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Abstract. We pursue various restricted variable generalizations of the Chevalley-

Warning theorem for low degree polynomial systems over a finite field. Our

first such result involves variables restricted to Cartesian products of the Van-
dermonde subsets of Fq defined by Gács-Weiner and Sziklai-Takáts. We then

define an invariant ω(X) of a nonempty subset of Fn
q . Our second result in-

volves X-restricted variables when the degrees of the polynomials are small
compared to ω(X). We end by exploring various classes of subsets for which

ω(X) can be bounded from below.

1. Introduction

We denote the set of non-negative integers by N and the set of positive integers by
Z+. Throughout, Fq denotes a finite field of order q and characteristic p. For a
finite, nonempty subset X of a field F , we put

ϕX(t) :=
∏
x∈X

(t− x),

so ϕX generates the ideal of all polynomials f ∈ F [t] that vanish identically on X.

Our point of departure is the following results of Chevalley and Warning, pub-
lished in consecutive articles in the same journal in 1935 [Ch35], [Wa35].1

Theorem 1.1. Let f1, . . . , fr ∈ Fq[t1, . . . , tn] be polynomials of degrees d1, . . . , dr ∈
Z+, and suppose that d :=

∑r
j=1 dj < n. Put

Z = Z(f1, . . . , fr) := {x = (x1, . . . , xn) ∈ Fnq | f1(x) = . . . = fr(x) = 0}
be the solution set of the polynomial system.

a) (Chevalley) We cannot have #Z = 1.
b) (Chevalley-Warning) We have p | #Z.
c) (Warning) If Z is nonempty, then #Z ≥ qn−d.

The second author has taken the perspective (e.g. in [Cl14]) that Theorem 1.1a) is
a precursor of the following celebrated result.

Theorem 1.2 (Combinatorial Nullstellensatz II [Al99]). Let F be a field, let n ∈
Z+, let d1, . . . , dn ∈ N and let f ∈ F [t1, . . . , tn] be a polynomial. We suppose:

(i) We have deg(f) = d1 + . . .+ dn, and

(ii) The coefficient of td11 · · · tdnn in f is nonzero.

Then, for any subsets X1, . . . , Xn of F with #Xi = di + 1 for 1 ≤ i ≤ n, there
exists an x = (x1, . . . , xn) ∈ X :=

∏n
i=1Xi such that f(x) 6= 0.

1Some further information about the history of these results can be found in [CGS21, §1].
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To see the connection, we introduce the Chevalley polynomial

χ = χ(f1, . . . , fr) :=

r∏
j=1

(1− fq−1j ).

For all x ∈ Fnq , we have

χ(x) =

{
1 if x ∈ Z(f1, . . . , fr)

0 otherwise
.

Because the hypotheses and the conclusion of Theorem 1.1a) are stable under trans-
lation of variables, to prove Theorem 1.1a), seeking a contradiction we may assume
that Z = {0}, and then the polynomial

P := χ(t1, . . . , tn)−
n∏
i=1

(1− tq−1i )

evaluates to 0 for all x ∈ Fnq . But our hypothesis
∑r
j=1 dj < n implies that

deg(χ) < (q − 1)n, so the coefficient of tq11 · · · tq−1n in P is (−1)n+1 6= 0. This con-
tradicts Theorem 1.2 with X1 = . . . = Xn = Fq.

In turn Theorem 1.2 motivates us to consider restricted variable generaliza-
tions of Theorem 1.1: instead of considering solutions to our polynomial system
f1 = . . . = fr = 0 on all of Fnq , we choose a subset X ⊂ Fnq and look only at

ZX := {x = (x1, . . . , xn) ∈ X | f1(x) = . . . = fr(x) = 0}.

A similar argument gives the following result of Schauz [Sc08] and Brink [Br11].

Theorem 1.3. Let F be a field χ ∈ F [t1, . . . , tn], let X1, . . . , Xn be nonempty finite
subsets of F , and put X :=

∏n
i=1Xi.

a) If deg(χ) <
∑n
i=1(#Xi − 1), then #{x ∈

∏n
i=1Xi | χ(x) 6= 0} 6= 1.

b) (Restricted Variable Chevalley Theorem) Let f1, . . . , fr ∈ Fq[t1, . . . , tn] have
positive degrees. If

(1) (q − 1)

r∑
j=1

deg(fj) <

n∑
i=1

(#Xi − 1),

then we have #ZX 6= 1.

Just as parts b) and c) of Theorem 1.1 give two different generalizations of Theorem
1.1a), it is natural to ask for restricted variable generalizations of Theorem 1.1b)
and of Theorem 1.1c), each generalizing Theorem 1.3b).

The latter has been attained: in [CFS17, Thm. 1.6], Clark-Forrow-Schmitt
give a Restricted Variable Warning Theorem:2 the conclusion of Theorem
1.3b) is strengthened to: either ZX = ∅ or #ZX is at least a certain function of
n, d1, . . . , dr,#X1, . . . ,#Xn that is at least 2 when (1) holds.

The former case is addressed by the following result of [Cl14].

2In fact [CFS17, Thm. 1.6] is a further ring theoretic generalization motivated by work of
Brink [Br11], but in the present paper we will only consider polynomials over a field.
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Theorem 1.4. [Cl14, Thm. 19] Let f1, . . . , fr ∈ Fq[t] be polynomials of positive
degrees. For 1 ≤ i ≤ n let Xi be a nonempty subset of Fq. Put X :=

∏n
i=1Xi and

ϕi(ti) := ϕXi
(ti) =

∏
xi∈Xi

(ti − xi).

Let

ZX := {x = (x1, . . . , xn) ∈ X | P1(x) = . . . = Pr(x) = 0}.
Suppose

(2) (q − 1)

r∑
j=1

deg(fj) <

n∑
i=1

(#Xi − 1).

Then as elements of Fq we have

(3)
∑
x∈ZX

1∏n
i=1 ϕ

′
i(xi)

= 0.

Theorem 1.4 is proved using the Coefficient Formula [Cl14, Thm. 3], a refinement
of Theorem 1.2 due to Schauz [Sc08], Lason [La10] and Karasev-Petrov [KP12].

In the case that X1 = . . . = Xn = Fq, we have ϕi(ti) = tqi − ti, so ϕ′i(ti) = −1.
In this case (3) becomes the assertion that (−1)n#Z = 0 in Fq, so p | #Z, and
we recover Theorem 1.1b). Moreover, (3) certainly implies that #ZX 6= 1, so we
recover Theorem 1.3b). Thus Theorem 1.4 is a simultaneous generalization of the
Chevalley-Warning Theorem and the Restricted Variable Chevalley Theorem, so in
[Cl14] this result is called the “Restricted Variable Chevalley-Warning Theorem.”

In this note we wish to reopen the question of what should, or could, consti-
tute a Restricted Variable Chevalley-Warning Theorem. A distinguishing feature
of Theorem 1.1b) is that it gives a “p-adic inequality on #Z” – i.e., a p-divisibility
on #Z – a feature that does not seem to be present in Theorem 1.4. Clearly
the condition (2) of Theorem 1.4 is not in general sufficient to deduce p | #ZX :
for instance fix 1 ≤ I ≤ n, suppose 0 ∈ XI and take r = 1 and f1 = tI : then
ZX = {(x1, . . . , xn) ∈

∏n
i=1Xi | xI = 0}, so #ZX =

∏
i 6=I #Xi. This and similar

examples show that it is not reasonable to expect ZX to be divisible by p unless
p | #Xi for all i. Moreover, beyond any condition on the sizes of the Xi’s, we want
somehow to take their structure into account.

Here is an example of how to do this, a generalization of Theorem 1.1b) due to
Aichinger-Moosbauer [AM21, p. 62].

Proposition 1.5. In the setting of Theorem 1.4, suppose moreover that each Xi is
a coset: that is, there is a subgroup Gi ⊆ (Fq,+) and ai ∈ Fq such that Xi = ai+Gi
for all 1 ≤ i ≤ n. If (2) holds, then p | #ZX .

Proof. If for all 1 ≤ i ≤ n there is ci ∈ F×q such that for all xi ∈ Xi we have
ϕ′i(xi) = ci, then we have∑

x∈ZX

1∏n
i=1 ϕ

′
i(xi)

=
∑
x∈ZX

1

c1 · · · cn
=

#ZX
c1 · · · cn

,

so when we apply Theorem 1.4 the conclusion is 0 = #ZX

c1···cn and thus p | #ZX .

For any finite nonempty subset X of a field F , if ϕX(t) :=
∏
x∈X(t − x), then



4 ANURAG BISHNOI AND PETE L. CLARK

for all x ∈ X we have

ϕ′X(x) =
∏

y∈X\{x}

(x− y).

Taking X = Xi = ai +Gi, for all xi ∈ ai +Gi we get

ϕ′Xi
(xi) =

∏
y∈(ai+Gi)\{xi}

(xi − y) =
∏

x∈Gi\{0}

x =: ci;

that is to say, the value of ϕ′Xi
(xi) does not depend upon the choice of xi ∈ Xi. �

The argument of Proposition 1.5 will work whenever X =
∏n
i=1Xi and for all

1 ≤ i ≤ n we have that ϕ′Xi
(x) = ϕ′Xi

(y) for all x, y ∈ Xi. Our first main result
is that, for any field F of characteristic p > 0 and any finite subset X ⊂ F of
cardinality at least 2, we have ϕ′X(x) = ϕ′X(y) for all x, y ∈ X if and only if X
has size divisible by p and is a Vandermonde set3 in the sense of Gács-Weiner
[GW03] and Sziklai-Takáts [ST08]. We deduce the following result.

Theorem 1.6 (Restricted Chevalley-Warning for Vandermonde Sets). For 1 ≤
i ≤ n, let Xi ⊂ Fq be a Vandermonde set of size divisible by p. Let f1, . . . , fr ∈
Fq[t1, . . . , tn] be polynomials of positive degree such that

(q − 1)

r∑
j=1

deg(fj) <

n∑
i=1

(#Xi − 1).

Let

ZX := {x ∈
n∏
i=1

Xi | P1(x) = . . . = Pr(x) = 0}.

Then p | #ZX .

We also give some examples of Vandermonde subsets of Fq of cardinality divisible
by p that are not cosets of additive subgroups.

Let F be a field of characteristic p > 0. In §3, for any n ∈ Z+ and any finite,
nonempty subset X ⊂ Fn, we define an invariant ω(X) ∈ N that is (almost) a
multivariate generalization of the invariant ω(Y ) of a subset Y ⊂ Fq considered by
Gács-Weiner and Sziklai-Takáts. We show the following result:

Theorem 1.7. Let X ⊂ Fnq be a nonempty subset, and let f1, . . . , fr ∈ Fq[t1, . . . , tn]
be polynomials of positive degree. If

(4) (q − 1)

r∑
j=1

deg(fj) < ω(X),

then

p | #ZX = #{x ∈ X | f1(x) = . . . = fr(x) = 0}.

Of course this focuses attention on what we know about ω(X). We have ω(X) ≥ 1
iff p | #X. Moreover, if Xi is the projection of X onto its ith factor, then we have

(5) ω(X) ≤
n∑
i=1

(#Xi − 1).

3In §2 we will give a self-contained treatment of Vandermonde sets.
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We call a subset X ⊂ Fn optimal if equality occurs in (5). In Lemma 3.3 we show
that if X =

∏n
i=1Xi and each Xi is Vandermonde of size divisible by p, then X is

otpimal. Thus Theorem 1.7 implies Theorem 1.6. Because of this we suggest that
Theorem 1.7 is more deserving of the name “Restricted Variable Chevalley-Warning
Theorem” than Theorem 1.4.

Remark 1.8. The main observation of this paper is that a Restricted Variable
Chevalley Theorem for a subset X ⊂ Fnq should take into account the “structure”
of X via an invariant that measures the vanishing of certain symmetric functions
summed over X. This observation is also the point of departure of a recent preprint
of Nica [Ni21]. The main difference is that while we are interested in restricted vari-
able theorems whose conclusion is p | #ZX , Nica is interested in improvements of
the Combinatorial Nullstellensatz and the Coefficient Formula that take the struc-
ture of the “grid” X =

∏n
i=1Xi into account.

His work and ours were done independently, and despite the similarity of content,
have virtually no overlap.4

2. Vandermonde sets

Vandermonde subsets of finite fields were defined by Gács-Weiner [GW03] in char-
acteristic 2 and by Sziklai-Takáts [ST08] in all characteristics. In this section we
study Vandermonde subsets over any field F of characteristic p > 0.

2.1. Vandermonde Sets and their Polynomials. Let Y be a finite subset of F
of cardinality r ≥ 1. For k ∈ Z+ we put

πk(Y ) :=
∑
y∈Y

yk.

Lemma 2.1. Let {0} 6= Y ⊂ F be a finite subset of size r ≥ 1.

a) If p | r then πk(Y ) 6= 0 for some 1 ≤ k ≤ r − 1.
b) In general we have πk(Y ) 6= 0 for some 1 ≤ k ≤ r.

Proof. Write Y = {y1, . . . , yr}.
a) Consider the r×r Vandermonde matrix V = V (y1, . . . , yr) associated to y1, . . . , yr,
where the i-th row of V is (yi−11 , . . . , yi−1r ). Say πk(Y ) = 0 for all 1 ≤ k ≤ r − 1.
Then V evaluated at the column vector (1, . . . , 1)T is 0, since the the first entry of
the product is r = 0 ∈ F as p | r and rest of the entries are πk(Y ) for 1 ≤ k ≤ r−1.
This contradicts the nonsingularity of V .
b) Suppose first that 0 /∈ Y , and consider the matrix Ṽ obtained from V by mul-

tiplying the jth column by yj , so det Ṽ = y1 · · · yr det(V ) 6= 0. Again we must

have that Ṽ (1, . . . , 1)T 6= 0 which means that πk(Y ) 6= 0 for some 1 ≤ k ≤ r. If
0 ∈ Y , let Y • := Y \ {0}. As we have just shown, there is 1 ≤ k ≤ r − 1 such that
πk(Y •) 6= 0, so then πk(Y ) = πk(Y •) 6= 0. �

For the rest of this section Y will denote a finite subset of F of size r ≥ 2.
We denote by ω(Y ) the least k ∈ Z+ such that πk(Y ) 6= 0. Lemma 2.1 gives

ω(Y ) ≤

{
r always

r − 1 if p | #Y
.

4In both [Ni21] and the present work, Newton’s identities are used to relate vanishing of power
sums to vanishing of symmetric functions...as surely many others have done as well.
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Following Sziklai-Takáts [ST08] we say that Y is Vandermonde if ω(Y ) = r − 1
and is super-Vandermonde if ω(Y ) = r.

Lemma 2.2. Let Y ⊂ F be finite of cardinality r ≥ 2.

a) For all k ∈ Z+ and α ∈ F× we have πk(Y ) = 0 ⇐⇒ πk(αY ) = 0. Thus
ω(Y ) = ω(αY ) and Y is Vandermonde ⇐⇒ αY is Vandermonde.

b) Suppose Y is Vandermonde. Then for β ∈ F× the translate Y + β is
Vandermonde iff p | r.

Proof. a) Indeed πk(αY ) = αkπk(Y ), and the rest is clear.
b) If Y = {y1, . . . , yr} then for all 1 ≤ k ≤ r − 2, expanding out each term in

πk(Y + β) =

r∑
i=1

(yi + β)k

gives a linear combination of πj(Y ) for j ≤ k together with the final term rβk,
which is zero iff p | r. �

Proposition 2.3. Let F be a field of characteristic p > 0, let Y = {y1, . . . , yr} ⊂ F
be finite of cardinality r ≥ 2, and write

ϕY (t) =

r∏
i=1

(t− yi) = tr +

r−1∑
i=0

ait
i.

a) The following are equivalent:
(i) The subset Y is Vandermonde or super-Vandermonde.
(ii) For 2 ≤ i ≤ r − 1, if p - i then ai = 0.

b) The following are equivalent:
(i) The subset Y is super-Vandermonde.
(ii) For 1 ≤ i ≤ r − 1, if p - i then ai = 0.

Proof. For independent indeterminates x1, . . . , xr and 0 ≤ k ≤ r let sk(x1, . . . , xr)
be the kth elementary symmetric function and let πk(x1, . . . , xr) =

∑r
i=1 x

k
i be the

kth power sum. Note that ai = (−1)r−isr−i(x1, . . . , xr), for 0 ≤ i ≤ r − 1. In the
ring Z[x1, . . . , xr] we have Newton’s identities (see e.g. [Ze84] for a short proof):
for all 1 ≤ k ≤ r we have

ksk(x1, . . . , xr) =

k∑
i=1

(−1)i−1sk−i(x1, . . . , xr)πk(x1, . . . , xr)

and

πk(x1, . . . , xr) = (−1)k−1ksk(x1, . . . , xr)+

k−1∑
i=1

(−1)k−1+isk−i(x1, . . . , xr)πi(x1, . . . , xr).

From these we see that for elements y1, . . . , yr in a field of characteristic p, for any
1 ≤ k ≤ r, the vanishing of the power sums πi(y1, . . . , yr) for 1 ≤ i ≤ k is equivalent
to the vanishing of the elementary symmetric functions si(y1, . . . , yr) for 1 ≤ i ≤ k
and p - i. The result follows easily. �

Theorem 2.4. Let F be a field of characteristic p > 0. For a nonempty subset
Y ⊂ F or size r ≥ 2, the following are equivalent:

(i) There is g ∈ F [t] and c ∈ F× such that ϕY = g(tp) + ct.
(ii) The polynomial ϕ′Y is a nonzero constant (i.e., has degree zero).
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(iii) The polynomial ϕ′Y is constant on Y .
(iv) The set Y is Vandermonde of size a multiple of p.

Proof. (i) ⇐⇒ (iv): It follows from Proposition 2.3a) that Y is Vandermonde of
size divisible by p if and only if ϕY = g(tp) + ct for some c ∈ F . Since p | #Y , by
Lemma 2.1 the set Y is not super-Vandermonde, so c 6= 0.
(i) =⇒ (ii): We have (g(tp) + ct)′ = c.
(ii) =⇒ (iii): This is immediate.
(iii) =⇒ (i): Let r = #Y = degϕY , and let c ∈ F be the constant value of ϕ′Y
on Y . Since the polynomial ϕY (X) is separable, for all y ∈ Y we have ϕ′Y (y) 6= 0,
so c 6= 0. Consider f := ϕY − ct. Then f ′ has degree at most r − 1 and vanishes
identically on Y , a set of size r, so f ′ is the zero polynomial. Thus there is g ∈ F [t]
such that ϕY − ct = f = g(tp). �

As explained in the introduction, Theorem 2.4 implies Theorem 1.6. In fact we get
the following more general result that applies to any field of characteristic p.

Theorem 2.5 (Vandermonde Coefficient Formula). Let F be a field of prime char-
acteristic p. For 1 ≤ i ≤ n let Xi ⊂ F be a finite nonempty Vandermonde subset
of cardinality di + 1 divisible by p. For 1 ≤ i ≤ n, let ci = ϕ′i ∈ F×. Put
d = (d1, . . . , dn) and X =

∏n
i=1Xi. Let f ∈ F [t1, . . . , tn] be d-topped – this means

that the monomial td11 · · · tdnn does not divide any other monomial appearing in f
with a nonzero coefficient, and this holds when deg(f) ≤ d – and let cd(f) be the

coefficient of td11 · · · tdnn in f . Then we have

(c1 · · · cn) cd(f) =
∑
x∈X

f(x).

Proof. This follows from a suitable version of the Coefficient Formula: e.g. from
[Cl14, Thm. 3.9]. �

2.2. More on Cosets. Suppose Y ⊂ F is a coset of a finite subgroup of (F,+).
Then ϕ′Y is constant on Y : this was shown in the proof of Proposition 1.5 when F
is finite, but the argument holds verbatim. Applying Theorem 2.4, we deduce:

Corollary 2.6. Let Y be a coset of a finite subgroup of (F,+). Then Y is a
Vandermonde set.

Corollary 2.6 was shown for additive subgroups in F2a by Gács-Weiner [GW03, Ex.
2.3(i)] and for cosets of additive subgroups in Fq by Sziklai-Takáts [ST08, Prop.
1.8(i)]. Our proof is different from both of theirs, which draw on the theory of
additive polynomials. With this approach one can deduce more about ϕY when Y
is a coset, as we now explain.

Suppose F contains the finite field Fq. A polynomial f ∈ F [t] is functionally
Fq-linear if the induced map E(f) : F → F given by x 7→ f(x) is an Fq-vector
space endomorphism. In characteristic zero, if the induced map E(f) : F → F were
even a group homomorphism then f would have to be of the form f(t) = at for some
a ∈ F ; however in positive characteristic the functionally Fq-linear polynomials are

precisely those of the form
∑n
i=0 ait

qi for ai ∈ F . We say that a polynomial f ∈ F [t]
is additive if it is functionally Fp-linear: equivalently, E(f) : (F,+)→ (F,+) is a
group homomorphism. A polynomial f ∈ F [t] is functionally Fq-affine if f−f(0)
is functionally Fq-linear.
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Theorem 2.7. Let Y ⊂ F be a finite nonempty subset.

a) The following are equivalent:
(i) The subset Y is an Fq-subspace of F .
(ii) The polynomial ϕY is functionally Fq-linear.

b) The following are equivalent:
(i) The subset Y is a coset of an Fq-subspace of F .
(ii) The polynomial ϕY is functionally Fq-affine.

Proof. When F is finite, these results are special cases of [LN97, Thms. 3.56 and
3.57]. The proofs given there do not use the finiteness of F . �

In particular, if Y is a coset of a finite subgroup of (F,+) then ϕY − ϕY (0) is an
additive polynomial, so there are a0, . . . , an, b ∈ F such that

ϕY (t) =

n∑
i=0

ait
pi + b.

Notice that this is stronger than ϕY just being of the form g(tp) + ct. If F ⊇ Fq
and Y is a coset of an Fq-subspace, then there are a0, . . . , an, b ∈ F such that

ϕY (t) =

n∑
i=0

ait
qi + b,

a stronger conclusion still.

2.3. More on Vandermonde Sets. Theorem 1.6 is a generalization of Proposi-
tion 1.5. How much of an improvement is it? This comes down to asking how many
more Vandermonde subsets of Fq of cardinality divisible by p there are than cosets
of additive subgroups. In [ST08, Prop. 1.8(ii)], Sziklai and Takáts construct a fam-
ily of such Vandermonde sets over Fq2 with p = 2 that are, in general, not cosets
of additive subgroups. In particular, certain geometrical objects in finite projective
planes known as hyperovals (see [BCP06] and the references therein for the list of
known infinite families of hyperovals), give rise to such Vandermonde sets. There
are further examples of Vandermonde sets known for small fields (see for example
[AH19, Example 7]), but a full classification is out of reach (simply because a full
classification of hyperovals appears to be out of reach [Va19]).

We ask the following question related to the enumeration of Vandermonde sets.

Question 2.8. For a prime number p and a ∈ Z+, let V (p, n) be the number of
subsets X ⊂ Fpn that are Vandermonde of size divisible by p, and let C(p, n) be the
number of subsets X ⊂ Fpn that are cosets of subgroups of (Fpn ,+). Straightforward
calculation gives

C(p, n) =

n∑
d=0

p(1−d)(n−d)
# GLn(Fp)

# GLd(Fp)# GLn−d(Fp)
,

where

# GLn(Fp) =
n∏
i=1

(pn − pn−i+1).

Is it true that for each fixed p we have C(p, n) = o(V (p, n)) as n→∞?
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3. The Invariant ω(X)

Again let F be a field of characteristic p > 0. For a function f : Fn → F and a
finite subset X ⊂ Fn we put ∫

X

f :=
∑
x∈X

f(x) ∈ F.

A polynomial P ∈ F [t1, . . . , tn] determines a function E(P ) : x ∈ Fn 7→ P (x) ∈ F .
We put

∫
X
P :=

∫
X
E(P ).

For k = (k1, . . . , kn) ∈ Nn, we put |k| := k1 + . . . + kn. For a finite nonempty
subset X ⊆ Fn and k = (k1, . . . , kn) ∈ Nn, let

πk(X) :=

∫
X

tk11 · · · tknn =
∑

x=(x1,...,xn)∈X

xk11 · · ·xknn .

Thus

(6) π0(X) =

∫
X

1 = #X ∈ F.

We put

ω(X) := inf{|k|
∣∣ πk(X) 6= 0}.

Thus for d ∈ N we have ω(X) ≥ d + 1 iff
∫
X
P = 0 for every P ∈ F [t1, . . . , tn] of

degree at most d. In particular, by (6) we have ω(X) ≥ 1 iff π0(X) = 0 iff p | #X.

Our definition allows ω(X) to be infinite, which would occur if and only if πk(X) = 0
for all k ∈ Nn. But the following result shows that this is never the case.

Lemma 3.1. Let X ⊂ Fn be finite and nonempty. For 1 ≤ i ≤ n, let

Xi := {a ∈ F | ∃ (x1, . . . , xi−1, a,xi+1, . . . , xn) ∈ X}

be the projection of X onto its ith coordinate. Then we have

(7) ω(X) ≤
n∑
i=1

(#Xi − 1) .

Proof. Choose x = (x1, . . . , xn) ∈ X, and put

δX,x :=

n∏
i=1

∏
yi∈Xi\{xi}

ti − yi
xi − yi

.

Then deg δX,x =
∑n
i=1 (#Xi − 1). For y ∈ X we have δX,x(y) =

{
1 y = x

0 y 6= x
, so

and
∫
X
δX,x = 1. �

To be sure: when n = 1 and Y ⊆ F is finite of size r ≥ 1, we have ω(Y ) = ω(Y )
if p | #Y , while if p - #Y we have ω(Y ) = 0 and ω(Y ) ≥ 1. (In fact, we did not
define ω(Y ) for subset of size 1: extending the definition we gave, we would have
ω({x}) = 1 if x 6= 0, while ω({0}) would be infinite.)
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3.1. Proof of Theorem 1.7. Once again, let χ :=
∏r
i=1(1− fq−1i ) be Chevalley’s

polynomial, so for x ∈ X we have

χ(x) =

{
1 x ∈ ZX
0 x /∈ ZX

.

Moreover degχ = (q − 1)
∑r
j=1 dj < ω(X), so in Fq we have

#ZX =

∫
X

χ(x) = 0 ∈ Fq.

Since Fq has characteristic p, this yields p | #ZX .

3.2. Optimal Subsets. A finite nonempty subset X ⊆ Fn is optimal if equality
holds in (7):

ω(X) =

n∑
i=1

(#Xi − 1) .

Thus when n = 1 we get that an optimal subset of F is precisely a set that either
has size 1 or is a Vandermonde set of size divisible by p.

Remark 3.2. That Fnq is optimal is the crux of Ax’s “Quick Proof of the Chevalley-
Warning Theorem” [Ax64, §2], [CGS21, Thm. 1.1]. In some sense the proof of
Theorem 1.7 corresponds to the rest of Ax’s proof...which is why it is so short.

Lemma 3.3. For 1 ≤ i ≤ n, let Xi ⊆ F be finite nonempty, and put X :=
∏n
i=1Xi.

a) For all k ∈ Nn we have πk(X) =
∏n
i=1 πki(Xi).

b) Let J := {1 ≤ i ≤ n | #Xi 6= 1}. Then we have

ω(X) =
∑
j∈J

ω(Xj).

c) If each Xi ⊆ Fq is Vandermonde of size divisible by p, then

ω(X) =

n∑
i=1

(#Xi − 1) ,

so X is optimal.

Proof. a) We have

πk(X) =
∑

(x1,...,xn)∈
∏n

i=1Xi

xk11 · · ·xknn =

n∏
i=1

∑
xi∈Xi

xkii =

n∏
i=1

πki(Xi).

Part b) follows in the case where #Xi ≥ 2 for all i, as does part c). If j ∈ {1, . . . , n}\
J and k ∈ Nn is such that πk(X) 6= 0, then π(k1,...,kj−1,0,kj+1,...,kn)(X) 6= 0. If

k ∈ Nn is such that kj = 0 for all j /∈ J , then let k̂ ∈ NJ be the corresponding tuple
with the indices outside of J removed. We have

πk(X) = πk̂(
∏
j∈J

Xj) =
∑
j∈J

ω(Xj). �

Lemma 3.3 and Theorem 1.7 together imply Theorem 1.6.
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3.3. The invariant ω(X) of a coset X. Now we look more closely at ω(X) for
a coset X of a finite additive subgroup of F . The following result reduces us to
studying finite subgroups G ⊂ (Fn,+).

Lemma 3.4 (Affine Invariance). Let AGLn(F ) = Fn o GLn(F ) be the group of
affine transformations of Fn. For all σ ∈ AGLn(F ) and all finite nonempty X ⊂
Fn we have ω(σ(X)) = ω(X).

Proof. The group AGLn(F ) acts on polynomials: if

σ ∈ AGLn(F ) : (x1, . . . , xn) ∈ Fnq 7→ (a1 +

n∑
j=1

m1,jxj , . . . , an +

n∑
j=1

mn,jxj)

and P ∈ F [t1, . . . , tn] then

Pσ = P (a1 +

n∑
j=1

m1,iti, . . . , an +
n∑
j=1

mn,jti).

This action preserves the degree. So if deg(P ) < ω(X) then∫
σ(X)

P =

∫
X

Pσ = 0,

so ω(σ(X)) ≤ ω(X). Applying this with σ−1 and σ(X) in place of σ and X we
deduce that ω(σ(X)) = ω(X). �

Example 3.5. Let X ⊂ F2
p be a nontrivial, proper coset, so #X = p. The group

AGL2(Fp) acts transitively on all nontrivial proper cosets of F2
p, so by Lemma 3.4

all such cosets have the same invariant ω(X); taking X = Fp × {0} and applying
Lemma 3.3 we find that this common value is p− 1. However, for the subgroup

∆ := {(a, a) | a ∈ Fp}
we have ω(∆) = (p − 1) < 2(p − 1) = (#Fp − 1) + (#Fp − 1). Thus optimality is
not AGLn(F )-invariant. More precisely optimality is translation-invariant and is
not generally GLn(F )-invariant.

Proposition 3.6. Let G ⊂ Fnq be an additive subgroup.

a) If G is an Fq-subspace, then ω(G) = (dimFq
(G))(q − 1).

b) If q = p, then ω(G) = (logp(#G))(p− 1).

Proof. a) Let e := dimFq (G). Since GLn(Fq) acts transitively on Fq-subspaces of
dimension e, we have ω(G) = ω(Feq × {0}n−e) = e(q − 1).
b) Every finite subgroup of a field of characteristic p is an Fp-subspace, of dimension
logp(#G). So part a) applies. �

Thus we can compute ω(G) when n = 1 or F = Fp. The remaining case seems
more interesting.

Example 3.7. There are subgroups A1, B1, B2 of (F,+) with

A1
∼= (Z/pZ)2, B1

∼= B2
∼= Z/pZ.

We put
A := A1 × {0}n−1, B = B1 ×B2 × {0}n−2.

Then
ω(A) = ω(A1) = p2 − 1 > 2(p− 1) = ω(B1 ×B2) = ω(B),
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even though A ∼= (Z/pZ)2 ∼= B and thus there is an Fp-linear automorphism σ :
F → F such that B = σ(A).

In light of Examples 3.5 and 3.7 it is not clear to us what form the determination of
ω(G) for an arbitrary finite subgroup G ⊂ (F,+) should take. The following is the
best possible lower bound that takes only the isomorphism class of G into account:

Proposition 3.8 (Aichinger-Moosbauer). Let F be a field of characteristic p > 0,
and let G ⊂ (Fn,+) be a finite subgroup of order pe. Then

(8) ω(G) ≥ e(p− 1).

Proof. This follows from [AM21, Lemma 8.2 and Lemma 12.1]. �

Remark 3.9. Combining Proposition 3.8 and Theorem 1.7, we find that if X ⊂ Fnq
is a coset of a subgroup of order pe and f1, . . . , fr ∈ Fq[t1, . . . , tn] have positive
degree, then if

(q − 1)

 r∑
j=1

deg(fj)

 < d(p− 1),

then p | #ZX . When q = p, this result implies Proposition 1.5. If q = pa with
a > 1, then a better bound follows from [AM21, Thm. 12.2]: we have p | #ZX if

(9) a

 r∑
j=1

deg(fj)

 < p− 1.

The low degree condition (9) has a different form than the low degree condition
(2) of Proposition 1.5, but using an elementary convexity argument, Aichinger and
Moosbauer show that if (2) holds then so does (9).

3.4. Graphs of Functions. We end by giving a class of subsets X of Fnq for which
ω(X) can be bounded from below.

Proposition 3.10. Let n ≥ 2. For f ∈ Fq[t1, . . . , tn−1] of degree d ≥ 1, let

Xf := {(x, f(x)) ∈ Fnq }

be the graph of the associated function E(f) : Fn−1q → Fq. Then:

a) We have ω(Xf ) ≥ (n−1)(q−1)
d .

b) If ω(Xf ) = (n−1)(q−1)
d then d | (n− 1)(q − 1).

c) If n−1 | d | (n−1)(q−1) and the only monomial of degree d in the support

of f is t
d

n−1

1 · · · t
d

n−1

n−1 , then ω(Xf ) = (n−1)(q−1)
d .

d) If n = 2, then ω(Xf ) = q−1
d iff d | q − 1.

Proof. a) For k = (k1, . . . , kn) ∈ N, we have πk(Xf ) =∑
(x1,...,xn−1)∈Fn−1

q

xk11 · · ·x
kn−1

n−1 f(x1, . . . , xn−1)kn =

∫
Fn−1
q

tk11 · · · t
kn−1

n−1 f(t1, . . . , tn−1)kn .

Since µ(Fn−1q ) = (n− 1)(q − 1), if πk(X) 6= 0 then

k1 + . . .+ kn−1 + dkn = deg(tk1 · · · tkn−1fkn) ≥ (n− 1)(q − 1),

so

|k| = k1 + . . .+ kn ≥
k1
d

+ . . .+
kn−1
d

+ kn ≥
(n− 1)(q − 1)

d
.
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b) Clearly equality can only hold if d | (n− 1)(q − 1).
c) If the hypotheses hold, then the only monomial of degree (n − 1)(q − 1) in the

support of f
(n−1)(q−1)

d is tq−11 · · · tq−1n−1, so

π
(0,...,0,

(n−1)(q−1)
d )

Xf =

∫
Fn−1
q

f
(n−1)(q−1)

d 6= 0.

d) When n = 2 and d | q − 1, the conditions of part c) hold. �

When d = 1, the subset Xf ⊂ Fnq is an affine Fq-hyperplane, so it follows from
Proposition 3.6a) that ω(Xf ) = (n− 1)(q− 1), so we get another case in which the
bound of Proposition 3.10a) is sharp.
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