn (for some n ∈ Z+) with each Ai a finite,

nonempty subset of R. We say that A satisfies Condition (D) if each Ai does.

For N, a1, . . . , an, b1, . . . , bn ∈ Z+, we denote by m(a1, . . . , an; b1, . . . , bn;N) a cer-
tain combinatorial quantity which will be defined in §2.1. When b1 = · · · = bn = 1
we denote this quantity by m(a1, . . . , an;N).

For A ⊂ Rn and f ∈ R[t] = R[t1, . . . , tn], we put

ZA(f) = {x ∈ A | f(x) = 0} and UA(f) = {x ∈ A | f(x) 6= 0}.
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1.2. The Alon-Füredi Theorem. In [AF93] N. Alon and Z. Füredi solved a prob-
lem posed by I. Bárány (based on a result of Komjath) of finding the minimum
number of hyperplanes required to cover all points of the hypercube {0, 1}n ⊆ Fn

except one. One such covering is given by n hyperplanes defined by the zeros of
the polynomials t1 − 1, t2 − 1, . . ., tn − 1. Alon and Füredi proved that n is in
fact the minimum number. They then generalised this result to all finite grids
A =

∏n
i=1Ai ⊂ Fn, showing that the minimum number of hyperplanes required to

cover all points of A except one is
∑n
i=1(#Ai − 1).

There is also a quantitative refinement: as we vary over families of d hyperplanes
which do not cover all points of A, what is the minimum number of points which
are missed? To answer this, Alon and Füredi proved the following result.

Theorem 1.1 (Alon-Füredi Theorem [AF93, Thm. 5]). Let F be a field, let A =∏n
i=1Ai ⊂ Fn be a finite grid, and let f ∈ F [t] = F [t1, . . . , tn] be a polynomial which

does not vanish identically on A. Then f(x) 6= 0 for at least min
∏
yi elements x ∈

A, where the minimum is taken over all positive integers yi ≤ #Ai with
∑n
i=1 yi =∑n

i=1 #Ai − deg f . More concisely (cf. §2.1)

UA(f) ≥ m(#A1, . . . ,#An;

n∑
i=1

#Ai − deg f).

The minimum referred to in Theorem 1.1 is known in all cases – see Lemma 2.1a)
– leading to an explicit form of the bound.

Several proofs of Theorem 1.1 have been given. The original argument in [AF93]
involves the construction of auxiliary polynomial functions of low degree via lin-
ear algebra. A second proof was given by Ball and Serra as an application of
their Punctured Combinatorial Nullstellensatz [BS09], [BS11]. Recently, López,
Renterá-Márquez and Villarreal gave a proof of Alon-Füredi [LRMV14], in its cod-
ing theoretic formulation (cf. §5). Carvalho has given another proof of this result
in the finite field case using results from Gröbner basis theory [Ca13, Prop. 2.3]. In
[Cl15], P. L. Clark generalized the Alon-Füredi Theorem by replacing the field F by
an arbitrary ring R, under the assumption that the finite grid A satisfies Condition
(D). This is a modest generalization in that Condition (D) is exactly what is needed
for polynomial functions on A to behave as they do in the case of a field, and the
proof adapts that of Ball-Serra.

P. L. Clark, A. Forrow and J. R. Schmitt [CFS14] used Alon-Füredi to obtain a re-
stricted variable generalization of a theorem of Warning [Wa35] giving a lower bound
on the number of zeros of a system of polynomials over a finite field. (Alon-Füredi
gives a lower bound on non-zeros, but over a finite field Fq, we have Chevalley’s
trick: f(x) = 0 ⇐⇒ 1− f(x)q−1 6= 0.) This work also gave several combinatorial
applications of this lower bound on restricted variable zero sets.

One of the main goals of this paper is to revisit the Alon-Füredi Theorem and
give direct combinatorial applications (i.e., not of Chevalley-Warning type). We
begin by giving the following generalization of the Alon-Füredi Theorem:

Theorem 1.2 (Generalized Alon-Füredi Theorem). Let R be a ring and let A1, . . . , An
be non-empty finite subsets of R that satisfy Condition (D). For i ∈ [n], let bi be
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an integer such that 1 ≤ bi ≤ #Ai. Let f ∈ R[t1, . . . , tn] be a non-zero polynomial
such that degti f ≤ #Ai − bi for all i ∈ [n]. Let UA = {x ∈ A : f(x) 6= 0} where
A = A1 × · · · ×An ⊆ Rn. Then we have (see §2.1 for the notation)

#UA ≥ m(#A1, . . . ,#An; b1, . . . bn;

n∑
i=1

#Ai − deg f).

Moreover, this bound is sharp in all cases.

As we shall explain in §2.3, one recovers Theorem 1.1 from Theorem 1.2 by tak-
ing b1 = . . . = bn = 1. Our argument specializes to give a new proof of Alon-Füredi.

In §4 we relate the Generalized Alon-Füredi Theorem to work of DeMillo-Lipton,
Schwartz and Zippel. We find in particular that Alon-Füredi implies the result
which has become known as the “Schwartz-Zippel Lemma”. In fact, the original
result of Zippel (and earlier, DeMillo-Lipton) is a bit different and not implied by
Alon-Füredi (cf. Example 4.7). However, it is implied by Generalized Alon-Füredi,
and this was one of our motivations for strengthening Alon-Füredi as we have.

The Alon-Füredi Theorem has a natural coding theoretic interpretation (see §5)
as it computes the minimum Hamming distance of the affine grid code AGCd(A),
an F -linear code of length #A. In this way Alon-Füredi turns out to be the re-
stricted variable generalization of a much older result in the case Ai = F = Fq, the
Kasami-Lin-Peterson Theorem, which computes the minimum Hamming distance
of generalized Reed-Muller codes. We will show that the Generalized Alon-Füredi
Theorem is equivalent to the computation of the minimum Hamming distance of a
more general class of R-linear codes. These generalized affine grid codes have larger
distance (though also smaller dimension) than the standard ones, so they may turn
out to be useful.

In §6, we pursue applications to finite geometry. We begin by revisiting and slightly
sharpening the original result of Alon-Füredi on hyperplane coverings. This natu-
rally leads us to partial covers and blocking sets in affine and projective geometries
over Fq. Applying Alon-Füredi and projective duality we get a new upper bound,
Theorem 6.7, on the number of hyperplanes which do not meet a k-element subset of
AG(n, q). From this result the classical theorems of Jamison-Brouwer-Schrijver on
affine blocking sets and Blokhuis-Brouwer on essential points of projective blocking
sets follow as corollaries. We are also able to strengthen a recent result of Do-
dunekov, Storme and Van de Voorde.

Finally, in §7 we discuss multiplicity enhancements in the sense of [DKSS13]. The
material here is most closely related to that of §4, but we have placed it at the end
because it has a somewhat more technical character than the rest of the paper.

2. Preliminaries

2.1. Balls in Prefilled Bins. Let a1, . . . , an ∈ Z+. Consider n bins A1, . . . , An
such that Ai can hold up to ai balls. For N ∈ Z+ with n ≤ N ≤

∑n
i=1 ai, we define

a distribution of N balls in these n bins to be an n-tuple y = (y1, . . . , yn) ∈ (Z+)n

with yi ≤ ai for all i ∈ [n] and
∑n
i=1 yi = N . For a distribution y of N balls in n

bins, we put P (y) =
∏n
i=1 yi. For n ≤ N ≤

∑n
i=1 ai we define m(a1, . . . , an;N) to
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be the minimum value of P (y) as y ranges over all such distributions of N balls in
n bins. For N < n we define m(a1, . . . , an;N) = 1.

Without loss of generality we may – and shall – assume a1 ≥ · · · ≥ an. We
define the greedy distribution yG = (y1, . . . , yn) as follows: first place one ball in
each bin; then place the remaining balls into bins from left to right, filling each bin
completely before moving on to the next bin, until we run out of balls.

Lemma 2.1. Let n ∈ Z+, and let a1 ≥ · · · ≥ an be positive integers. Let N ∈ Z
with n ≤ N ≤ a1 + · · ·+ an.
a) We have

m(a1, . . . , an;N) = P (yG) = y1 · · · yn.
b) Suppose a1 = · · · = an = a ≥ 2. Then

m(a, . . . , a;N) = (r + 1)ab
N−n
a−1 c,

where r ≡ N − n (mod a− 1) and 0 ≤ r < a− 1.
c) For all non-negative integers k, we have

m(2, . . . , 2; 2n− k) = 2n−k.

d) Let n, a1, . . . , an ∈ Z+ with a1 ≥ · · · ≥ an. Let N ∈ Z be such that N − n =∑j
i=1(ai−1) + r for some j ∈ {0, . . . , n} and some r satisfying 0 ≤ r < aj+1. Then

m(a1, . . . , an;N) = (r + 1)
∏j
i=1 ai.

Proof. Parts a) through c) are [CFS14, Lemma 2.2]. d) After placing one ball in
each bin we are left with N −n balls. The greedy distribution is achieved by filling
the first j bins entirely and then putting r balls in bin j + 1. �

In every distribution y = (y1, . . . , yn) we need yi ≥ 1 for all i ∈ [n]; i.e., we must
place at least one ball in each bin. So it is reasonable to think of the bins coming
prefilled with one ball each, and then our task is to distribute the N−n remaining
balls so as to minimize P (y). The concept of prefilled bins makes sense more
generally: given any b1, . . . , bn ∈ Z with 1 ≤ bi ≤ ai, we may consider the scenario
in which the i-th bin comes prefilled with bi balls. If

∑n
i=1 bi ≤ N ≤

∑n
i=1 ai, we

may restrict to distributions y = (y1, . . . , yn) of N balls into bins of sizes a1, . . . , an
such that bi ≤ yi ≤ ai for all i ∈ [n] and put

m(a1, . . . , an; b1, . . . , bn;N) = minP (y),

where the minimum ranges over this restricted set of distributions. For N <
∑n
i=1 bi

we define m(a1, . . . , an; b1, . . . , bn;N) :=
∏n
i=1 bi.

Lemma 2.2. We have m(a1, . . . , an; b1, . . . , bn;N) =
∏n
i=1 bi ⇐⇒ N ≤

∑n
i=1 bi.

Proof. If N ≤
∑n
i=1 bi then m(a1, . . . , an; b1, . . . , bn;N) =

∏n
i=1 bi by definition

unless N =
∑n
i=1 bi, and this case is immediate: we have exactly enough balls

to perform the prefilling. If N >
∑n
i=1 bi, then m(a1, . . . , an; b1, . . . , bn;N) is the

minimum over a set of integers each of which is strictly greater than
∏n
i=1 bi. �

In this prefilled context, the greedy distribution yG is defined by starting with the
bins prefilled with b1, . . . , bn balls and then distribute the remaining balls from left
to right, filling each bin completely before moving on to the next bin. One sees, e.g.
by adapting the argument of [CFS14, Lemma 2.2], that

m(a1, . . . , an; b1, . . . , bn;N) = P (yG)
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when we also have b1 ≥ · · · ≥ bn. But this may not hold in general, as the following
example shows.

Example 2.3. Let n = 2, a1 = 4, a2 = 3, b1 = 1, b2 = 2, N = 4. Then P (yG) = 4
but m(4, 3; 1, 2; 4) = 3 achieved by the distribution (1, 3).

In general, we do not know a simple description of m(a1, . . . , an; b1, . . . , bn;N). In
practice, it can be computed using dynamic programming.

Lemma 2.4. Let a1, . . . , an, b1, . . . , bn ∈ Z+ with 1 ≤ bi ≤ ai for all i ∈ [n]. Let
k ∈ Z such that bn ≤ k ≤ an. If

b1 + · · ·+ bn−1 ≤ N − k ≤ a1 + · · ·+ an−1

for some N ∈ Z, then

k ·m(a1, . . . , an−1; b1, . . . , bn−1;N − k) ≥ m(a1, . . . , an; b1, . . . , bn;N).

Proof. Let y′ = (y1, . . . , yn−1) be a distribution of N − k balls in the first n − 1
bins. Then y = (y1, . . . , yn−1, k) is a distribution of N balls in n bins with the last
bin getting k balls. Therefore,

m(a1, . . . , an; b1, . . . , bn;N) ≤ P (y) = k · P (y′).

Since this holds for all such distributions y′, we get

m(a1, . . . , an; b1, . . . , bn;N) ≤ k ·m(a1, . . . , an−1; b1, . . . , bn−1;N − k). �

2.2. Grid Reduction and Condition (D). For any finite grid A ⊂ Rn, eval-
uation of a polynomial f ∈ R[t] = R[t1, . . . , tn] at elements of A gives a ring
homomorphism

EA : R[t]→ RA, f 7→ (x ∈ A 7→ f(x)).

Let I(A) be the kernel of EA, i.e., the set of polynomials which vanish identically
on A. There are some “obvious” elements of I(A), namely

∀i ∈ [n], ϕi =
∏
xi∈Ai

(ti − xi) .

Let Φ = 〈ϕ1, . . . , ϕn〉 be the ideal generated by these elements. Then Φ ⊂ I(A).

We say a polynomial f ∈ R[t] is A-reduced if degti(f) < #Ai for all i ∈ [n].
The A-reduced polynomials form an R-submodule RA of R[t] which is free of rank
#A, and the composite map

RA ↪→ R[t]→ R[t]/Φ

is an R-module isomorphism [Cl14, Prop. 10], i.e., every polynomial f ∈ R[t] dif-
fers from a unique A-reduced polynomial rA(f) by an element of Φ, and we have
EA(f) = EA(rA(f)). The polynomial rA(f) can be computed from f by dividing by
ϕ1, then dividing the remainder by ϕ2, and so on. It follows that deg rA(f) ≤ deg f
and degti rA(f) ≤ degti f for all i ∈ [n].

Theorem 2.5 (CATS1 Lemma [Ch35], [AT92], [Sc08], [Cl14, Thm. 12]). The fol-
lowing are equivalent:
(i) The finite grid A satisfies Condition (D).
(ii) If f ∈ RA and f(x) = 0 for all x ∈ A, then f = 0.
(iii) We have Φ = I(A).

1CATS = Chevalley-Alon-Tarsi-Schauz.
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Remark 2.6. These results can be directly used to solve the main problem studied
by Alon and Füredi. Let f be a polynomial that vanishes on all points of A except the
point x = (x1, . . . , xn). Since the polynomial

∏n
i=1

∏
λ∈Ai\{xi}(ti − λ) is A-reduced

and it vanishes everywhere on A except at x, it must be equal to rA(f). Thus,

deg f ≥ deg rA(f) =

n∑
i=1

(#Ai − 1).

Now associate the set of hyperplanes that cover all points of A except one by the
product of their corresponding linear polynomials.

2.3. Generalized Alon-Füredi Implies Alon-Füredi. Let A =
∏n
i=1Ai ⊂ Rn

be a finite grid satisfying Condition (D), and for i ∈ [n] put ai = #Ai. Suppose
f ∈ R[t] does not vanish identically on A. Let

UA(f) = {x ∈ A | f(x) 6= 0}.
Then the Alon-Füredi Theorem is the assertion that

#UA(f) ≥ m(a1, . . . , an;

n∑
i=1

ai − deg f).

The nonvanishing hypothesis on f is equivalent to rA(f) 6= 0. Then rA(f) satisfies
the hypotheses of Theorem 1.2 with b1 = · · · = bn = 1. Since EA(f) = EA(rA(f)),
we have UA(f) = UA(rA(f)), and thus

#UA(f) ≥ m(a1, . . . , an; 1, . . . , 1;

n∑
i=1

ai − deg rA(f))

= m(a1, . . . , an;

n∑
i=1

ai − deg rA(f)) ≥ m(a1, . . . , an;

n∑
i=1

ai − deg f).

3. Proof of the Generalized Alon-Füredi Theorem

3.1. A Preliminary Remark. If f satisfies the hypotheses of the Generalized
Alon-Füredi Theorem, then

deg f ≤
n∑
i=1

degti f ≤
n∑
i=1

(ai − bi),

so
n∑
i=1

bi ≤
n∑
i=1

ai − deg f ≤
n∑
i=1

ai.

Thus, whereas the conventional Alon-Füredi setup allows the case in which we have
too few balls to fill the bins – in which case the result gives the trivial (but sharp!)
bound #UA(f) ≥ 1 –, in our setup we do not need to consider this case.

3.2. Proof of the Generalized Alon-Füredi Bound. For i ∈ [n], put ai = #Ai.
We go by induction on n.
Base Case: Let f ∈ R[t1] be a nonzero polynomial. Suppose f vanishes precisely
at the distinct elements x1, . . . , xk of A1. Dividing f by t1 − x1 shows f = (t1 −
x1)f1(t1), and – since A1 satisfies Condition (D) – f1(xi) = 0 for 2 ≤ i ≤ k.

Continuing in this way we get f =
∏k
i=1(t1 − xi)fk(t1), and thus deg f ≥ k. So

#UA(f) = a1 − k ≥ a1 − deg f,
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which is the conclusion of the Generalized Alon-Füredi Theorem in this case.
Induction Step: Suppose n ≥ 2 and the result holds for n− 1. Write

f(t1, . . . , tn) =

dn∑
i=0

fi(t1, . . . , tn−1)tin,

so that dn = degtn f is the largest index i such that fi 6= 0. Moreover we have
deg fdn ≤ deg f − dn and for all i ∈ [n− 1],degti fdn ≤ degti f ≤ ai − bi.
Put A′ =

∏n−1
i=1 Ai. By the induction hypothesis, we have

#UA′(fdn) ≥ m(a1, . . . , an−1; b1, . . . , bn−1;

n−1∑
i=1

ai − deg fdn)

≥ m(a1, . . . , an−1; b1, . . . , bn−1;

n−1∑
i=1

ai − deg f + dn).

Let x′ = (x1, . . . , xn−1) ∈ UA′(fdn). Then f(x′, tn) ∈ R[tn] has degree dn ≥ 0.
Since An satisfies Condition (D), f(x′, tn) vanishes at no more than dn points of
An, so there are at least an − dn elements xn ∈ An such that (x′, xn) ∈ UA. Thus

#UA ≥ (an − dn)m(a1, . . . , an−1; b1, . . . , bn−1;

n−1∑
i=1

ai − deg f + dn).

Since

deg f ≤
n∑
i=1

degti f =

n−1∑
i=1

degti f + dn

and thus
n−1∑
i=1

bi ≤
n−1∑
i=1

(ai − degti f) ≤
n−1∑
i=1

ai − deg f + dn ≤
n−1∑
i=1

ai,

we may apply Lemma 2.4 with N =
∑n
i=1 ai − deg f and k = an − dn, getting

(an − dn)m(a1, . . . , an−1; b1, . . . , bn−1;

n−1∑
i=1

ai − deg f + dn) ≥

m(a1, . . . , an; b1, . . . , bn;

n∑
i=1

ai − deg f).

We deduce that

#UA ≥ m(a1, . . . , an; b1, . . . , bn;

n∑
i=1

ai − deg f).

3.3. Sharpness of the Generalized Alon-Füredi Bound. For i ∈ [n], put
ai = #Ai, and let d be an integer such that 0 ≤ d ≤

∑n
i=1(ai − bi) (cf. §3.1). For

any distribution y = (y1, . . . , yn) of
∑n
i=1 ai − d balls in n bins with bi ≤ yi ≤ ai,

for all i ∈ [n] choose a subset Si ⊂ Ai of cardinality ai − yi, and put2

f(t) =

n∏
i=1

∏
xi∈Si

(ti − xi).

2An empty product is understood to take the value 1.
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Then

deg f =

n∑
i=1

(ai − yi) = d,

∀i ∈ [n], degti f = ai − yi ≤ ai − bi
and

UA(f) = P (y) =

n∏
i=1

yi.

Thus, for all finite grids A =
∏n
i=1Ai satisfying Condition (D) and all permissi-

ble values of degt1 f, . . . ,degtn f and deg f , there are instances of equality in the
Generalized Alon-Füredi Bound. The case b1 = · · · = bn = 1 yields the (known)
sharpness of the Alon-Füredi Bound.

3.4. An equivalent formulation. Let us say that a polynomial f ∈ R[t] is poly-
linear (resp. simple polylinear) if it is a product of factors (resp. distinct factors)
of the form ti−x for x ∈ R. F. Petrov has observed that the Generalized Alon-Füredi
Theorem is equivalent to the statement that for any nonzero A-reduced polynomial
f ∈ R[t], there is a simple polylinear polynomial g ∈ R[t] with degti f = degti g for
all i ∈ [n], deg f = deg g and such that #ZA(f) ≤ #ZA(g). Thus it is possible to
formulate the result without reference to balls in prefilled bins. However, as we will
see, having the result in this form is useful for applications.

4. Connections with the Schwartz-Zippel Lemma

4.1. Schwartz-Zippel Lemma. The material in this section is motivated by a
blog post of R. Lipton [Li09] which discusses the history of the “Schwartz-Zippel
Lemma”. We will further weigh in on the history of this circle of results, discuss
various improvements and give the connection to the Alon-Füredi Theorem.

Theorem 4.1 (Schwartz-Zippel Lemma). Let R be a domain and let S ⊂ R be
finite and nonempty. Let f ∈ R[t] = R[t1, . . . , tn] be a nonzero polynomial. Then

(1) #ZSn(f) ≤ (deg f)(#S)n−1.

Proof. Let s = #S. The statement is equivalent to

#USn(f) ≥ sn−1(s− deg f).

If deg f ≥ s, then (1) asserts that f has no more zeros in Sn than the size of Sn:
true. So the nontrivial case is deg f < s. Then f is Sn-reduced, so

#USn(f) ≥ m(s, . . . , s;ns− deg f) = sn−1(s− deg f)

by Alon-Füredi and because the greedy distribution is (s, . . . , s, s− deg f). �

The case of the Schwartz-Zippel Lemma in which R = S = Fq is due to O. Ore
[Or22]. Thus the Schwartz-Zippel Lemma may be viewed as a “Restricted Variable
Ore Theorem”, although it is not the most general result along those lines. In fact,
the same argument establishes the following.
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Theorem 4.2 (Generalized Schwartz-Zippel Lemma). Let A =
∏n
i=1Ai ⊂ Rn

be a finite grid satisfying Condition (D), and suppose #A1 ≥ · · · ≥ #An. Let
f ∈ R[t] = R[t1, . . . , tn] be a nonzero polynomial. Then

#ZA(f) ≤ (deg f)

n−1∏
i=1

#Ai.

Indeed, the nontrivial case of this result is precisely the case #A1 ≥ · · · ≥ #An >
deg f of Alon-Füredi, and the greedy distribution is (#A1, . . . ,#An−1,#An −
deg f).

4.2. Schwartz’s Theorem. The Schwartz-Zippel Lemma appears in J. Schwartz’s
1980 paper as a corollary of a more general upper bound on zeros of a polynomial
over a domain [Sc80, Cor. 1]. We give a version over an arbitrary ring.

Theorem 4.3 (Schwartz Theorem [Sc80, Lemma 1]). Let f = fn ∈ R[t1, . . . , tn]
be a nonzero polynomial and let dn = degtn fn. Let fn−1 ∈ R[t1, . . . , tn−1] be the

coefficient of tdnn in fn. Let dn−1 = degtn−1
fn−1, and let fn−2 ∈ R[t1, . . . , tn−2]

be the coefficient of t
dn−1

n−1 in fn−1. Continuing in this manner we define for all

1 ≤ i ≤ n a polynomial fi ∈ R[t1, . . . , ti] with degti fi = di. Let A =
∏n
i=1Ai be a

finite grid satisfying Condition (D). Then

#ZA(f) ≤ #A

n∑
i=1

di
#Ai

.

Proof. For i ∈ [n], put ai = #Ai. We go by induction on n. The base case is
the same as that of Theorem 1.2: essentially the root-factor phenomenon of high
school algebra, used with some care because R need not be a domain. Inductively
we suppose the result holds for polynomials in n − 1 variables and in particular
for fn−1 ∈ R[t1, . . . , tn−1] and A′ =

∏n−1
i=1 Ai. Let x′ = (x1, . . . , xn−1) ∈ A′. If

fn−1(x′) = 0, it may be the case that fn(x′, xn) = 0 for all xn ∈ An. But if not,
then fn(x′, tn) ∈ R[tn] has at most dn zeros in An. Thus the number of zeros of
f = fn in A is at most

#An ·#A′
(
n−1∑
i=1

di
ai

)
+ dn#A′ = #A

n∑
i=1

di
ai
. �

Proposition 4.4. Theorem 4.3 implies Theorem 4.2.

Proof. The coefficient of td11 · · · tdnn in f is nonzero, so
∑n
i=1 di ≤ deg f , and thus

#ZA(f) ≤ #A

n∑
i=1

di
#Ai

≤ (#A1 · · ·#An−1)

n∑
i=1

di ≤ (deg f)

n−1∏
i=1

#Ai. �

4.3. DeMillo-Lipton and Zippel. The following result was proved by R. A. De-
Millo and R. Lipton in [DeML78] and then independently by R. Zippel [Zip79].

Theorem 4.5 (DeMillo-Lipton-Zippel Theorem). Let R be a domain, let f ∈ R[t] =
R[t1, . . . , tn] be a nonzero polynomial, and let d ∈ Z+ be such that degti f ≤ d for
all i ∈ [n]. Let S ⊂ R be a nonempty set with more than d elements. Then

#ZSn(f) ≤ (#S)n − (#S − d)n.
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Proof. Put s = #S. We go by induction on n, and n = 1 case is by now familiar.
Assume the result for n− 1. Since degtn f ≤ d, we have

#{xn ∈ S | f(t1, . . . , tn−1, xn) = 0} ≤ d,

so there are at least s−d values of xn such that g = f(t1, . . . , tn−1, xn) is a nonzero
polynomial. By induction, g has at most sn−1 − (s− d)n−1 zeros on Sn−1. So

#ZSn(f) ≤ dsn−1 + (s− d)(sn−1 − (s− d)n−1)

= dsn−1 + sn − dsn−1 − (s− d)n = sn − (s− d)n. �

Just like the Schwartz-Zippel Lemma, a stronger version of the DeMillo-Lipton-
Zippel Theorem can be proved with essentially the same argument. We leave the
proof – or rather this proof – to the reader.

Theorem 4.6 (Generalized DeMillo-Lipton-Zippel Theorem). Let R be a ring,
f ∈ R[t1, . . . , tn] a nonzero polynomial, and for i ∈ [n] put di = degti f . Let
A =

∏n
i=1Ai be a finite grid satisfying Condition (D). We suppose that 1 ≤ di < ai

for all i ∈ [n]. Then

#UA(f) ≥
n∏
i=1

(#Ai − di).

Now for a somewhat unsettling remark: the DeMillo-Lipton-Zippel Theorem does
not imply the Schwartz-Zippel Lemma nor is it implied by any of Schwartz’s results!

Example 4.7. Let S be a finite subset of R containing 0, satisfying Condition (D),
and of size s ≥ 3. Let f = t1t2 ∈ R[t1, t2]. Then we have

#ZS2(f) = 2s− 1.

DeMillo-Lipton-Zippel gives

#ZS2(f) ≤ s2 − (s− 1)2 = 2s− 1.

Schwartz’s Theorem gives

#ZS2(f) ≤ s2
(

1

s
+

1

s

)
= 2s.

The Alon-Füredi Theorem gives

#ZS2(f) ≤ s2 −m(s, s; 2s− 2) = s2 − s(s− 2) = 2s.

Thus neither Alon-Füredi nor Schwartz implies DeMillo-Lipton-Zippel. For the
other direction, take f = t1 + t2. DeMillo-Lipton-Zippel gives #ZS2(f) ≤ s2 −
(s− 1)2 = 2s− 1, while the other results give #ZS2(f) ≤ s.

But we can still relate Schwartz-Zippel and DeMillo-Lipton-Zippel as follows.

Proposition 4.8. The Generalized Alon-Füredi Theorem implies the Generalized
DeMillo-Lipton-Zippel Theorem.

Proof. For i ∈ [n], put ai = #Ai and bi = ai − di, so 1 ≤ bi ≤ ai for all i ∈ [n].
Moreover deg f ≤

∑n
i=1 di, so the Generalized-Alon-Füredi Theorem gives

#UA ≥ m(a1, . . . , an; b1, . . . , bn;

n∑
i=1

ai−deg f) ≥ m(a1 . . . , an; b1, . . . , bn;

n∑
i=1

(ai−di))
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= m(a1, . . . , an; b1, . . . , bn;

n∑
i=1

bi) =

n∏
i=1

bi =

n∏
i=1

(ai − di). �

Generalized DeMillo-Lipton-Zippel is equivalent to the case deg f =
∑n
i=1 degti f

of Generalized Alon-Füredi. In particular, the bound is sharp in every case.

5. Connections with Coding Theory

In this section we make use of some terminology (only) from coding theory. Defini-
tions can be found in e.g. [vL99, Ch. 3].

Consider the polynomial ring Fq[t] = Fq[t1, . . . , tn]. Since Fq is finite, we can take
Fnq itself as a finite grid, and in fact many aspects of the theory presented here
were worked out in this case in the early part of the 20th century. In particular,
we say a polynomial is reduced if it is Fnq -reduced, and this notion was introduced
by Chevalley in his seminal work [Ch35] on polynomial systems of low degree. We
denote the the set of reduced polynomials by P(n, q); it is an Fq-vector space of
dimension qn. The evaluation map gives an Fq-linear isomorphism

E : P(n, q)→ FFn
q
q , f 7→ (x ∈ Fnq 7→ f(x)).

Fixing an ordering α1, . . . , αqn of Fnq , this isomorphism allows us to identify each
f ∈ P(n, q) with its value table (f(α1), . . . , f(αqn)). For d ∈ N we denote by
Pd(n, q) the set of all reduced polynomials of degree at most d.

Definition The set of all value tables of all polynomials in Pd(n, q) is called the
d-th order generalized Reed-Muller code of length qn, denoted by GRMd(n, q).

For q = 2, these codes were introduced and studied by D. Muller [Mu54] and I. S.
Reed [Re54]. An explicit formula for minimum distance of the generalized Reed-
Muller codes was given by T. Kasami, S. Lin and W. W. Peterson [KLP68], which
we will recover using Alon-Füredi. A systematic study of these codes in terms of
the polynomial formulation was conducted by P. Delsarte, J. M. Goethals and F.
J. MacWilliams in [DGM70].

Theorem 5.1 (Kasami-Lin-Peterson). The minimum weight of the d-th order Gen-
eralized Reed-Muller code GRMd(n, q) is equal to (q−b)qn−a−1 where d = a(q−1)+b
with 0 < b ≤ q − 1.

Proof. The minimum weight of GRMd(n, q) is equal to the least number of nonzero
values taken by a nonzero reduced polynomial of degree at most d, which by Alon-
Füredi is m(q, . . . , q;nq − d). Moreover we have

(nq − d)− n = n(q − 1)− a(q − 1)− b = (n− a− 1)(q − 1) + q − 1− b,

and

0 ≤ q − 1− b < q − 1,

so by Lemma 2.1 we have

m(q, . . . , q;nq − d) = (q − b)qn−a−1. �
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The Generalized Alon-Füredi Theorem can also be stated in terms of coding theory.
Let A =

∏n
i=1Ai be a finite grid in a ring Rn satisfying Condition (D), with

ai = #Ai for i ∈ [n]. Given positive integers bi ≤ ai for all i ∈ [n], and a
natural number d ≤

∑n
i=1(ai − bi), we define the generalized affine grid code

GAGCd(A; b1, . . . , bn) as the set of value tables of all polynomials f ∈ R[t] with

degti f ≤ ai − bi for all i ∈ [n] and deg f ≤ d evaluated on A. We put

AGCd(A) = GAGCd(A; 1, . . . , 1)

and speak of affine grid codes. Then:

Theorem 5.2. The minimum weight of GAGCd(A; b1, . . . , bn) is
m(a1, . . . , an; b1, . . . , bn;

∑n
i=1 ai − d).

Affine grid codes were studied in [LRMV14] (under the name of Affine Cartesian
Codes) where they proved the following:

Theorem 5.3 ([LRMV14, Thm. 3.8]). Let F be a field and A =
∏n
i=1Ai ⊂ Fn a

finite grid with #A1 ≥ · · · ≥ #An ≥ 1. Then the minimum weight of AGCd(A) is{
#A1 · · ·#Ak−1(#Ak − `) if d ≤

∑n
i=1(#Ai − 1)− 1

1 if d ≥
∑n
i=1(#Ai − 1)

,

where k, ` ∈ Z are such that d =
∑n
i=k+1(#Ai − 1) + `, k ∈ [n] and ` ∈ [#Ak − 1].

Proof. The minimum weight of AGCd(A) is m(#A1, . . . ,#An;
∑n
i=1 #Ai − d). So

the result follows from Lemma 2.1, as the greedy distribution of

n∑
i=1

#Ai − d =

k−1∑
i=1

(#Ai − 1) + (#Ak − 1− `) + n

balls is (#A1, . . . ,#Ak−1,#Ak − `, 1, . . . , 1). �

Remark 5.4. a) The paper [LRMV14] makes no mention of Alon-Füredi. Their
proof of Theorem 5.3 is self-contained and thus gives a proof of Alon-Füredi with
the balls in bins constant replaced by its explicit value P (yG). On the other hand it
is longer than the other proofs of Alon-Füredi appearing in the literature.
b) Our proof of Theorem 5.3 works for a grid A ⊂ Rn satisfying Condition (D).
c) When b1 ≥ · · · ≥ bn, the greedy algorithm computes m(a1, . . . , an; b1, . . . , bn;N)
and we could give a similarly explicit description of GAGCd(A1; b1, . . . , bn).

6. Applications to Finite Geometry

6.1. Partial Coverings of Grids by Hyperplanes. By a hyperplane in Rn we
mean a polynomial H = c1t1 + · · ·+ cntn+r ∈ R[t] for which at least one ci is not a

zero-divisor. (Referring to the polynomial itself rather than its zero locus in Rn will
make the discussion cleaner.) A family H = {Hi}di=1 covers x ∈ Rn if Hi(x) = 0
for some i ∈ [n]; H covers a subset S ⊂ Rn if it covers every point of S, and H
partially covers S otherwise. For a family H = {Hi}di=1 of hyperplane in Rn, put

fH =

d∏
i=1

Hi.

Thus fH is a polynomial of degree d. If H covers A, then f vanishes identically on
A. If R is a domain the converse holds, and thus H covers A iff fH ∈ 〈ϕ1, . . . , ϕn〉.
We now revisit the original combinatorial problem studied by Alon and Füredi,
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which is part c) of the following theorem. However, our proof is via Theorem 1.1
instead of the approach used in [AF93].

Theorem 6.1. Let R be a domain, let A =
∏n
i=1Ai ⊂ Rn be a finite grid, and let

H = {Hi}di=1 be family of hyperplanes in Rn.
a) If H partially covers A, then H fails to cover at least
m(#A1, . . . ,#An;

∑n
i=1 #Ai − d) points of A.

b) For all d ∈ Z+, there is a family of hyperplane {Hi = tji − xi}di=1 with ji ∈ [n]
and xi ∈ Ai which covers all but exactly
m(#A1, . . . ,#An;

∑n
i=1 #Ai − d) points of A.

c) If H covers all but exactly one point of A, then d ≥
∑n
i=1(#Ai − 1).

Proof. a) As above, H covers x ∈ Rn iff fH(x) = 0. Apply Alon-Füredi.
b) The sharpness construction of §3.3 is precisely of this form.
c) If H covers all points of A except one, then

1 = UA(H1 . . . Hd) ≥ m(#A1, . . . ,#An;

n∑
i=1

#Ai − d),

so Lemma 2.2 gives
∑n
i=1 #Ai − d ≤ n, i.e. d ≥

∑n
i=1(#Ai − 1). �

We complement Theorem 6.1 by computing the minimum cardinality of a hyper-
plane covering of a finite grid (not necessarily specifying Condition (D)) over a ring
R.

Theorem 6.2. Let A =
∏n
i=1Ai ⊂ Rn be a finite grid, and let H = {Hi}di=1 be a

hyperplane covering of A. Then d ≥ min #Ai.

Proof. First we observe that if A satisfies Condition (D) then the result is almost
immediate: going by contraposition, if d ≤ #Ai−1 for all i ∈ [n] then fH is nonzero
and A-reduced, so it cannot vanish identically on A.

Now we give a non-polynomial method proof in the general case. Without loss
of generality assume #A1 ≥ · · · ≥ · · · ≥ #An. We claim that any hyperplane
H =

∑n
i=1 citi + g covers at most

∏n−1
i=1 #Ai points of A: this suffices, for then

d ≥ #An.
proof of claim: Fix i ∈ [n] such that ci is not a zero-divisor in R. Let π : Rn →
Rn−1 be the projection (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn). Then

A =
∐

x′=(x1,...,xi−1,xi+1,...,xn)∈π(A)

{x1} × · · · × {xi−1} ×Ai × {xi+1} × . . . {xn}

is a partition of A into #π(A) =
∏
j 6=i #Aj nonempty subsets, each one of which

meets H in at most one point. So

# (Z(H) ∩A) ≤
∏
j 6=i

#Aj ≤
n−1∏
i=1

#Ai. �

Conjecture 6.3. Let R be a ring, and let A1, . . . , An ⊂ R be nonempty (but possibly
infinite). Let H = {Hj}j∈J be a covering of the grid A =

∏n
i=1Ai by hyperplanes.

Then #J ≥ minni=1 #Ai.

Remark 6.4. a) For i ∈ [n], let Bi ⊂ Ai ⊂ R. Then we need at least as many
hyperplanes to cover

∏n
i=1Ai as we do to cover

∏n
i=1Bi. Together with Theorem

6.2 it follows that in the setting of Conjecture 6.3 we need at least min(#Ai,ℵ0)
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hyperplanes. Thus Conjecture 6.3 holds when R is countable.
b) When R is a field and A = Rn, Conjecture 6.3 is a case of [Cl12, Thm. 3].

6.2. Partial Covers and Blocking Sets in Finite Geometries. The same ideas
can be used to prove old and new results about Desarguesian projective and affine
spaces over finite fields.

Let PG(n, q) denote the n-dimensional projective space over Fq (the same object
would in some other circles be denoted by Pn(Fq)) and let AG(n, q) denote the n-
dimensional affine space over Fq (resp. An(Fq)). The set AG(n, q) comes equipped
with a sharply transitive action of the additive group of Fnq and thus a choice of
a point x ∈ AG(n, q) induces an isomorphism AG(n, q) ∼= Fnq . We will make such
identifications without further comment.

A partial cover of PG(n, q) is a set of hyperplanes that do not cover all the
points. The points missed by a partial cover are called holes.

Theorem 6.5. Let H be a partial cover of PG(n, q) of size k ∈ Z+. Then H has
at least m(q, . . . , q;nq − k + 1) holes.

Proof. Let H ∈ H. Then PG(n, q) \H ∼= AG(n, q) so H\H is a partial cover of Fnq
by k − 1 hyperplanes. As above, there are at least m(q, . . . , q;nq − (k − 1)) points
not covered by H. �

Corollary 6.6. If 0 ≤ a < q, a partial cover of PG(n, q) of size q + a has at least
qn−1 − aqn−2 holes.

Proof. By Theorem 6.5 there are at least m(q, . . . , q; (n− 1)q − a+ 1) holes. Since
0 ≤ a < q, the greedy distribution is (q, . . . , q, q − a, 1), and the result follows. �

S. Dodunekov, L. Storme and G. Van de Voorde have shown that a partial cover of
PG(n, q) of size q+a has at least qn−1−aqn−2 holes if 0 ≤ a < q−2

3 [DSV10, Thm.
17]. Corollary 6.6 gives an improvement in that the restriction on a is relaxed. They
also show that if a < q−2

3 and the number of holes are at most qn−1, then they are
all contained in a single hyperplane. We cannot make any such conclusions from
our arguments.

Projective duality yields a dual form of Theorem 6.5: k points in PG(n, q) which do
not meet all hyperplanes must miss at least m(q, . . . , q;nq − k + 1) of them. Thus:

Theorem 6.7. Let S be a set of k points in AG(n, q). Then there are at least
m(q, . . . , q;nq − k + 1)− 1 hyperplanes of AG(n, q) which do not meet S.

Proof. Add a hyperplane at infinity to get to the setting of PG(n, q) and then apply
the dual form of Theorem 6.5. �

The general problem of the number of linear subspaces missed by a given set of
points in PG(n, q) is studied by K. Metsch in [Me06]. We wish to note that The-
orem 6.7 gives the same bounds as Part a) of [Me06, Theorem 1.2] for the specific
case when the linear subspaces are hyperplanes.

A blocking set in AG(n, q) or PG(n, q) is a set of points that meets every hy-
perplane. The union of the coordinate axes in Fnq yields a blocking set in AG(n, q)
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of size n(q − 1) + 1. J. Doyen conjectured in a 1976 Oberwolfach lecture that
n(q− 1) + 1 is the least possible size of a blocking set in AG(n, q). A year later two
independent proofs appeared, by R. E. Jamison [Jam77], and then a (simpler) proof
by A. E. Brouwer and A. Schrijver [BS78]. We are in a position to give another
proof.

Corollary 6.8 (Jamison-Brouwer-Schrijver). The minimum size of a blocking set
in AG(n, q) is n(q − 1) + 1.

Proof. Let B ⊂ AG(n, q) be a blocking set of cardinality at most n(q − 1). By
Theorem 6.7 and Lemma 2.2 there are at least

m(q, . . . , q;nq − n(q − 1) + 1)− 1 = m(q, . . . , q;n+ 1)− 1 ≥ 1

hyperplanes which do not meet B. �

Turning now to PG(n, q), every line is a blocking set. But classifying blocking
sets that do not contain any line is one of the major open problems in finite geome-
try. For a survey on blocking sets in finite projective spaces, see [DBS11, Chapter 3].

If B ⊂ PG(n, q), x ∈ B and H is a hyperplane in PG(n, q), then H is a tan-
gent to B through x if H ∩ B = {x}. An essential point of a blocking set B
in PG(n, q) is a point x such that B \ {x} is not a blocking set. A point x of B is
essential if and only if there is a tangent hyperplane to B through x.

Theorem 6.9. Let B be a blocking set in PG(n, q) and x an essential point of B.
There are at least m(q, . . . , q;nq −#B + 2) tangent hyperplanes to B through x.

Proof. Let H be a tangent hyperplane to B through x. Then B′ = B \ {x} ⊂
PG(n, q) \H ∼= AG(n, q). By Theorem 6.7 there are at least m(q, . . . , q;nq−#B+
2) − 1 hyperplanes in AG(n, q) that do not meet B′. Since B is a blocking set all
of these hyperplanes, when seen in PG(n, q), must meet x. Thus there are at least
m(q, . . . , q;nq −#B + 2) tangent hyperplanes to B through x. �

Corollary 6.10 (Blokhuis-Brouwer [BB86]). Let B be a blocking set in PG(2, q)
of size 2q − s. There are at least s+ 1 tangent lines through each essential point of
B.

Proof. By Theorem 6.9, each essential point of B has at least

m(q, q; 2q − (2q − s) + 2) = m(q, q; s+ 2)

tangent lines. Since #B = 2q−s < q2+q+1 = #PG(2, q), there is x ∈ PG(2, q)\B.
There are q + 1 lines through x, so 2q − s = #B ≥ q + 1. Thus s + 1 ≤ q, so the
greedy distribution is (s+ 1, 1) and m(q, q; s+ 2) = s+ 1. �

Corollary 6.11. [DSV10, Theorem 7] If 0 ≤ a < q, there are at least qn−1−aqn−2
tangent hyperplanes through each essential point of a blocking set of size q + a + 1
in PG(n, q).

Proof. By Theorem 6.9 and the proof of Corollary 6.6, each essential point of B has
at least m(q, . . . , q;nq − (q + a+ 1) + 2) = qn−1 − aqn−2 tangent hyperplanes. �
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7. Multiplicity Enhancements

That one can assign to a zero of a polynomial a positive integer called multiplic-
ity is a familiar concept in the univariate case. The definition of the multiplicity
m(f, x) of a multivariate polynomial f ∈ R[t] at a point x ∈ Rn (see §7.2) may
be less familiar, but the concept is no less useful. All of the main results consid-
ered thus far are upper bounds on #ZA(f), the number of zeros of a polynomial
f on a finite grid. By a multiplicity enhancement we mean the replacement
of #ZA(f) by

∑
x∈Am(f, x) in such an upper bound. The prototypical example:

for a nonzero univariate polynomial f over a field F we have
∑
x∈F m(f, x) ≤ deg f .

Recently, multiplicity enhancements have become part of the polynomial method
toolkit. In [DKSS13] Dvir, Kopparty, Saraf and Sudan gave a multiplicity enhance-
ment of the Schwartz-Zippel Lemma. This was a true breakthrough with important
applications in both combinatorics and theoretical computer science. In §4 we saw
that the original work of Schwartz, DeMillo-Lipton and Zippel consists of more than
the Schwartz-Zippel Lemma and gave some extensions of this work, in particular
working over an arbitrary ring. So it is natural to consider multiplicity enhance-
ments of these results. We do so here, giving a multiplicity enhancement of Theorem
4.3 and thus also of Theorem 4.2. On the other hand the Alon-Füredi Theorem does
not allow for a multiplicity enhancement (at least not in the precise sense described
above), as we will see in Example 7.13.

This is a situation where working over a ring under Condition (D) makes things
harder: even the univariate case is nontrivial! Lemma 7.7, which pushes through
the root-factor phenomenon under Condition (D), is one of our main contributions.

In places our treatment closely follows that of [DKSS13]. We need to set things
up over a ring, whereas they work over a field. Nevertheless, their work carries over
verbatim much of the time, and when this is the case we state the result in the form
we need it, cite the analogous result in [DKSS13] and omit the proof.

7.1. Hasse Derivatives. Let R[t] = R[t1, . . . , tn]. For I = (i1, . . . , in) ∈ Nn, put

tI = ti11 · · · tinn
and |I| =

∑n
j=1 ij = deg tI . Thus, {tI}I∈Nn is an R-basis for R[t]. We put(

I

J

)
=

n∏
k=1

(
ik
jk

)
,

taking
(
i
j

)
= 0 if j > i.

For J ∈ Nn, let DJ : R[t]→ R[t] be the unique R-linear map such that

DJ(tI) =

(
I

J

)
tI−J .

We have DJ(tI) = 0, unless J ≤ I. Repeated application of the identity

tn = (t− x+ x)n =

n∑
j=0

(
n

j

)
xn−j(t− x)j
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leads to the Taylor expansion: for f ∈ R[t] and x ∈ Rn,

(2) f(t) =
∑
J

DJ(f)(x)(t− x)J .

Applying the automorphism t 7→ t+ x gives the alternate form

f(t+ x) =
∑
J

DJ(f)(x)tJ .

These DJ(f) were defined in [Ha36] and are now called Hasse derivatives.

Proposition 7.1 ([DKSS13, Prop. 4]). Let f ∈ R[t], and let I, J ∈ Nn.
a) If f is homogeneous of degree d, then DI(f) is homogeneous of degree d− |I|.
b) We have

DJ(DI(f)) =

(
I + J

I

)
DI+J(f).

7.2. Multiplicities.

Let f ∈ R[t] be nonzero and x ∈ Rn. The multiplicity of f at x, denoted
m(f, x), is the natural number m such that DJ(f)(x) = 0 for all J with |J | < m
and DJ(f)(x) 6= 0 for some J with |J | = m. We put m(0, x) =∞ for all x ∈ Rn.

Lemma 7.2 ([DKSS13, Lemma 5]). For f ∈ R[t], x ∈ Rn and I ∈ Nn, we have

m(DIf, x) ≥ m(f, x)− |I|.

Given a vector f = (f1, . . . , fk) ∈ R[t]k, we put m(f, x) = min1≤j≤km(fj , a).

Proposition 7.3 ([DKSS13, Prop. 6]). Let X1, . . . , Xn, Y1, . . . , Y` be independent
indeterminates. Let f = (f1, . . . , fk) ∈ R[X1, . . . , Xn]k and let g = (g1, . . . , gn) ∈
R[Y1, . . . , Y`]

n. We define f ◦ g ∈ R[Y1, . . . , Y`]
k to be f(g1, . . . , gn).

a) For any a ∈ R` we have

m(f ◦ g, a) ≥ m(f, g(a))m(g − g(a), a).

b) We have
m(f ◦ g, a) ≥ m(f, g(a)).

Corollary 7.4 ([DKSS13, Cor. 7]). Let f ∈ R[t] and let a, b ∈ Rn. Then for all
c ∈ R we have

m(f(a+ tb), c) ≥ m(f, a+ cb).

Lemma 7.5. Let R be a ring, let m,n ∈ Z+, and let f =
∏m
i=1(t − xi), g =∏n

j=1(t− yj) ∈ R[t]. Suppose xi − yj ∈ R× for all i 6= j. Then 〈f, g〉 = R[t].

Proof. We have an injection of R-modules ι : 〈f, g〉 ↪→ R[t], and our task is to show
that ι is surjective. By [CA, Prop. 7.12], it is enough to show that for all maximal
ideals m of R, ιm : 〈f, g〉 ⊗R Rm → R[t]⊗R Rm is surjective.

Thus we may assume that (R,m) is a local ring and xi − yj /∈ m for all i 6= j.

Write f and g for the images of f and g in (R/m)[t]. Since m is maximal, R/m
is a field and (R/m)[t] is a PID. The condition on xi and yj ensures that none of

the prime factors of g are associate to any of the prime factors of f , so f and g
are relatively prime and thus 〈f, g〉 = (R/m)[t]. Let M = R[t]/〈f, g〉. Then M
is finitely generated over the local ring R and M/mM = (R/m)[t]/〈f, g〉 = 0. By
Nakayama’s Lemma (e.g. [CA, Theorem 3.38]), M = 0. �
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Lemma 7.6. Let R be a ring.
a) Let a, b, c ∈ R. Suppose a | bc and 〈a, b〉 = R. Then a | c.
b) Let a, b ∈ R. If 〈a, b〉 = R, then 〈am, bn〉 = R for all m,n ∈ Z+.

Proof. a) Choose x,A,B ∈ R such that ax = bc and Aa+Bb = 1. Then

Bax = Bbc = (1−Aa)c = c−Aac,
so

a(Bx+Ac) = c.

b) This is a special case of a standard result in ring theory [CA, Prop. 4.16]. �

Lemma 7.7. Let R be a ring, and let f ∈ R[t] be a polynomial of degree d ≥ 1. Let
A = {x1, . . . , xn} ⊂ R be a finite set satisfying Condition (D). Then∑

x∈A
m(f, x) ≤ d.

Proof. We have (t− xi)m(f,xi) | f for all i ∈ [n]. In particular we may write

f(t) = (t− x1)m(f,x1)g1(t),

so deg f ≥ m(f, x1) and we are done if n = 1. So suppose n ≥ 2. We may replace
R by its total fraction ring and thus assume that for all x 6= y ∈ A, x − y ∈ R×.
Lemmas 7.5 and 7.6b) then give that for all 2 ≤ k ≤ n,

〈
k−1∏
i=1

(t− xi)m(f,xi), (t− xk)m(f,xk)〉 = R[t].

Then
(t− x2)m(f,x2) | f(t) = (t− x1)m(f,x1)f1(t),

so by Lemma 7.6a) we may write f1(t) = (t− x2)m(f,x2)f2(t) and thus

f(t) = (t− x1)m(f,x1)(t− x2)m(f,x2)f2(t),

so deg f ≥ m(f, x1) +m(f, x2). Continuing in this manner we eventually get

deg(f) ≥ m(f, x1) + · · ·+m(f, xn). �

Lemma 7.8 (DKSS Lemma). Let A =
∏n
i=1Ai ⊂ Rn be a finite subset satisfying

Condition (D). Let f ∈ R[t], and write

f =

dn∑
j=0

fj(t1, . . . , tn−1)tjn

with fdn 6= 0. Put A′ =
∏n−1
i=1 Ai. For all x′ = (x1, . . . , xn−1) ∈ A′, we have∑

x∈An

m(f, (x′, x)) ≤ (#An)m(fdn , x
′) + dn.

Proof. Choose I ′ ∈ Nn−1 such that |I ′| = m(fdn , x
′) and (DIfdn)(x′) 6= 0. Put

I = I ′ × {0} ∈ Nn. Then

DIf =

dn∑
j=0

DI′fjt
j
n,

so DIf 6= 0. By Lemma 7.2, we have

m(f, (x′, x)) ≤ |I|+m(DIf, (x′, x)) = m(fdn , x
′) +m(DIf, (x′, x)).
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Apply Corollary 7.4 to DIf with a = (x′, 0), b = (0, 1) and c = x: we get

m(DIf, (x′, x)) ≤ m((DIf)(x′, tn), x).

Summing over x ∈ An gives∑
x∈An

m(f, (x′, x)) ≤ (#An)m(fdn , x
′) +

∑
x∈An

m((DIf)(x′, tn), x).

Since I = I ′ × {0}, (DIf)(x′, tn) has degree dn and thus Lemma 7.7 gives∑
x∈An

m((DIf)(x′, tn), x) ≤ dn.

The result follows. �

Remark 7.9. The case of Lemma 7.8 in which R is a field and A1 = · · · = An
is due to Dvir, Kopparty, Saraf and Sudan [DKSS13, pp. 8-9]. Our proof follows
theirs very closely, but uses Lemma 7.7 in place of the root-factor phenomenon.

7.3. Multiplicity Enhanced Schwartz Theorem.

Theorem 7.10 (Multiplicity Enhanced Schwartz Theorem). Let R be a ring, let
A =

∏n
i=1Ai ⊂ Rn be finite, nonempty and satisfy Condition (D), and let f =

fn ∈ F [t1, . . . , tn] be a nonzero polynomial. Let dn = degtn f , and let fn−1 ∈
R[t1, . . . , tn−1] be the coefficient of tdnn in fn. Let dn−1 = degtn−1

fn−1, and let

fn−2 ∈ R[t1, . . . , tn−2] be the coefficient of t
dn−2

n−2 in fn−2. Continuing in this manner
we define for all 1 ≤ i ≤ n a polynomial fi ∈ R[ti, . . . , tn] with degti fi = di. Then∑

x∈A
m(f, x) ≤ #A

n∑
i=1

di
#Ai

.

Proof. By induction on n. The case n = 1 is Lemma 7.7. Suppose the result holds
for polynomials in n − 1 variables. Let A′ =

∏n−1
i=1 Ai. Applying Lemma 7.8 and

then the induction hypothesis, we get∑
x∈A

m(f, x) =
∑
x′∈A′

∑
x∈An

m(f, (x′, x)) ≤ #An
∑
x′∈A′

m(fn−1, x
′) + #A′dn

≤ #An#A′
n−1∑
i=1

di
#Ai

+ #A
dn

#An
= #A

n∑
i=1

di
#Ai

. �

Theorem 7.11 (Multiplicity Enhanced Generalized Schwartz-Zippel Lemma). Let
A =

∏n
i=1Ai ⊂ Rn be a finite grid satisfying Condition (D), and suppose #A1 ≥

· · · ≥ #An. Let f ∈ R[t] = R[t1, . . . , tn] be a nonzero polynomial. Then∑
x∈A

m(f, x) ≤ deg f

n−1∏
i=1

#Ai.

Proof. This follows from Theorem 7.10 as Theorem 4.2 does from Theorem 4.3. �

Remark 7.12. a) When R is a field, Theorem 7.10 was proved by Geil and Thom-
sen [GT13, Thm. 5]. They also build closely on [DKSS13].
b) Unlike most of the other results presented here, Theorem 7.10 is not claimed to
be sharp in all cases. In fact, it is not always sharp, and Geil and Thomsen give
significant discussion of this point including an algorithm which sometimes leads to
an improved bound [GT13, Thm. 6] and further numerical exploration.



ON ZEROS OF A POLYNOMIAL IN A FINITE GRID 21

7.4. A Counterexample. It is natural to ask whether Alon-Füredi holds in mul-
tiplicity enhanced form, i.e., whether the bound

#ZA(f) ≤ #A−m(#A1, . . . ,#An;

n∑
i=1

#Ai − deg f)

could be improved to∑
x∈A

m(f, x) ≤ #A−m(#A1, . . . ,#An;

n∑
i=1

#Ai − deg f).

The following example shows that such an improvement does not always hold.

Example 7.13. Let n = 2 and R = A1 = A2 = Fq. Let d1, d2 ∈ Z+ be such that

d1, d2 < q ≤ d1 + d2 + 1. Then f = td11 t
d2
2 is A-reduced, and we have∑

x∈A
m(f, x) = qd1 + qd2 > q2 − 2q + d1 + d2 + 1 = q2 −m(q, q; 2q − d1 − d2).

Notice that the polynomial f = td11 t
d2
2 is polylinear (cf. §3.4). So far as we know it

may be true that
∑
x∈Am(f, x) is maximized among all polynomials of fixed degree

when f is a polylinear polynomial. We leave this as an open problem.
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