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Abstract. In 1959 Golomb defined a connected topology on Z. An anal-

ogous Golomb topology on an arbitrary integral domain was defined first by

Knopfmacher-Porubský [KP97] and then again in a recent work of Clark [Cl17].
Here we study properties of Golomb topologies.

1. Introduction

In 1955, H. Furstenberg published his now-famous proof of the infinitude of the
prime numbers by means of a topology on Z [Fu55]. Clark generalized Fursten-
berg’s proof to show that if R is a semiprimitive domain that is not a field in which
every nonzero nonunit element has at least one irreducible divisor, then R has infin-
itely many nonassociate irreducibles [Cl17, Thm. 3.1] by means of an adic topology
on R. However adic topologies — while arising naturally in commutative algebra
— are not so interesting as topologies: cf. §3.3. In [Go59] and [Go62], S.W. Golomb
defined a new topology on the positive integers Z+. It retains enough features of
Furstenberg’s topology to yield a proof of the infinitude of primes — if there were
only finitely many primes, then {1} would be open, whereas nonempty open sets
are infinite. But Golomb’s topology makes Z+ into a connected Hausdorff space.

A Golomb topology on any domain R was defined by Knopfmacher-Porubský
[KP97] and is also considered by Clark in [Cl17, §3.7]. (See §3.4 for more infor-
mation on [KP97] and subsequent work of Marko-Porubský.) Clark mentions that
the Golomb topolgy on R is never Hausdorff and suggests studying the induced
topology on R• instead.

In this note we study these Golomb topologies in detail. We find that the Golomb
topology on R• is Hausdorff iff R is semiprimitive. Since a PID is semiprimitive
iff it has infinitely many nonassociate prime elements, we again see an interplay
between arithmetic and topology. To any countably infinite semiprimitive domain
that is not a field, we have associated a connected, countably infinite Hausdorff
space, and we ask how many homeomorphism types of spaces arise in this way.

2. The Golomb Topology on a Domain

A domain is a nonzero commutative ring in which no nonzero element is a zero-
divisor. For a subset S of a ring R, we put S• = S \ {0}.

For a domain R, let BR be the family of coprime cosets {x + I} where x ∈ R,
I is a nonzero ideal of R, and 〈x, I〉 = R. Suppose x1 + I1, x2 + I2 ∈ BR, and let
z ∈ (x1 + I1) ∩ (x2 + I2). For i = 1, 2, since z ∈ xi + Ii we have z − xi ∈ Ii and
thus 〈z, Ii〉 = R. It follows [Cl-CA, Lemma 3.17c)] that 〈z, I1I2〉 = R. Since R is a
domain and I1 and I2 are nonzero ideals, we have {0} ( I1I2 ⊂ I1 ∩ I2. Thus

z + I1I2 ∈ BR, z + I1I2 ⊂ (x1 + I1) ∩ (x2 + I2).
1
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It follows that BR is the base for a topology on R, which we denote by G̃(R). The
Golomb topology G(R) is the subspace topology on R•.

Recall that if R is a domain that is not a field, then R is infinite and every nonzero
ideal I of R is infinite (and indeed #I = #R): if x ∈ I•, then R → I by r 7→ rx
is an injection. Thus, as for the topologies originally defined by Furstenberg and

Golomb, nonempty open subsets in G̃(R) and in G(R) are infinite.

Lemma 1. For a domain R, the following are equivalent:

(i) The space G̃(R) is indiscrete (there are no proper, nonempty open subsets).
(ii) The space G(R) is indiscrete.
(iii) The ring R is a field.

Proof. (i) =⇒ (ii): Every subspace of an indiscrete space is indiscrete.
(ii) =⇒ (iii): We prove the contrapositive. If R is not a field, then it has a nonzero
proper ideal I, and 1 + I is a nonempty, proper open subset of R•.
(iii) =⇒ (i): For a field R, the only nonzero ideal is R itself, so for all x ∈ R the
only neighborhood of x is x+R = R. �

For the remainder of the section, R denotes a domain that is not a field.

A point x of a topological space X is indiscrete if the only open neighborhood
of x is X itself. (Thus X is indiscrete iff every point of X is indiscrete.)

The Jacobson radical J (R) of a commutative ring R is the intersection of all max-
imal ideals of R. We say R is semiprimitive if J (R) = {0}.

Proposition 2. The indiscrete points of G̃(R) [resp. of G(R)] are precisely the
elements of J (R) [resp. of J (R)•].

Proof. First we work in G̃(R). Let x ∈ J (R). If I is a proper ideal of R, there is a
maximal ideal m containing I. (Since R is not a field, m 6= {0}.) Then

〈x, I〉 ⊂ 〈x,m〉 = m ( R.

So the only open neighborhood of x in G̃(R) is x+ R = R. If x ∈ R \ J (R), then
there is a maximal ideal m that does not contain x. Then 〈x,m〉 = R, so x + m is
a proper open neighborhood of x in R.

Now we work in G(R). If x ∈ J (R)•, then x is indiscrete in G̃(R) hence also in
G(R). If x ∈ R• \J (R)•, there is a maximal ideal m not containing x. Then x+m
is a neighborhood of x in G(R); since m• ⊂ R• \ (x+m), we have x+m ( R•. �

A topological space X is Kolmogorov if for all x 6= y in X there is an open set
containing exactly one of x and y. A topological space X is separated if for all
x 6= y in X there is an open set containing x and not y and also an open set
containing y and not x; equivalently, for all x ∈ X, {x} is closed.

Corollary 3. The space G̃(R) is not separated.

Proof. If X is a topological space with #X ≥ 2 and an indiscrete point 0, then X
is not separated: for all x 6= 0 ∈ X, we have 0 ∈ {x}. �
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For an ideal I of R, we define the Jacobson radical Jrad I to be the intersection
of all maximal ideals containing I. Thus J (R) = Jrad (0).

Theorem 4. Let I be an ideal of R, and let x ∈ R.

a) In G̃(R), we have x+ I ⊃ Jrad I.

b) In G̃(R), we have I = Jrad I.

c) Suppose x /∈ I. Then in G(R) we have (x+ I)• ⊃ (Jrad I)•.

Proof. a) Let y ∈ Jrad I, and let U be a neighborhood of y. Then U contains a
coprime coset y + J . We claim that I and J are comaximal. For if not, there is
a maximal ideal m of R such that 〈I, J〉 ⊂ m. But by definition of the Jacobson
radical, we must have y ∈ m and thus 〈y, J〉 ⊂ m, contradicting the fact that y+J is
a coprime coset. Since I and J are comaximal, by the Chinese Remainder Theorem
[Cl-CA, Thm. 4.19] the cosets x+ I and y + J intersect. Thus y ∈ x+ I.
b) By part a) we have I ⊃ Jrad I. Now suppose y ∈ R \ Jrad I. Then there is a
maximal ideal m of R containing I but not y, so the coprime coset y+m is disjoint
from m hence also from I. Thus y /∈ I.
c) Since x /∈ I we have x+ I ⊂ R•. The result now follows from part a). �

Theorem 5. The following are equivalent:

(i) R is semiprimitive: J (R) = {0}.
(ii) G(R) is Hausdorff.
(iii) G(R) is separated.
(iv) G(R) is Kolmogorov.

(v) In G̃(R), we have {0} = {0}.
(vi) The space G̃(R) is Kolmogorov.

Proof. We first argue that all of (i)–(v) are equivalent.
(i) =⇒ (ii): Let x 6= y ∈ R•. Since R is a domain, xy(x − y) ∈ R•, and since R
is semiprimitive, there is a maximal ideal m of R such that xy(x − y) /∈ m. Then
x+ m and y + m are disjoint open neighborhoods of x and y.
(ii) =⇒ (iii) =⇒ (iv) holds for all topological spaces.
(iv) =⇒ (i): We argue by contraposition. Suppose that J (R) 6= {0}. Then J (R)
is infinite, so Proposition 2 implies that G(R) has infinitely many indiscrete points.
A topological space with at least two indiscrete points is not Kolmogorov.
(i) ⇐⇒ (v): By Theorem 4 we have {0} = Jrad (0) = J (R).
It remains to show the equivalence of (i)–(v) with (vi).
(vi) =⇒ (iv): Subspaces of Kolmogorov spaces are Kolmogorov.
(iv, v) =⇒ (vi): Take any pair of points x 6= y ∈ R. If x, y 6= 0, (iv) shows there

is an open subset U of G(R), hence also of G̃(R), which contains exactly one of x

and y. To handle the remaining cases, observe that by (v), G(R) is open in G̃(R),
and for every x ∈ R•, G(R) contains x and not 0. �

Corollary 6.

a) If G(R) is Hausdorff (or separated, or Kolmogorov), then R has infinitely
many maximal ideals.

b) If R is a Dedekind domain, then G(R) is Hausdorff (or...) iff R has infin-
itely many maximal ideals.

c) If R is a PID, then G(R) is Hausdorff (or...) iff R has infinitely many
nonassociate prime elements.
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Proof. a) If G(R) is Kolmogorov, then J (R) = {0} and R has infinitely many
maximal ideals [Cl17, Cor 4.3].
b) A Dedekind domain has infinitely many maximal ideals iff it is semiprimitive
[Cl17, Thm. 4.8].
c) A PID has infinitely many maximal ideals iff it has infinitely many nonassociate
prime elements. �

A topological space is quasi-regular if for for every point x and every neighborhood
V of x there is a closed neighborhood N of x such that N ⊂ V ; it is regular if it is
quasi-regular Hausdorff.

A Brown space is a topological space X such that for all nonempty open subsets
U, V ⊂ X, we have U ∩ V 6= ∅.

Proposition 7.

a) Brown spaces are connected.
b) Every space with an indiscrete point is a Brown space.
c) A Brown space is quasi-regular iff it is indiscrete.

Proof. a) If X is disconnected, there are disjoint nonempty open subsets U, V ⊂ X
with X = U ∪ V . Then U ∩ V = U ∩ V = ∅, and X is not a Brown space.
b) An indiscrete point lies in the closure of every nonempty open set.
c) Indiscrete spaces are clearly quasi-regular. Now suppose that X is quasi-regular
and not indiscrete. Let U be a nonempty proper open subset, let x ∈ U , and let
Nx be a closed neighborhood of x that is contained in U . Let y ∈ X \Nx, and let
Ny be a closed neighborhood of y that is contained in X \Nx. Let N◦x [resp. N◦y ]
be the interior of Nx (resp. of Ny). Then N◦x , N

◦
y are nonempty open sets and

N◦x ∩N◦y ⊂ Nx ∩Ny = ∅;

hence, X is not a Brown space. �

Theorem 8.

a) The spaces G̃(R) and G(R) are Brown spaces.

b) The spaces G̃(R) and G(R) are connected.

c) The spaces G̃(R) and G(R) are not quasi-regular.

Proof. a) Since 0 ∈ G̃(R) is indiscrete, Proposition 7b) implies that G̃(R) is a Brown
space. Now consider G(R). The condition for a Brown space can be checked on
the elements of a base for the topology, so let x1 + I1 and x2 + I2 be two coprime
cosets of nonzero ideals. By Theorem 4 we have

(x1 + I1)• ∩ (x2 + I2)• ⊃ I•1 ∩ I•2 ⊃ (I1I2)• ) ∅.

b) This is immediate from part a) and Proposition 7a).
c) This is immediate from part a), Proposition 7b) and Lemma 1. �

A topological space is quasi-compact if every open cover admits a finite subcover;
it is compact if it is quasi-compact Hausdorff.

Theorem 9.

a) If R is not semiprimitive, then G(R) is quasi-compact.
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b) If R is semiprimitive, then G(R) is not quasi-compact; in fact, every quasi-
compact subset of G(R) has empty interior.

Proof. a) If R is not semiprimitive, then G(R) has an indiscrete point, so every
open covering of G(R) has a singleton subcovering!
b) Let K be a quasi-compact subset of G(R). Since R is semiprimitive, G(R) is
Hausdorff (Theorem 5). Thus, K is compact, and K is closed as a subset of G(R).
Moreover, K◦ is compact, being a closed subset of the compact set K.

For each x ∈ K◦, choose a maximal ideal mx not containing x. Clearly, the coprime
cosets x+mx constitute an open cover of K◦. We now argue that if K◦ is nonempty,
then this cover has no finite subcover. In this case, Theorem 4 implies that K◦ ⊃ I•
for some nonzero ideal I of R. So if K◦ is covered by x1 + mx1

, . . . , xr + mxr
, then

I• ⊂
r⋃

i=1

(xi + mxi
).

But none of the (infinitely many) elements of I ∩mx1 ∩ · · · ∩mxr are contained in
the right-hand union. �

Let X be a topological space, and let x be a point of X. X is locally connected at
x if x admits a neighborhood base of connected open sets: that is, for every open
subset V containing x, there is a connected open set U with

x ∈ U ⊂ V.

X is totally disconnected at x if there is a neighborhood V of x such that no con-
nected subspace of V has more than one point.

Proposition 10.

a) For all x ∈ J (R)•, the space G(R) is locally connected at x.
b) Let x ∈ R•\J (R), and suppose there is a nonzero ideal I such that 〈x, I〉 =

R and
⋂∞

n=1 I
n = {0}. Then the space G(R) is totally disconnected at x.

Proof. a) If x ∈ J (R)•, then the only neighborhood of x is X itself (Proposition
2), which is connected (Theorem 8b)). So X is locally connected at x.
b) The coprime coset V = x+ I is an open neighborhood of x. Let C be a subset
of V containing distinct points y, z. Since y, z ∈ V , we have y + I = z + I = x+ I.
By hypothesis, there is an n ∈ Z+ such that y + In 6= z + In. Let

U1 := y + In, U2 := (x+ I) \ (y + In).

By [Cl-CA, Lemma 3.17c)], if w ∈ R is such that 〈w, I〉 = R, then w + In is a
coprime coset. Thus U1 is an open neighborhood of y. Moreover, U2 is a union
of cosets w + In for elements w ∈ R such that 〈w, I〉 = R, so U2 is an open
neighborhood of z. Thus (U1 ∩ C,U2 ∩ C) is a separation of C. �

Corollary 11. If R is Noetherian and semiprimitive, then G(R) is totally discon-
nected at each of its points.

Proof. Let x ∈ R•. Since R is semiprimitive, there is a maximal ideal m with
〈x,m〉 = R. Since R is Noetherian, we have

⋂∞
n=1 m

n = {0} [Cl-CA, Cor. 8.44].
Proposition 10b) applies to show that G(R) is totally disconnected at x. �
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Thus if R is Noetherian and semiprimitive, the space G(R) is connected but totally
disconnected at each of its points. This sounds rather pathological, but in fact such
spaces are not so exotic: there is a nonempty, connected subset of the Euclidean
plane for which each bounded subset is totally disconnected [Ma21].

Recall that if C is an open cover of a topological space X, a refinement of C is
an open cover C ′ such that every element of C ′ is contained in an element of C.
We say that X has (Lebesgue covering) dimension d ∈ N if every open cover C of
X has a refinement with every point of X belonging to at most d + 1 elements of
C ′, and d is minimal with this property. If no such d exists, we say that that X is
infinite dimensional.

Theorem 12. If R is not semiprimitive, then G(R) has dimension 0. Otherwise,
G(R) is infinite dimensional.

Proof. As seen above, when R is not semiprimitive, every open cover of G(R) has
a singleton subcover. It follows immediately that G(R) has dimension zero.

Now suppose that X is semiprimitive. Cover G(R) by open sets x + m, where
m is a maximal ideal chosen with x /∈ m. Calling this cover C, we will show that
for any refinement C ′ of C, and any positive integer r, there is an element of R•

belonging to more than r elements of C ′.
Pick an arbitrary x0 ∈ R•. There is a nonzero ideal I0 with 〈x0, I0〉 = R and an

element A0 ∈ C ′ with x0 + I0 ⊂ A0. Moreover, A0 ⊂ y0 + m0, where y0 + m0 is an
element of the original cover C. So we have

x0 + I0 ⊂ A0 ⊂ y0 + m0.

Suppose we have defined xi, Ii, Ai, yi, and mi for i = 0, . . . , j. Choose a nonzero

xj+1 ∈
∏j

i=0 Iimi. Then for some nonzero ideal Ij+1 with 〈xj+1, Ij+1〉 = R, some
element Aj+1 ∈ C ′, and some element yj+1 + mj+1 of our original cover, we have

xj+1 + Ij+1 ⊂ Aj+1 ⊂ yj+1 + mj+1.

We continue until xi, Ii, Ai, yi, and mi have been defined for all of i = 0, . . . , r.
Suppose that 0 ≤ i < j ≤ r. Then xj ∈ Iimi ⊂ Ii; hence, R = xj + Ij ⊂ Ii + Ij .

Thus, Ii and Ij are comaximal. We can also see easily that the sets Ai and Aj are
distinct. Indeed, every element of Ai belongs to an invertible residue class modulo
mi (the class of yi), whereas xj ∈ Aj and xj ≡ 0 (mod mi).

The Chinese Remainder Theorem now yields the existence of an x ∈ R• with

x ≡ xi mod Ii for all i = 0, 1, . . . , r.

Any such x belongs to the r + 1 distinct sets A0, . . . , Ar ∈ C ′. �

3. A contribution to the homeomorphism problem

3.1. The homeomorphism problem.

Much of the interest in Golomb’s topology G(Z+) stems from the fact that it
is a countably infinite, connected Hausdorff space. That such spaces exist is not
obvious; the first example was constructed by Urysohn in 1925 [Ur25].

There is a large literature on countably infinite, connected Hausdorff spaces and

also an enormous number of such spaces: there are 2c = 22
ℵ0

homeomorphism
types [KR72]. Our work gives a machine for producing such spaces: start with a
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countably infinite, semiprimitive domain R that is not a field and take G(R).
If S is a subset of the prime numbers with infinite complement, then

ZS := Z[
1

p
| p ∈ S]

is a semiprimitive PID, and ZS1
∼= ZS2

⇐⇒ S1 = S2. On the other hand, the
set of all pairs of binary operations on a countably infinite set has cardinality c.
So the number of isomorphism types of countably infinite semiprimitive PIDs, of
countably infinite semiprimitive domains and of countably infinite rings are all c.

So apparently we are producing a large class of countably infinite, connected
Hausdorff spaces via Golomb topologies on semiprimitive countably infinite do-
mains. However there is a catch: the spaces look different, but they may neverthe-
less be homeomorphic. This raises a natural problem.

Problem 1. (Homeomorphism Problem)
Let R and S be countably infinite semiprimitive domains. Decide whether the
Golomb topologies G(R) and G(S) are homeomorphic.

Certainly if R and S are isomorphic, then G(R) and G(S) are homeomorphic.
So far as we know, the converse might also be true. We can however make one
contribution to the Homeomorphism Problem, via the following result.

Theorem 13. Let R and S be infinite Dedekind domains, and let h : G(R)→ G(S)
be a homeomorphism of Golomb topologies. Then h restricts to a bijection from the
unit group R× of R to the unit group S× of S.

The proof of Theorem 13 will be given in §3.5. Three preliminary lemmas are given
in §3.2, §3.3 and §3.4. In its structure our argument closely follows recent work
of Banakh, Mioduszewski and Turek on the “classical Golomb space” G(Z+) (cf.
§4.1), showing that every homeomorphism of G(Z+) fixes 1.1

From Theorem 13 we deduce:

Corollary 14. As q ranges over all prime powers, the Golomb topologies G(Fq[t])
are pairwise nonhomeomorphic.

Proof. If q1 and q2 are prime powers and G(Fq1 [t]) and G(Fq2 [t]) are homeomophic,
then by Theorem 13 we have

q1 − 1 = #F×q1 = #Fq1 [t]× = #Fq2 [t]× = q2 − 1,

so q1 = q2. �

Corollary 14 and the previous discussion show that the number of isomorphism
types of Golomb topologies associated to countably infinite semiprimitive domains
is either ℵ0 or c. In the absence of any known homeomorphisms between Golomb
topologies of nonisomorphic rings, we are inclined to believe that the truth is c.

1This work purports to show that G(Z+) is rigid – i.e., has trivial self-homeomorphism group.

As of November 24, 2017, T. Banakh has acknowledged a gap in one of the final steps of the

argument. It seems likely that a new version of this article will soon be released. The gap does
not concern the portions that we are adapting and generalizing, and we hope the present work

will make clear that this part of their paper is already quite striking and valuable.
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3.2. The closure of a coprime coset.

The following result is modelled on [BMT17, Lemma 3].

Lemma 15. Let R be a Dedekind domain, let I be a nonzero ideal of R, and let
pe11 · · · p

eg
g be its prime power factorization. Let x ∈ R be such that x+I is a coprime

coset. Then we have

(x+ I)• = (

g⋂
i=1

(pi ∪ (x+ peii )))•.

Proof. Since x+ I is a coprime coset, it is equivalent to show that

x+ I =

g⋂
i=1

(pi ∪ (x+ peii )).

Let y ∈ R. Suppose first that for some 1 ≤ i ≤ g we have y /∈ pi ∪ (x+ peii ). Then
y + peii is a coprime coset disjoint from x+ peii , hence also from x+ I. This shows

x+ I ⊂
g⋂

i=1

(pi ∪ (x+ peii )).

Suppose that y ∈ pi ∪ (x+ peii ) for all 1 ≤ i ≤ g, and let Uy be a neighborhood of y

in G̃(R), so Uy contains a coprime coset y + J . Let A := {1 ≤ i ≤ g | y ∈ pi}. For
i ∈ A, since y + J is a coprime coset we have 〈pi, J〉 = R, and thus

〈I, J〉 ⊃
∏

i∈{1,...,g}\A

peii .

As x ≡ y (mod peii ) for all i ∈ {1, . . . , g} \ A, we get x ≡ y (mod 〈I, J〉) and thus
[Cl-CA, Lemma 21.5] we have (x+ I) ∩ (y + J) 6= ∅. �

3.3. The Brown filter.

Above we defined a topological space to be a Brown space if the closures of any two
nonempty open sets intersect. A strongly Brown space is a space X such that for any
finite collection U1, . . . , Un of nonempty open sets, we have that

⋂n
i=1 Ui 6= ∅. Being

strongly Brown is precisely the condition for the sets {U | U is nonempty and open}
to be the subbase for a filter on X; explicitly, the Brown filter is

B(X) := {A ⊂ X | ∃ nonempty open subsets U1, . . . , Un such that A ⊃
n⋂

i=1

Ui}.

The crux of our proof of Theorem 13 lies in the following observation: if h : X → Y
is a homeomorphism of strongly Brown spaces, then the pushforward h∗(B(X)) =
{h(A) | A ∈ B(X)} of the Brown filter on X is the Brown filter B(Y ) on Y . This
is immediate from the topological nature of the definition.

Now let R be a domain that is not a field. The proof of Theorem 8a) works

verbatim to show that the spaces G̃(R) and G(R) are strongly Brown.
For any family {Ii} of nonzero ideals, the family {I•i } satisfies the finite inter-

section proprety and is thus the subbase for a filter on R•. The radical filter R(R)
is the filter generated by the family of all {I•} such that I is a nonzero radical ideal.
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The following result is modelled on [BMT17, Lemma 5].

Lemma 16. Let R be a Dedekind domain. Then the Brown filter B(G(R)) coincides
with the radical filter R(R).

Proof. In a Dedekind domain, the Jacobson radical of every nonzero ideal coincides
with its radical, namely the product of the distinct maximal ideals it contains.

Let U be a nonempty open subset of G(R). Then U contains a coprime coset
x + I and thus, by Theorem 4c), also U ⊃ (rad I)•, so U ∈ R(R). Thus R(R)
contains every element of a subbase for B(R) so R(R) ⊃ B(R).

Since R is Dedekind, the nonzero prime ideals p of R form a subbase for R(R),
so it is enough to show that p• ∈ B(R). Choose π ∈ p \ p2. By Lemma 15 we have

(1 + p2)• = ((1 + p2) ∪ p)•,

(1 + π + p2)• = (1 + π + p2) ∪ p)•,

so

p• = (1 + p2)• ∩ (1 + π + p2)• ∈ B(R). �

3.4. A criterion for coprime cosets.

The following result is modelled on [BMT17, Lemmas 6-7].

Lemma 17. Let R be a Dedekind domain, let x, y be distinct elements of R•, and
I be a nonzero radical ideal of R. The following are equivalent:
(i) There are neighborhoods Ux of x and Uy of y in G(R) such that Ux ∩ Uy ⊂ I•.
(ii) We have 〈x, I〉 = 〈y, I〉 = R.

Proof. (i) =⇒ (ii): It is enough to assume that neighborhoods Ux and Uy as in
(i) exist but that 〈x, I〉 ( R and deduce a contradiction. Let p be a maximal ideal
of R such that 〈x, I〉 ⊂ p. Shrinking Ux and Uy if necessary, we may assume that

Ux = (x+ I1)•, Uy = (y + I2)•, 〈x, I1〉 = 〈y, I2〉 = R.

Then Theorem 4c) gives

I1I2 ⊂ rad(I1) ∩ rad(I2) ⊂ (Ux ∩ Uy) ∪ {0} ⊂ I ⊂ p;

since 〈p, I1〉 = R, we get p ⊃ I2. Choose e ∈ Z+ such that I2 ⊂ pe and I2 6⊂ pe+1

and write I2 = peJ . By the Chinese Remainder Theorem there is t ∈ R such that
t ∈ (y + pe) ∩ I1J . Since I2 ⊂ pe and 〈y, I2〉 = R, we have y /∈ pe and thus t /∈ pe,
hence t /∈ p. Because t ∈ I1, we have t ∈ Ux; because t ∈ (y + pe) ∩ J , we have
t ∈ Uy. However, since t /∈ p, we have t /∈ I, contradicting Ux ∩ Uy ⊂ I•.
(ii) =⇒ (i): For each maximal ideal p ⊃ I, choose ep ∈ Z+ large enough so that
x − y /∈ pep , and put J :=

∏
p p

ep . Since rad J = rad I and 〈x, I〉 = 1, we have

〈x, J〉 = 1 [Cl-CA, Prop. 4.17]. Put Ux := (x+ J)• and Uy := (y + J)•. If α ∈ Ux,
then by Lemma 15, for each maximal ideal p ⊃ I, either α ∈ p or α ≡ x (mod pep).
Similarly for α ∈ Uy. So if α ∈ Ux ∩ Uy and α /∈ p for some maximal ideal p ⊃ I,
then x ≡ α ≡ y (mod pep), contradiction. Thus

Ux ∩ Uy ⊂

⋂
p⊃I

p

• = I•. �
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3.5. The proof of Theorem 13.

The following proof is modelled on [BMT17, Lemma 8].

Let R and S be Dedekind domains, and let h : G(R) → G(S) be a homeomor-
phism. It is enough to show that h(R×) ⊂ S×: for if so, then also h−1(S×) ⊂ R×,
so h|R× induces a bijection from R× to S×.

Seeking a contradiction, suppose there is u ∈ R× such that h(u) ∈ S• \ S×, and
let p be a maximal ideal of S containing h(u). By the work of §3.2 we have

p• ∈ R(S) = B(S) = h∗(B(R)) = h∗(R(R)),

so there is a nonzero radical ideal I of R such that h(I•) ⊂ p•.
Choose y ∈ 1 + I with y 6= u. Then u and y are distinct elements with 〈u, I〉 =

〈y, I〉 = R, so by Lemma 17 there are neighborhoods Uu of u and Uy of y in G(R)

such that Uu ∩ Uy ⊂ I•. It follows that

h(Uu) ∩ h(Uy) ⊂ h(I•) ⊂ p•.

Now h(Uu) is a neighborhood of h(u) in G(S) and h(Uy) is a neighborhood of h(y)
in G(S), so applying Lemma 17 again we get 〈h(u), p〉 = S, contradicting our choice
of p. This completes the proof of Theorem 13.

4. Remarks

4.1. Work of Brown, Golomb and Kirch.

Golomb defined [Go59] a topology G(Z+) on Z+ by taking as a base the sets

ba,b = {an+ b | n ∈ N}
as a, b range over coprime positive integers. He shows that his topology is Hausdorff
(using the infinitude of prime numbers) and connected but not regular or compact.
It is not hard to see that G(Z+) is precisely the subspace topology on Z+ ⊂ G(Z).

It seems that Golomb’s topology had been defined several years ealier by Morton
Brown. Brown did not publish his work, but he spoke about it at the April, 1953
AMS meeting in New York. Here is his abstract:

A countable connected Hausdorff space. The points are the positive
integers. Neighborhoods are sets of integers {a+bx}, where a and b
are relatively prime to each other (x = 1, 2, 3, . . .). Let {a+bx} and
{c+dx} be two neighborhoods. It is shown that bd is a limit point of
both neighborhoods. Thus, the closures of any two neighborhoods
have a nonvoid intersection. This is a sufficient condition that a
space be connected.

This should serve to explain our use of the term “Brown space.”
No countably infinite connected space can be regular [Ur25]. However, the proof

of nonregularity given by Golomb adapts to show that G(R) is not quasi-regular
unless R is a field. This was our initial approach; however, our current approach
using Brown spaces seems more precise and perhaps more interesting.

In [Ki69], Kirch shows that in G(Z+), the point 1 admits no connected neighbor-
hood. Our Proposition 10b) comes from analyzing his proof. Kirch then coarsens
Golomb’s topology by taking as a base the coprime cosets b + 〈a〉 in which a is
squarefree and shows that his topology is Hausdorff and locally connected. It is
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not difficult to carry over Kirch’s topology and its properties to any semiprimitive
Dedekind domain. Is there a natural “Kirch topology” on a general domain?

4.2. Adic topologies revisited.

For a domain R that is not a field, the adic topology on R has as its base all
cosets x+ I of nonzero ideals I of R. The adic topology makes (R,+) into a Haus-
dorff topological group, hence a uniformizable space, hence a regular space.

Suppose now that R is countably infinite. Since for all a, b ∈ R• we have
(ab) ⊂ (a) ∩ (b), the cosets of nonzero principal ideals form a countable base for
the adic topology on R, so the adic topology is metrizable by Urysohn’s Theorem.
Since nonempty open subsets are infinite, there are no isolated points. By a theorem
of Sierpiński [Si20], any two countably infinite metrizable spaces without isolated
points are homeomorphic to each other and thus to Q with the Euclidean topology.
(This was proven by Broughan when R = Z [Br03, Thms. 2.3 and 2.4], and the
above argument largely follows his.) These adic topologies thus have dimension
zero, unlike the Golomb topology on a semiprimitive domain that is not a field.

4.3. Work of Knopfmacher–Porubský and Marko–Porubský.

In several papers [KP97], [Po01], [MP12], [MP15] Knopfmacher–Porubský, Porubský
and Marko–Porubský define and study a class of coset topologies on a domain R
that includes the Golomb topology. The first author was unaware of this work when
he considered the Golomb topology in [Cl17, §3.7], and most of the present work
was completed before we became aware of it.

Thus the present work concerns objects defined and studied by Knopfmacher,
Marko and Porubský. Nevertheless the only overlap in the results obtained is
that our Theorem 8b) is also [KP97, Thm. 12]: both are direct generalizations of
Golomb’s argument. All the other facts on the Golomb topology obtained here are
new, although some of them generalize results of [KP97], [MP12], [MP15]. Notably,
[KP97, Thm. 21] and [MP15, Thms. 4.8 and 4.9] give rather specific sufficient con-
ditions on R for G(R) to be Hausdorff, whereas our Theorem 5 shows that this holds
precisely when R is semiprimitive. In turn the works [KP97] and especially [MP15]
explore rather general classes of coset topologies, not just the Golomb topology.

All in all, we believe that readers conversant with [KP97], [Po01], [MP12] and
[MP15] will be in a position to better appreciate the present work. Conversely,
readers who have made it this far will probably be interested in these other works.
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