
THE NUMBER OF ATOMS IN AN ATOMIC DOMAIN

PETE L. CLARK, SAURABH GOSAVI, AND PAUL POLLACK

Abstract. We study the number of atoms and maximal ideals in an atomic
domain with finitely many atoms and no prime elements. We show in particular
that for all m,n ∈ Z+ with n ≥ 3 and 4 ≤ m ≤ n

3
there is an atomic domain

with precisely n atoms, precisely m maximal ideals and no prime elements. The
proofs involve an interplay of commutative algebra, algebraic number theory
and additive number theory.

1. Introduction

1.1. Terminology. Let B ⊂ Z+ be infinite, and let A ⊂ B. We say the relative
density of A in B is δ if

lim
n→∞

#(A ∩ [1, n])

#(B ∩ [1, n])
= δ.

We say the density of A is δ if the relative density of A in Z+ is δ. Let R be a
domain (a commutative ring without zero-divisors). Let R• = R \ {0}, R× be the
unit group and R◦ = R• \R×. An element p ∈ R◦ is prime if the ideal (p) is prime;
p ∈ R◦ is an atom if for all x, y ∈ R, p = xy =⇒ x ∈ R× or y ∈ R×. A domain R
is atomic if every x ∈ R◦ is a finite product of atoms and factorial if every x ∈ R◦
is a finite product of primes. A domain is factorial iff it is atomic and all atoms are
prime [CA, Thm. 15.8]. A domain is primefree if it has no prime elements. For a
domain R and a cardinal κ, “R has κ atoms” means there is a set P of atoms of R
of cardinality κ such that every atom of R is associate to a unique p ∈ P . “R has κ
maximal ideals” means the set MaxSpecR of maximal ideals of R has cardinality κ.

A Cohen-Kaplansky domain is an atomic domain with κ < ℵ0 atoms. Let
m,n ∈ Z+ and let q be a prime power. A CK(n)-domain is an atomic domain with
n atoms; a CK(n; q)-domain is a CK(n)-domain which is also an Fq-algebra; and a
CK(n; 0)-domain is a CK(n)-domain of characteristic 0. A CK(n,m)-domain
is a CK(n)-domain with exactly m maximal ideals; a CK(n,m; q)-domain is a
CK(n,m)-domain which is also an Fq-algebra; and a CK(n,m; 0)-domain is a
CK(n,m)-domain of characteristic 0.

1.2. Main Results. For a cardinal κ there is an atomic domain with κ atoms: if κ
is finite we may take a localization of Z, and if κ is infinite we may take k[t] for a
field k of cardinality κ. These examples are not so interesting: they are factorial
domains, so every atom is prime. Our point of departure in this note is the following:

Question 1. For which κ is there a primefree atomic domain with κ atoms?
1
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In [CK46] Cohen-Kaplansky showed that a primefree atomic domain which is not
a field has at least three atoms and that there are local primefree atomic domains
with n atoms for 3 ≤ n ≤ 10 [CK46]. The case κ ≥ ℵ0 has already been handled.

Theorem 1.1. Let κ be an infinite cardinal. Then:

a) [Cl15, Thm. 5.2] There is a primefree local atomic domain with κ atoms.
b) [Cl15, Thm. 5.5] There is a primefree Dedekind domain with κ atoms.

We are left with the – more interesting! – case of κ < ℵ0. Question 1 becomes:
for which n ≥ 3 is there a primefree CK(n)-domain? In this form it was raised by
Coykendall-Spicer [CS12], who showed there are primefree CK(n)-domains for all
n ≥ 3 conditionally on the conjecture that every even n ≥ 8 is a sum of two distinct
primes. They derived this as a consequence of the following result.

Theorem 1.2 (Coykendall-Spicer [CS12]). For any primes p1 < . . . < pm there is
a primefree CK(

∑m
j=1(pj + 1),m; 0)-domain.

In the 1930’s Chudakov, Estermann and van der Corput showed that the subset
of even positive integers which are a sum of two primes has relative density 1
[Ch37, Ch38], [Es38], [vdC37]. From this and Theorem 1.2 it follows that the set of
n ∈ Z+ for which there is a primefree CK(n, 2; 0)-domain or a primefree CK(n, 3; 0)-
domain has density 1. We will give a stronger result with a similar proof, so we
omit the details. By making a different – more elementary – analytic argument, we
may deduce from Theorem 1.2 an answer to Question 1.

Theorem 1.3. For all n ≥ 3 there is a primefree CK(n)-domain.

Here is the key idea of the proof: whereas Coykendall-Spicer apply Theorem 1.2
with m ∈ {2, 3}, to get primefree CK(n,m)-domains, we may choose m in terms of
n. In fact it suffices to establish the following piece of additive number theory.

Theorem 1.4. For all n ≥ 6 there are distinct prime numbers p1, . . . , pm such that
n =

∑m
j=1(pj + 1).

This maneuver leads us to ask a refined version of Question 1 in the finite case.

Question 2. For which m,n ∈ Z+ is there a primefree CK(n,m)-domain?

The main goal of this note is to address Question 2. We give a complete answer for
m = 4, an answer up to finitely many n for m = 3, and an answer up to density 0
for m = 2. Moreover we conjecture a complete answer for all m ≥ 2. For m = 1 we
(only) record an implication of an old result of Cohen-Kaplansky. In more detail:

Theorem 1.5. If there is a primefree CK(n,m)-domain, then m ≤ n
3 .

Theorem 1.6. Let m and n be positive integers.

a) If n ≥ 10 is even and m ∈ [3, n3 ], there is a primefree CK(n,m; 0)-domain.
b) If n ≥ 13 is odd and m ∈ [4, n3 ], there is a primefree CK(n,m; 0)-domain.
c) If n is sufficiently large, there is a primefree CK(n, 3; 0)-domain.

Theorem 1.7.

a) The set of n ∈ Z+ for which there is a primefree CK(n, 2; 0)-domain has
density 1.
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b) Conditionally on the Goldbach Conjecture – Conjecture 3.7 in §3 – for every
even n ≥ 6 there is a primefree CK(n, 2; 0)-domain.

c) Conditionally on Schinzel’s generalization of the Goldbach Conjecture– Con-
jecture 3.9 in §3 – for every sufficiently large odd integer n there is a
primefree CK(n, 2; 0)-domain.

Conjecture 1.8. Let n be a positive integer.

a) There is a primefree CK(n, 2; 0)-domain iff n ≥ 6.
b) There is a primefree CK(n, 3; 0)-domain iff n ≥ 9.

Theorem 1.9. The set of primes n such that there is a primefree CK(n, 1)-domain
has density 0 inside the set of all primes.

To prove these results we will draw from three different fields: commutative algebra,
algebraic number theory and additive/analytic number theory. We will use the
structure theory of Cohen-Kaplansky domains developed by Anderson-Mott [AM92]
(commutative algebra) combined with an argument using Krasner’s Lemma to
construct global fields with prescribed local behavior (algebraic number theory) to
establish the following, our main algebraic result.

Theorem 1.10 (Globalization Theorem).

a) Let q be either 0 or a prime power. Let M,n1, . . . , nM ,m1, . . . ,mM ∈ Z+.
Suppose for all 1 ≤ j ≤M there is a primefree CK(nj ,mj ; q)-domain. Then

there is a primefree CK(
∑M

j=1 nj ,
∑M

j=1mj ; q)-domain.

b) If q1, . . . , qm are prime powers and d1, . . . , dm ≥ 2 are integers, there is a

primefree CK(
∑m

j=1

q
dj
j −1
qj−1 ,m; 0)-domain. If q1, . . . , qm are all powers of a

prime power q, there is a primefree CK(
∑m

j=1

q
dj
j −1
qj−1 ,m; q)-domain.

The proofs of Theorems 1.6 and 1.7 combine the Globalization Theorem with results
from additive number theory. These results lie considerably deeper than those used
to prove Theorem 1.4 and include, notably, Helfgott’s recent affirmative solution of
the ternary Goldbach problem [He15]. Fortunately for us they are easy to apply.

Finally, we apply Theorem 1.10 to give results in positive characteristic.

Theorem 1.11. Let q be a prime power.

a) If R is a primefree atomic domain which is an Fq-algebra and not a field,
then R has at least q + 1 atoms.

b) For all n ≥ 3, there is a primefree CK(n; 2)-domain.
c) If q is even, then for all n ≥ 2q2 − q there is a primefree CK(n; q)-domain.
d) If q is odd, then for all n ≥ 2q2−q+1 there is a primefree CK(n; q)-domain.

1.3. Structure of the Paper. In §2 we give material on Cohen-Kaplansky domains.
In §3 we will prove Theorems 1.3–1.7 and 1.9–1.11 and give supporting arguments
for Conjecture 1.8. Final comments are given in §4.
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2. Preliminaries on Cohen-Kaplansky Domains

There is a beautiful structure theory for Cohen-Kaplansky domains pioneered by
Cohen-Kaplansky [CK46] and enhanced by Anderson-Mott [AM92]. In this section
we recall some of these results – and quick consequences of them – for later use.

Theorem 2.1 ([CK46]). A Cohen-Kaplansky domain is Noetherian and has only
finitely many nonzero prime all ideals, all of which are maximal.

Theorem 2.2. Let R be a semilocal domain, with maximal ideals m1, . . . ,mm.

a) R is Cohen-Kaplansky iff Rmj
is Cohen-Kaplansky for all 1 ≤ j ≤ m.

b) Every atom p of R lies in mj for exactly one j, and R ↪→ Rmj
induces a

bijection from the atoms of R lying in mj to the atoms of Rmj .
c) Suppose R is Noetherian of dimension one. The following are equivalent:

(i) R has a prime element.
(ii) For at least one j, Rmj

has a prime element.
(iii) For at least one j, Rmj

is a DVR.

Proof. Parts a) and b) are results from [CK46]. c) (i) =⇒ (ii): if p ∈ R is prime,
then since dimR = 1 we have (p) = mj for some j and p is a prime element of Rj .
(ii) ⇐⇒ (iii): for all j, Rmj

is one-dimensional local Noetherian, hence is a DVR
iff the maximal ideal is principal [CA, Thm. 17.19]. (iii) =⇒ (i): if Rmj

is a DVR
for some j, by part b) there is exactly one atom pj ∈ mj . Since R is atomic and mj

is prime, every element of mj is divisible by pj , so mj = (pj) and pj is prime. �

Lemma 2.3. Let (R,m) be a local atomic domain with residue field k = R/m.

a) Every element of m \m2 is an atom of R.
b) If two atoms p, p′ ∈ m\m2 are associate, then p (mod m2) and p′ (mod m2)

generate the same one-dimensional k-subspace of m/m2.
c) If (R,m) is a primefree Cohen-Kaplansky domain then k ∼= Fq is a finite

field, d = dimk m/m
2 is finite, and R has at least #Pd−1(Fq) = qd−1

q−1 atoms.

d) A primefree Cohen-Kaplansky domain has at least 3 atoms.

Proof. Parts a) and b) are left to the reader. c) R is a one-dimensional Noetherian
local ring which is not a DVR, so 1 < dimk m/m

2 < ℵ0. By parts a) and b), choosing
a nonzero element from each one-dimensional subspace of m/m2 gives nonassociate
atoms. This set is in bijection with the set of lines through the origin of the Fq-vector
space m/m2, hence with Pd−1(Fq). d) By Theorem 2.2 we reduce to the local case.
Then, with notation as above we have at least #Pd−1(Fq) ≥ #P1(F2) = 3 atoms. �

Theorem 2.4.

a) [CK46, Thm. 13] For every prime power q and d ≥ 2, there is a primefree

CK( qd−1
q−1 , 1)-domain.

b) [CK46, Cor., p. 475] If there is a primefree CK(n, 1)-domain for a prime

number n, then n is of the form qd−1
q−1 for a prime power q and an integer

d ≥ 2.
c) [AM92, Cor. 7.2] For any prime power q and d, e ∈ Z+, Fq + teFqd [[t]] is a

CK(e q
d−1
q−1 q

d(e−1), 1; q)-domain. It is primefree unless (d, e) = (1, 1).
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Remark 2.5. As mentioned above, Theorem 2.4 implies there are primefree
CK(n, 1)-domains for all 3 ≤ n ≤ 10 and there is not a primefree CK(11, 1)-domain.

We say a ring R has finite residue fields if R/m is finite for all m ∈ MaxSpecR.
For a domain R with fraction field K, and I, J two R-submodules of K, we define

(I : J) = {x ∈ K | xJ ⊂ I}.

Theorem 2.6. Let (R,m) be a local Cohen-Kaplansky domain with residue field
k = R/m ∼= Fq, and put d = dimk m/m

2. Let R be the normalization of R.

a) The ring R is a DVR, R is finitely generated as an R-module, and the ring
R/(R : R) is finite.
Let m be the maximal ideal of R and put k = R/m ∼= FqD . Let r : R→ k be
the quotient map.

b) The following are equivalent:
(i) The ideal m2 is universal: every element of m2 is divisible by every

atom of R.

(ii) R has qd−1
q−1 atoms.

(iii) We have R = r−1(Fq).

(iv) We have m = m = (R : R).
c) Under the equivalent conditions of part b), we have d = D.

Proof. a) The ring R is a DVR by the Krull-Akizuki Theorem. By [AM92, Thm.
2.4], (R : R) ) (0). Thus R/m is finitely generated as a module over R/m ∼= Fq,

hence is a finite field, say R/m ∼= FqD . The conductor (R : R) is the largest ideal

of R which is also an ideal of R; since it is a nonzero ideal of a DVR with finite
residue field, the ring R/(R : R) is finite. b) See [AM92, §5]. c) Since R is a DVR,
we have 1 = dimFqD

m/m2, so [m : m2] = qD. But m = m, so

[m : m2] = [m : m2] = qD

and

d = dimR/m m/m2 = dimFq
m/m2 = logq[m : m2] = D. �

Let R be a ring, let I be an ideal of R, let q : R → R/I be the quotient map,
and let S be a subring of R/I. Following Anderson-Mott [AM92], we call q−1(S)
the composite of R and S over I. Thus the condition R = r−1(Fq) in Theorem

2.6b) above is that R is the composite of R and Fq over m. On the other hand,
Anderson-Mott characterize all Cohen-Kaplansky domains with finite residue fields
(thus all primefree Cohen-Kaplansky domains) in terms of composites, as follows.

Theorem 2.7.

a) Let D be a semilocal PID with finite residue fields and maximal ideals
M1, . . . ,Mm. Let I =Me1

1 · · ·Mem
m be an ideal of D, so D/I ∼=

∏m
j=1D/M

ej
j .

For 1 ≤ j ≤ m let Sj be a subring of D/m
ej
j , and put S =

∏m
j=1 Sj ⊂ D/I.

Let R be the composite of D and S over I. Then R is a Cohen-Kaplansky
domain with normalization D and such that (R : D) ⊃ I. Moreover R has
precisely m maximal ideals, namely mj =Mj ∩R for 1 ≤ j ≤ m.
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b) Let R be a Cohen-Kaplansky domain with finite residue fields, with normal-
ization R. Then R is a semilocal PID with maximal ideals M1, . . . ,Mm,
and each R/Mj is finite. The conductor ideal (R : R) is nonzero, so

may be written as Me1
1 · · ·Mem

m , and the subring S = R/(R : R) of

R/(R : R) ∼=
∏m

j=1R/M
ej
j may be decomposed as

∏m
j=1 Sj with each Sj a

subring of R/Mej
j . R is the composite of R and S over (R : R).

Proof. This is a rewording of [AM92, Thm. 4.4] suitable for our purposes. �

Remark 2.8. For a Cohen-Kaplansky domain R, its normalization R is a root
extension: for all r ∈ R there is an n ∈ Z+ such that rn ∈ R [AM92, Lemma 4.1].
Thus S = R/(R : R) ⊂ R/(R : R) is also a root extension. If (R : R) =Me1

1 · · ·Mem
m

then by the Chinese Remainder Theorem R/(R : R) decomposes as a product of m
finite local rings, with corresponding idempotents ε1, . . . , εm. Since εnj = εj for all n,
it follows that each εj lies in S. The Sj in Theorem 2.7b) is the projection Sεj .

Corollary 2.9. Let R be a Cohen-Kaplansky domain with finite residue fields which
is the composite of R and S =

∏m
j=1 Sj over (R : R) =Me1

1 · · ·M
ej
j . Then:

a) R has precisely m maximal ideals, mj =Mj ∩R.

b) The localization Rmj
is the composite of RMj

and Sj over (Rmj
: RMj

) =

Mej
j RMj

. The completion R̂mj
is the composite of R̂Mj

and Sj over

(R̂mj : R̂Mj ) =Mej
j R̂Mj = M̂j

ej
.1

c) For 1 ≤ j ≤ m, let Rj be the composite of R and Sj over Mej
j . Then Rj is

a local Cohen-Kaplansky domain, R =
⋂m

j=1Rj and (Rj)Mj∩Rj
= RMj∩R.

Proof. a) This is a property of Cohen-Kaplansky domains [AM92, Thm. 2.4].
b) Fix 1 ≤ J ≤ m. By Theorems 2.2 and 2.7b), the ring RmJ

is a local Cohen-
Kaplansky domain and is the composite of RMJ

= RmJ
= R⊗R RmJ

and

RmJ
/(RmJ

: RMJ
) = RmJ

/(RmJ
: R⊗RRmJ

) = R/(R : R)⊗RRmJ
=

( m∏
j=1

Sj

)
⊗RRmJ

over MeJ
J RMJ

= (R : R)RmJ
= (RmJ

: RMJ
). Consider the localization map

ϕ :

m∏
j=1

Sj →
( m∏

j=1

Sj

)
⊗R RmJ

,

which is the restriction of the localization map

ϕ :

m∏
j=1

R/Mej
j →

( m∏
j=1

R/Mej
j

)
⊗R RmJ

.

Because( m∏
j=1

R/Mej
j

)
⊗R RmJ

=

m∏
j=1

RMj/(MjRMJ
)eJ = RMJ

/(MJRMJ
)eJ

1Here we have used the canonical ring isomorphisms R/Mej
j

∼→ RMj
/Mej

j RMj

∼→

R̂Mj
/Mej

j R̂Mj
to regard Sj as a subring of the latter two rings.
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we find that ϕ factors through the projection
∏m

j=1R/M
ej
j → R/MeJ

J to

ι : R/Mej
j
∼→ RMJ

/(MJRMJ
)eJ .

Thus ϕ factors through the projection
∏m

j=1 Sj → SJ to give an injection

ι : SJ →
( m∏

j=1

Sj

)
⊗R RmJ

= SJ ⊗R RmJ
.

Thus ι is an injective localization map on the local Artinian R-algebra SJ . Since
every element of a local Artinian ring is either a nilpotent or a unit, any nonzero
localization map on a local Artinian ring is an isomorphism, so ι identifies SJ with
(
∏m

j=1 Sj)⊗R RmJ
. The case of the completion is similar but easier.

c) The subring
⋂m

j=1Rj is the set of elements x ∈ R such that for all 1 ≤ j ≤ m

we have x (mod Mej
j ) ∈ Sj : manifestly, this is R. By Theorem 2.7b), Rj is a local

Cohen-Kaplansky domain. Finally, by part b) each of (Rj)Mj∩Rj and RMj∩R is

the composite of RMj
and Sj over R/Mej

j , so they are equal. �

3. The Proofs

3.1. Proofs of Theorems 1.3 and 1.4. By Remark 2.5 there are primefree CK(n)-
domains for n ∈ [3, 5], and by Theorem 1.2 if p1 < . . . < pm are primes there is a
primefree CK(

∑m
j=1(pj + 1),m)-domain. Thus to prove Theorem 1.3, that primefree

CK(n)-domains exist for all n ≥ 3 it is enough to prove Theorem 1.4, that every
n ≥ 6 is of the form

∑m
j=1(pj + 1) for primes p1 < . . . < pm (Theorem 1.4).

Step 1: We show that for all n ≥ 18, there is a prime in the interval (n2 − 1, n− 7].
The values 18 ≤ n ≤ 51 can easily be checked by hand, so we may suppose n ≥ 52.
We will make use of a sharpening of Bertrand’s postulate due to Nagura [Na52]: for
all x ≥ 25, there is a prime in the interval (x, 6x5 ]. Applying this with x = n

2 − 1 we

find that there is a prime number in the interval (n
2 − 1, 3n5 −

6
5 ] hence also in the

larger interval (n
2 − 1, n− 7].

Step 2: It suffices to show that for all j ≥ 0, every n ∈ [6, 17 · 2j ] is a sum of
distinct pj + 1’s. We show this by induction on j. The base case j = 0 is an easy
computation. Suppose the result holds for some j ≥ 0, and let n ∈ (17 · 2j , 17 · 2j+1].
By Step 1, there is a prime number p ∈ (n

2 − 1, n− 7], so

6 ≤ n− (p+ 1) <
n

2
≤ 17 · 2j .

By induction there are primes p1 < . . . < pm such that n− (p+ 1) =
∑m

j=1(pj + 1),

and thus n =
∑m

j=1(pj + 1) + (p+ 1). Since p+ 1 > n
2 , we have pj + 1 < n

2 for all j,
so p > pm and we have written n as a sum of distinct pj + 1’s.

Remark 3.1. Theorem 1.4 is a variant of a result of H.-E. Richert [Ri49], who used
Bertrand’s postulate to show that every n ≥ 7 is the sum of distinct primes.

3.2. An Algebra Globalization Theorem.

Theorem 3.2. Let q1, . . . , qm be prime powers.
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a) There is a number field L and a sequence of distinct maximal ideals m1, . . . ,mm

of the ring of integers ZL of L such that for all 1 ≤ j ≤ m the quotient
ZL/mj is a finite field of order qj.

b) If there is a prime power q and b1, . . . , bm such that qj = qbj for all
1 ≤ j ≤ m, there is a finite degree field extension L/Fq(t) and a sequence
of distinct maximal ideals m1, . . . ,mm of the integral closure S of Fq[t] in L
such that for all 1 ≤ j ≤ m the quotient S/mj is a finite field of order qj.

Remark 3.3. Theorems of this kind appear in the literature. For instance, part
(a) is a special case of [Ha26, Satz 1]. However, we prefer to give a self-contained
argument with the number field and function field cases treated on equal footing.

Proof of Theorem 3.2.

Step 1: Let K be a field, and let v1, . . . , vg+1 be inequivalent discrete valuations

on K. For 1 ≤ i ≤ g + 1 let K̂i denote the completion of K at vi. Let d ∈ Z+.
For 1 ≤ i ≤ g + 1, let Li be an étale K̂i-algebra – i.e., a finite product of finite
degree separable field extensions of K̂i – with dimK̂i

Li = d and such that Lg+1 is
a field. Then by Krasner’s Lemma and weak approximation, there is a separable
field extension L/K of degree d and for all 1 ≤ i ≤ g + 1 a K̂i-algebra isomorphism

K ⊗F K̂i
∼→ Li. (We may write each Ai as K̂i[t]/(fi(t)) for a separable polynomial

fi ∈ K̂i. Then we may take L = K[t]/(f(t)) where for all i, the coefficients of f
are sufficiently close to those of fi in the vi-adic topology. Thus we get a separable
K-algebra L. The condition that Lg+1 is a field ensures that L is a field.)

Step 2: Recall that for all d ∈ Z+ there is a p-adic field with residue field Fpd : we
may take the unique degree d unramified extension of Qp. Let g ∈ Z+ be such that
q1, . . . , qj1 are all powers of a prime p1, qj1+1, . . . , qj2 are all powers of a prime p2,
. . ., and so forth, up to qjg−1+1, . . . , qjg – note jg = m – all powers of pg. Put j0 = 0.
Let K = Q, for 1 ≤ i ≤ g let vi = ordpi

, and let

Li =

 ji∏
j=ji−1+1

Lj

×Mi

be a finite product of p-adic fields such that the residue cardinality of the valuation
ring of Lj is qk and Mi is a “fudge field” chosen so that there is D ∈ Z+ such
that dimQi Li = D for all 1 ≤ i ≤ g. The field extension L/K obtained by the
construction of Step 1 is the desired number field in part a).

Step 3: Suppose we are in the case considered in part b). For all d ∈ Z+, Fqd((t))
is a finite extension of Fq((t)) with residue field Fqd . We proceed as in Step 2 but
with K = Fq(t), g = 1, v1 = ordt and v2 = ordt−1. �

3.3. Proof of Theorem 1.10. a) For 1 ≤ j ≤ M we are given a primefree
CK(nj ,mj ; q)-domain Rj . For 1 ≤ k ≤ mj let njk be the number of atoms in the
kth maximal ideal of Rj (under some ordering). By Theorem 2.2 there are primefree

local CK(njk, 1; q)-domains Rj,1, . . . , Rj,mj
such that

∑
j,k njk =

∑M
j=1 nj . So we

may assume without loss of generality that mj = 1 for all j.
Suppose first that q = 0, and for each 1 ≤ j ≤ M we are given a primefree
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CK(nj , 1; 0)-domain Aj . By [CK46, Thm. 9], the completion Âj of the local ring
Aj is also a CK(nj , 1; 0)-domain, so it is no loss of generality to assume that each

Aj is complete. Let Aj be the integral closure of Aj , a complete DVR, say with

maximal ideal (πj). Let (Aj : Aj) = (π
ej
j ). By Theorem 2.7, Aj is the composite of

Aj and Sj = Aj/(Aj : Aj) = Aj/(π
ej
j ) over (Aj : Aj) = (π

ej
j ).

Since Aj is a complete DVR of characteristic 0 with finite residue field F
p
aj
j

, its

fraction field Lj is a finite extension of Qpj
. Arguing as in the proof of Theorem

3.2 there is a number field L and a set of finite places v1, . . . , vM of L such that
for all j, the completion of L at vj is isomorphic to Lj . Let M1, . . . ,MM be
the corresponding maximal ideals of the ring of integers ZL of L, and let D be

the localization of ZL at ZL \
⋃M

j=1Mj , so D is a semilocal PID with precisely
M maximal ideals M1, . . . ,MM . Moreover, for 1 ≤ j ≤ M we may identify the
completion of D with respect to Mj with Aj , MjAj with (πj) and D/Mej

j with

Aj/(π
ej
j ) and thus we may view Sj as a subring of D/Mej

j . Let Rj be the composite

of D and Sj overMej
j and R =

⋂M
j=1Rj . By Corollary 2.9, R is a Cohen-Kaplansky

domain with M maximal ideals {mj =Mj ∩R}Mj=1 and we have Rmj
= (Rj)Mj∩Rj

and the completion of Rmj
is Aj . Thus R is a primefree CK(

∑M
j=1 nj ,M ; 0)-domain.

Now suppose that q 6= 0, and for each 1 ≤ j ≤ M we are given a primefree
CK(nj , 1; q)-domain Aj . Then Aj is a complete DVR with finite residue field which
is an Fq-algebra, so its fraction field Lj is a finite extension of Fq((t)). We now
argue as above except taking L to be a finite extension of Fq(t) and D to be the
subring of L consisting of functions regular at the places v1, . . . , vM .

b) Let q1 = pa1
1 , . . . , qm = pam

m be prime powers and d1, . . . , dm ≥ 2. For 1 ≤ j ≤ m
let Kj be the unramified extension of Qpj

of degree ajdj , let Aj be its valuation

ring, with maximal ideal (πj), let rj : Aj/(πj)
∼→ Fqdj , and let Aj = r−1j (Fq). By

Theorem 2.6 Aj is a (necessarily primefree) CK(
q
dj
j −1
qj−1 , 1; 0)-domain. Applying part

a), we get that there is a primefree CK(
∑m

j=1

q
dj
j −1
qj−1 , 1; 0)-domain.

Now suppose there is a prime power q such that each qj is a power of q = pa.
Then p1 = . . . = pm = p and a1, . . . , am are all divisible by a. We run through the
argument as above but with Kj = F

qajdj/a((t)) for all j.

3.4. Recalled Results and Conjectures in Additive Number Theory.

Theorem 3.4 (Sylvester [Sy84]). Let x, y be coprime positive integers. Then:

a) The equation ax+ by = xy − x− y has no solution in non-negative integers
a, b.

b) For all N ≥ xy− x− y+ 1 = (x− 1)(y− 1), there are non-negative integers
a, b such that ax+ by = N .

Remark 3.5. Let x, y ∈ Z+ with gcd(x, y) = d. Theorem 3.4 implies: if N ≥
(a−d)(b−d)

d and d | N , then there are non-negative integers a, b such that ax+by = N .

Theorem 3.6 (Helfgott [He15]). Every odd n ≥ 7 is a sum of three primes.

Conjecture 3.7 (Goldbach). Every even n ≥ 4 is a sum of two primes.
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Theorem 3.8 (Chudakov [Ch37, Ch38], Estermann [Es38], van der Corput [vdC37]).
The set of even integers which are sums of two primes has relative density 1 in the
set of even positive integers (and thus density 1

2).

Conjecture 3.9 (Schinzel). Let f(x) = x2 + bx + c, where b and c are integers
of opposite parity and 3 - b. There is a constant N0 = N0(f) such that for all odd
integers n > N0 not belonging to f(Z), there are primes p1 and p2 with n = f(p1)+p2.

Remark 3.10. Conjecture 3.9 is a special case of a conjecture of Schinzel [Sc63]
generalizing the Goldbach conjecture. The conditions on b, c, and n guarantee that
the polynomial n − f(x) is irreducible over Z and that x(n − f(x)) has no fixed
divisor. Now the asymptotic prediction appearing as eq. (3) in [Sc63] implies that
the number of representations of n in the form f(p1)+p2 tends to infinity as n→∞.

Theorem 3.11 (van der Corput). If f(x) satisfies the hypotheses of Conjecture 3.9,
then the set of odd n representable in the form f(p1) + p2, with p1 and p2 prime,
has relative density 1 in the set of odd positive integers.

Proof. This is a special case of a more general theorem of van der Corput, announced
in [vdC37] and proved in [vdC39]. See also [Sc61, Satz 2a]. �

3.5. Proof of Theorem 1.5. This follows from Theorem 2.2 and Lemma 2.3d).

3.6. Proof of Theorem 1.6. We prove parts (a) and (b) simultaneously. Let
m,n ∈ Z+. We suppose: (i) n ≥ 3m; (ii) if n is even then m ≥ 3 and n ≥ 10; (iii) if
n is odd then m ≥ 4 and n ≥ 13.

Case 1: Suppose m 6≡ n (mod 2). Then n− 3(m− 3) is even and n− 3(m− 3) ≥ 9,
so in fact n− 3(m− 3) ≥ 10. By Theorem 3.6 there are primes p1, p2, p3 such that

n = (p1 + 1) + (p2 + 1) + (p3 + 1) +

m∑
j=4

(2 + 1).

Case 2: Suppose m ≡ n (mod 2). Then m ≥ 4. Moreover n−3(m−4) ≥ 12 and is
even. If n−3(m−4) = 12 then n = 3m =

∑m
j=1(2+1). Otherwise n−3(m−4) ≥ 14,

so n − 3(m − 4) − (3 + 1) ≥ 10 and is even, so by Theorem 3.6 there are primes
p1, p2, p3 such that

n = (p1 + 1) + (p2 + 1) + (p3 + 1) + (3 + 1) +

m∑
j=5

(2 + 1).

In all cases Theorem 1.10 applies to show there is a primefree CK(n,m; 0)-domain.

(c) By part (a), we may assume that n is odd. We appeal to a generalization
due to Schwarz of Vinogradov’s “three primes theorem” [Sc60, Hauptsatz, p. 25].
Schwarz’s result implies that all sufficiently large odd n are representable in the
form (p21 + p1 + 1) + (p2 + 1) + (p3 + 1). Apply Theorem 1.10.
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3.7. Proof of Theorem 1.7. a) If n+2 = (p1+1)+(p2+1) for some primes p1 and
p2, Theorem 1.10 applies to show there is a primefree CK(n, 2; 0) domain. According
to Theorem 3.8, the set of even n for which n + 2 is so expressible has relatively
density 1 in the set of even positive integers. Similarly, if n = (p21 + p1 + 1) + (p2 + 1)
for some primes p1 and p2, Theorem 1.10a) applies to show there is a primefree
CK(n, 2; 0)-domain. Theorem 3.11, with f(x) = x2 + x+ 2, implies that the set of
odd n so representable has relative density 1 in the set of odd numbers.

b) We argue as in part a) but apply Conjecture 3.7 instead of Theorem 3.8.

c) When f(x) = x2 + x+ 2, the condition n /∈ f(Z) is satisfied by all odd integers n.
Now we argue as in part a) but apply Conjecture 3.9 instead of Theorem 3.11.

3.8. Proof of Theorem 1.9. Let n be a prime number such there is a primefree

CK(n, 1)-domain. By Theorem 2.4b), n is of the form qd−1
q−1 . By a result of Bateman-

Stemmler [BS62], the number of primes n ≤ x of this form is at most 50
√
x

log2 x
, for

all sufficiently large x. The result now follows from the Prime Number Theorem:
π(x) = #{primes p ≤ x} ∼ x

log x .

3.9. Proof of Theorem 1.11. a) Let R be a primefree atomic domain which is an
Fq-algebra. We may assume R is Cohen-Kaplansky, for otherwise it has infinitely
many atoms. Let m be a maximal ideal of R. By Theorem 2.2, R has at least as
many atoms as Rm, so we may assume that (R,m) is local. Then R/m ∼= Fqa and
by Lemma 2.3c) R has at least #Pd−1(Fqa) ≥ #P1(Fq) = q + 1 atoms.

b) Let n ≥ 8. Taking a = 2 + 1, b = 4 + 1 in Theorem 3.4, we get that there are
x, y ∈ N such that x(2 + 1) + y(4 + 1) = n. By Theorem 1.10 there is a primefree
CK(n, x+ y)-domain of characteristic 2. The equation x(2 + 1) + y(4 + 1) = n also
has a solution in non-negative integers x, y for n ∈ {3, 5, 6}, so there is a primefree
CK(n)-domain of characteristic 2 for these values as well. For n ∈ {4, 7} there is a
primefree CK(n, 1)-domain of characteristic 2 by Theorem 2.4c).

c) By Theorem 2.4 there are a primefree CK(n, 1; q)-domains for n ∈ {q + 1, 2q}, so
by Theorem 1.10 for all a, b ∈ N there is a primefree CK(a(q + 1) + b(2q), a+ b; q)-
domain. Because q is a power of 2, q + 1 and 2q are coprime, so by Theorem 3.4
every n ≥ (q + 1− 1)(2q − 1) = 2q2 − q is of the form a(q + 1) + b(2q) for a, b ∈ N.

d) Theorem 2.4 gives primefree CK(n, 1; q)-domains for n ∈ {q + 1, 2q, q2 + q + 1},
so by Theorem 1.10 for all a, b, c ∈ N there is a primefree CK(a(q + 1) + b(2q) +
c(q2 + q + 1), a+ b+ c; q)-domain. Since q is odd we have gcd(q + 1, 2q) = 2, so by
Remark 3.5 every even n ≥ (q − 1)2 is of the form a(q + 1) + b(2q) for a, b ∈ N. If
n ≥ 2q2 − q + 1 is odd, then n ≥ 2q2 − q + 2 and n− (q2 + q + 1) ≥ (q − 1)2 is even.

3.10. Concerning Conjecture 1.8. By Theorem 1.5 if there is a CK(n, 2)-domain
then n ≥ 6 and if there is a CK(n, 3)-domain then n ≥ 9. Using PARI/GP, we
computed that there are 168 odd integers below 1010 not expressible in the form
(p21 + p1 + 1) + (p2 + 1), the largest being 1446379. Using Mathematica, we checked
that the 165 exceptional integers lying in [7, 1010] nevertheless can be represented

as a sum of two integers of the form qd−1
q−1 . Combined with Conjecture 3.7, we view

this as evidence that all integers n ≥ 6 admit a representation in that form. This
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would imply that there is a primefree CK(n, 2; 0)-domain for all n ≥ 6. If so, then
as above for all n ≥ 6 there is a primefree CK(n+ 3, 3; 0)-domain, so the first part
of Conjecture 1.8 implies the second.

Combining our computations with the verification of the Goldbach conjecture to
4 · 1018 [OHP14], it follows that both parts of Conjecture 1.8 hold for n ≤ 1010.

4. Final Comments

4.1. The connection with orders. Coykendall-Spicer construct the domains used
to prove Corollary 1.2 using local orders: for S a finite nonempty set of primes,
let ZS be the localization of Z with respect to Z \

⋃
p∈S(p). Let K be any number

field such that for all p ∈ S, there is a unique prime of ZK lying over p. Then the
normalization R of ZS in K is a semilocal PID with m maximal ideals. Let R be
any ZS-order in K: i.e., a finitely generated ZS-subalgebra of K with fraction field
K. Then R is a Cohen-Kaplansky domain (cf. [CS12, §2]). One can replace ZS

with any semilocal PID A with finite residue fields.
The proof of Theorem 1.10 shows that for every primefree CK(n; 0)-domain R

there is an order O in a number field K and a finite set S of maximal ideals of O
such that the group of divisibility of R is isomorphic to the group of divisibility of
OS = (O \

⋃
m∈S m))−1O. Here we have a localized order rather than a ZS-order.

But as in the proof of Theorem 1.10, one sees that every group of divisibility of
a local Cohen-Kaplansky domain in characteristic zero arises as a Z(p)-order in a
number field, and that in positive characterstic the same holds with Z(p) replaced
by the localization of Fp[t] at an irreducible polynomial. It would be interesting to
compute the number of irreducibles in various local orders.

4.2. A better Globalization Theorem? The main algebraic problem considered
in this paper is the following:

Question 3. Let R1, . . . , Rm be primefree Cohen-Kaplansky domains with n1, . . . , nm

atoms. Is there a primefree Cohen-Kaplansky domain with
∑m

j=1 nj atoms?

Theorem 1.10 answers this question in the affirmative when R1, . . . , Rm all have the
same characteristic. Perhaps this is the only “natural” case: in what reasonable
sense can domains of different characteristics be combined? But from the perspective
of Question 2 it would be nice if one could combine local building blocks of different
characteristics. Could it be that whenever there is a primefree CK(n, 1; q)-domain
for q > 0 there is also a primefree CK(n, 1; 0)-domain?

We end by discussing a possible strategy for showing this. Every complete
CK(n, 1)-domain R of positive characteristic is the composite of Fq[[t]] and a subring
S of Fq[[t]]/(te) over (te). Every ring Fq[[t]]/(te) has an isomorphic copy OK/Me,
where K is a p-adic field with valuation ring OK and maximal idealM [Ne71]. Thus

we can build the “corresponding characteristic 0 CK-domain” R̃: the composite
of OK and the isomorphic copy of S over Me. Does R̃ have the same number of

irreducibles as R? The group of divisibility of R is isomorphic to Z ⊕ (R/(R:R))×

(R/(R:R))×

[AM92, Thm. 4.4]. But this is an isomorphism of abstract groups, whereas to
count atoms we need the isomorphism to respect the partial orderings. (The atoms
are the minimal nonzero elements of the positive cone.) Do these composites have
isomorphic order structure? If so, then Question 3 has an affirmative answer.
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