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Abstract. We give a further development of the Aichinger-Moosbauer calculus of

functional degrees of maps between commutative groups. For any fixed given com-
mutative groups A and B, we compute the largest possible finite functional degree

that a map f : A → B can have. We also determine the set of all possible degrees

of such maps. This also yields a solution to Aichinger and Moosbauer’s problem of
finding the nilpotency index of the augmentation ideal of group rings of the form

Zpβ [Zpα1 × Zpα2 × · · · × Zpαn ] with p, β, n, α1, . . . , αn ∈ Z+, p prime.
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1. Introduction

1.1. Polynomial Maps. This is the first of two papers in which we attempt a synthesis
and development of two prior works: a 2006 paper of R. Wilson [Wi06] and a 2021 paper

1
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of E. Aichinger and J. Moosbauer [AM21]. These works revisit and generalize number-
theoretic results in connection with polynomials, using methods that seem to belong to
pure algebra.

The major algebraic theme is the notion of a “polynomial map” f : A → B between
commutative groups A and B. It is an important concept that arises in many contexts,
for instance in the notion of a quadratic map between commutative groups: see e.g.
[Za74] and [S, p. 34-35]. Over commutative groups A and B, however, there is not a set
standard definition for “polynomial maps and their degree,” but various different defi-
nitions. Indeed, many concurrent definitions are compared in a work of Laczkovich [La04].

One frequently used, simple and successful way of viewing polynomial maps comes from
the calculus of finite differences. In 1909 Fréchet showed [Fr09] that a continuous function
f : R → R is a polynomial if and only if for some d ∈ N we have ∆df = 0, where ∆ is the
forward difference operator with the defining equation

(∆f)(x) = f(x+ 1)− f(x)

and ∆d is its d-fold iterate. Moreover, for a nonzero polynomial f over R, the least d such
that ∆df = 0 is equal to deg(f)+1. It is this property that can be used to generalize the
degree of polynomials to more general functions between arbitrary commutative groups.
One simply has to extend the calculus of finite differences to such functions. Various
authors have taken on aspects of this task. A particularly systematic and penetrating take
was recently given in work of Aichinger and Moosbauer [AM21]. Using finite differences
over groups, the authors associate, to any map f : A → B, a functional degree fdeg(f)
that is either a non-negative integer or ∞. They simply set

fdeg(f) := min{d ∈ Z+ | ∆df = 0} − 1 ,

a definition that we follow, except that, for the zero function, we set

fdeg(0) := −∞ .

1.2. Main Results. Basic properties of the functional degree, such as its behavior un-
der compositions and under formation of pointwise sums and products, are thoroughly
analyzed in the first part of [AM21]. The next important problem is the determination
of D(A,B), the set of all functional degrees of maps from A to B. In particular we wish
to determine δ(A,B), the supremum of all functional degrees of maps from A to B.

In the middle part of their work, in [AM21, §7-9], Aichinger and Moosbauer make
progress on this question. They showed that the determination of δ(A,B) for all finite
commutative p-groups A and B will give the determination of D(A,B) for all finite com-
mutative groups A and B. Moreover they recast the determination of δ(A,B) as an open
problem in commutative algebra [AM21, Problem 8.3]. In the special case of finite cyclic
p-groups, a solution can then be derived from work of Wilson [Wi06], as Aichinger and
Moosbauer point out. As we will see in §4.3, this case is also a consequence of earlier
work of Weisman [We77]. In order to complete the determination of D(A,B) when A
and B are both finite, it remains to determine δ(A,B) when A and B are both finite
commutative p-groups and A is not cyclic.

In this paper, we compute δ(A,B) for all commutative groups A and B: Theorem
4.9. This yields, in particular, an answer to [AM21, Problem 8.3]. We also determine
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whether ∞ lies in D(A,B): also in Theorem 4.9. As we will see, there are cases in which
δ(A,B) = ∞ but every single map f : A → B has finite functional degree.

For many pairs (A,B) of commutative groups, it is much easier to see that there is a
function of infinite functional degree than to determine the entire set D(A,B). However
we will compute the full set D(A,B) for a class of pairs (A,B) that includes all pairs of
finitely generated commutative groups: Proposition 4.10 and Theorem 4.11.

1.3. The Contents of the Paper. In §2 and 3 we give a self-contained exposition of
the aspects of the functional degree that we will need here. We do so mainly in order to
establish several new intermediate results, some of which will be used later on.1

Aichinger and Moosbauer place their functional calculus in the setting of maps between
aribitrary commutative groups, and throughout this work we try to follow this lead by
working without finiteness restrictions when we can do so. For this we need a few tenets
of the theory of commutative groups, e.g. the structure of groups of finite exponent. This
is recalled in §2 2. In that section we also introduce the finite difference calculus and give
the definition of functional degree in those terms.

Exploiting the fact that the set BA of all maps from A to B is naturally a module
under the group ring Z[A], Aichinger and Moosbauer gave an elegant module-theoretic
interpretation of the functional degree. In §3 we further develop the calculus of functional
degrees from this module-theoretic point of view. One unifying feature of our approach is
an attention to the effect of the functional degree of maps f : A → B under composition
with group homomorphisms ε : A′ → A and µ : B → B′: see Lemma 3.9 and Corollary
3.10. We also examine, in §3.3, what happens with the functional degree when B is a
direct product and when A is a direct sum. In particular we establish the Diagonalization
Theorem (Theorem 3.13), which generalizes Lemma 9.3 and Theorem 9.4 of [AM21].

In §4 we recall the ideal-theoretic interpretation of δ(A,B) due to Aichinger and Moos-
bauer. We then establish a key result, Theorem 4.8. It tells us how the largest possible
degree depends on the direct summands of A, if the p-group A can be written as a direct
sum. Using this result and the earlier results, we prove the main results of the paper.

1.4. In the Sequel. Aichinger and Moosbauer also gave some striking Diophantine ap-
plications of their functional calculus. Namely, they obtained group-theoretic generaliza-
tions [AM21, Thm. 11.1, Thm. 12.2] of the theorems of Chevalley [Ch35] and Warning
[Wa35] on systems of polynomials over a finite field Fpa : the latter result says that for
a system of polynomials P1, . . . , Pr ∈ Fpa [t1, . . . , tn] with

∑r
j=1 deg(Pj) < n, the number

#Z of simultaneous solutions is divisible by the prime p. In the sequel [CSII] we will use
results from the present paper and a generalization of the main result of [Wi06] to give
group- and ring-theoretic generalizations of the results of Ax [Ax64], Katz [Ka71] and
Moreno-Moreno [MM95] on higher p-adic congruences for #Z.

2. Finite Differences and the Functional Degree

2.1. Notation. We denote by P the set of (positive) prime numbers. We denote by N
the non-negative integers and put Z+ := N \ {0}. For n ∈ N, we set Zn := Z/nZ. In

1We were very taken with the results of [AM21] and their elegant exposition of them. When we can

push these results further or contribute a useful new way to look at them, we do so. There is more in
[AM21] than is revisited here, and we will make use of some of their other results in the sequel [CSII].
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particular, Z0 = Z. Moreover, we endow the set

Ñ := N ∪ {−∞,∞}
with the most evident total ordering, in which −∞ is the least element and ∞ is the
greatest element.

2.2. Preliminaries on Commutative Groups. Let (A,+) be a commutative group.
For n ∈ Z+ we define

A[n] := {x ∈ A | nx = 0}
and

A[n∞] := {x ∈ A | nkx = 0 for some k ∈ Z+}.
For a prime number p, we say that A is a p-group if A = A[p∞].

The torsion subgroup of A is

A[tors] := {x ∈ A | nx = 0 for some n ∈ Z+} =
⋃

n∈Z+

A[n].

We say that A is torsion if A = A[tors]. We say that A has finite exponent if A = A[n]
for some n ∈ Z+, in which case the least such n is called the exponent of A and is
denoted by exp(A). In the other case, we may write exp(A) = ∞. We also set

e(A) :=

{
exp(A) if exp(A) < ∞,

0 if exp(A) = ∞.

For a finitely generated commutative group A, we denote by rank(A) the least n such
that A is a direct sum of n cyclic groups.

A commutative group A is torsion-split if A[tors] is a direct summand of A. Every
finitely generated commutative group is torsion-split. More generally, Baer showed [Ba36]
that if A[tors] is the direct sum of a group of finite exponent and a divisible group (i.e.,
one in which the map x 7→ nx is surjective for all n ∈ Z+), then A is torsion-split.

Theorem 2.1 (Prüfer-Baer). Let G be a commutative group of finite exponent N . Then
there is a family (Nγ)γ∈Γ of numbers Nγ ∈ Z+ with Nγ | N for all γ and max

γ∈Γ
Nγ = N ,

such that G is isomorphic to the direct sum
⊕
γ∈Γ

ZNγ
.

Proof. See e.g. [K, Thm. 6]. □

2.3. The Functional Degree. For commutative groups A and B, let BA be the set of
all functions f : A → B. The set BA is a commutative group under pointwise addition.
For f ∈ BA and a ∈ A, we define the shift operator τa ∈ EndBA by

(τaf)(x) := f(x+ a),

and the difference operator ∆a ∈ EndBA by

(∆af) := τaf − f.

In other words, for all f : A → B and all x ∈ A we have

(∆af)(x) = f(x+ a)− f(x).

The following is a well-known formula from the calculus of finite differences carried over
to the present context. The proof is straightforward using induction on n.
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Lemma 2.2. Let a ∈ A, n ∈ N and let ∆n
a be the n-fold product ∆a · · ·∆a ∈ EndBA.

For all f ∈ BA and all x ∈ A,

(∆n
af)(x) =

n∑
i=0

(−1)i
(
n

i

)
f(x+ (n− i)a) =

n∑
j=0

(−1)n−j

(
n

j

)
f(x+ ja).

Definition 2.3. For f ∈ BA we define the functional degree fdeg(f) ∈ Ñ as follows:

• We put fdeg(f) = −∞ if and only if f = 0.

• For n ∈ N, we say that a nonzero function f has fdeg(f) ≤ n if and only if
∆a1

· · ·∆an+1
f = 0 for all a1, . . . , an+1 ∈ A.

• If there is an n ∈ N such that fdeg(f) ≤ n and f ̸= 0, then we define the functional
degree fdeg(f) as the least n ∈ N such that fdeg(f) ≤ n.

• If there is no n ∈ N such that fdeg(f) ≤ n, then we put fdeg(f) = ∞.

Our definition of functional degree differs from the one given in [AM21, §2] precisely in
that we set fdeg(0) = −∞, whereas Aichinger-Moosbauer take fdeg(0) = 0. Our choice is
motivated by the corresponding convention for the degree of polynomials, which ensures
that the identity deg(f · g) = deg(f) + deg(g) for polynomials f and g over an integral
domain holds even when f = 0 or g = 0.

Remark 2.4. Let f ∈ BA.

a) (cf. [AM21, Lemma 3.1(4)]) We have fdeg(f) ≤ 0 if and only if f(x+ a) = f(x)
for all a, x ∈ A, that is, if and only if f is constant.

b) [AM21, Lemma 3.1(5)] If f is a nonzero group homomorphism, then for all a ∈ A
the function ∆af is constant, as for all x ∈ A

(∆af)(x) = f(x+ a)− f(x) = f(a) = const.

Hence, fdeg(f) ≤ 1, and since f is nonconstant, fdeg(f) = 1.

c) Suppose f ∈ BA has functional degree 1. Then for all a1, a2 ∈ A we have

0 = ∆a1
∆a2

f(x) = f(a1 + a2 + x)− f(a2 + x)− f(a1 + x) + f(x).

Taking x = 0 we get

f(a1 + a2)− f(0) = (f(a1)− f(0)) + (f(a2)− f(0)).

So, x 7→ f(x)− f(0) is a nonzero group homomorphism.

Lemma 2.5. Let f ∈ BA. If fdeg(f) = n ∈ Z+, then for every a ∈ A we have
fdeg(∆af) ≤ n− 1 and for some a ∈ A we have fdeg(∆af) = n− 1.

Proof. Since fdeg(f) ≤ n, for all a, a1, . . . , an ∈ A we have

∆a1
· · ·∆an

(∆af) = ∆a1
· · ·∆an

∆af = 0,

so fdeg(∆af) ≤ n − 1. Since fdeg(f) is not less than or equal to n − 1, there are
a1, . . . , an ∈ A such that

∆a1
· · ·∆an−1

(∆an
f) = ∆a1

· · ·∆an
f ̸= 0,

so fdeg(∆an
f) is not less than or equal to n− 2. Thus fdeg(∆an

f) = n− 1. □
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For commutative groups A and B, let

D(A,B) := {fdeg(f) | f ∈ BA} ⊂ Ñ

be the set of all functional degrees of maps between A and B. The main result of §3 is
the complete determination of D(A,B) for certain groups A and B, including all finitely
generated commutative groups. The set D(A,B) is completely determined by two pieces
of information: the invariant

δ◦(A,B) := sup{fdeg(f) | f ∈ BA, fdeg(f) < ∞},
and whether there is a function f ∈ BA with fdeg(f) = ∞. Indeed:

Lemma 2.6. Let A and B be commutative groups.

a) If B is trivial, then BA = {0}, so D(A,B) = {−∞}.
b) If A is trivial and B is nontrivial, then D(A,B) = {−∞, 0}.
c) If A and B are both nontrivial, then

D(A,B) \ {∞} = {n ∈ −∞∪ N | n ≤ δ◦(A,B)}.

Proof. a) This is trivial.

b) In this case, every function is constant (as its domain has only one element), and some
are nonzero.

c) This follows from Lemma 2.5. □

The following consequence of Remark 2.4 and Lemma 2.6 shows a connection between
functional degrees and the existence of nontrivial group homomorphisms from A to B.

Corollary 2.7. For commutative groups A and B, the following are equivalent:

(i) D(A,B) ⊂ {−∞, 0,∞}.
(ii) Hom(A,B) = {0}.
(iii) δ◦(A,B) = 0.

Next we introduce a quantity that is closely related to δ◦(A,B) but easier to compute:

δ(A,B) := sup{fdeg(f) | f ∈ BA}.
Unlike δ◦(A,B), we can compute δ(A,B) for all commutative groups A and B: this is
because, for large classes of groups A and B, we can simply write down an f ∈ BA with
fdeg(f) = ∞.

If δ(A,B) < ∞, then δ◦(A,B) = δ(A,B). So it follows from Lemma 2.6 that

D(A,B) = {n ∈ Ñ | n ≤ δ(A,B)} if δ(A,B) < ∞.

3. Module-theoretic Interpretation of the Functional Degree

3.1. Preliminaries on Group Rings. For a group (A,+) and a ring R, let R[A] be
the corresponding group ring [Cl-CA, §5.6]. Its elements are formal linear combina-
tions

∑
a∈A ra[a] with ra ∈ R and ra = 0 for all but finitely many a ∈ A. The ring

homomorphism

ϵ : R[A] → R,
∑
a∈A

ra[a] 7→
∑
a∈A

ra.

is called augmentation map, and its kernel is the augmentation ideal I.
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Remark 3.1 (Reminders on Group Rings). Let R be a nonzero commutative ring.

a) The R-algebra homomorphism R[Z] → R[t, t−1] that sends [1] to t is an isomor-
phism. Under this map the augmentation ideal maps to the principal ideal ⟨t−1⟩.

b) Let N ≥ 2. The R-algebra homomorphism R[ZN ] → R[t]/⟨tN − 1⟩ that sends [1]
to t+ ⟨tN − 1⟩ is an isomorphism. Under this map the augmentation ideal maps
to the principal ideal ⟨t− 1+ ⟨tN − 1⟩⟩ = ⟨t− 1⟩/⟨tN − 1⟩ (which we identify with
⟨t− 1⟩ ⊂ R[t]).

c) For groups G1 and G2, the natural map

R[G1]⊗R R[G2] → R[G1 ×G2], [g1]⊗ [g2] 7→ [(g1, g2)]

is an R-algebra isomorphism.
d) Combining parts b) and c), we get that if A ∼=

⊕r
i=1 ZNi

, then

R[A] ∼= R[t1, . . . , tr]/⟨tN1
1 − 1, . . . , tNr

r − 1⟩.

The augmentation ideal is mapped to ⟨t1 − 1, . . . , tr − 1⟩/⟨tN1
1 − 1, . . . , tNr

r − 1⟩
(which we identify with ⟨t1 − 1, . . . , tr − 1⟩) under this isomorphism.

We call Z[A] the integral group ring of A. The commutative group BA has the structure
of a Z[A]-module via (∑

a∈A

na[a]
)
f :=

∑
a∈A

naτa(f).

Moreover, if B has finite exponent n, then B, hence also BA, is a Zn-module, and the
Z[A]-module structure on BA factors through Zn[A]. We see that BA is always a Ze(B)[A]-
module, even if exp(B) = ∞.

Lemma 3.2. BA is a faithful Ze(B)[A]-module.

Proof. Let 0 ̸= r =
∑

a∈A na[a] ∈ Ze(B)[A] be arbitrary. Choose a0 ∈ A such that
na0

̸= 0, and let n̂a0
∈ Z be a least nonnegative representative of na0

∈ Ze(B). As
0 < n̂a0 < exp(B), we have B[n̂a0 ] ̸= B and there exists an element b ∈ B with na0b :=
n̂a0b ̸= 0. From this property it follows easily that if δ0,b ∈ BA is the function that maps
0 to b and every other element of A to 0, then r · δ0,b ̸= 0, which proves the claimed
faithfulness. Indeed, if we evaluate the function

r · δ0,b : x 7−→
∑
a∈A

naδ0,b(a+ x)

at x = −a0, we see that [r · δ0,b](−a0) = na0b ̸= 0. □

Remark 3.3 (Reminders on Nil Ideals). Let R be a commutative ring, and let I be an
ideal of R.

a) We say that I is nil if every x ∈ I is nilpotent: i.e., there is n = n(x) ∈ Z+

such that xn = 0. We say that I is nilpotent if In = 0 for some n ∈ Z+. The
nilpotency index ν(I) of an ideal I is the least n ∈ N such that In = 0 or ∞ if
there is no such n. Thus ν(I) < ∞ if and only if I is nilpotent.

b) Let x1, . . . , xr ∈ S be nilpotent elements; more precisely, let a1, . . . , ar ∈ Z+

be such that xai
i = 0 for all 1 ≤ i ≤ r. Then ⟨x1, . . . , xr⟩a1+...+ar−(r−1) = 0:

indeed, if N ≥ a1 + . . .+ ar − (r − 1) then in any expression y = xb1
1 · · ·xbr

r with
b1 + . . .+ br = N we have bi ≥ ai for some i and thus y = 0. It follows from this
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that an ideal is nil if and only if it is generated by nilpotent elements and also
that every finitely generated nil ideal is nilpotent.

For a nonzero commutative group A and a nonzero commutative ring R, we denote by
ν(R[A]) the nilpotency index of the augmentation ideal I in R[A].

Example 3.4. Let p ∈ P and let n ∈ Z+. According to Remark 3.1, ν(Zp[Zpn ]) is the

nilpotency index of the ideal ⟨t− 1⟩ in the ring Zp[t]/⟨tp
n − 1⟩. Since (t− 1)p

n

= tp
n − 1

in Zp[t], evidently we have
ν(Zp[Zpn ]) = pn.

Lemma 3.5. Let A be a nontrivial commutative group, and let R be a nonzero commu-
tative ring.

a) If A has an element of infinite order, then the augmentation ideal of R[A] is not
nilpotent.

b) The augmentation ideal of Z[A] is not nilpotent.

c) Let m,N ≥ 2. Suppose that there is p ∈ P such that p | N and p ∤ m and that A
has an element of order m. Then ν(ZN [A]) = ∞.

d) If A is finite, then ν(R[A]) ≥ max(exp(A), rank(A)).

Proof. Let H be a subgroup of A. There is a natural injective ring homomorphism
ι : R[H] ↪→ R[A]. Moreover, if IH (resp. IA) is the augmentation ideal of R[H] (resp. of
R[A]), then for all n ∈ Z+ we have ι(InH) ⊂ InA, so ν(R[H]) ≤ ν(R[A]).

a) Let H be the subgroup generated by an element of A of infinite order. So, H ∼= (Z,+)
and thus ν(R[A]) ≥ ν(R[Z]). It suffices to show ν(R[Z]) = ∞. The group ring R[Z]
is isomorphic to the Laurent polynomial ring R[t, t−1], and under this isomorphism the
augmentation ideal maps to the principal ideal ⟨t− 1⟩. The element t− 1 is not nilpotent
in R[t, t−1].

b) In view of part a) we may assume that A has an element x of finite order m ≥ 2.
Taking H to be the subgroup generated by x, we have IH ⊂ IA. Thus, it is enough to
show that the augmentation ideal of Z[H] ∼= Z[Zm] is not nilpotent. We have

Z[Zm] ∼= Z[t]/⟨tm − 1⟩,
and we claim that the ring Z[t]/⟨tm−1⟩ is reduced, i.e., has no nonzero nilpotent elements,
which suffices. Since tm − 1 is monic, we have an injective ring homomorphism

Z[t]/⟨tm − 1⟩ ↪→ Q[t]/⟨tm − 1⟩ ∼=
∏
d|m

Q[t]/⟨Φd⟩,

where Φd is the dth cyclotomic polynomial. The ring
∏

d|m Q[t]/⟨Φd⟩ is a product of fields,

hence reduced, hence its subring Z[t]/⟨tm − 1⟩ is also reduced.

c) Arguing as above, it suffices to show that ν(ZN [Zm]) = ∞. Let p ∈ P be such that
p | N and p ∤ m. Then the surjective ring homomorphism ZN → Zp induces a surjective
ring homomorphism

q : ZN [Zm] → Zp[Zm],

and the map q induces for all n ∈ Z+ a surjection between the nth powers of the aug-
mentation ideals, so it suffices to show that ν(Zp[Zm]) = ∞. This follows from a similar
argument to that of part b): we have

Zp[Zm] ∼= Zp[t]/⟨tm − 1⟩,
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and tm − 1 ∈ Fp[t] is separable since p ∤ m, so Zp[t]/⟨tm − 1⟩ is reduced.
d) If an a ∈ A has order n then ([a]− [0])n−1 ̸= 0. This shows that ν(R[A]) ≥ exp(A). If
A has rank n and x1, . . . , xn ∈ A are such that A ∼=

⊕n
i=1⟨xi⟩, then

∏n
i=1([xi]− [0]) ̸= 0.

This shows that ν(R[A]) ≥ rank(A). □

3.2. Group Ring Interpretation of the Functional Degree. With the described
Ze(B)[A]-module structure on BA, we may view the operators τa = [a] and ∆a = [a]− [0]
as elements of the group ring Ze(B)[A], and observe that the elements ∆a lie in the

augmentation ideal I. Alternatively, we may also view BA as Z[A]-module and I as
the augmentation ideal of Z[A]. The latter choice allows us to simultaneously consider
different codomains B. For a fixed A all possible BA are modules over the same ring
Z[A]. Generalizing and unifying both choices, we may also view BA as Zke(B)[A]-module,
for any k ∈ N. No matter which ring we choose, the operators ∆a always lie in the
corresponding augmentation ideal I, and they generate that ideal:

Lemma 3.6. Let R be a commutative ring and let A be a commutative group.

a) The augmentation ideal I of R[A] is generated as an R-module by {∆a | a ∈ A}.
b) If S ⊂ A generates A as a commutative group, then for each n ∈ Z+, the set of

n-fold products {∆s1 · · ·∆sn | s1, . . . , sn ∈ S} generates In as an ideal.

Proof. a) Assume x = n1[a1] +n2[a2] + · · ·+nN [aN ] lies in I. We show that x lies in the
R-submodule M of I spanned by the elements ∆a. If N = 1 then n1 = 0 by the definition
of I, so x = 0 ∈ M . If N ≥ 2, then the element

(n1 + · · ·+ nN )[a1] = x− n2([a2]− [a1])− n3([a3]− [a1])− · · · − nN ([aN ]− [a1])

= x− n2(∆a2
−∆a1

)− n3(∆a3
−∆a1

)− · · · − nN (∆aN
−∆a1

)

lies in I, since x and the ∆ai lie in I. Hence, n1+n2+ · · ·+nN = 0, as in the case N = 1.
It follows that

x = n2(∆a2 −∆a1) + n3(∆a3 −∆a1) + · · ·+ nN (∆aN
−∆a1) ∈ M.

b) We observe that for all s1, s2 ∈ S we have

∆−s = [−s]− [0] = −[−s] · ([s]− [0]) = −[−s] ·∆s ∈ ⟨∆s | s ∈ S⟩,

∆s1+s2 = [s1 + s2]− [0] = [s1]([s2]− [0]) + ([s1]− [0]) = [s1]∆s2 +∆s1 ∈ ⟨∆s | s ∈ S⟩.
This shows that ⟨∆s | s ∈ S⟩ = ⟨∆a | a ∈ A⟩ = I; the result for In follows immediately.

□

From this Lemma, with R := Z or with R := Ze(B), we obtain Aichinger and Moosbauer’s
module-theoretic interpretation of the functional degree:

Lemma 3.7. Let A and B be commutative groups, and let I be the augmentation ideal of
Z[A] or of Ze(B)[A]. For each f ∈ BA and n ∈ N, the following statements are equivalent:

(i) In+1 kills f , i.e., θf = 0 for every θ ∈ In+1.

(ii) fdeg(f) ≤ n.

This equivalence can also be expressed by saying that the elements of BA with functional
degree at most n form the set

BA[In+1] := {f ∈ BA | In+1f = 0} = {f ∈ BA | ∀θ ∈ In+1, θf = 0}.
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The module-theoretic interpretation of the functional degree was introduced in [AM21,
Def. 2.1]. It is a useful perspective, because it allows us to apply the language and
the tools of commutative algebra to the calculus of finite differences. Here is one simple
example.

Lemma 3.8. Let A and B be commutative groups.

a) For f, g ∈ BA we have fdeg(f + g) ≤ max(fdeg(f), fdeg(g)).

b) For all n ∈ Ñ the set

Fn(A,B) := {f ∈ BA | fdeg(f) ≤ n}
is a subgroup of BA, as is

F(A,B) :=
⋃

n<∞
Fn(A,B).

Proof. a) We may assume without loss of generality that fdeg(g) ≤ fdeg(f) =: n ∈ N.
Then In+1 kills both f and g, so it kills the Z[A]-submodule of BA generated by f and
g, so it kills f + g.

b) This follows immediately. □

Let ε : A′ → A and µ : B → B′ be homomorphisms of commutative groups. This yields
group homomorphisms

ε∗ : BA → BA′
, f 7→ ε∗f := f ◦ ε

and
µ∗ : BA → (B′)A, f 7→ µ∗f := µ ◦ f.

If ε is injective (resp. surjective), then ε∗ is surjective (resp. injective), while if µ is
injective (resp. surjective), then µ∗ is injective (resp. surjective).

Lemma 3.9 (Homomorphic Functoriality I). Let A,A′, B,B′ be commutative groups and
let f ∈ BA. Let ε : A′ → A, µ : B → B′ be group homomorphisms. Then:

a) We have fdeg ε∗f ≤ fdeg f , with equality if ε is surjective.

b) We have fdegµ∗f ≤ fdeg f , with equality if µ is injective.

Proof. A homomorphism φ : G → H of commutative groups induces a homomorphism of
group rings Z[φ] : Z[G] → Z[H]. If IG (resp. IH) is the augmentation ideal of Z[G] (resp.
of Z[H]) then, for all n ∈ N, we have

Z[φ](InG) ⊂ InH ,

with equality if φ is surjective.

a) Using the ring homomorphism Z[ε], we may view BA as a Z[A′]-module, and then ε∗ :

BA → BA′
is a Z[A′]-module homomorphism. For each n ∈ N, we have Z[ε](In+1

A′ ) ⊂ In+1
A

and can conclude as follows: if In+1
A kills f ∈ BA, then in particular In+1

A′ kills f , hence

In+1
A′ also kills ε∗f . This shows that fdeg ε∗f ≤ fdeg f . In the case that ε is surjective,

we have that ε∗ is injective, and we can also use that Z[ε](In+1
A′ ) = In+1

A . So, In+1
A′ kills

ε∗f if and only if In+1
A′ kills f if and only if In+1

A kills f . Thus fdeg(ε∗f) = fdeg(f), if ε
is surjective.

b) The pushforward map µ∗ : BA → (B′)A is a Z[A]-module homomorphism, so if
fdeg(f) ≤ n then In+1

A kills f and thus also kills µ∗f , so fdeg(µ∗f) ≤ n; we deduce that
fdeg(µ∗f) ≤ fdeg(f). If µ is injective then µ∗ maps BA onto a Z[A]-submodule of (B′)A,
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and the annihilator ideal of an element x of a submodule N of a module M is the same
as the annihilator ideal of x viewed as an element of M . □

The following useful result is an immediate consequence of Lemma 3.9.

Corollary 3.10. Let f : A → B be a map between commutative groups.

a) (Domain Restriction) Let A be a subgroup of A, and let f |A : A → B, x 7→ f(x)
be the restriction of f to A. Then

fdeg(f |A) ≤ fdeg(f).

b) (Codomain Restriction) Let B be a subgroup of B such that f(A) ⊂ B, and let
f |B : A → B be given by x 7→ f(x). Then

fdeg(f |B) = fdeg(f).

Lemma 3.9 also implies that if A,A′, B,B′ are commutative groups such that A ∼= A′ and
B ∼= B′ then δ(A,B) = δ(A′, B′).

3.3. Between Sums and Products. Next we study maps f : A → B when B is a
direct product and also when A is a direct sum. Since the set-theoretic Cartesian product
is also the direct product in the category of commutative groups but the direct sum in
the category of commutative groups is not the set-theoretic coproduct, one expects the
case of maps into a product to be simpler than the case of maps out of a sum. This turns
out to be true, but we still have a result for maps out of a sum that is satisfactory for
our purposes.

Lemma 3.11 (Mappings into Products). Let A be a commutative group, and let B =∏
γ∈Γ Bγ be the direct product of commutative groups Bγ over a nonempty index set Γ.

For each γ ∈ Γ, let πγ : B → Bγ be the canonical projection. For all f ∈ BA, we have

fdeg(f) = sup
γ∈Γ

fdeg(πγ ◦ f).

Proof. The set-theoretic identity BA =
∏

γ∈Γ B
A
γ is also a Z[A]-module isomorphism. For

a commutative ring R and a family (Mγ)γ∈Γ of R-modules, if f = (fγ) ∈
∏

γ∈Γ Mγ is
an element of the product R-module and J is an ideal of R, then Jf = 0 if and only if
Jfγ = 0 for all γ ∈ Γ. Thus the least n ∈ N such that In kills f is the least n such that
In kills all fγ . □

Now suppose (Aγ)γ∈Γ is a nonempty family of nontrivial commutative groups Aγ . We put
A :=

⊕
γ∈Γ Aγ and view Aγ as a subgroup of A via the canonical injection ιγ : Aγ ↪→ A.

Hence, if aγ ∈ Aγ , it makes sense to write ∆aγ
for ∆ιγ(aγ). If each Aγ is generated

by a set Sγ , we may also write A =
⊕

γ∈Γ⟨Sγ⟩. With this setup, we can formulate the
following result:

Lemma 3.12 (Mappings out of Sums). Assume A =
⊕

γ∈Γ Aγ =
⊕

γ∈Γ⟨Sγ⟩, as described
above, and let B be another commutative group. For each f ∈ BA and d ∈ N, the following
statements are equivalent:

(i) There are r ∈ N, elements γ1, γ2, . . . , γr ∈ Γ and d1, d2, . . . , dr ∈ Z+ with d1 +
d2 + · · ·+ dr = d, and finite sequences

a1,1, . . . , a1,d1
∈ Sγ1

,
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...

ar,1, . . . , ar,dr
∈ Sγr

such that ( r∏
i=1

di∏
j=1

∆ai,j

)
f ̸= 0.

(ii) We have fdeg(f) ≥ d.

Proof. If d = 0, the theorem holds, as
(∏r

i=1

∏di

j=1 ∆ai,j

)
f = f if r = 0. So, assume d ≥ 1,

and let I be the augmentation ideal of Z[A]. As S :=
⋃

γ∈Γ Sγ is a set of generators of

A, we have that {∆s1 · · ·∆sd | s1, . . . , sd ∈ S} is a set of generators for the ideal Id, by
Lemma 3.6. With that, the result follows from the contrapositive of Lemma 3.7 with
n := d− 1. □

Our main application of Lemma 3.12 will be Theorem 4.8, which reduces the determina-
tion of functional degrees of maps between finite commutative p-groups to the cyclic case.

The next result is a discrete analogue of the fact that a smooth function f : Rn → Rn

with diagonal Jacobian matrix decomposes as f = (f1, . . . , fn) with fi : R → R. Let Γ
be a nonempty index set, for each γ ∈ Γ let Aγ and Bγ be commutative groups, and put

A :=
⊕
γ∈Γ

Aγ and B :=
∏
γ∈Γ

Bγ .

Then we may naturally view each f• = (fγ)γ∈Γ ∈
∏

γ∈Γ B
Aγ
γ as a function in BA, and∏

γ∈Γ B
Aγ
γ as a subgroup of BA. We just need to define

f•(x) := (fγ(xγ))γ∈Γ for all x = (xγ)γ∈Γ ∈ A.

These f• are exactly the “diagonal” functions in BA, in the sense that for each γ ∈ Γ the
γ-component of the output depends only on the γ-component of the input.

Theorem 3.13 (Diagonalization Theorem). With A :=
⊕

γ∈Γ Aγ and B :=
∏

γ∈Γ Bγ , as

above, suppose that for all γ ∈ Γ we have Hom
(⊕
λ̸=γ

Aλ, Bγ

)
= {0}. Then

a) fdeg(f•) = sup
γ∈Γ

fdeg(fγ) for all f• = (fγ)γ∈Γ ∈
∏
γ∈Γ

B
Aγ
γ .

b) Fn(A,B) =
∏
γ∈Γ

Fn(Aγ , Bγ) for all n < ∞.

c) F(A,B) =
⋃

n<∞

∏
γ∈Γ

Fn(Aγ , Bγ) ⊂
∏
γ∈Γ

F(Aγ , Bγ).

Proof. a) For γ ∈ Γ, let ιγ : Aγ ↪→ A and πγ : B → Bγ be the canonical maps. Whenever
λ ̸= γ Corollary 2.7 implies that πγ ◦ f ◦ ιλ is constant, as Hom(Aλ, Bγ) = {0}. It follows
(e.g. by Lemma 3.12 with Sγ := Aγ) that

fdeg(πγ ◦ f•) = fdeg(πγ ◦ f• ◦ ιγ) = fdeg(fγ),

for all γ ∈ Γ. So, by Lemma 3.11 we have

fdeg(f•) = sup
γ∈Γ

fdeg(πγ ◦ f•) = sup
γ∈Γ

fdeg(fγ).
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b) The inclusion Fn(A,B) ⊃
∏

γ∈Γ Fn(Aγ , Bγ) follows directly from part a). To prove
the opposite inclusion, we first introduce some notation. For each γ ∈ Γ, we identify
A =

⊕
γ∈Γ Aγ with Aγ ×

⊕
λ ̸=γ Aλ. Having done so, each xγ ∈ Aγ and xγ ∈

⊕
λ̸=γ Aλ

yields an element (xγ , x
γ) of A. Now, let f ∈ Fn(A,B). We need to show that f ∈∏

γ∈Γ Fn(Aγ , Bγ). Consider first just one fixed γ ∈ Γ and one fixed xγ ∈ Aγ . Let
fγ : A → Bγ be the γ-component of f . As f has finite functional degree, so does the
function

gγ,xγ
:
⊕
λ ̸=γ

Aλ → Bγ , gγ,xγ
(xγ) := fγ(xγ , x

γ).

Since Hom(
⊕

λ ̸=γ Aλ, Bγ) = {0}, Corollary 2.7 implies that gγ,xγ is constant, and we

may write fγ(xγ) for that constant value. This applies to all xγ ∈ Aγ and all γ ∈ Γ.
Now, because f lies in Fn(A,B), the functions fγ : xγ 7→ fγ(xγ) lie in Fn(Aγ , Bγ), and
f = (fγ) ∈

∏
γ∈Γ Fn(Aγ , Bγ), indeed.

c) This follows from part b), as
∏

γ∈Γ Fn(Aγ , Bγ) ⊂
∏

γ∈Γ F(Aγ , Bγ) for all n < ∞. □

Remark 3.14. If we define f•(x) only for x ∈
⊕

γ∈Γ Aγ , as we did, Theorem 3.13

holds also with the direct sum
⊕

γ∈Γ Bγ in the place of the direct product B :=
∏

γ∈Γ Bγ .

One can also formulate that theorem for the direct product
∏

γ∈Γ Aγ instead of the direct

sum
⊕

γ∈Γ Aγ , but this is not possible in Lemma 3.12, and the direct sum is also more
important in the study of torsion groups.

Our main application of Theorem 3.13 is to the case when A and B are both torsion
group. We take Γ to be the set of prime numbers P, and decompose A and B as

A =
⊕
p∈P

A[p∞] and B =
⊕
p∈P

B[p∞] ⊂
∏
p∈P

B[p∞] =: B̃.

We may apply Theorem 3.13 in this setting. Moreover, if B[p∞] = {0} for all but finitely

many p ∈ P, e.g. if B has finite exponent, then B̃ = B and we can write all the direct
products in the theorem as direct sums. In that situation, we can then also use that⋃

n<∞

⊕
p∈P

Fn(A[p∞], B[p∞]) =
⊕
p∈P

F(A[p∞], B[p∞])

and obtain the following corollary:

Corollary 3.15. If A and B are torsion groups, and if B[p∞] = {0} for all but finitely
many p ∈ P, then

a) fdeg(f•) = max
p∈P

fdeg(fp) for all f• = (fp)p∈P ∈
⊕
p∈P

B[p∞]A[p∞],

b) Fn(A,B) =
⊕
p∈P

Fn(A[p∞], B[p∞]) for all n < ∞,

c) F(A,B) =
⊕
p∈P

F(A[p∞], B[p∞]).

We will use the previous results to reduce the study of maps of finite functional degree
between torsion groups to the p-primary case.
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4. The set D(A,B) of functional degrees

4.1. Ideal-theoretic Interpretation of δ(A,B). Recall that for commutative groups
A and B, we have defined δ(A,B) to be the supremum of all functional degrees of maps
f ∈ BA and D(A,B) to be the set of all functional degrees of maps f ∈ BA. In this
section we will compute δ(A,B) for all A and B and D(A,B) for a class of commutative
groups that includes all finitely generated groups A and B.

For f ∈ BA and n ∈ N, by Lemma 3.7, we have

fdeg(f) = n ⇐⇒ f ∈ BA[In+1] \BA[In].

Considering this connection between the degree of f and the powers of the augmentation
ideal I of Ze(B)[A], it is no surprise that the quantity δ(A,B) has an ideal-theoretic
interpretation:

Theorem 4.1. Let A and B be nontrivial commutative groups. Then

δ(A,B) = ν(Ze(B)[A])− 1.

Proof. Let I be the augmentation ideal of Ze(B)[A], and put ν := ν(Ze(B)[A]). Lemma

3.2 tells us that BA is a faithful Ze(B)[A]-module. If ν = ∞, then for all n ∈ Z+ there

is η ∈ In \ {0}. By faithfulness, there is f ∈ BA such that ηf ̸= 0, and it follows that
δ(A,B) = ∞. If ν < ∞ then Iν = 0, so BA = BA[I(ν−1)+1], so δ(A,B) ≤ ν − 1. The
converse is the same as above: there is η ∈ Iν−1 \ {0}, hence by faithfulness there is
f ∈ BA such that Iν−1f ̸= 0, so δ(A,B) ≥ ν − 1. □

We deduce:

Corollary 4.2. The following are equivalent:

(i) δ(A,B) < ∞.
(ii) The augmentation ideal of Ze(B)[A] is nilpotent.

Proof. This is immediate from the theorem and Remark 3.3a). □

We also see that:

Corollary 4.3. For commutative groups A and B, the quantity δ(A,B) depends only on
A and on the exponent exp(B) of B.

Thus we have an interplay between the ideal theory of the group ring Ze(B)[A] and the

structure of its faithful module BA. Notice that the nilpotency index of any ideal J in
a commutative ring R can be computed using any faithful R-module M : it is the least
n ∈ Z+ such that M = M [Jn] or ∞ if no such n exists. Because of this, having a
“concretely given” faithful R-module can be useful for studying the ideal theory of R.
Following Aichinger-Moosbauer [AM21, §7] we introduce a natural family of elements
of BA, the delta functions, that in many cases can be shown (via their generation
properties) to be elements of BA of maximal functional degree. They provide a convenient
tool for giving lower bounds on δ(A,B).
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4.2. Delta Functions. Let A and B be commutative groups. For a ∈ A and b ∈ B, we
define the delta function δa,b ∈ BA via

δa,b(x) :=

{
b if x = a,

0 if x ̸= a.

Proposition 4.4. Let A and B be nontrivial commutative groups.

a) The Z[A]-submodule of BA generated by D := {δ0,b | b ∈ B} is the set of all
functions f : A → B such that f(a) = 0 for all but finitely many a ∈ A. Thus the
subset D generates BA as a Z[A]-module if and only if A is finite.

b) If A is finite and B = Zb, for some b ≥ 2, then the Zb[A]-module BA is free of
rank 1 with δa,u as generator, for any choice of a ∈ A and u ∈ Z×

b .

c) If A is finite and B has finite exponent then, for each a ∈ A and each b ∈ B of
order exp(B),

δ(A,B) = fdeg(δa,b).

Proof. a) For a ∈ A we have that τaδ0,b = δa,b, from which the result follows easily.

b) For B := Z×
b , the Z-module generated by δ0,u contains D, so by part a) the Z[A]-

module generated by δ0,u is ZA
b . Being a faithful Zb[A]-module that is generated by δ0,u,

the module ZA
b is therefore free of rank 1.

c) Let U be the set of elements of B of order exp(B). We claim that U generates B
as a group. To see this, let B be the subgroup generated by U . We first suppose that
B = B[p∞] for some p ∈ P. In this case, if x ∈ U and y ∈ B \ U then x + y ∈ U . It
follows that y ∈ B, i.e. B = B. In the general case, for u ∈ U we write u =

∑
p∈P up

with up ∈ B[p∞]. For each p ∈ P the element up lies in the cyclic subgroup generated by
u, hence also in B, and moreover up has maximal order exp(B[p∞]). Conversely, every
element v of B[p∞] of maximal order is of the form up for some u ∈ U . This shows that
B contains B[p∞] for all p ∈ P, so B = B, indeed.

Since δ0,u1 + δ0,u2 = δ0,u1+u2 , it follows that

U := {δ0,u | u has order exp(B)}
generates BA as a Zexp(B)[A]-module. Moreover, all δ0,u have the same degree. This is
because for each u ∈ U the functional degree of δ0,u : A → B is equal to the functional
degree of δ0,u : A → ⟨u⟩, by Corollary 3.10, and thus also equal to the functional degree
of δ0,1 : A → Zexp(B), by Lemma 3.9, which does not depend on u. It follows that the
least power of I (if any) that kills δ0,b is the least power of I that kills U , which is the
least power of I that kills BA. Hence, δ(A,B) = fdeg(δ0,b) = fdeg(δa,b). □

4.3. Computing δ(Zpα , Zpβ ). We will now compute δ(Zpα , Zpβ ) by two different argu-
ments. The first uses delta functions, via a 1977 result of Weisman. The second uses
group rings, via a 2006 result of Wilson.

For n ∈ Z+ and j, k ∈ Z, we put

Mk(j, n) :=
∑

0≤i≤n
i≡j (mod k)

(−1)i
(
n

i

)
.

Theorem 4.5 (Weisman). Let p ∈ P, α, β ∈ Z+ and j ∈ Z.
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a) If n ≥ β((p− 1) + 1)pα−1, then Mpα(j, n) ≡ 0 (mod pβ).

b) Mpα(j, β((p− 1) + 1)pα−1 − 1) ≡ (−p)β−1 (mod pβ).

Proof. This is the main result of [We77]. □

Lemma 4.6 (Wilson). Let p ∈ P and let α, β ∈ Z+. Then

(t− 1)(β(p−1)+1)pα−1−1 ≡ (−p)β−1

pα−1∑
i=0

ti (mod tp
α

− 1, pβ).

Proof. This is [Wi06, (22)]2. □

Theorem 4.7. Let p ∈ P, let α, β ∈ Z+ and let B be a commutative group of exponent
pβ. Then

δ(Zpα , B) = (β(p− 1) + 1)pα−1 − 1.

Proof. (Via Weisman) By Corollary 4.3, we may assume that B = Zpβ . By Proposition
4.4b), then δ(Zpα , B) = fdeg(δ0,1). So, by Lemma 3.6 and Lemma 3.7, we need to
determine the least n ∈ N such that ∆nδ0,1 = 0, where ∆ := ∆1. If we view δ0,1 as map
from Zpα into Z, this condition is met if and only if

∀x ∈ Zpα , (∆nδ0,1)(x) ≡ 0 (mod pβ).

However, Lemma 2.2 tells us that

(∆nδ0,1)(x) =
∑

0≤j≤n
j≡−x (mod pα)

(−1)n−j

(
n

j

)
= ±Mpα(−x, n),

and by Theorem 4.5 we know exactly when this is zero modulo pβ . We see that

δ(Zpα , B) = (β(p− 1) + 1)pα−1 − 1. □

Proof. (Via Wilson) Theorem 4.1 gives

δ(Zpα , B) = ν(Zpβ )[Zpα ])− 1.

Therefore, by Remark 3.1b), it suffices to show that the nilpotency index of the aug-
mentation ideal ⟨t − 1⟩ in the ring Zpβ [t]/⟨tpα − 1⟩ is (β(p − 1) + 1)pα−1. Phrasing this

in terms of the ring Z[t], we wish to show that the least N ∈ Z+ such that (t − 1)N

lies in the ideal J := ⟨pβ , tpα − 1⟩ is (β(p − 1) + 1)pα−1. This follows from Lemma 4.6.

Indeed, that congruence directly entails (t−1)(β(p−1)+1)pα−1−1 /∈ J , and indirectly (after

multiplying both sides by t − 1) implies (t − 1)(β(p−1)+1)pα−1 ≡ 0 (mod tp
α− 1, pβ) and

thus (t− 1)(β(p−1)+1)pα−1 ∈ J . □

4.4. The p-Primary Sum Theorem.

Theorem 4.8 (p-Primary Sum Theorem). Let p ∈ P. For 1 ≤ i ≤ r, let Ai be a
nonzero finite commutative p-group, let A :=

⊕r
i=1 Ai, and let B be a commutative group

of exponent pβ. Then

δ (A,B) = max
β

r∑
i=1

δ(Ai, Zpβi+1),

where the maximum extends over all β = (β1, . . . , βr) ∈ Nr with β1 + . . .+ βr = β − 1.

2In [Wi06] Wilson speaks of a “sketch of a derivation,” but in fact he provides a complete proof.
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Proof. By Corollary 4.3 we may assume that B = Zpβ . To be able to apply Proposition
4.4c), we further define for 1 ≤ i ≤ r and ℓ ∈ Z+ the delta functions

δiℓ := δ0,1 ∈ Z Ai

pℓ , δi := δ0,1 ∈ ZAi and δℓ := δ0,1 ∈ Z A
pℓ .

To use Lemma 3.12 (with the Ai in the place of the generating sets Si), we write a ∈∏r
i=1 A

di
i to say that a is a family (ai,j) with di entries ai,1, ai,2, . . . , ai,di

in Ai, for each
1 ≤ i ≤ r. Similarly, x ∈

∏r
i=1 Ai means that x is an r-tuple with ith entry xi in Ai, etc.

Using the map σr : Nr → N, d 7→
∑r

i=1 di we will also write σ−1
r (d) to denote the set

of all d ∈ Nr whose sum of entries is d, for a given d ∈ N. Moreover, we use the p-adic
valuation vp : Z → N ∪ {∞} with vp(0) = ∞ and vp(n) = max{a ∈ Z+ | pa divides n} for
n ∈ Z \ {0}. Now let d ∈ N. It is enough to prove the equivalence

δ(A,Zpβ ) ≥ d ⇐⇒ max
β

r∑
i=1

δ(Ai, Zpβi+1) ≥ d.

We show this through the following chain of equivalences (where the range of the variables
is specified the first time they appear but not thereafter):

δ(A,Zpβ ) ≥ d

⇔ fdeg(δβ) ≥ d

⇔ ∃d ∈ σ−1
r (d) : ∃a ∈

r∏
i=1

Adi
i : ∃x ∈ A :

( r∏
i=1

di∏
j=1

∆ai,jδβ

)
(x) ̸= 0 ∈ Zpβ

⇔ ∃d : ∃a : ∃x ∈
r∏

i=1

Ai :

r∏
i=1

(( di∏
j=1

∆ai,j
δiβ
)
(xi)

)
̸= 0 ∈ Zpβ

⇔ ∃d : ∃a : ∃x :

r∑
i=1

vp

(( di∏
j=1

∆ai,j
δi
)
(xi)

)
≤ β − 1

⇔ ∃d : ∃a : ∃x : ∃β ∈ σ−1
r (β − 1) : ∀1 ≤ i ≤ r : vp

(( di∏
j=1

∆ai,j
δi
)
(xi)

)
≤ βi

⇔ ∃d : ∃β : ∀i : ∃ai ∈ Adi
i : ∃xi ∈ Ai :

( di∏
j=1

∆ai,j
δiβi+1

)
(xi) ̸= 0 ∈ Zpβi+1

⇔ ∃β : ∃d : ∀i : fdeg(δiβi+1) ≥ di

⇔ ∃β :

r∑
i=1

fdeg(δiβi+1) ≥ d

⇔ max
β

r∑
i=1

δ(Ai, Zpβi+1) ≥ d. □

4.5. Computation of δ(A,B). The following result computes δ(A,B) for all nontrivial
commutative groups A and B, answering a question of Aichinger-Moosbauer. When
δ(A,B) = ∞ we specify whether every f ∈ BA has finite functional degree or whether
there are functions of degree ∞.
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Theorem 4.9. Let A and B be nontrivial commutative groups.

a) If A is infinite, then fdeg(δ0,b) = ∞ for all b ∈ B\{0}, in particular, δ(A,B) = ∞.

b) If there is no p ∈ P such that A is a finite p-group and B is a p-group, then
fdeg(δ0,b) = ∞ for some b ∈ B, in particular, δ(A,B) = ∞.

c) If, for some p ∈ P, A is a finite p-group, say A ∼=
⊕r

i=1 Zpαi with α1 ≥ . . . ≥ αr,
and B is a p-group of finite exponent pβ, then

δ(A,B) =

r∑
j=1

(pαj − 1) + (β − 1)(p− 1)pα1−1.

d) If, for some p ∈ P, A is a finite p-group and B is a p-group of infinite exponent,
then every f ∈ BA has finite functional degree but δ(A,B) = ∞.

Proof. a) Let b ∈ B \ {0}. Since δ0,b(A) = {0, b} ⊂ ⟨b⟩, Corollary 3.10b) reduces us to
the case B = ⟨b⟩. We may even assume B = Zp and b = 1 ∈ Zp, for a suitable p ∈ P.
This is because there is always a prime p such that a homomorphism µ : ⟨b⟩ → Zq with
µ(b) = 1 exists, and then Lemma 3.9b) tells us that δ0,b : A → ⟨b⟩ has infinite degree if
δ0,1 = µ ◦ δ0,b : A → Zq has infinite degree. So, we only need to show that δ0,1 : A → Zq

has infinite degree, if A is infinite.

Case 1, A has infinite exponent: In this case, A contains an element an of order greater
than n, for every n ∈ Z+. It follows that the elements 0an, 1an, . . . , nan are pairwise
different, so that

[∆n
an
δ0,b](0) =

n∑
j=0

(−1)n−j

(
n

j

)
δ0,b(0 + jan) = (−1)nδ0,b(0) = (−1)nb ̸= 0,

as in Lemma 2.2. Hence, fdeg(δ0,1) = ∞, indeed.

Case 2, A is infinite and has finite exponent: In this case, rank(A) = ∞. So, for every
n ∈ Z+ there exists a subgroup A of A with rank(A) = n. Applying first Proposition
4.4b), then Theorem 4.1 and then Lemma 3.5d), we see that

fdeg(δ0,1) = δ(A,Zp) = ν(Zp[A])− 1 ≥ rank(A) = n.

Hence, fdeg(δ0,1) = ∞, as desired. Alternatively, this also follows from the insight that,
if a1, a2, . . . , an generate A, then the sum aI :=

∑
i∈I ai over a subset I ⊂ {1, 2, . . . , n} is

zero only if I = ∅, so that

[∆an∆an−1 · · ·∆a1δ0,1](0)f =
∑

I⊂{1,...,n}

(−1)n−|I|δaI ,1(0) = (−1)nδ0,1(0) = (−1)n ̸= 0.

b) We may assume that A is finite, as otherwise part a) applies. So, there exists an
element a ∈ A of order p ∈ P such that B is not a p-group. Corollary 3.10a) reduces
us now further to the case A = ⟨a⟩ ∼= Zp. Moreover, B contains an element b of order q
coprime to p. To show than fdeg(δ0,b) = ∞, we may also assume B = Zq and b = 1 ∈ Zq,
exactly as in the proof of part a). In this setting, Hom(A,B) = {0} so that Corollary 2.7
implies fdeg(δ0,1) = ∞, as desired.

c) First applying Theorem 4.8 with Ai = Zp
αi
i
, for i = 1, . . . , r, and then applying

Theorem 4.7, we get

δ(A,B) = max
β

r∑
i=1

δ(Zpαi , Zpβi+1) =

r∑
i=1

(pαi− 1) + max
β

r∑
i=1

βi(p− 1)pαi−1,
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where the maximum ranges over all β ∈ Nr with |β| := β1 + . . .+ βr = β − 1. However,
for all β ∈ Nr with |β| = β − 1,

r∑
i=1

βi(p− 1)pαi−1 ≤
r∑

i=1

βi(p− 1)pα1−1 = (β − 1)(p− 1)pα1−1,

with equality for β = (β−1, 0, . . . , 0). So, δ(A,B) =
∑r

i=1(p
αi −1)+(β−1)(p−1)pα1−1.

d) Let f ∈ BA. Since A is finite and B is a torsion group, the subgroup B generated
by f(A) is finite. By part c) the function f |B : A → B has finite degree, so that by
Corollary 3.10b), we have fdeg(f) = fdeg(f |B) < ∞. Finally, since B is a p-group of
infinite exponent, exp(B[pβ ]) = pβ for all β ∈ Z+. Thus, Theorem4.9 c) implies

δ(A,B) ≥ sup
β∈Z+

fdeg(A,B[pβ ]) = ∞.

□

4.6. Computation of D(A,B). In this section we will compute D(A,B) for a class of
commutative groups including all finitely generated groups A and B. By Theorem 4.9
and Lemma 2.6, to compute D(A,B) for any A and B it remains to determine δ◦(A,B).

Proposition 4.10. Let A and B be nontrivial commutative groups.

a) If A is a torsion group and B is torsion free, then D(A,B) = {−∞, 0,∞}.
b) If A is a torsion group, B is torsion-split with B[tors] ̸= {0} and B/B[tors] ̸= {0},

then
D(A,B) = D(A,B[tors]) ∪ {∞}.

c) If there is a surjective homomorphism ε : A → Z, then D(A,B) = Ñ.

Proof. a) Since Hom(A,B) = {0}, this follows from Corollary 2.7.

b) We may write B = B[tors] × B′. Let π1 : B → B[tors] and π2 : B → B′ be the two
projection maps. Then for f ∈ BA, Lemma 3.11 tells us that

fdeg(f) = max(fdeg(π1 ◦ f), fdeg(π2 ◦ f)).
With this equation it is easy to verify that D(A,B) = D(A,B[tors])∪{∞} by considering
all possible degrees of functions f1 : A → B[tors] and f2 : A → B′, independently.
By part a), D(A,B′) = {−∞, 0,∞}, as B′ ̸= {0}. So, D(A,B′) ∩ N = {0} and this
already shows that D(A,B) ∩ N = D(A,B[tors]) ∩ N, as D(A,B[tors]) ∩ N ̸= ∅. That
D(A,B) ∩ {−∞,+∞} = D(A,B[tors]) ∩ {−∞,+∞} ∪ {∞} follows from ∞ ∈ D(A,B′).

c) Evidently −∞, 0 ∈ D(A,B), and by Theorem 4.9a) we have ∞ ∈ D(A,B). Let d ∈ Z+.
Consider first the case A = B = Z. We claim that the map x 7→

(
x
d

)
from Z to Z has

functional degree d. Indeed, by “Pascal’s Identity” we have, for all x ∈ Z, that

∆1

(
x

d

)
=

(
x

d− 1

)
.

Hence, for a fixed b0 ∈ B \ {0}, the map gd : Z → B given by x 7→
(
x
d

)
b0 has functional

degree d. So, by Lemma 3.9a), the map ε∗g : A → B also has functional degree d. □

Proposition 4.10 reduces the computation of D(A,B) for A and B finitely generated to
the case in which A and B are finite. The next result accomplishes this for all torsion
groups A and B such that exp(A[p∞]) is finite for all p ∈ P, hence in particular for all
finite groups A.
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Theorem 4.11. Let A and B be nontrivial torsion groups such that exp(A[p∞]) is finite
for all p ∈ P.

a) We have

δ◦(A,B) = sup
p∈P

δ◦(A[p∞], B[p∞]).

b) If there are infinitely many p ∈ P such that A[p∞] and B[p∞] are both nonzero,
then

δ◦(A,B) = ∞.

c) If there is p ∈ P such that A[p∞] ̸= 0 and exp(B[p∞]) = ∞, then δ◦(A,B) = ∞.

d) If there is p ∈ P such that A[p∞] is infinite and B[p∞] ̸= 0, then δ◦(A,B) = ∞.

e) In the remaining case – that is, the set of p ∈ P such that A[p∞] and B[p∞] are
both nonzero is finite and for each such p, A[p∞] is finite and B[p∞] has finite
exponent – the parameter δ◦(A,B) = supp∈P δ◦(A[p∞], B[p∞]) is finite, and it
can be computed using Theorem 4.9c).

Proof. a) This follows from Theorem 3.13.

b) If for p ∈ P we have that A[p∞] and B[p∞] are both nonzero, then there is a surjective
group homomorphism ε : A → Zp (here we use that A[p∞] has finite exponent) and an
injective group homomorphism µ : Zp ↪→ B, so by Theorem 4.9c), we have

{−∞, 0, . . . , p− 1} = D(Zp, Zp) ⊂ D(A,B).

Since this holds for infinitely many p ∈ P, we get δ◦(A,B) = ∞.

c) There is a surjective group homomorphism ε : A → Zp and for all β ∈ Z+ an injective
group homomorphism ι : Zpβ ↪→ B, so as above δ◦(A,B) ≥ δ◦(Zp, Zpβ ). By Theorem
4.9c), we have supβ δ

◦(Zp, Zpβ ) = ∞, so δ◦(A,B) = ∞.

d) It follows from Theorem 2.1 that if A[p∞] is infinite and of bounded exponent then

for each d ∈ Z+ there is a surjective homomorphism ε : A →
⊕d

i=1 Zp and an injective
group homomorphism µ : Zp ↪→ B. Using Theorem 4.9c) as above, it follows that

δ◦(A,B) ≥ sup
d

δ

(
d⊕

i=1

Zp, Zp

)
= ∞.

e) This follows from Theorem 4.9c) and part a). □

Example 4.12. For p ∈ P, let Cp∞ = C×[p∞] be the Prüfer p-group, a p-group of infi-
nite exponent. As the identity map is a nonzero homomorphism, we have δ◦(Cp∞ , Cp∞) ≥
1, but we do not know more. This explains the need for the hypothesis that exp(A[p∞])
is finite for all p ∈ P in Theorem 4.11.
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