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Abstract. We give a version of Ax-Katz’s p-adic congruences and Moreno-Moreno’s

p-weight refinement thereof from that holds over any finite commutative ring of prime

characteristic. We deduce this from a group-theoretic result that gives a lower bound
on the p-adic divisibility of the number of simultaneous zeros of a system of maps

from a fixed “source” finite commutative group of exponent p to varying “target”

finite commutative p-groups. Our proof is morally a recasting of Wilson’s proof of
Ax-Katz over Fp in terms of the functional calculus of Aichinger-Moosbauer.

1. Introduction

This is the second in a sequence of papers in which we attempt a synthesis and further
development of work of Wilson [Wi06] and of Aichinger and Moosbauer [AM21]. Whereas
in the first paper [CS21] we applied arithmetic results of Weisman [We77] and Wilson
[Wi06] to answer a algebraic problem posed by Aichinger-Moosbauer, in this paper the
process is reversed: we use the algebraic work of [CS21] along with Aichinger-Moosbauer’s
functional calculus to deduce arithmetic results. In particular we give a group-theoretic
result that implies the theorem of Ax-Katz in the case of systems of polynomial equations
over a prime finite field Fp and the theorem of Moreno-Moreno on systems of polynomial
equations over a finite field Fq.

1.1. Notation and Terminology. We denote by P the set of (positive) prime numbers.

We denote by N the non-negative integers and put Z+ := N \ {0}. We endow the set

Ñ := N ∪ {−∞,∞}

with the total ordering that extends the usual one on N and in which −∞ is the least
element and ∞ is the greatest element.

Throughout, q = pN denotes a positive integer power of a prime number p and Fq shall
denote “the” (unique up to isomorphism) finite field of order q. For n ∈ Z \ {0}, we
denote by ordq(n) the largest power of q that divides n; we also put ordq(0) =∞.

We say that a (not necessarily commutative) ring R is a domain if for all x, y ∈ R,
if xy = 0 then x = 0 or y = 0.

1.2. Chevalley-Warning and Ax-Katz. We begin by recalling the following results of
Chevalley-Warning and Ax-Katz.

Theorem 1.1. Let n, r, d1, . . . , dr ∈ Z+ with d1 ≥ . . . ≥ dr and

(1) d1 + . . .+ dr < n.
1
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For 1 ≤ j ≤ r, let Pj(t1, . . . , tn) ∈ Fq[t1, . . . , tn] be a polynomial of degree dj. Let

Z = {(x1, . . . , xn) ∈ Fnq | P1(x1, . . . , xn) = . . . = Pr(x1, . . . , xn) = 0}
be the common zero set in Fnq of the Pi’s. Then:

a) (Chevalley-Warning [Ch35], [Wa35]) We have #Z ≡ 0 (mod p).

b) (Ax-Katz [Ax64], [Ka71]) We have ordq(#Z) ≥
⌈
n−(d1+...+dr)

d1

⌉
.

Theorem 1.1b) in the case of one polynomial (i.e., r = 1) was proved in 1964 by J. Ax
[Ax64], while the general case was proved in 1971 by N.M. Katz [Ka71]. Also in [Ax64],
Ax gave a strikingly simple ten line proof of Theorem 1.1a). There is certainly no known
ten line proof of Theorem 1.1b): Ax’s proof for one polynomial used methods of algebraic
number theory – Jacobi sums and Stickelberger’s congruence – while Katz’s proof of the
general case used some sophisticated arithmetic geometry – zeta functions and p-adic
cohomology. An Ax-style proof of Theorem 1.11.1b) was given by D. Wan [Wa89], while
Hou [Ho05] gave a short deduction of Theorem 1.11.1b) from the r = 1 case. Also D.J.
Katz [Ka12] proved a result in coding theory that implies Theorem 1.1b).

What if we replace Fq by a finite ring R? When R is finite commutative and princi-
pal (i.e., every ideal of R is principal) then for each prime number p the largest power
of p that divides #{(x1, . . . , xn) ∈ Rn | f1(x1, . . . , xn) = . . . = fr(x1, . . . , xn) = 0} for
all polynomials f1, . . . , fr ∈ R of given positive degrees was determined: for r = 1 by
Marshall-Ramage [MR75] and in general by D.J. Katz [Ka09].

A finite commutative ring is Artinian, hence is a finite product of finite local Artinian
rings, each of which must have prime power order. In this way we immediately reduce to
the case of finite rings of prime power order. Most such rings are however not principal,1

and there had been no known analogue of Chevalley-Warning – let alone of Ax-Katz –
over any finite nonprincipal ring until the following recent result.

Theorem 1.2. (Aichinger-Moosbauer [AM21, Thm. 12.6]) Let R be a finite rng2 of order
a power of a prime number p. Let n ∈ Z+, and let f1, . . . , fr be polynomial expressions
over R in n variables. If

∑r
i=1 deg(fi) < n, then

p | #{(x1, . . . , xn) ∈ Rn | f1(x1, . . . , xn) = . . . = fr(x1, . . . , xn) = 0}.

The first main result of the present paper shows that the Ax-Katz Theorem extends
verbatim to all finite commutative rings of exponent p.

Theorem 1.3. [Ring-Theoretic Prime Ax-Katz Theorem] Let R be a finite rng with
underlying additive group (R,+) of prime exponent p, so (R,+) ∼= (Z/pZ)N for some
N ∈ Z+. Let f1, . . . , fr be polynomial expressions over R in n ≥ 1 variables, of degrees
d1 ≥ . . . ≥ dr ≥ 1. We put

Z(f1, . . . , fr) := #{x ∈ Rn | f1(x) = . . . = fr(x) = 0}.
Then

(2) ordp(#Z(f1, . . . , fr)) ≥
⌈
N(n− (d1 + . . .+ dr))

d1

⌉
.

1For every n ∈ Z+ there is a finite commutative ring in which every ideal can be generated by n
elements and some ideal requires n generators [Cl18, Cor. 4.3].

2A rng is like a ring but not necessarily having a multiplicative identity. It need not be commutative.
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Remark 1.4. If in Theorem 1.3 we take R to be the finite field FpN of order pN , the
conclusion is that

(3) ordp(z) ≥
⌈
N(n− (d1 + . . .+ dr))

d1

⌉
.

The conclusion of the Ax-Katz Theorem is

ordpN (z) ≥
⌈
n− (d1 + . . .+ dr)

d1

⌉
.

Since ordpN (z) =
ordp(z)
N , the p-adic congruence given by Ax-Katz is

(4) ordp(z) ≥ N
⌈
n− (d1 + . . .+ dr)

d1

⌉
.

The latter placement of the ceiling functions is more favorable, so that the bound (4) is
better than the bound (3). This is why we speak of Theorem 1.3 as a generalization of the
“Prime Ax-Katz Theorem” and not of the Ax-Katz Theorem.

Moreno-Moreno [MM95] used the Prime Ax-Katz Theorem as input to give a different p-
adic congruence for polynomial systems over any finite field Fq that takes into account the
p-weight degrees of the polynomials. When q > p the Moreno-Moreno p-adic congruences
neither imply nor are implied by the Ax-Katz p-adic congruences: cf. [MM95, Thm. 0-1].
In §4 we will give a p-weight version of Theorem 1.3 that generalizes the Moreno-Moreno
p-adic congruences from Fq to any finite commutative ring of prime exponent.

Theorems 1.2 and 1.3 follow from deeper group-theoretic results, as we now explain.

1.3. The Aichinger-Moosbauer Functional Calculus. In their recent work [AM21],
Aichinger-Moosbauer developed a fully fledged calculus of finite differences for functions
f : A → B, where A and B are commutative groups. When A and B are R-vector
spaces, this subject has a long pedigree, going back at least to work of Fréchet [Fr09].
More recent works addressing the same topic include Leibman [Lei02] – who works with
not necessarily commutative groups – and Laczkovich [La04] – who surveys and works to
synthesize some of the prior literature. Neverthless, though the idea of such a calculus
was not new, Aichinger-Moosbauer’s work is strikingly elegant, systematic and useful.

We denote by BA the set of all functions f : A → B; so BA is itself a commutative
group under pointwise addition. For a ∈ A, we define an endomorphism ∆a of BA by

(∆af) : x 7→ f(x+ a)− f(x).

These endomorphisms all commute. Following Aichinger-Moosbauer, we assign to each

f ∈ BA a functional degree fdeg(f) ∈ Ñ as follows:
• We put fdeg(f) = −∞ if and only if f = 0.3

• For n ∈ N, we say that fdeg(f) ≤ n if we have ∆a1 · · ·∆an+1f = 0 for all a1, . . . , an+1 ∈
A. If this holds for some n ∈ N, then fdeg(f) is the least n for which it holds.
• If fdeg(f) ≤ n holds for no n ∈ N, then we put fdeg(f) =∞.

For commutative groups A and B and d ∈ N, we put

Fd(A,B) := {f ∈ BA | fdeg(f) ≤ d},

3Aichinger-Moosbauer in [AM21] assign the functional degree 0 to the zero function. Here we follow
the convention of [CS21]. It certainly makes no mathematical difference.
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and we also put
F(A,B) := {f ∈ Ba | fdeg(f) <∞}.

As introduced in [AM21, §2] and also discussed in [CS21, §3], if Z[A] is the integral
group ring of A, then the commutative group BA has a canonical Z[A]-module structure
determined by

([a]f)(x) := f(x+ a).

In view of this, we may view ∆a as the element [a]− [0] of Z[A], since this element acts
on BA in the previously defined way. We write e(B) for the exponent exp(B) if this is
finite (i.e., if there is N ∈ Z+ such that Nb = 0 for all b ∈ B, we take exp(B) to be the
least such N) and 0 otherwise, and then BA is canonically a Z/e(B)Z-module, so we may
also view ∆a as living in the group ring (Z/e(B)Z)[A].

The functional degree gives a notion of “polynomial function of degree d” even when
there is no ring in sight. Moreover the notion of functional degree is partially compatible
with the degree of an actual polynomial function, in the following sense:

Lemma 1.5. Let R be a rng, let f be a polynomial expression over R in n variables, and
let E(f) ∈ RRn be the associated function. Then fdeg(E(f)) ≤ deg(f).

Proof. This is [AM21, Lemma 12.5]. �

In other words, Lemma 1.5 shows that any discrepancy between the functional degree
and the degree of a polynomial map will only make Chevalley-Warning / Ax-Katz type
results stated in terms of the functional degree stronger than their classical analogues.

Here is the group-theoretic result of Aichinger-Moosbauer that underlies Theorem 1.2.

Theorem 1.6. (Group-Theoretic Chevalley-Warning Theorem] Let N ∈ Z+, let p be a
prime number, and let

A :=

m⊕
i=1

Z/paiZ, B :=

n⊕
i=1

Z/pbiZ

be finite commutative p-groups. Let f1, . . . , fr : AN → B be functions. If

(5)

 r∑
j=1

fdeg(fj)

( n∑
i=1

(pbi − 1)

)
<

(
m∑
i=1

pai − 1

)
N,

then
p | #{a ∈ AN | f1(a) = . . . = fr(a) = 0}.

Proof. This is [AM21, Thm. 12.2]. �

Applying Theorem 1.6 with A = B = (R,+), the additive group of a finite ring of order
a power of p and using Lemma 1.5, we deduce Theorem 1.2.

Here is the main result of this paper.

Theorem 1.7. Let N, r ∈ Z+, let A = (Z/pZ)N , and let β1, . . . , βr ∈ Z+. For 1 ≤ j ≤ r,
let fj ∈ (Z/pβjZ)A be functions. Let d1, . . . , dr ∈ N be such that fdeg(fj) ≤ dj for all
1 ≤ j ≤ r and max(d1, . . . , dr) ≥ 1. Put

M := max
1≤j≤r

pβj−1dj .
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Put
Z(f1, . . . , fr) := {x ∈ (Z/pZ)N | fj(x) = 0 for all 1 ≤ j ≤ r}.

Then

ordp(#Z(f1, . . . , fr)) ≥
⌈
N −

∑r
j=1

pβj−1
p−1 dj

M

⌉
.

This result has the following consequence:

Theorem 1.8 (Group-Theoretic Prime Ax-Katz Theorem). Let NN, r ∈ Z+, let A =
(Z/pZ)N , and let f1, . . . , fr ∈ AA

n

be functions, not all constant, with functional degrees
d1 ≥ . . . ≥ dr. If

z := #{x ∈ An | f1(x) = . . . = fr(x) = 0},
then we have

ordp(z) ≥
⌈
N
(
n−
∑r
j=1 dj

)
/d1

⌉
.

Proof. Let Ã = An ∼= (Z/pZ)nN . For 1 ≤ i ≤ N , let πi : A→ Z/pZ be the kth coordinate

projection. For 1 ≤ j ≤ r and 1 ≤ k ≤ N , put fj,k := πk ◦ fj ∈ (Z/pZ)A
n

= (Z/pZ)Ã. By
[CS21, Lemma 3.8b)], for all 1 ≤ i ≤ N , we have

fdeg(fj,k) ≤ dj .
Since the functions fj are not all constant, we have d1 ≥ 1. For x ∈ An, we have fj(x) = 0
for all j if and only if fj,i(x) = 0 for all j and i, so applying Theorem 1.7 to the maps

fj,k ∈ (Z/pZ)Ã we get

ordp(z) ≥
Nn−N

∑r
j=1 dj

d1
. �

Remark 1.9. In an earlier version of our work, Theorem 1.8 was our main result. Then
in March of 2022, D. Grynkiewicz sent us a draft manuscript [GGZ]. The statement
of our Theorem 1.7 is directly inspired by [GGZ, Thm. 1.3.22], which is closely related
to Theorem 1.7 but involves sums over residue systems modulo p and reductions modulo
powers of p of polynomials f1, . . . , fr ∈ Z[t1, . . . , tN ] rather than arbitary functions between
commutative p-groups. In a later draft of the same manuscript, Grynkiewicz, Geroldinger
and Zhong give a weighted version of their result.

Switching from Theorem 1.8 to Theorem 1.7 made the proof easier: cf. Remark 2.2.

If R is a finite rng with underlying additive group (R,+) finite of exponent p, then
applying Theorem 1.7 with A = (R,+) and using Lemma 1.5, we deduce Theorem 1.3.
Combining it instead with a p-weight analogue of Lemma 1.5 (Proposition 4.2), we will
get our p-weight improvement of Theorem 1.3 that recovers the Moreno-Moreno Theorem.

1.4. Structure of the Paper.

• In §2 we give a canonical series representation for a map f : A → B between com-
mutative groups of finite functional degree when A is finitely generated. Moreover, for
commutative domains of characteristic 0, we explore the connection between functions of
finite functional degree and integer-valued polynomials.

• In §3 we carry over a lemma of Wilson to our setting and then prove Theorem 1.7.
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• In §4 we discuss p-weights and prove a p-weight improvement of Theorem 1.3.

• §5 contains a provocative (but tentative) final thought.

1.5. Acknowledgments. Thanks to E. Aichinger for his interest in our present work,
which led to the communication of the results of Geroldinger-Grynkiewicz-Zhong. Thanks
to D. Grynkiewicz for showing us two early versions of [GGZ]. Thanks to A.C. Cojocaru,
N. Jones and N. Triantafillou for stimulating conversations.

2. The Fundamental Representaton for f ∈ BZN

2.1. Preliminaries. Let N ∈ Z+. In this section we give a canonical series representa-
tion for each f ∈ F(ZN , B).

For d ∈ Z+, we put
(
t
d

)
:= t(t−1)···(t−d+1)

d! ∈ Q[t]. For x ∈ N, we have that
(
x
d

)
is the usual

binomial coefficient and is thus a non-negative integer. Moreover we have
(
x
d

)
∈ Z for all

x ∈ Z: see e.g. [CC, p. 19]. These integer-valued polynomials are discussed in §2.3.
We take

(
x
0

)
: Z → Z to be the constant function 1 and for any negative integer n, we

take
(
x
n

)
: Z→ Z to be the zero function.

For 1 ≤ i ≤ n, let ei be the ith standard basis vector of ZN . We write ∆i for ∆ei .

Lemma 2.1. Let B be a commutative group, and let B ⊂ B be a subgroup. For f ∈ BZN ,
the following are equivalent:

(i) We have f(ZN ) ⊂ B.
(ii) For all 1 ≤ i ≤ N , we have (∆if)(ZN ) ⊂ B, and we have f(0) ∈ B.

Proof. (i) =⇒ (ii) is immediate.
(ii) =⇒ (i): For any x ∈ ZN and any 1 ≤ i ≤ N , we have

(∆if)(x) = f(x+ ei)− f(x) ∈ B,
which shows that f(x+ ei) ∈ B ⇐⇒ f(x) ∈ B. Since f(0) ∈ B, an immediate inductive
argument now shows that f(x) ∈ B for all x ∈ ZN . �

Because e1, . . . , eN is a set of generators for ZN , it follows from [CS21, Lemmas 3.6 and
3.7] that for f ∈ F(ZN , B) \ {0} the functional degree of f is the largest n ∈ N such that
there are i1, . . . , in ∈ {1, . . . , N} such that

∆i1 · · ·∆inf 6= 0.

For n := (n1, . . . , nN ) ∈ NN , we put

∆n := ∆n1
1 · · ·∆nN

n ∈ Z/e(B)Z[ZN ].

Let f ∈ F(ZN , B) \ {0}, and fix 1 ≤ i ≤ N . Then there is a largest di ∈ N such that

∆di
i1
f 6= 0

and we call this quantity the i-th partial functional degree fdegi(f) of f . We also put
fdegi(0) := −∞, while if for all n ∈ N we have ∆n

i f 6= 0, we put fdegi(f) =∞. It follows

from [CS21, Lemma 3.12] that for all f ∈ BZN and all 1 ≤ i ≤ N we have

(6) fdegi(f) ≤ fdeg(f) ≤
N∑
i=1

fdegi(f).
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Remark 2.2. Let A1, . . . , AN , B be commutative groups In [AM21, §5], Aichinger and

Moosbauer associate partial functional degrees fdeg1(f), . . . , fdegN (f) to a map f ∈ B
⊕N
i=1 Ai

in a way that generalizes the definition we have given and such that (6) continues to hold.
The proof of their more general form of (6) becomes significantly more difficult.

For the convenience of the reader, we restate [CS21, Lemma 2.2].

Lemma 2.3. Let A and B be commutative groups. Let a ∈ A, n ∈ N and let ∆n
a be the

n-fold product ∆a · · ·∆a ∈ EndBA. For all f ∈ BA and all x ∈ A, we have

(∆n
af)(x) =

n∑
i=0

(−1)i
(
n

i

)
f(x+ (n− i)a) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ ja).

The following result is related to [AT92, Lemma 2.1] and [Sc14, Thm. 2.5].

Theorem 2.4. Let N ∈ Z+, let B be a commutative group, let f ∈ BZN . If there is
(a1, . . . , aN ) ∈ ZN such that for all (b1, . . . , bN ) ∈ ZN with 0 ≤ bi ≤ fdegi(f) for all
1 ≤ i ≤ N we have f(a1 + b1, . . . , aN + bN ) = 0, then f = 0.

Proof. For 1 ≤ i ≤ N we put di := fdegi(f). If some di = 0 , then f = 0, so we may
assume that di ≥ 0 for all 1 ≤ i ≤ N . We proceed by induction on N .
Base Case: Suppose that N = 1, so we have f ∈ BZ, fdeg(f) ≤ d1 and f(a) = f(a+ 1) =
. . . = f(a+ d1) = 0. Applying Lemma 2.3 with n = d1 + 1, we get that f = 0.
Induction Step: Suppose that N ≥ 2 and that the result holds for all f ∈ F(ZN−1, B).
For 0 ≤ j ≤ dN , put

gj := f(·, . . . , ·, aN + j) : ZN−1 → B.

Then we have fdegi gj ≤ di for all 1 ≤ i ≤ N − 1 and gj vanishes identically on∏N−1
i=1 [xi, xi + di], so induction gives gj = 0 for all 0 ≤ j ≤ dn. It follows that for all

(a1, . . . , aN−1) ∈ ZN−1 the function f(a1, . . . , aN−1, ·) : Z→ B vanishes on [aN , aN+dN ],
and it has functional degree at most dn. By the Base Case these functions are identically
zero, which means that f is identically zero. �

2.2. The Fundamental Representation.

Theorem 2.5. Let B be a commutative group, and let f ∈ BZN .

a) There is a unique function a• : NN → B such that

(7) ∀x ∈ NN , f(x) =
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
nN

)
an.

Namely, for all n ∈ NN we have an = (∆nf)(0).
b) Let d ∈ N. The following are equivalent:

(i) We have fdeg(f) ≤ d.
(ii) We have

(8) ∀x ∈ ZN , f(x) =
∑
n∈NN
|n|≤d

(
x1
n1

)
· · ·
(
xN
nN

)
(∆nf)(0).
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Proof. a) First of all, for each x = (x1, . . . , xN ) ∈ NN we have
(
x1

n1

)
· · ·
(
xN
nN

)
= 0 unless

ni ≤ xi for all 1 ≤ i ≤ N , so the sum in (7) is actually finite. As seen above, for all
n ∈ Z+ we have

(
x+1
n

)
−
(
x
n

)
=
(
x

n−1
)
. From this it follows that for all m,n ∈ N we have

(9) ∆m

((
x1
n1

)
· · ·
(
xN
nN

))
(0) =

N∏
i=1

(
0

ni −mi

)
=

{
1 if m = n

0 otherwise
.

It follows that if we apply ∆n to
∑
an
(
x1

n1

)
· · ·
(
xN
nN

)
and evaluate at 0 we get part a) except

for the existence of the function a•. To see this, consider

g := f −
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
nN

)
(∆nf)(0) ∈ BZN .

Then we have ∆n(g)(0) = 0 for all n ∈ NN , so it suffices to show that the only function
with this property is the zero function. We show that g(x1, . . . , xN ) = 0 for all x =
(x1, . . . , xN ) ∈ NN by induction on

|x| := x1 + . . .+ xN .

The base case is g(0) = (∆0g)(0) = 0. Now fix d ∈ Z+, suppose that for all h ∈ BZN

with (∆nh)(0) = 0 for all n ∈ NN we have h(x) = 0 for all x = (x1, . . . , xN ) ∈ NN with
|x| := x1 + . . . + xN < d, and let x ∈ NN with |x| = d. Choose 1 ≤ i ≤ N such that
xi ≥ 1. By our induction hypothesis we have

(∆xi
i g)(x1, . . . , xi−1, 0, xi+1, . . . , xN ) = 0,

and using Lemma 2.3 together with the inductive hypothesis that

∀ 0 ≤ yi < x, g(x1, . . . , xi−1, yi, xi+1, . . . , xN ) = 0,

we get that g(x1, . . . , xN ) = 0, completing the induction step and the proof of part a).
b) (i) =⇒ (ii) Since fdeg f ≤ d, we have (∆nf)(0) = 0 for all n ∈ NN with |n| > d, so

∀x ∈ Nn, f(x) =
∑
n∈Nn
|n|≤d

(
x1
n1

)
· · ·
(
xN
nN

)
(∆nf)(0).

If we put P :=
∑
n∈Nn,|n|≤d

(
x1

n1

)
· · ·
(
xN
nN

)
(∆nf)(0), then f − P has functional degree at

most d and vanishes on NN , so by Theorem 2.4 we have f = P .
(ii) =⇒ (i): It follows from (9) that the functional degree of∑

n∈NN
|n|≤d

(
x1
n1

)
· · ·
(
xN
nN

)
an

is the largest |n| such that an 6= 0, which is by assumption at most d. �

Remark 2.6. a) For B a finitely generated commutative group, the series represen-
tation (8) was explored in [Sc14, §2].

b) The series expansion of Theorem 2.5 is a discrete analogue of the Taylor series
expansion of a smooth function f : RN → R. Theorem 2.5a) implies a uniqueness
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property: for any two functions a•, b• : NN → B that each map all but finitely
many elements of the domain to 0, define associated functions

fa• : ZN → B, x 7→
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
nN

)
an

and

fb• : ZN → B, x 7→
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
nN

)
bn.

Then fa• = fb• if and only if a• = b•. This is a discrete analogue of the fact that
in a power series expansion centered at 0, the coefficients are determined by the
partial derivatives at 0.

b) Just as it is immediate to also consider Taylor series expansions centered at a
nonzero point a ∈ RN , there are also representations of f ∈ F(ZN , B) based on
the values (∆nf)(a) for any fixed a ∈ ZN .

2.3. Polynomial Functions and Integer-Valued Polynomials. In this section we
use Theorem 2.5 to make some further extensions of the Aichinger-Moosbauer functional
calculus, in particular comparing integer-valued polynomials to functions of finite func-
tional degree. The results of this section are not used elsewhere in this paper. However,
integer-valued polynomials and their reductions occur in Wilson’s proof of Ax-Katz over
Fp [Wi06, Lemma 4], and the technique of representing functions between residue rings
of Z via integer-valued polynomials also occurs in a work of Varga [Va14] generalizing
Warning’s Second Theorem. It seems useful to understand that these techniques can be
viewed in terms of the Aichinger-Moosbauer calculus.

Let R be a nonzero commutative ring, let N ∈ Z+, and consider the evaluation map

E : R[t1, . . . , tn]→ RR
N

, f 7→ (x 7→ f(x)).

This is an R-algebra homomorphism; its image is, by definition, the ring of polynomial
functions on RN , which we denote by P(RN , R).

The map E is never an isomorphism, though the manner of the failure depends upon

R. If R is finite then R[t1, . . . , tn] is infinite while RR
N

is finite, so E has an infinite
kernel. If R is infinite, then E is not surjective [Cl14, Thm. 4.3]. More precisely:

Proposition 2.7. Let R be a nonzero commutative ring, and let N ∈ Z+. The following
are equivalent:

(i) The evaluation map E : R[t1, . . . , tN ]→ RR
N

is surjective.
(ii) The function

δ0,1 ∈ RR
N

, x 7→

{
1 if x = 0

0 if x 6= 0

lies in the image of E.
(iii) The ring R is a finite field.

Proof. Case 1: Suppose R is a finite field Fq. In this case the study of E was the essence
of Chevalley’s proof of Theorem 1.1a) in [Ch35]. He showed that E is surjective and
explicitly determined its kernel: it is 〈tq1− t1, . . . , tqn− tb〉. For English language proofs of
modest generalizations, see [Cl14, Cor. 2.5 and Prop. 4.4].
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Case 2: Suppose that R is not a field; equivalently, there is an ideal (0) ( I ( R. Then for
all F ∈ P(RN , R), the function F is congruence-preserving: for x = (x1, . . . , xN ), y =
(y1, . . . , yN ) ∈ RN are such that xi ≡ yi (mod I) for all 1 ≤ i ≤ N , then f(x) ≡ f(y)
(mod I). Let a ∈ I \ {0}. Then

δ0,1(0, . . . , 0) = 1 6≡ 0 = δ0,1(a, . . . , a) (mod I),

so δ0,1 is not congruence-preserving.
Case 3: Suppose that R is infinite. Then [CS21, Thm. 4.9a)] gives fdeg(δ0,1) = ∞, so
δ0,1 is not a polynomial function by Lemma 1.5. �

If R is an infinite commutative ring that is not a field, we just gave two proofs (in Cases 2

and 3) that δ0,1 ∈ RR
N \P(RN , R). The second proof showed more: that δ0,1 has infinite

functional degree. In general, for a nonzero commutative ring R, by Lemma 1.5 we have

P(RN , R) ⊆ F(RN , R) ⊆ RR
N

.

This leads to a more interesting version of the question of when E is surjective:

Question 2.8. For which nonzero commutative rings R and N ∈ Z+ do we have P(RN , R) =

F(RN , R) – i.e., when is every f ∈ RRN of finite functional degree a polynomial function?

Here is an answer to Question 2.8 when R is finite.

Proposition 2.9. For a nonzero finite commutative ring R, the following are equivalent:

(i) For all N ∈ Z+, we have P(RN , R) = F(RN , R).
(ii) For some N ∈ Z+, we have P(RN , R) = F(RN , R).
(iii) For some r ∈ Z+, prime numbers p1 < . . . < pr and positive integers a1, . . . , ar,

we have

R ∼=
r∏
i=1

Fpaii .

Proof. If R is a finite commutative ring of order pa11 · · · parr (for primes p1 < . . . < pr),
then we have a unique internal direct product decomposition R =

∏r
i=1 ri with ri a ring

of order paii [Cl-CA, Thm. 8.37]. We call ri the pi-primary component of R. We have
a natural ring isomorphism

R[t1, . . . , tn] =

n∏
i=1

ri[t1, . . . , tn]

and also, by [AM21, Thm. 9.4] or [CS21, Thm. 3.13] a natural decomposition

F(RN , R) =

r∏
i=1

F(rNi , ri).

Using these decompositions we get that

P(RN , R) = F(RN , R) ⇐⇒ ∀1 ≤ i ≤ N, P(rNi , ri) = F(rNi , ri),

so we reduce to the case in which R has prime power order. In this case, by [AM21, Thm.
9.1] we have

RR
N

= F(RN , R)

and so our problem reduces to the previous problem of when the evaluation map is
surjecitve. By Proposition 2.7, this holds if and only ifR is a finite field. So: independently
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of N ∈ Z+, every function f ∈ RRN of finite functional degree is a polynomial function if
and only if for all p | #R, the p-primary component of R is a finite field. �

When R is infinite we do not know a complete answer to Question 2.8, but we will exhibit
some positive and negative results. Here is one:

Proposition 2.10. For all N ∈ Z+, we have P(QN ,Q) = F(QN ,Q).

Proof. Let g ∈ F(QN ,Q). By Theorem 2.5 there is a function a• : NN → Q and d ∈ N
such that

∀x = (x1, . . . , xN ) ∈ ZN , g(x) =
∑

n∈NN , |n|≤d

an

(
x1
n1

)
· · ·
(
xn
nN

)
.

Let f ∈ Q[t1, . . . , tN ] be the polynomial

f(t1, . . . , tn) =
∑

n∈NN , |n|≤d

an

(
t1
n1

)
· · ·
(
tn
nN

)
.

Then E(f), g ∈ F(QN ,Q) and

∀x ∈ ZN , E(f)(x) = g(x).

By [AM21, Lemma 3.2] Theorem 2.4 applies to (E(f)− g)|ZN , giving (E(f)− g)|ZN = 0.
This implies E(f) = g: in fact, we claim that if h ∈ F(QN ,Q), if h|ZN = 0, then h = 0.

To see this, let D ∈ Z+, and define hD ∈ QZN by

hD(x) := h
(x1
D
, . . . ,

xN
D

)
.

The function hD is obtained by precomposing h with a group endomorphism of (QN ,+),
so hD ∈ F(QN ,Q) by [AM21, Thm. 4.3]. By hypothesis, hD is identically zero on DZN ,
so by Theorem 2.4 we have (hD)|ZN = 0. This holds for all D ∈ Z+, so h = 0. �

From now until the end of the section we will assume that R is an infinite commutative
domain, with fraction field K. In this case the evaluation map E : R[t1, . . . , tN ]→ RR

N

is

injective [Cl14, Prop. 4.5] and thus induces an isomorphism R[t1, . . . , tN ]
∼→ P(RN , R). It

is a result of Aichinger-Moosbauer [AM21, Lemma 10.4] that for all f ∈ K[t1, . . . , tn] we
have fdeg(E(f)) = deg(f). We will show that the same conclusion holds over the infinite
domain R and, in fact, a little more. Namely, we define the subring of integer-valued
polynomials

Int(RN , R) := {f ∈ K[t1, . . . , tN ] | E(f)(RN ) ⊆ R} ⊆ K[t1, . . . , tN ].

Proposition 2.11. Let R be an infinite commutative domain, with fraction field K, and

let f ∈ Int(RN , R). Let Ẽ(f) := E(f)|RN ∈ RR
N

. Then

fdeg(Ẽ(f)) = deg(f).

Proof. Let f ∈ Int(RN , R). We write E(f) for associated function from KN to K and

Ẽ(f) for the associated function from RN to K. Thus Ẽ(f) is obtained from E(f) by
restricting the domain from KN to RN and then resttricting the codomain from K to R.
By [CS21, Cor. 3.10] domain restriction causes the functional degree to stay the same or
decrease, while codomain restriction preserves the functional degree, so

fdeg(Ẽ(f)) ≤ fdeg(E(f)) = deg(f).
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Put d := deg(f); we may certainly assume that d ≥ 0. Seeking a contradiction, suppose

that fdeg(Ẽ(f)) < d. Then for all x1, . . . , xd ∈ RN we have ∆x1
· · ·∆xdẼ(f) = 0. Thus

the polynomial function∆x1
· · ·∆xdE(f) vanishes identically on RN , and Theorem 2.5

implies that it must be 0. But over any field K of characteristic 0, for d ∈ N, evidently

Bd :=

{(
t1
n1

)
· · ·
(
tN
nN

)
| n = (n1, . . . , nN ) ∈ NN | |n| ≤ d

}
is a K-basis for the space of polynomials of degree at most d ( equivalently, for the space
of polynomial functions of functional degree at most d). Since deg(f) = d, the polynomial
f has at least one “binomial monomial term”

(
t1
n1

)
· · ·
(
tn
nN

)
with n1 + . . . + nN = d and

then ∆(n1,...,nN )E(f) 6= 0, a contradiction. �

So for commutative domains of characteristic 0, we get a further refinement

P(RN , R) ⊆ Int(RN , R) ⊆ F(RN , R) ⊆ RR
N

,

which yields in particular a negative answer to Question 2.8 whenever we have Int(RN , R) )
P(RN , R). This certainly holds for R = Z: e.g. t(t−1)

2 is an integer-valued polynomial
that does not lie in Z[t]. This motivates the following result:

Theorem 2.12.

a) The set B := {
(
x1

n1

)
· · ·
(
xn
nN

)
| n ∈ NN} is a basis for the Z-module F(ZN ,Z).

b) We have F(ZN ,Z) = Int(ZN ,Z).

Proof. a) Theorem 2.5c) implies that B spans F(ZN ,Z) as a Z-module. For m ∈ N, the

Z-linear map Lm : ZZN → Z given by f 7→ (∆mf)(0) kills
(
x1

n1

)
· · ·
(
xN
nN

)
iff m 6= n, so(

x1

m1

)
· · ·
(
xn
mN

)
cannot be a Z-linear combination of any of the other elements of B.

b) By Proposition 2.11 we have Int(ZN ,Z) ⊆ F(ZN ,Z). The well-known fact that for all
n ∈ N we have

(
x
n

)
∈ Int(Z,Z) follows from Lemma 2.1 and induction. Since Int(ZN ,Z)

is a ring, we have b ∈ Int(ZN ,Z) for all b ∈ B. So

F(ZN ,Z) = 〈B〉Z ⊆ Int(ZN ,Z). �

Theorem 2.12 implies that B is a Z-basis for the ring Int(ZN ,Z) of integer-valued polyno-
mials, a result of Ostrowski [Os19]. See [CC, Ch. 11] for a general treatment of Int(RN , R)
for a commutative domain R. Cahen-Chabert also address when Int(RN , R) = P(RN , R)
in [CC, §I.3], showing in particular that equality holds when every residue field of R is
infinite [CC, Cor. I.3.7], so e.g. when R is a Q-algebra. Our next result implies that for
all N ∈ Z+ we have Int(R,N) ( F(RN , R) when R ) Q is a Q-algebra.

Let us say that a commutative ring R is a Cayley ring if the Cayley homomorphism

C : R→ End(R,+), r 7→ r• : x 7→ rx

is an isomorphism (equivalently, is surjective).

Example 2.13. a) Each of the following rings is a Cayley ring: Fp, Z, Q. Moreover
any subring of Q is a Cayley ring: such rings are precisely the localizations of Z
and they are in bijection with subsets of the set P of prime numbers.
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b) A commutative ring R is not a Cayley ring if it is free of rank greater than 1 as
a module over some proper subring. From this we see that none of the following
rings are Cayley rings: a field other than Q or Fp; an algebra over a field F such
that F ( R; the ring of integers ZK of any number field K ) Q; the valuation
ring of a p-adic field K ) Qp.

Proposition 2.14. Let R be a commutative domain of characteristic 0. If for some
N ∈ Z+ we have Int(RN , R) = F(RN , R), then R is a Cayley ring.

Proof. Proceeding by contrapositive, suppose that R is not a Cayley ring: this means
precisely that there is a Z-linear map L : (R,+)→ (R,+) that is not of the form E(f) for
a linear polynomial f ∈ R[t]. If K is the fraction field of R, then moreover L is not of the
form E(f) for a linear polynomial f ∈ K[t]: if f = ax+b with a, b ∈ K, then evaluating at
0 gives b = 0 and evaluating at 1 gives a = L(1) ∈ R. Since fdeg(L) = 1, by Proposition
2.11 L is therefore not given by any integer-valued polynomial. This establishes the result
for N = 1. For any N ∈ Z+, the function LN : RN → R by LN (x1, . . . , xN ) = L(x1) is
again Z-linear but is not the restriction to RN of any K-linear polynomial function, so
LN ∈ F(RN , R) \ Int(RN , R). �

Proposition 2.14 and Example 2.13 give lots of examples in which Int(RN , R) ( F(RN , R):
e.g. any field K ) Q. On the other hand, using similar arguments to the ones we have
made, one can show that Int(RN , R) = F(RN , R) for any subring R of Q.

2.4. Lifting.

Corollary 2.15 (Homomorphic Functoriality II). Let B,B′ be commutative groups, let

β : B → B′ be a homomorphism, and let f ∈ BZN .

a) For all x ∈ NN we have

(β∗f)(x) =
∑
n∈Nn

(
x1
n1

)
· · ·
(
xN
nN

)
β(∆n(0)).

b) If f has functional degree d <∞, then for all x ∈ ZN we have

(β∗f)(x) =
∑
n∈Nn
|n|≤d

(
x1
n1

)
· · ·
(
xN
nN

)
β(∆n(0)).

Proof. On one hand, by Theorem 2.5a) we have

∀x ∈ NN , (β∗f)(x) =
∑
n∈Nn

(
x1
n1

)
· · ·
(
xN
nN

)
(∆nβ∗f)(0).

And, if f has functional degree d < ∞, then by [CS21, Lemma 3.9b)], the function

β∗f ∈ (B′)Z
N

has functional degree at most d, as well, so by Theorem 2.5b) we have

∀x ∈ ZN , (β∗f)(x) =
∑
n∈Nn
|n|≤d

(
x1
n1

)
· · ·
(
xN
nN

)
(∆nβ∗f)(0).

On the other hand, the map β∗ : BZN → (B′)Z
N

is a homomorphism of Z[ZN ]-modules,
so for all n ∈ NN we have ∆n(β∗f) = β ◦∆nf . The result follows. �
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Let A,B,B′ be commutative groups and let β : B → B′ be a surjective homomorphism.
As mentioned in [CS21, §2.5], the map BA 3 f 7→ β ◦ f ∈ (B′)A gives a surjective group
homomorphism

β∗ : BA → (B′)A.

Suppose now that A = ZN and f ∈ F(ZN , B′), so f is of the form (8) for a finitely
nonzero function a• : NN → B′. By a lift of a• we will mean a function A• : NN → B
such that β ◦ A• = a• and such that for all n ∈ NN we have An = 0 ⇐⇒ an = 0. Such

lifts always exist. To such a lift we attach the following function F ∈ BA:

∀x ∈ ZN , F (x) =
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
nN

)
An.

By Corollary 2.15 we have that β∗F = f , and by our choice of A• we have

fdeg(F ) = fdeg(f).

We will also call the associated function F ∈ BA a lift of f ∈ (B′)A. Notice that in
general a given f ∈ F(ZN , B′) has many different lifts.

Combining this discussion with Theorems 2.5 and 2.12 we find that for N,m ∈ Z+,
every f ∈ F(ZN ,Z/mZ) is the reduction of an integer-valued polynomial of degree equal
to fdeg(f). In particular, this applies when for some p ∈ P we have m = pb and f is
(pa1 , . . . , paN )-periodic for some a1, . . . , aN ∈ Z+, i.e., lies in the image of the natural

map B
⊕N
i=1 Z/paiZ → BZN . This situation is considered in the next subsection.

Remark 2.16. The fact that functions Z/paZ→ Z/pbZ can be represented by reductions
of integer-valued polynomials is applied in work of Varga [Va14]. In [CW18] this work
was generalized to maps of the form ZK/pa → ZK/pb where K is a number field, ZK is
its ring of integers, and p is a nonzero prime ideal of ZK (so that ZK/pa and ZK/pb are
finite rings of p-power order for some p ∈ P). Perhaps these works could be refined using
conisderations from the present paper and from [CS21].

2.5. Representation of Functions Between Finite Commutative p-Groups. If A
is a finitely generated commutative group, then of course for some N ∈ Z+ we have a
surjective group homomorphism α : ZN → A. Up to a harmless isomorphism, we may

write A as
⊕N

i=1 Z/aiZ with ai ∈ {0} ∪ Z≥2 and take

α : ZN →
N⊕
i=1

Z/aiZ, (x1, . . . , xN ) 7→ (x1 (mod a1), . . . , xN (mod aN )).

We then have an embedding

F(A,B) ↪→ F(ZN , B),

and thus every f ∈ F(A,B) has the same functional degree as its pullback to ZN which
by Theorem 2.5b) has a canonical series representation (8).

The following notation will be helpful: for p ∈ P, N ∈ Z+ and a = (a1, . . . , aN ) ∈ ZN
with a1 ≥ . . . ≥ aN and b ∈ Z+, we put

δp(a, b) := δ(

N⊕
i=1

Z/paiZ,Z/pbZ) =

N∑
i=1

(pai − 1) + (b− 1)(p− 1)pa1−1.
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Theorem 2.17. Let p ∈ P, let N, a1, . . . , aN ∈ Z+, put A :=
⊕N

i=1 Z/paiZ, and let
α : ZN → A be the above quotient map. Let B be a commutative group, let f ∈ BA, and
let f̃ := α∗f be its pullback to a function from ZN to B.

a) Let b ∈ Z+. If B has exponent pb, or if just pby = 0 for all y ∈ f(A), then for all
x ∈ ZN we have

f̃(x) =
∑
n∈NN
|n|≤δp(a,b)

(
x1
n1

)
· · ·
(
xN
aN

)
(∆nf̃)(0).

b) For all b ∈ Z+ and all n ∈ Nn with |n| > δp(a, b) we have

(∆n(f))(0) = (∆n(f̃))(0) ∈ pbB.

Proof. Let B := 〈f(A)〉 be the subgroup generated by the image of f . Since A is finite
and B is commutative, the subgroup B is finite. In the situation of part a) we have that
B is a pb-torsion group. By [CS21, Cor. 3.10b)] we may assume that B = B, so that part
a) follows from Theorem 2.5 and [CS21, Thm. 4.9c)].

To prove part b), let βb : B → B/pbB be the natural quotient map. We consider the

expansion of the map βb◦ f̃ : ZN → B/pbB. By Theorem 2.5 a), combined with Corollary
2.15 a), for all x ∈ NN ,

(βb ◦ f̃)(x) =
∑
n∈NN

(
x1
n1

)
· · ·
(
xN
aN

)
((∆nf̃)(0) + pbB).

But, since the exponent of B/pbB divides pb, we can also apply part a), combine it with
Corollary 2.15 b), and obtain, for all x ∈ ZN ,

(βb ◦ f̃)(x) =
∑
n∈NN
|n|≤δp(a,b)

(
x1
n1

)
· · ·
(
xN
aN

)
((∆nf̃)(0) + pbB).

Comparing coefficients, and using the uniqueness in Theorem 2.5a), we get

(∆nf̃)(0) + pbB = 0 ∈ B/pbB

for all n ∈ Nn with |n| > δp(a, b). The stated result follows. �

3. The Group-Theoretic Ax-Katz Theorem

3.1. Wilson’s Lemma. For p ∈ P, we abbreviate {0, . . . , p− 1} to [p). Let Z(p) be the
rational numbers of non-negative p-adic valuation.

Let A and B be commutative groups, and let S ⊂ A be a finite subset. Following
[KP12], for f ∈ BA we put ∫

S

f :=
∑
x∈S

f(x) ∈ B.

The following result is an equivalent (but simpler) reformulation of [Wi06, Lemma 4].

Lemma 3.1. Let p ∈ P and let N, b ∈ Z+. If f ∈ ZZN is such that

fdeg(f) < (N − b+ 1)(p− 1),
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then ∫
[p)N

f ≡ 0 (mod pb).

Proof. Step 1: If 0 ≤ i ≤ p− 2 then
∑
x∈Z/pZ x

i = 0: indeed, upon choosing a generator

ζ of the cyclic group (Z/pZ)×, we get∑
x∈Z/pZ

xi =

p−2∑
j=0

(ζi)j =
(ζi)p−1 − 1

ζi − 1
= 0.

It follows that if i1, . . . , ib ∈ [0, p− 2] then∑
x∈[p)b

xi11 · · ·x
ib
b =

b∏
j=1

∑
xj∈[p)

x
ij
j ≡ 0 (mod pb).

From this we deduce that if g ∈ Z(p)[t1, . . . , tb] has fdegi(g) ≤ p− 2 for all 1 ≤ i ≤ b then∫
[p)b

g =
∑
x∈[p)b

g(x) ≡ 0 (mod pb).

Step 2: If the result holds for a set of polynomials f1, . . . , fm then it holds for the Z-

submodule of ZZN that they generate. Because of this and Theorem 2.5 it suffices to
show that the result holds for

f(x) =

N∏
i=1

(
x1
n1

)
· · ·
(
xn
nN

)
for all (n1, . . . , nN ) ∈ NN with |n| < (N − b+ 1)(p− 1). Since for all 1 ≤ i ≤ N we have
fdegi(f) = ni, it follows that

#{1 ≤ i ≤ N | fdegi(f) < p− 1} ≥ b,

for if not we would have deg(f) ≥ (N − b+ 1)(p− 1). So we may suppose without loss of
generality that fdegi(f) < p− 1 for all 1 ≤ i ≤ b. Then for all yb+1, . . . , yN ∈ Z, we have

f(t1, . . . , tb, yb+1, . . . , yN ) ∈ Z(p)[t1, . . . , tb],

so using Step 1 we get∫
[p)N

f =
∑

(x1,...,xb)∈[p)b
f(x1, . . . , xb, yb+1 . . . , yN ) ≡ 0 (mod pb). �

3.2. The Proof of Theorem 1.7. Put

M := max
1≤j≤r

pβj−1dj

and

B :=

⌈
N −

∑r
j=1

pβj−1
p−1 dj

max1≤j≤r pβj−1dj

⌉
=

⌈
N −

∑r
j=1

pβj−1
p−1 dj

M

⌉
.

We have

B <
N −

∑r
j=1

pβj−1
p−1 dj

M
+ 1,
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so

(10)

r∑
j=1

pβj − 1

p− 1
dj < N +M(1−B)

For 1 ≤ j ≤ r, let

χj : Z→ Z/pBZ by χ(x) =

{
1 if x ≡ 0 (mod pβj )

0 otherwise
.

Let

χ :=

r⊗
j=1

χj : Zr → Z/pBZ, (x1, . . . , xr) 7→
r∏
j=1

χj(xj).

Let χ̃ be a lift of χ from Z/pBZ to Z in the sense of §2.4, and similarly for 1 ≤ j ≤ r let
χ̃j be a lift of χj from Z/pBZ to Z.

Let x ∈ ZN , and write x for the image of x in (Z/pZ)N , so for all x ∈ ZN , we have

χ(f1(x), . . . , fr(x)) =

{
1 if x ∈ Z(f1, . . . , fr)

0 otherwise
.

For 1 ≤ j ≤ r, let Fj be obtained from fj by pulling back from (Z/pZ)N to ZN , and let

F̃j be obtained from Fj by lifting from Z/pβjZ to Z in the sense of §2.4. In particular,

by §2.4 we have fdeg(F̃j) = fdeg(Fj) = fdeg(fj) ≤ dj for all 1 ≤ j ≤ r. Thus the desired
conclusion that pB | #Z(f1, . . . , fr) is equivalent to∫

[p)N
χ(F̃1, . . . , F̃r) = 0 ∈ Z/pBZ.

and thus also to

(11) ordp

(∫
[p)N

χ̃(F̃1, . . . , F̃r

)
≥ B.

The function χj is the pullback from Z/pβjZ to Z of the function δ0,1 ∈ (Z/pBZ)Z/p
βjZ,

so by [CS21, Prop. 4.4 and Thm. 4.7] and §2.4, we have

fdeg(χ̃j) = fdeg(χj) = δ(Z/pβjZ,Z/pBZ) = (pβj − 1) + (B − 1)pβj−1(p− 1).

By Theorem 2.17, there is a function cj : N→ Z such that c̃j(nj) = 0 for all but finitely
many nj ’s, such that

∀xj ∈ Z, χj(xj) =
∑
nj∈N

(
xj
nj

)
cj(nj)

and such that for all b ∈ Z+ we have

nj > (p− 1)

(
pβj − 1

p− 1
+ (b− 1)pβj−1

)
=⇒ pb | cj(nj).

Our lift of χj to χ̃j consists of lifting cj to c̃j : N→ Z in such a way that cj(nj) = 0 =⇒
c̃j(nj) = 0. It follows that

(12) ∀1 ≤ b ≤ B, nj > (p− 1)

(
pβj − 1

p− 1
+ (b− 1)pβj−1

)
=⇒ pb | c̃j(nj).
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Now we have ∫
[p)N

χ(F̃1, . . . , F̃r) =

∫
[p)N

χ1(F̃1) · · ·χr(F̃r)

=
∑

x∈[p)N

∑
n=(n1,...,nr)∈Nr

(
F̃1(x)

n1

)
· · ·
(
F̃r(x)

nr

)
c1(n1) · · · cr(nr).

Thus to prove (11) it suffices to show that

(13) ∀n ∈ Nr, ordp

 ∑
x∈[p)N

(
F̃1(x)

n1

)
· · ·
(
F̃r(x)

nr

)
c1(n1) · · · cr(nr)

 ≥ B.
To show this, fix n = (n1, . . . , nr) ∈ Nr. For 1 ≤ j ≤ r, let αj be the integer such that

(p− 1)

(
pβj − 1

p− 1
+ (αj − 1)pβj−1

)
< nj ≤ (p− 1)

(
pβj − 1

p− 1
+ αjp

βj−1
)
,

so (12) gives that either ordp(c̃j(nj)) ≥ B for some j – so (13) certainly holds – or

∀1 ≤ j ≤ r, ordp(c̃j(nj)) ≥ αj .

Define ` ∈ Z by

` := B −
r∑
j=1

αj ,

so

(14)

r∑
j=1

ordp(c̃j(nj)) ≥
r∑
j=1

αj = B − `.

Then (13) certainly holds for n if ` ≤ 0, so we may assume that ` ≥ 1.
Applying [AM21, Thm. 4.3 and Lemma 6.1], the definition of M and (10) we get

fdeg

((
F̃r
n1

)
· · ·
(
F̃r
nr

))
≤

r∑
j=1

njdj

≤ (p− 1)

r∑
j=1

(
pβj − 1

p− 1
+ αjp

βj−1
)
dj ≤ (p− 1)

 r∑
j=1

pβj − 1

p− 1
dj + (B − `)M


< (p− 1)(N +M − `M) ≤ (p− 1)(N − `+ 1),

so Lemma 3.1 yields

(15) ordp

(∫
[p)N

(
F̃1

n1

)
· · ·
(
F̃r
nr

))
≥ `.

Combining (14) and (15) we get (13), which completes the proof of Theorem 1.7.

Remark 3.2. From Theorem 1.7 we can immediately deduce an analogous result for maps
f1 : A → B1, . . . , fr : A → Br, where A is a finite commutative group of prime exponent
p, B1, . . . , Br are any nontrivial finite commutative p-groups, and d1, . . . , dr ∈ N are such
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that fdeg(fj) ≤ dj for all j and max1≤j≤r dj ≥ 1.
Indeed, up to isomorphism we may write A = (Z/pZ)N and for all 1 ≤ j ≤ r,

Bj =

K(j)⊕
j=1

Z/pβj,kZ with βj,1 ≥ . . . ≥ βj,K(j) ≥ 1.

Let Z(f1, . . . , fr) = {x ∈ A | ∀1 ≤ j ≤ r, fj(x) = 0}. Composing each fj : A→ Bj with
the coordinate projections πk : Bj → Z/pβj,kZ =: Bj,k, we get maps fj,k := πk ◦ fj for all
1 ≤ j ≤ r, 1 ≤ k ≤ K(j) such that max1≤k≤K(j) fdeg fj,k = fdeg(fj) ≤ dj. Evidently, for
x ∈ A we have fj(x) = 0 for all j if and only if fj,k(x) = 0 for all j and k, so applying
Theorem 1.7 to the family of maps {fj,k : A→ Bj,k} we get

ordp(#Z(f1, . . . , fr)) ≥
⌈
N −

∑r
j=1

∑K(j)
k=1

pβj,k−1
p−1 dj

max1≤j≤r pβj,1−1dj
.

⌉
.

This result may be viewed as a generalization of Theorem 1.7, which we recover by taking
each Bj to be cyclic. However, in practice this result seems to lose information from
Theorem 1.7 in that for each j we use only max1≤k≤K(j) fdeg(πk ◦ fj) instead of the
individual functional degrees of the maps πk ◦ fj. Earlier in our work we proved Theorem
1.8 (which is essentially this result with βj,k = 1 for all j and k) directly, and this loss of
information made the proof significantly more difficult.

4. p-weights

For p ∈ P and d ∈ N, we may uniquely write d =
∑N
i=0 aip

i with each ai ∈ [p). Using
this base p expansion, we define the p-weight

σp(d) :=

N∑
i=0

ai.

We have σp(d) ≤ d with equality iff d ∈ [p). For fixed p and large d, we have σp(d) =
O(log d), so the p-weight of d can be much smaller than d itself.

Let R be a commutative ring. The p-weight degree of a nonzero monomial ctd11 · · · tdnn
with c ∈ R \ {0} is defined to be

σp(ct
d1
1 · · · tdnn ) :=

n∑
i=1

σp(di),

and the p-weight degree of a nonzero polynomial f ∈ R[t1, . . . , tn] is the maximum p-
weight degree of a nonzero monomial term. We put σp(0) := −∞.

A polynomial has positive degree if and only if it has positive p-weight degree.

Lemma 4.1. Let A1, . . . , An be commutative groups, let R be a rng, and for each 1 ≤
i ≤ n let fi : Ai → R be a nonzero function. Let

f :

n∏
i=1

Ai → R, (a1, . . . , an) 7→ f1(a1) · · · fn(an).

a) We have fdeg(f) ≤
∑n
i=1 fdeg(fi).

b) [AM21, Lemma 6.2] If R is a domain, then we have fdeg(f) =
∑n
i=1 fdeg(fi).
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Proof. Induction reduces us to the n = 2 case. For x ∈ A1 and y ∈ A2 we have

(∆xf)(a, b) = f(x+ a, b)− f(a, b) = (∆xf1)(a)f2(b),

(∆yf)(a, b) = f(a, y + b)− f(a, b) = f1(a)(∆yf2)(b),

and thus it follows that for all x1, . . . , xI , a ∈ A1 and y1, . . . , yJ , b ∈ A2 we have

(16)

 I∏
i=1

∆xi

J∏
j=1

∆yjf

 (a, b) =

(
(

I∏
i=1

∆xif1)(a)

)(

J∏
j=1

∆yjf2)(b)

 .

Both parts follow easily from this. For part a), for i = 1, 2 put di = fdeg(fi). We may
assume that d1, d2 < ∞ or there is nothing to prove. Then in (16) the right hand side
is 0 unless I ≤ d1 and J ≤ d2, hence is certainly 0 if I + J ≥ d1 + d2 + 1. For part b),
taking I = d1 and J = d2 there are sequences x1, . . . , xd1 , a ∈ A1 and y1, . . . , yd2 , b ∈ A2

such that
(

(
∏d1
i=1 ∆xif1)(a)

)
and

(
(
∏d2
j=1 ∆yjf2)(b)

)
are both nonzero, hence so is their

product since R is a domain. �

Proposition 4.2. Let p ∈ P, and let R be a commutative ring of characteristic p. Let
f ∈ R[t1, . . . , tn] be a polynomial, with associated function E(f) ∈ RRn . Then we have

(17) fdeg(E(f)) ≤ σp(f).

Proof. Since fdeg(E(f)) = −∞ iff E(f) = 0, we may assume that E(f) 6= 0.
By [AM21, Lemma 3.2] we have fdeg(f1 + f2) ≤ max(fdeg(f1), fdeg(f2)). Since σp(f)

is the maximum of the p-weight degrees of the nonzero monomial terms of f , we reduce
to the case of a monomial

f = ctd11 · · · tdnn , c ∈ R \ {0}.
Using [AM21, Lemmas 6.1] and Lemma 4.1a), we get

fdeg(ctd11 · · · tdnn ) ≤ fdeg(c) +

n∑
i=1

fdeg(E(tdii )) =

n∑
i=1

fdeg(E(tdii )).

We have reduced to the univariate monomial case and must show: for all n ∈ Z+ we have

E(tn) ≤ σp(tn).

Writing n =
∑N
i=0 aip

i with ai ∈ [p) and using [AM21, Lemma 12.5], we get

fdeg(E(tn)) = fdeg

(
N∏
i=0

E(tp
i

)ai

)
≤

N∑
i=0

ai fdeg(Et
pi

) =

N∑
i=0

ai = σp(n),

since each E(tp
i

) is a nonzero group homomorphism and thus has functional degree 1. �

Combining Theorem 1.7 and Proposition 4.2 yields Theorem 1.3b). Applying Theorem
1.3b) to R = FpN , we get the Moreno-Moreno Theorem [MM95, Thm. 1].

Theorem 4.3 (Moreno-Moreno). Let f1, . . . , fr ∈ FpN [t1, . . . , tn] be polynomials of posi-
tive degrees. Let

Z(f1, . . . , fr) := {(x1, . . . , xn) ∈ FnpN | f1(x1, . . . , xn) = . . . = fr(x1, . . . , xn) = 0}.
Then

ordp(Z(f1, . . . , fr)) ≥
⌈
N

(
n−

∑r
j=1 σp(fj)

maxrj=1 σp(fj)

)⌉
.
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Let R be a commutative ring of prime characteristic p. Must we have equality in (17)?
When R is a field, this is answered by [AM21, Thm. 10.3]. In this result Aichinger-
Moosbauer show that fdeg(E(f)) = σp(f) whenever R is an infinite field of characteristic
p. For our purposes the more interesting case is when R = Fq, as a strict inequality
fdeg(E(f)) < σp(f) would yield a further improvement of the Ax-Katz Theorem. It
turns out that strict inequality can occur, however in a way that leads only to improve-
ments of the Ax-Katz Theorem that had already been well understood.

To explain, we say that a nonzero monomial cdt
d1
1 · · · tdnn ∈ Fq[t1, . . . , tn] is reduced

if di ≤ q − 1 for all 1 ≤ i ≤ n. A polynomial is reduced if each of its nonzero monomial
terms are reduced.

Just using the fact that xq = x for all x ∈ Fq, it is easy to see that for any f ∈
Fq[t1, . . . , tn] there is a reduced polynomial f ∈ Fq[t1, . . . , tn] that induces the same func-

tion Fnq → Fq as f . Already in [Ch35], Chevalley showed that every function E ∈ FFnq
q

is E(f) for a unique reduced polynomial f . (For an English language proof and some
modest generalizations, see [Cl14, §2.3 and §3.1].) In particular, the polynomial f alluded
to above is the unique reduced polynomial inducing the same function as f .

Now for any f1, . . . , fr ∈ Fq[t1, . . . , tn], since the solution set

Z(f1, . . . , fr) := {x ∈ Fnq | f1(x) = . . . = fr(x) = 0}
depends only the associated functions E(f1), . . . , E(fr), we always have

Z(f1, . . . , fr) = Z(f1, . . . , fr).

One gets easy strengthenings of many results of Chevalley-Warning type – in particular
the theorems of Chevalley-Warning and Ax-Katz – by replacing f1, . . . , fr by f1, . . . , fr,
since in this process none of the degrees can increase.

The following result is part of [AM21, Thm. 10.3].

Theorem 4.4 (Aichinger-Moosbauer). Let f ∈ Fq[t1, . . . , tn] be a nonzero polynomial,

and let E(f) ∈ FFnq
q be the associated polynomial function. Then

fdeg(E(f)) = σp(f).

Proposition 4.2 and Theorem 4.4 imply that

σp(f) = fdeg(E(f)) ≤ σp(f);

that is, passing to the reduced polynomial also cannot increase the p-weight degree. So
in the setting of the Moreno-Moreno Theorem one can improve the conclusion to

(18) ordq(z) ≥
⌈
n−

∑r
j=1 σp(fj)

maxrj=1 σp(fj)

⌉
.

which by Theorem 4.4 is the optimal application of Theorem 1.7 to polynomials over Fq.

Remark 4.5. For a reduced polynomial f ∈ Fp[t1, . . . , tn], we have deg(f) = σp(f), so
Moreno-Moreno gives no essential improvement upon Ax-Katz when q = p.

It would be interesting to characterize the functional degree for polynomial functions over
other finite rings, especially finite commutative rings of characteristic p.
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5. Final Thoughts

In this paper we have given a group-theoretic version of the Prime Ax-Katz Theorem. It
would clearly be desirable to have a group-theoretic version of Ax-Katz over Fq rather
than just over Fp (cf. Remark 1.4). But what form should this result take?

Again we remark that neither Ax-Katz nor Moreno-Moreno encompasses the other. That
is, for a polynomial system f1, . . . , fr ∈ FpN [t1, . . . , tn], when n > 1 it is not known that

ordpN (Z(f1, . . . , fr)) ≥
⌈
n−

∑r
j=1 σp(fj)

maxrj=1 σp(fj)

⌉
.

Next we remark that Moreno-Moreno is not really about Fp: indeed, given any extension
of finite fields Fq ⊂ FqN and any polynomial system f1, . . . , fn ∈ FqN [t1, . . . , tn], the proof
of Theorem 4.3 works verbatim, taking Ax-Katz over Fq as input, to show that

ordq(Z(f1, . . . , fr)) ≥
⌈
N

(
n−

∑r
j=1 σq(fj)

maxrj=1 σq(fj)

)⌉
,

where σq(f) is the q-weight degree of the polynomial f , defined as for the p-weight
degree but using base q expansions: this result appears for instance as [MC03, Thm. 6].

This makes us suspect that there ought to be an R-linear generalization of the Aichinger-
Moosbauer calculus: that is, for a commutative ring R, two R-modules A and B and a

function f : A→ B, there should be fdegR(f) ∈ Ñ satisfying most of the formal proper-
ties of the usual functional degree but having fdegR(f) = 1 if and only if f − f(0) is an
R-module homomorphism and such that if f ∈ FqN [t1, . . . , tn], then

fdegFq (E(f)) = σq(f),

where f is the Fqn -reduced polynomial associated to f .

We hope to return to these ideas in a future work.
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