
FUNCTIONAL DEGREES AND ARITHMETIC APPLICATIONS III:

BEYOND PRIME EXPONENT

PETE L. CLARK AND UWE SCHAUZ

Abstract. This is a continuation of our prior work on group-theoretic generalizations

of the prime Ax-Katz Theorem. In this work we give a lower bound on the p-adic
divisibility of the solution set Z(f1, . . . , fr) for maps f1, . . . , fr between two finite

commutative p-groups A and B in terms of the invariant factors of A, the exponent

of B and the functional degrees of the maps in the sense of the Aichinger-Moosbauer
calculus. The case of maps between arbitrary finite commutative groups follows easily

from this using prior work of Aichinger-Moosbauer and the present authors. We get

in particular a version of Ax-Katz for polynomial functions over any finite rng.
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1.1. Notation and Terminology. Throughout this paper, p is a fixed but arbitrary
(positive) prime number. We denote by ordp the p-adic valuation on Q, and with Z(p)

for the ring of rational numbers of non-negative p-adic valuation. We set

Z+ := {n ∈ Z | n > 0} , N := {n ∈ Z | n ≥ 0} and Ñ := N ∪ {−∞,∞} ,

and endow Ñ with the total ordering extending the usual one on N in which −∞ is the
smallest and ∞ is the largest element.

If R,R1, . . . , Rr are sets, such that each of the sets R1, . . . , Rr contains a distinguished
element denoted 0, and if f1 : Rn→ R1, . . . , fr : Rn→ Rr are functions (possibly given
as polynomials), we define

Z(f1, . . . , fr) = ZRn(f1, . . . , fr) :=
{
x ∈ Rn | f1(x) = 0, . . . , fr(x) = 0

}
.

Let N ∈ Z+. For s, α1, . . . , αN ∈ N and r ∈ R, we put

r := max(r, 0) and α := (α1, α2, . . . , αN )

rα := (rα1, rα2, . . . , rαN ) and rα := (rα1 , rα2 , . . . , rαN )

[s) := {0, . . . , s− 1} and [s] := {0, . . . , s}
[α) := [α1)× [α2)× · · · × [αN ) and [α] := [α1]× [α2]× · · · × [αN ]

|α| := α1 + α2 + · · ·+ αN and α′
s := #

{
1 ≤ t ≤ N | αt ≥ s

}
If the sequence (α1, α2, . . . , αN ) is monotone decreasing with positive entries, then the
sequence (α′

1, α
′
2, . . . , α

′
α1
) is called its conjugate sequence; but it will be convenient to

also have defined the next term α′
α1+1 and sums of the form

∑α′
α1+1

j=1 cj (both as equal to

0 if α1 is maximal among the αj). The conjugate sequence is again monotone decreasing
with positive entries, and the conjugate of the conjugate is the original sequence. This can
be seen by interpreting passing to the conjugate sequence as reflecting Ferrers’ diagram
through the main diagonal.

1.2. The Story so far. This paper is a direct continuation of our prior works [CS21]
and [CS23a]; in these papers as well as in the present paper, our goal is to synthesize,
further develop and apply work of Wilson [Wi06] and Aichinger-Moosbauer [AM21].

In [AM21], Aichinger and Moosbauer develop a calculus of finite differences for maps
f : A → B between arbitrary commutative groups A and B. To every such map f they
attach a functional degree fdeg(f) taking values in Ñ [AM21, §2]. See also the exposi-
tion in our prior work [CS21, §2.3].1 Taking BA to be the set of all functions f : A → B,
which naturally has the structure of a module over the group ring Z[A], we put

F(A,B) := {f ∈ BA | fdeg(f) < ∞},

which then is a Z[A]-submodule of BA. One of the key insights of [AM21] is that it is
often fruitful to view the elements of F(A,B) as the “polynomial functions from A to
B.” If P is a polynomial expression in n variables with coefficients in a (not necessarily

1In [AM21] fdeg(0) := 0 , and fdeg(f) ∈ N ∪ {∞} for all f , but we set fdeg(0) := −∞.
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commutative) rng2 R, and E(P ) : Rn→ R is the corresponding polynomial function, then
[AM21, Lemma 12.5]

fdeg(E(P )) ≤ deg(P ) .

It is an interesting problem to precisely understand the discrepancy between these two
kinds of degree. After work of Aichinger-Moosbauer [AM21, §10] and work of the present
authors [CS23a, Prop. 2.19 and Thm. 4.9], we know how to compute fdeg(E(P )) in terms
of the support of the monomial of P when R is any commutative integral domain. Equal-
ity holds in all cases if and only if R has characteristic 0.

For commutative groups A and B, we put

δ(A,B) := sup
f∈BA

fdeg(f).

When A and B are nontrivial finite commutative groups, Aichinger-Moosbauer showed
that δ(A,B) is finite if and only if A and B are both p-groups for the same prime number
p, and they raised the question of determining the exact value of δ(A,B) in this case.
This was answered by the present authors:

Theorem 1.1. Let N, β, α1, . . . , αN ∈ Z+, and let B be a finite commutative p-group of
exponent pβ. Then

δ(

N⊕
i=1

Z/pαiZ, B) = δp(α, β) :=

N∑
i=1

(pαi − 1) + (β − 1)(p− 1)pmax{α1,...,αN}−1.

Proof. This is [CS21, Thm. 4.9 c)]. □

For finite commutative p-groups A and B, the quantity δ(A,B) can be interpreted as
the “maximum complexity” for a map f : A → B. For instance, if A = (Z/pZ)n
and B = Z/pZ, then (as Aichinger-Moosbauer knew) the largest possible functional
degree is (p− 1)n, and one function of this degree is given by evaluating the polynomial

tp−1
1 · · · tp−1

n . This is related to an observation of Chevalley: over a finite field Fq, the
function x 7→ xq − x is identically zero, so for any polynomial P ∈ Fq[t1, . . . , tn] there is
another “reduced polynomial” Pr ∈ Fq[t1, . . . , tn] consisting of monomial terms ta1

1 · · · tan
n

with 0 ≤ ai ≤ q−1 and such that E(P ) = E(Pr), i.e., the two polynomials determine the
same polynomial function. The largest degree of a reduced monomial is therefore (q−1)n.

Already this hints that the Aichinger-Moosbauer functional calculus should have nu-
merous theoretic connections, in particular to the following celebrated results.

Theorem 1.2. Let q := pN. Let f1, . . . , fr ∈ Fq[t1, . . . , tn] be nonzero polynomials. If∑r
j=1 deg(fj) < n , then

a) ordp(#ZFn
q
(f1, . . . , fr)) ≥ 1 (Chevalley-Warning Theorem [Ch35], [Wa35]),

b) ordq(#ZFn
q
(f1, . . . , fr)) ≥

⌈
n−

∑r
j=1 deg(fj)

maxr
j=1 deg(fj)

⌉
(Ax-Katz Theorem [Ax64], [Ka71]).

Indeed, Aichinger-Moosbauer used their functional calculus to prove the following result,
a striking generalization of Theorem 1.2 a).

2Not a typo: a ring has a multiplicative identity, a rng may not.
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Theorem 1.3. (Group-Theoretic Chevalley-Warning Theorem) Let

A :=

m⊕
i=1

Z/pαiZ , B :=

n⊕
i=1

Z/pβiZ

be finite commutative p-groups, and let f1, . . . , fr : AN → B be functions. If( r∑
j=1

fdeg(fj)

)( n∑
i=1

(pβi− 1)

)
<

( m∑
i=1

pαi − 1

)
N

then
ordp(#ZAN (f1, . . . , fr)) ≥ 1.

Proof. This is [AM21, Thm. 12.2]. □

The same work [AM21] gave a group-theoretic generalization of Warning’s Second The-
orem [AM21, Thm. 14.2] but left open the problem of applying their calculus to higher
p-adic congruences. However, a 2006 work of R. Wilson [Wi06] gave a strikingly new
and elementary proof of Theorem 1.2 b) over the prime field Fp using, in particular, the
difference operator ∆1 : f 7→ f(x + 1) − f(x). Comparing the work of Wilson with that
of Aichinger-Moosbauer, we found that – notwithstanding some differences in perspective
and presentation – they are deeply related. Our proof of Theorem 1.1 makes use either of
Wilson’s work (or, alternately, earlier related work of Weisman [We77]). Moreover, with
some further development of the Achinger-Moosbauer calculus – especially that for any
commutative group B, elements of F(ZN , B) have series expansions (this will be recalled
later as Theorem 2.1) – we were able [CS23a, Cor. 1.9] to refine Wilson’s argument to
give the following group-theoretic generalization of Theorem 1.2 b) over Fp.

Theorem 1.4 (Group-Theoretic Prime Ax-Katz Theorem). Let N,n, r ∈ Z+, and put
A := (Z/pZ)N. Let f1, . . . , fr ∈ AAn

be nonzero functions. Then

ordp(#ZAn(f1, . . . , fr)) ≥
⌈
N
(
n−

∑r
j=1 fdeg(fj)

)
maxrj=1 fdeg(fj)

⌉
.

We emphasize that like Theorem 1.3 , Theorem 1.4 is a purely group-theoretic result.
When A = Fp we recover Theorem 1.2b) over the prime field Fp. When A = Fq, because
of the connection between the functional degree and the p-weight degree, it recovers
Moreno-Moreno’s strengthening of the prime Ax-Katz Theorem [MM95], which however
does not imply the full Ax-Katz Theorem over Fq (cf. [CS23a, Remark 1.4]).

After seeing a related manuscript of Grynkiewicz [Gr22], we noticed that the argu-
ment that proves Theorem 1.4 can be adapted to prove a more general result for maps
fj : (Z/pZ)N → Bj where each Bj is a finite commutative p-group. This setting is indeed
more general than the one in Theorem 1.4 , as the new N may play the role of the old nN .
It is, however, more general than actually needed, as one can always reduce (Remark 1.6)
to the case of cyclic p-groups Bj . For cyclic p-groups Bj the result is:

Theorem 1.5. [CS23a, Thm. 1.7] Let N, r, β1, . . . , βr ∈ Z+, and put A := (Z/pZ)N. For
each 1 ≤ j ≤ r, let fj ∈ (Z/pβjZ)A be a nonzero function. Then

ordp(#ZA(f1, . . . , fr)) ≥
⌈
N −

∑r
j=1

pβj−1
p−1 fdeg(fj)

maxrj=1 pβj−1 fdeg(fj)

⌉
.
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Remark 1.6. For a finite commutative p-group B =
⊕K

j=1 Bj and each 1 ≤ k ≤ K, let

πk :
⊕K

j=1 Bj → Bk be the kth coordinate projection. Because we can exchange a map

f : A →
⊕K

j=1 Bj for the tuple (fk)
K
k=1 of maps fk := πk ◦ f , and because we have

fdeg(f) = max
1≤k≤K

fdeg(fk) ,

Theorem 1.5 applies to treat the case of arbitrary finite commutative p-groups Bj as
mentioned above: see [CS23a, Rem. 1.8 & Cor. 1.9] for the details.

1.3. The Main Theorem. Now we generalize to arbitrary finite commutative p-groups,
to obtain a generalized Ax-Katz type lower bound on ordp(#Z(f1, . . . , fr)) as main result
of this paper. Without loss of generality (Remark 1.6), we presume that all codomains Bj

are cyclic p-groups. Our generalization concerns the common domain A of our functions
fj : A → Bj . We consider the groups

A :=

N⊕
i=1

Z/pαiZ

and

B1 := Z/pβ1Z , . . . , Br := Z/pβrZ
where r, β1, . . . , βr, N, α1, . . . , αN ∈ Z+. We presume that each fj is a nonconstant of
functional degree at most dj ∈ Z+. In other words, for each 1 ≤ j ≤ r we have a function

fj : A → Bj with 0 < fdeg(fj) ≤ dj ,

and we may order these fj and the αi such that

d1p
β1 ≥ d2p

β2 ≥ · · · ≥ drp
βr and α1 ≥ α2 ≥ · · · ≥ αN .

To express our complicated result, we use the notational definitions of Section 1.1, in-
cluding conjugate numbers and over-bar notation. We also need several new parameters.
We set

α := α1 + α2 + · · ·+ αN

= α′
1 + α′

2 + · · ·+ α′
α1

(by Ex. 3.3)

and

ᾰ := ᾰ1 + ᾰ2 + · · ·+ ᾰN

= α′
1 + α′

2 + · · ·+ α′
ᾰ1

(by Ex. 3.4)

where

ᾰi := min
{
αi , L

}
L := β1 + ⌊logp

(
d1
)
⌋ .

Using that α′
1 + α′

2 + · · ·+ α′
α1

= α , we define numbers D1, D2, . . . , Dα by setting(
D1, D2, . . . , Dα

)
:=
(
1, 1, . . . , 1︸ ︷︷ ︸
α′

1 times

, p, p, . . . , p︸ ︷︷ ︸
α′

2 times

, . . . , pα1−1, pα1−1, . . . , pα1−1︸ ︷︷ ︸
α′

α1
times

)
.
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We further put

Ă :=

N∑
i=1

pᾰi− 1

p− 1

= α′
1p

0 + · · ·+ α′
ᾰ1
pᾰ1−1 (by Ex. 3.3)

= D1 + · · ·+Dᾰ

and

B :=

r∑
j=1

dj
pβj− 1

p− 1
.

Theorem 1.7. With the parameters and settings above,

ordp
(
#ZA(f1, . . . , fr)) ≥


⌈

Ă − B
d1pβ1−1

⌉
+ α− ᾰ if Ă > B,

α−max
{
1 ≤ t ≤ α | D1 + · · ·+Dt ≤ B

}
if Ă ≤ B.

Not that our lower bound is equal to 0 if A ≤ B, where A :=
∑N

i=1
pαi−1
p−1 ≥ Ă, because

then

D1 + · · ·+Dα = α′
1p

0 + · · ·+ α′
α1
pα1−1 =

N∑
i=1

αi−1∑
j=0

pj = A ≤ B .

We also want to mention that FFFFFalse⌈
Ă − B
d1pβ1−1

⌉
+ α− ᾰ ≤

⌈
A− B
d1pβ1−1

⌉
,

which makes one wonder whether the second simpler term still is a lower bound.

The result takes a somewhat simpler form when α1 = · · · = αN . In that case,

α′
1 = · · · = α′

α1
= N and Ă = N

pᾰ1 − 1

p− 1
.

With the parameters

Q :=
⌊
logp

(
(p− 1)B/N + 1

)⌋
and R :=

⌊B −N pQ−1
p−1

pQ

⌋
we may also restate the second expression in the theorem:

α−max
{
1 ≤ t ≤ α | D1 + · · ·+Dt ≤ B

}
= Vp(α, (p− 1)B) = N(α1 −Q)−R ,

by the last formula in Theorem 4.3 and the first formula in Corollary 4.5. In the case
α1 = · · · = αN ,

D1 + · · ·+DNQ = N
pQ − 1

p− 1
≤ N

(
(p− 1)B/N + 1

)
− 1

p− 1
= B

D1 + · · ·+DNQ+R = N
pQ − 1

p− 1
+RpQ ≤ N

pQ − 1

p− 1
+ B −N

pQ − 1

p− 1
= B
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Corollary 1.8. If α1 = · · · = αN then

ordp
(
#ZA(f1, . . . , fr)) ≥


⌈
N pᾰ1−1

p−1 − B
d1pβ1−1

⌉
+ N(α1 − ᾰ1) if N pᾰ1−1

p−1 > B,

N(α1 −Q)−R if N pᾰ1−1
p−1 ≤ B.

Remark 1.9.

a) The special case of Corollary 1.8 in which α1 = . . . = αN = 1 (and dj = fdeg(fj)
for 1 ≤ j ≤ r) is Theorem 1.5. Indeed, in that case ᾰ1 = 1, and then both lower
bounds (the one in Theorem 1.5 and the one in Corollary 1.8) are obviously equal
if N > B, while they are both zero or negative if N ≤ B.

b) Before [CS23a], Ax-Katz type p-adic congruences on the solution set of a poly-
nomial system over a finite rng were only known for finite commutative rings in
which every ideal is principal [Ax64], [Ka71], [MR75], [Ka12].

Now let R be a finite rng with order a power of p, so there are N,α1, . . . , αN

such that

(R,+) ∼=
N⊕
i=1

Z/pαiZ =: A1 .

Let P1, . . . , Pr be polynomials in n variables over R with deg(Pj) ≤ dj for each
1 ≤ j ≤ r . Then Theorem 1.7 with A := An

1 and Remark 1.6 apply to give an

Ax-Katz type lower bound on ordp(#Z(P1, . . . , Pr)). In particular, as Ă ≥ n,
one sees the following asymptotic Ax-Katz phenomenon: if r and d1, . . . , dr
remain fixed, then ordp(#Z(P1, . . . , Pr)) approaches infinity with n.

c) Let A,B1, . . . , Br be any nontrivial finite commutative groups, and write out the
primes dividing #(A×

∏r
i=1 Bi) as ℓ1 < . . . < ℓs. Then for each 1 ≤ j ≤ r we

have a canonical Z-module injection

s∏
k=1

Bj [ℓ
∞
k ]A[ℓ∞k ] → BA

j

in which we send the vector
(
gk : A[ℓ∞k ] → Bj [ℓ

∞
k ]
)
1≤k≤s

to the function

(x1, . . . , xs) 7→ (g1(x1), . . . , gs(xs)) .

By [CS21, Cor. 3.15c)], upon restriction to functions of finite functional degree,
we get canonical isomorphy that we write as an equality:

F(A,Bj) =

s∏
k=1

F(A[ℓ∞k ], Bj [ℓ
∞
k ])

in which moreover fdeg(g1, . . . , gs) = max{fdeg(gk) | 1 ≤ k ≤ s}. In other words,
a map of finite functional degree between any two finite commutative groups is
determined by its restrictions to the primary components of its domain and its
functional degree is simply the largest functional degree of any primary component.

If we now consider all r maps
(
fj : A → Bj

)
1≤j≤r

then we get s× r primary

component maps (
gj,l : A[ℓ∞k ] → Bj [ℓ

∞
k ]
)

1≤j≤r
1≤k≤s
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and it is immediate that

#Z(f1, . . . , fr) =

s∏
k=1

#Z(g1,k , . . . , gr,k) .

So, Theorem 1.7 gives lower bounds on ordℓk(#Z(f1, . . . , fr)) for all 1 ≤ k ≤ s
in terms of A,B1, . . . , Br and fdeg(f1), . . . , fdeg(fr).

d) The two previous remarks can be combined to address the case of polynomial
expressions in n variables of degrees d1, . . . , dr over any finite rng R. (At least in
the case when R is a commutative ring, the appeal to [CS21, Cor. 3.15c)] can be
replaced by the more familiar observation that R has a canonical direct product
decomposition R =

∏s
k=1 rl into rings of prime power order, such that

R[t1, . . . , tn] =

s∏
k=1

rk[t1, . . . , tn],

which already gives “Cartesian decomposition” for polynomial functions.) In this
fully general case, the asymptotic Ax-Katz phenomenon can be expressed as fol-
lows: keeping the number and degrees of the polynomial expressions f1, . . . , fr
fixed, we find that #Z(f1, . . . , fr) becomes divisible by an arbitrarily large power
of #R as the number of variables becomes sufficiently large.

1.4. Schedule of Remaining Tasks. In Section 2 we will explicitly evaluate νp(α, n)
and Vp(D) and thereby complete Parts 1 and 2. In Section 3 we compute minn∈[n̂(β)] N (n)
and thereby complete Part 3. In the brief final Section 4, we will show that this completes
the proof of Theorem 1.7, and we will prove Corollary 1.8.

2. Reduction to Discrete Optimization

In this section we start the proof of Theorem 1.7. It is a full proof, except that some
results about minima of certain discrete functions from later sections are cited. So, this
main part of the proof reduces us to some discrete optimization problems, which can be
stated and solved completely independent from the original problem. We first recall some
basics from and our earlier work, then introduce some basic number theoretic results, and
then start that reductionistic proof.

2.1. Some Recalled Results. We denote by ordp the p-adic valuation on Q, and with
Z(p) for the ring of rational numbers of non-negative p-adic valuation. We set

Z+ := {n ∈ Z | n > 0} , N := {n ∈ Z | n ≥ 0} and Ñ := N ∪ {−∞,∞} ,

and endow Ñ with the total ordering extending the usual one on N in which −∞ is the
smallest and ∞ is the largest element.

Let N ∈ Z+. For s, α1, . . . , αN ∈ N and r ∈ R, we put

r := max(r, 0) and α := (α1, α2, . . . , αN )

rα := (rα1, rα2, . . . , rαN ) and rα := (rα1 , rα2 , . . . , rαN )

[s) := {0, . . . , s− 1} and [s] := {0, . . . , s}
[α) := [α1)× [α2)× · · · × [αN ) and [α] := [α1]× [α2]× · · · × [αN ]

|α| := α1 + α2 + · · ·+ αN and α′
s := #

{
1 ≤ t ≤ N | αt ≥ s

}
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Theorem 2.1. Let B be a commutative group, and let f ∈ BZN

.

a) There is a unique function a• : NN → B such that

f(x) =
∑

n∈NN

(
x1

n1

)
· · ·
(
xN

nN

)
an for all x ∈ NN.

The function values of a• are given by the formula an = ∆nf(0).

b) If d := fdeg(f) < ∞, then

f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·
(
xN

nN

)
∆nf(0) for all x ∈ ZN.

Proof. This is [CS23a, Thm. 2.8]. □

We now recall some terminology and results concerning proper lifts. Let µ : B → B′ be
a surjective homomorphism of commutative groups, and let f ∈ F(ZN, B′). By Theorem
2.1 there is a unique function a• : NN → B′ that is finitely nonzero (i.e., its support
{n ∈ NN | an ̸= 0} is finite) such that

f(x) =
∑
n∈NN
|n|≤d

(
x1

n1

)
· · ·
(
xN

nN

)
∆nf(0) for all x ∈ ZN.

Then a proper lift of a• to B is a finitely nonzero function ã• : NN → B such that
µ ◦ ã• = a• and for all n ∈ NN, ãn = 0 ⇐⇒ an = 0. Proper lifts always exist. To a

proper lift ã• of a• we attach the function f̃ ∈ BZN

defined by

f̃(x) :=
∑

n∈NN

(
x1

n1

)
· · ·
(
xN

nN

)
ãn .

We then have f = µ ◦ f̃ and fdeg(f̃) = fdeg(f).

Corollary 2.2. Let N, β, α1, . . . , αN ∈ Z+. Let f :
⊕N

i=1 Z/pαiZ → Z/pβZ be any

function, F : ZN → Z/pβZ be the pullback of f , and F̃ : ZN → Z be a proper lift of F .

a)

F̃ (x) =
∑
n∈NN

|n|≤δp(α,β)

(
x1

n1

)
· · ·
(
xN

nN

)
∆nF̃ (0) for all x ∈ ZN.

b) For all h ∈ Z+ and all n ∈ Nn with

|n| > δp(α, h) :=

N∑
i=1

(pαi − 1) + (h− 1)(p− 1)pmax{α1,...,αN}−1,

we have

ph
∣∣ ∆nF̃ (0) .

Proof. This is [CS23a, Cor. 2.25]. □
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2.2. The numbers νp(α, n) and Vp(α,D). For α ∈ Z+ and n ∈ N , we put

νp(α, n) := ordp

( ∑
x∈[pα)

(
x

n

))
.

Lemma 2.3. For each α ∈ Z+ and n ∈ N,

νp(α, n) =

{
α− ordp(n+ 1) if n ≤ pα− 1,

∞ otherwise.

Proof. The case n = 0 is handled by Remark 2.4a), while if n ≥ pα then
∑

x∈[pα)

(
x
n

)
= 0 ,

so νp(α, n) = ∞. So we may assume that 1 ≤ n ≤ pα− 1 . Using Pascal’s rule
(
a
b

)
=(

a−1
b

)
+
(
a−1
b−1

)
we see that

pα−1∑
x=0

(
x

n

)
=

(
n+ 1

n+ 1

)
+

(
n+ 1

n

)
+

(
n+ 2

n

)
+

(
n+ 3

n

)
+ · · ·+

(
pα− 1

n

)
=

(
n+ 2

n+ 1

)
+

(
n+ 2

n

)
+

(
n+ 3

n

)
+ · · ·+

(
pα− 1

n

)
...

=

(
pα− 1

n+ 1

)
+

(
pα− 1

n

)
=

(
pα

n+ 1

)
.

Now we can apply Kummer’s insight [Ku52] that the p-adic valuation of a binomial
coefficient

(
a
b

)
is the number of carries when b and a−b are added in base p . Since the base

p representation of pα is 1000 · · · 0 with α zeros, this number of carries is α− ordp(n+1)
in our case. □

For N ∈ Z+, α = (α1, . . . , αN ) ∈ (Z+)N and n = (n1, . . . , nN ) ∈ NN, we put

νp(α, n) := ordp

( ∑
x∈[pα)

(
x1

n1

)
· · ·
(
xN

nN

))
=

N∑
i=1

νp(αi, ni) .

To any D ∈ N ∪ {∞}, we also define

Vp(α,D) := min
{
νp(α, n)

∣∣ |n| ≤ D
}
,

which is always finite and zero if D = ∞, as we see next:

Proposition 2.4. Let α ∈ Z+, α ∈ (Z+)N, and D ∈ N ∪ {∞}.
a)

vp(α, 0) = ordp

( ∑
x∈[pα)

(
x

0

))
= ordp(p

α) = α ,

and thus
vp(α, 0) = |α|

and
Vp(α,D) ≤ |α| .
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b)

vp(α, p
α− 1) = ordp

( ∑
x∈[pα)

(
x

pα− 1

))
= ordp(1) = 0 ,

and thus

vp
(
α, (pα1− 1, . . . , pαN − 1)

)
= 0

and

D ≥
N∑
i=1

(pαi− 1) =⇒ Vp(α,D) = 0 .

c) Keeping α fixed, Vp(α,D) is monotonically decreasing in D.

As we already determined νp(α, n) =
∑N

i=1 νp(αi, ni) in the lemma above, the precise
calculation of Vp(α,D) is mere discrete optimization. We will do that in the next section,
in Theorem 4.3. The result can be stated in various different forms. The one that we
can read without further definitions, just the ones already used in Theorem 1.7, is the
following:

(1) Vp(α,D) = α−max
{
0 ≤ j ≤ α | D1 + · · ·+Dj ≤ D

p−1

}
.

2.3. The integral
∫
S
f . Let A and B be commutative groups, let f ∈ BA, and let S ⊆ A

be a finite subset. Following [KP12], we set∫
S

f :=
∑
x∈S

f(x) ∈ B and

∫
f :=

∫
A

f .

Here we are mostly interested in the case A = ZN, B = Z and S = [pα). The following
results generalize work of Wilson [Wi06, Lemma 4] that treats the case α1 = · · · = αN = 1.

Proposition 2.5. Let D ∈ N ∪ {∞} and N,α1, . . . , αN ∈ Z+. If f ∈ ZZN

has functional
degree fdeg(f) ≤ D, then

ordp

(∫
[pα)

f

)
≥ Vp

(
α,D

)
.

Proof. For commutative groups A and B and a finite subset S ⊆ A, the map
∫
S
: BA→ B

is a Z-module homomorphism - and this also holds when A = ZN, B = Z , and S = [pα).
By Theorem 2.1, it therefore suffices to prove the inequality for functions of the form

x 7→
(
x1

n1

)
· · ·
(
xN

nN

)
with |n| ≤ D. This, however, is easy:

ordp

(∫
[pα)

(
x1

n1

)
· · ·
(
xN

nN

))
=

N∏
j=1

∑
xj∈[pαj )

(
xj

nj

)
= νp

(
α, n

)
≥ Vp

(
α, |n|

)
≥ Vp

(
α,D

)
.

□
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2.4. The Proof of Theorem 1.7. Below is the proof of Theorem 1.7, modulo two main
discrete optimization tasks. On one side, it shows that the broad outline of the argument
is the same as that of Theorem 1.5, using the key ideas from Wilson’s proof of Ax-Katz
over Fp. On the other side, it motivates and sets up the new work of the present paper,
those two optimization tasks, which are needed to complete the argument.

Proof of Theorem 1.7. Recall that A =
⊕N

i=1 Z/pαiZ . The quotient map q : ZN → A
restricted to [pα) induces a bijection [pα) → A, x 7→ q(x).

For each β ∈ Z+ and 1 ≤ j ≤ r put

n̂j(β) := (pβj− 1) + (β − 1)pβj−1(p− 1) ,

define χj : Z → Z/pβZ by

χj(x) :=

{
1 if x ≡ 0 (mod pβj ),

0 otherwise,

and let χ̃j : Z → Z be a proper lift of χj from Z/pβZ to Z .

If A1, . . . , An are commutative groups and R is a rng, then (as in [AM21, §6]) the tensor
product

⊗n
i=1 hi of maps hi : Ai → R is the map

n⊗
i=1

hi :

n⊕
i=1

Ai → R , (x1, . . . , xn) 7→ h1(x1) · · ·hn(xn) .

Let χ : Zr → Z/pβZ be the tensor product
⊗r

j=1 χj of the χj , and let χ̃ : Zr → Z be

the tensor product
⊗r

j=1 χ̃j of the χ̃j . Moreover let f̃j : A → Z be a proper lift of

fj : A → Z/pβjZ , and let F̃j : ZN → Z be obtained from f̃j by pulling back from A to
ZN. Then, for each x ∈ [pα),

χ(F̃1(x), . . . , F̃r(x)) =

{
1 if q(x) ∈ Z(f1, . . . , fr),

0 otherwise,

and thus, with the function χ̃(F̃1, . . . , F̃r) : x 7→ χ̃(F̃1(x), . . . , F̃r(x)),

#Z(f1, . . . , fr) = kpβ +

∫
[pα)

χ̃(F̃1, . . . , F̃r) for some k ∈ Z .

We may certainly assume that Z(f1, . . . , fr) is nonempty, so that ordp
(
#Z(f1, . . . , fr)

)
is finite. Hence, it is possible to choose β ∈ Z+ such that

(2) β > ordp
(
#Z(f1, . . . , fr)

)
∈ N ,

and then we get

ordp
(
#Z(f1, . . . , fr)

)
= ordp

(∫
[pα)

χ̃(F̃1, . . . , F̃r)

)
.

Now, for each 1 ≤ j ≤ r, Corollary 2.2 provides a function cj : [n̂j(β)] → Z such that, for
each x ∈ Z ,

χ̃j(x) =
∑

n∈[n̂j(β)]

(
x

n

)
cj(n) .
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In particular, with n̂(β) := (n̂1(β), . . . , n̂r(β)), for each x ∈ ZN,

χ̃(F̃1(x), . . . , F̃r(x)) = χ̃1(F̃1(x)) · · · χ̃r(F̃r(x))

=
∑

n∈[n̂(β)]

(
F̃1(x)

n1

)
· · ·
(
F̃r(x)

nr

)
c1(n1) · · · cr(nr) .

Hence, with functions
(
F̃j

nj

)
: x 7→

(
F̃1(x)
nj

)
,∫

[pα)

χ̃(F̃1, . . . , F̃r) =
∑

n∈[n̂(β)]

c1(n1) · · · cr(nr)

∫
[pα)

(
F̃1

n1

)
· · ·
(
F̃r

nr

)
.

Thus if we put

m := min
n∈[n̂(β)]

(
ordp

(
c1(n1)

)
+ · · ·+ ordp

(
cr(nr)

)
+ ordp

(∫
[pα)

(
F̃1

n1

)
· · ·
(
F̃r

nr

)))
,

it follows that

ordp
(
#Z(f1, . . . , fr)

)
= ordp

(∫
[pα)

χ̃(F̃1, . . . , F̃r)

)
≥ m .

Thus the matter of it is to give a good lower bound on the quantity m, using that
fdeg(F̃j) = fdeg(fj) ≤ dj for all 1 ≤ j ≤ r (cf. [CS23a, Cor. 2.13, §2.4 and §2.5]). Part of
this can be quickly done in the same way as in [CS23a]: Corollary 2.2 also says that the
functions cj : [n̂j(β)] → Z can be chosen such that, for each h ∈ Z+ and n ∈ [n̂j(β)],

pβj− 1 + pβj−1(p− 1)(h− 1) < n =⇒ ph
∣∣ cj(n) .

Thus, taking

hj = hj(nj) :=

⌈
nj − (pβj− 1)

pβj−1(p− 1)

⌉
<

nj − (pβj− 1)

pβj−1(p− 1)
+ 1,

we have

pβj− 1 + (hj − 1)pβj−1(p− 1) < nj ,

and thus Corollary 2.2 yields

ordp
(
cj(nj)

)
≥ hj =

⌈
nj − (pβj− 1)

pβj−1(p− 1)

⌉
.

Moreover, using [AM21, Thm. 4.3 and Lem. 6.1], we have

fdeg

((
F̃1

n1

)
· · ·
(
F̃r

nr

))
≤

r∑
j=1

djnj ,

and Proposition 2.5 shows that

ordp

(∫
[pα)

(
F̃1

n1

)
· · ·
(
F̃r

nr

))
≥ Vp

(
α,
∑r

j=1djnj

)
.

We deduce that

ordp(#Z(f1, . . . , fr)) ≥ m ≥ min
n∈[n̂(β)]

N (n)
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where

N (n) :=

r∑
j=1

⌈
nj − (pβj− 1)

pβj−1(p− 1)

⌉
+Vp

(
α,
∑r

j=1djnj

)
.

The precise calculation of minn∈[n̂(β)] N (n) is mere discrete optimization. We will do that

in the next section, in Lemma 5.2. After increasing β if necessary3, it yields

min
n∈[n̂(β)]

N (n) =


⌈

Ă−B
d1pβ1−1

⌉
+
∑N

i=1 αi − ᾰ1 if Ă > B,

α −max
{
1 ≤ j ≤ α | D1 + · · ·+Dj ≤ B

}
if Ă ≤ B.

Notice that the answer obtained is independent of β. □

————————————
The rest of the proof of Theorem 1.7 then breaks into the following parts:

Part 1: Compute νp(α, n) for all p, α and n .

Part 2: Minimize n 7→ νp(α, n) over all n with |n| ≤ D to compute Vp(α,D) .

Part 3: For large β, minimize n 7→ N (n) over n ∈ [n̂(β)] to compute our lower bound
for m .

It turns out that Part 1 follows easily from some classical number theory. Solving the dis-
crete optimization problems in Parts 2 and 3 requires siginficantly more work and forms
the main content of this paper.

3. Conjugate Sequences

As preparation for the discrete optimization tasks ahead, we provide here more results
about conjugate sequences. Again, N,α1, . . . , αN ∈ Z+ with α1 ≥ · · · ≥ αN are fixed
given, and the conjugate numbers α′

1, . . . , α
′
α1

(and α′
α1+1 = α′

α1+2 · · · := 0) are defined as
in Section 1.1. The finite sequence (α′

j) ∈ (Z+)α1 is also called the conjugate partition

of (αi) ∈ (Z+)N, since both sequences partition the number α := α1 + α2 + · · ·+ αN , as
we will see. Exactly as transposed matrices, conjugate partitions are simply obtained by
reflecting the Ferrers diagram about the main diagonal:

Figure 1. The conjugate of (3, 2, 2, 1) is (4, 3, 1).

3We need β > s0 in Lemma 5.2. Within the full proof of Theorem 1.7, however, we presume β >
ordp(#Z) already in (2), and ordp(#Z) ≥ s0 by the findings of this paper.
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3.1. Two General Conjugation Lemmas. The following lemma is formulated in a
way that is helpful in our calculations.

Lemma 3.1. Let (ai) ∈ (Z+)N be monotone decreasing, and 1 ≤ m ≤ a1 (1 ≤ m ≤
max1≤i≤N ai). We have the following identity in Z[x]:

a′mxm + a′m+1x
m+1 + · · ·+ a′a1

xa1 =

a′
m∑

i=1

(
xm + xm+1 + · · ·+ xai

)
.

Proof. Both polynomials have degree at most a1, and there are no monomials of degree
less than m. Let m ≤ j ≤ a1. Then the coefficient of xj in the standard form of the right
polynomial is

#
{
1 ≤ i ≤ a′m | ai ≥ j

}
= #

{
1 ≤ i ≤ N | ai ≥ j

}
= a′j ,

because
ai ≥ j =⇒ ai ≥ m =⇒ a1, . . . , ai ≥ m =⇒ i ≤ a′m .

This is the same as the coefficient of xj in the left polynomial. □

The following lemma is obvious if we imagine taking the minimum as intersecting two
Ferrers diagrams, as “intersecting” and “reflecting” commute.

Lemma 3.2. If the two sequences (ai), (bi) ∈ (Z+)N are monotone decreasing, then
the sequence (ci) :=

(
min(ai, bi)

)
∈ (Z+)N is also monotone decreasing, its conjugate

sequence (c′j) has length min(a1, b1), and

c′j = min(a′j , b
′
j) for all 1 ≤ j ≤ min(a1, b1) .

3.2. Special Cases.

Example 3.3. Setting x equal to 1 in Lemma 3.1, we obtain

a1∑
j=m

a′j =

a′
m∑

i=1

(
ai −m+ 1

)
,

and, if also m = 1, we get

a1∑
j=1

a′j =

N∑
i=1

ai .

Example 3.4. If the sequence (bi) in Lemma 3.2 is constant equal to ᾰ1 ≤ a′1 , we
obtain as the conjugate of the sequence (ci) :=

(
min(ai, ᾰ1)

)
∈ (Z+)N the sequence

(a′1, a
′
2, . . . , a

′
ᾰ1
). So, if we apply Lemma 3.1 to (ci) with m = 1 and x = p, we get

a′1p
0 + · · ·+ a′ᾰ1

pᾰ1−1 =

N∑
i=1

pmin{ai,ᾰ1}− 1

p− 1
.

Example 3.5. (X Const. with one step ...) If the sequence (bi) in Lemma 3.2 is constant
equal to ᾰ1 ≤ a′1 , we obtain as the conjugate of the sequence (ci) :=

(
min(ai, ᾰ1)

)
∈

(Z+)N the sequence (a′1, a
′
2, . . . , a

′
ᾰ1
). So, if we apply Lemma 3.1 to (ci) with m = 1 and

x = p, we get

a′1p
0 + · · ·+ a′ᾰ1

pᾰ1−1 =

N∑
i=1

pmin{ai,ᾰ1}− 1

p− 1
.



16 PETE L. CLARK AND UWE SCHAUZ

4. Minimization of νp(α, •)

In this section, we determine the minimum value Vp(α,D) of the function νp(α, •) over
the restricted domain

D(N,D) :=
{
n ∈ NN

∣∣ |n| ≤ D
}
,

where the numbers D ∈ N , and N,α1, . . . , αN ∈ Z+ with α1 ≥ · · · ≥ αN are fixed
given. In this regard, the original definition of νp(α, •) does not matter. We may view
the formula in Lemma 2.3 as the definition. More precisely, for n ∈ NN,

νp(α, n) :=

N∑
i=1

νp(αi, ni) with νp(αi, ni) :=

{
αi − ordp(ni + 1) if ni ≤ pαi− 1,

∞ otherwise.

As mentioned earlier, the case D = ∞ is trivial and can be excluded. We have Vp(α,∞) =
0 , and more generally

D ≥ (pα1− 1) + · · ·+ (pαN − 1) =⇒ Vp(α,D) = 0 ,

because νp
(
α, (pα1− 1, . . . , pαN − 1)

)
= 0 .

4.1. The Minimum Value Vp(α,D) of νp(α, •) over D(N,D). Next, we determine
the minimum value Vp(α,D) for D ∈ N. With α′

α1+1 := 0 , and with sums of the form∑α′
α1+1

j=1 regarded as empty with value zero, we first deduce a formula for Vp(α,D) in

terms of the parameters Dj of Theorem 1.7. Again, N,α1, . . . , αN ∈ Z+ are such that
α1 ≥ · · · ≥ αN .

Theorem 4.1. For each fixed D ∈ N , the function

νp(α, •)
∣∣
D(N,D)

: D(N,D) −→ N ∪ {∞} , n 7−→ νp(α, n)

has minimum value

Vp(α,D) = α−max
{
0 ≤ j ≤ α | D1 + · · ·+Dj ≤ D

p−1

}
.

Proof. We may restrict the domain of νp(α, •) from D(N,D) to D(N,D) ∩ [pα) with

[pα) :=
∏N

i=1[p
αi), because νp(α, •) is finite inside but positive infinite outside of [pα).

Inside [pα), however,

νp(α, n) = α−
N∑
i=1

ordp(ni + 1) .

So, we need to find a maximum point of the function

D(N,D) ∩ [pα) −→ N , n 7−→
N∑
i=1

ordp(ni + 1) .

Now, if m = (mi)
N
i=1 ∈ D(N,D) ∩ [pα) is a maximum point, then the point m̃ = (m̃i)

N
i=1

with m̃i+1 := pordp(mi+1) is also a maximum point, because ordp(m̃i+1) = ordp(mi+1)
and 0 ≤ m̃i ≤ mi for all 1 ≤ i ≤ N . Hence, we may restrict our attention to points m
such that each mi + 1 is a power of p, say mi = pµi − 1, and then ordp(mi + 1) = µi .
Hence, with the substitutions mi := pµi − 1 in mind, we just have to find the maximum
of the function

σ :
{
µ ∈ [α]

∣∣ ω(µ) ≤ D
p−1

}
−→ N , µ 7−→ σ(µ) :=

N∑
i=1

µi ,
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where

ω(µ) :=

N∑
i=1

pµi − 1

p− 1
=

N∑
i=1

µi−1∑
j=0

pj =

N∑
i=1

µi∑
j=1

pj−1.

Now, if we draw Ferrers diagram for a potential argument µ of σ, as sub-diagram of
Ferrers diagram of α , then σ(µ) is the number of dots in that sub-diagram, while ω(µ)

gives a weighted count of those dots: a dot in the jth column is counted with weight
pj−1, as shown in Figure 2. Hence, to find the maximum of σ, we need to maximize the
number of dots in the sub-diagram corresponding to µ , while keeping their weight ω(µ)

below D
p−1 .

Our constructive idea is to start from zero and increase the number of dots inside the
diagram of µ one by one, following a certain order, till the threshold D

p−1 for ω(µ) is

reached or would next be exceeded. The number of dots that can be selected within that
limit only depends on the order in which we pick the dots. It is possible to reach the
maximum value of σ with the right order. Obviously, the outcome of our construction is
optimal (in this sense) if, in each step, the newly added dot has lowest possible weight
among all remaining unselected dots (since this keeps ω(µ) as small as possible). This is
an optimality criteria that may apply to some orders of selection. In the order that we
describe next, it is obviously met.

In our situation of column-wise increasing weights, we select the dots column by col-
umn, from left to right, starting with the left-most column of lowest weight. Insight a
column the order of selection does not matter, as long as the column is completely fin-
ished before we move to the next column. We may just go top-down inside columns, as
in Figure 2. Following that order, we collect in step t a dot of weight Dt , because that is
how we defined Dt . Hence, after t steps we obtain a µ = µ(t) with

ω(µ) = D1 + · · ·+Dt and σ(µ) = t .

Our selection process has to stop when the limit D
p−1 for ω(µ) is reached, i.e. when

t = max
{
0 ≤ t ≤ α | D1 + · · ·+Dt ≤ D

p−1

}
.

At that point, µ is a maximum point of σ, and the associated m := (pµi − 1)Ni=1 is a
minimum point of νp(α, •) in D(N,D). The minimum value is

Vp(α,D) = νp(α,m) = α− σ(µ) = α−max
{
0 ≤ t ≤ α | D1 + · · ·+Dt ≤ D

p−1

}
.

□

Remark 4.2.

a) In the last proof we also constructed a minimum point m = m(D) of the function
D(N,D) → N ∪ {∞} , n 7→ νp(α, n) , for each given α1, . . . , αN and D ∈ N . The
minimum value is assumed at the point

m(D) :=
(
pαi(D)− 1

)N
i=1

,

where

αi(D) :=


Q(D) + 1 if 1 ≤ i ≤ R(D)

Q(D) if R(D) < i ≤ α′
Q(D)+1

αi if α′
Q(D)+1< i ≤ N



18 PETE L. CLARK AND UWE SCHAUZ

p0p0p0 p1p1p1 p2p2p2 p3 p4 p5

p0p0p0 p1p1p1 p2p2p2 p3 p4

p0p0p0 p1p1p1 p2

p0p0p0

Figure 2. The minimum weight of a set of 9 dots inside α = (6, 5, 3, 1)
is D1 +D2 + · · ·+D9 = 4 + 3p+ 2p2.

with

Q(D) := max
{
0 ≤ Q ≤ α1

∣∣ ∑Q
j=1 α

′
jp

j−1 ≤ D
p−1

}
= max

{
0 ≤ Q ≤ α1

∣∣ D1 + · · ·+Dα′
1+···+α′

Q
≤ D

p−1

}
and

R(D) := max
{
0 ≤ R ≤ α′

Q(D)+1

∣∣ ∑Q(D)
j=1 α′

jp
j−1 +RpQ(D) ≤ D

p−1

}
= max

{
0 ≤ R ≤ α′

Q(D)+1

∣∣ D1 + · · ·+Dα′
1+···+α′

Q(D)
+R ≤ D

p−1

}
.

Note that if Q(D) = α1 then α′
Q(D)+1 = 0 by definition, and R(D) = 0 = α′

Q(D)+1

in this case. In all other cases R(D) < α′
Q(D)+1 by the maximality of Q(D).

b) Using the notations above, it is not hard to see that our formula for Vp(α,D) can
be expressed in the following forms:

Vp(α,D) =

N∑
i=1

(
αi − αi(D)

)
=

α′
Q(D)+1∑
i=1

αi − α′
Q(D)+1Q(D)−R(D)

=

α′
Q(D)∑
i=1

αi − α′
Q(D)Q(D)−R(D)

=

α1∑
j=Q(D)+1

α′
j −R(D)

4.2. X (remove partially) The Minimum Value Vp(α,D) of νp(α, •) over D(N,D).
Now we are ready to determine the minimum value

Vp(α,D) = νp(α,m(D)) ,

for D ∈ N. With α′
α1+1 := 0 , and with sums of the form

∑α′
α1+1

j=1 regarded as empty

with value zero, we can deduce four expressions for Vp(α,D) in terms of the parameters
of Theorem 4.1. In addition, the next theorem contains one formula for Vp(α,D) in
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terms of the parameters Dj of Theorem 1.7. Again, N,α1, . . . , αN ∈ Z+ are such that
α1 ≥ · · · ≥ αN .

Theorem 4.3.

Vp(α,D) =

N∑
i=1

(
αi − αi(D)

)
=

α′
Q(D)+1∑
i=1

αi − α′
Q(D)+1Q(D)−R(D)

=

α′
Q(D)∑
i=1

αi − α′
Q(D)Q(D)−R(D)

=

α1∑
j=Q(D)+1

α′
j −R(D)

= α−max
{
0 ≤ j ≤ α | D1 + · · ·+Dj ≤ D

p−1

}
Proof. The first expression for Vp(α,D) can be calculated based on Theorem 4.1 with the
help of Lemma 2.3:

Vp(α,D) = νp
(
α,m(D)

)
=

N∑
i=1

(
αi − ordp(p

αi(D)− 1 + 1)
)
=

N∑
i=1

(
αi − αi(D)

)
.

To obtain the second expression, observe that, by the definition of the αi(D),

N∑
i=1

(
αi − αi(D)

)
=

R(D)∑
i=1

(
αi −Q(D)− 1

)
+

α′
Q(D)+1∑

i=R(D)+1

(
αi −Q(D)

)

=

α′
Q(D)+1∑
i=1

(
αi −Q(D)

)
−R(D)

=

α′
Q(D)+1∑
i=1

αi − α′
Q(D)+1Q(D)−R(D).

The third expression for Vp(α,D) can directly be derived from the second expression,
as αi = Q(D) for all α′

Q(D)+1 < i ≤ α′
Q(D).

We deduce the fourth expression from the expression with the summands (αi −Q(D))
five lines above, as by Lemma 3.1 with m := Q(D)+ 1 and x := 1 we have that (and this
is vacuously true if Q(D) = α1)

α′
Q(D)+1∑
i=1

(
αi −Q(D)

)
=

α1∑
j=Q(D)+1

α′
j .

The last expression, involving the sequence (Dj) with α1 + · · ·+ αN = α′
1 + · · ·+ α′

α1

entries, we get from our first expression
∑N

i=1

(
αi−αi(D)

)
=
∑N

i=1 αi −
∑N

i=1 αi(D) in two
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steps. First, as the sequence
(
α1(D), . . . , αN (D)

)
has the conjugate

(
α′
1, . . . , α

′
Q(D), R(D)

)
,

Lemma 3.1 with m := 1 and x := 1 tells us that
N∑
i=1

αi(D) = α′
1 + · · ·+ α′

Q(D) +R(D) .

Second,

α′
1 + · · ·+ α′

Q(D) +R(D) = max
{
0 ≤ j ≤

∑N
i=1αi | D1 + · · ·+Dj ≤ D

p−1

}
,

i.e. α′
1 + · · ·+ α′

Q(D) +R(D) is the maximum of all 0 ≤ j ≤
∑N

i=1αi =
∑α1

j=1 α
′
j with

D1 + · · ·+Dj ≤ D

p− 1
,

because Q(D) is the maximum of all 0 ≤ Q ≤ α1 with

D1 + · · ·+Dα′
1+···+α′

Q
≤ D

p− 1
,

and R(D) is the maximum of all 0 ≤ R ≤ α′
Q(D)+1 with

D1 + · · ·+Dα′
1+···+α′

Q(D)
+R ≤ D

p− 1
.

□

Using the last formula in Theorem 4.3, we can now show that D <
∑N

i=1
pαi−1
p−1 is not just

necessary for Vp(α,D) > 0, as we already have seen at the start of this section, but it is
also sufficient:

Corollary 4.4. Maintain the setup of Theorem 4.3, we have

Vp(α,D) > 0 ⇐⇒ D <

N∑
i=1

(
pαi− 1

)
.

Proof. It follows from Lemma 3.1 with m := 1 and x := p that

D1 + · · ·+Dα = α′
1p

0 + · · ·+ α′
NpN−1 =

N∑
i=1

pαi− 1

p− 1
.

So, by the last formula of Theorem 4.3,

Vp(α,D) > 0 ⇔ max
{
0 ≤ j ≤ α | D1 + · · ·+Dj ≤ D

p−1

}
< α ⇔ D <

N∑
i=1

(
pαi− 1

)
.

□

Of particular interest are the following cases:

Corollary 4.5. If α1 = · · · = αN and if we set

Q :=
⌊
logp(D/N + 1)

⌋
and R :=

⌊
D −N(pQ − 1)

(p− 1)pQ

⌋
,

then
Vp(α,D) = N(α1 −Q)−R .

If α1 = · · · = αN = 1 then

Vp(α,D) = N −
⌊ D

p− 1

⌋
.
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Proof. Suppose α1 = · · · = αN , i.e. α′
1 = · · · = α′

α1
= N .

Case 1, D < N(pα1− 1) : In this case, it follows with the same reasoning as at the end
of the proof of the theorem that Q(D) < α1 and R(D) < α′

Q(D)+1. Hence,

Q(D) =
⌊
logp(D/N + 1)

⌋
=: Q and R(D) =

⌊
D −N(pQ − 1)

(p− 1)pQ

⌋
=: R .

So,

Vp(α,D) =

α1∑
j=Q+1

α′
j −R =

α1∑
j=Q+1

N −R = N(α1 −Q)−R = N(α1 −Q)−R ,

where the last equality follows from N(α1 −Q)−R = Vp(α,D) ≥ 0 .
In the subcase α1 = · · · = αN = 1, this further simplifies to

Vp(α,D) = N(1− 0)−
⌊D −N(p0 − 1)

(p− 1)p0

⌋
= N −

⌊ D

p− 1

⌋
.

Case 2, D ≥ N(pα1− 1) : In this case, Q ≥ Q(D) = α1 and thus N(α1 −Q)−R = 0 .
By Corollary 4.4, this is the correct value for Vp(α,D) if D ≥ N(pα1− 1).

The formula for the subcase α1 = · · · = αN = 1 also gives the correct value 0 . □

5. Minimization of N

In this section we determine the minimum minn∈[n̂(β)] N (n) of the function

N : [n̂(β)] −→ N , n 7−→ N (n) :=

r∑
j=1

⌈
nj − (pβj− 1)

pβj−1(p− 1)

⌉
+Vp

(
α,
∑r

j=1djnj

)
,

where (by the last formula in Theorem 4.3)

Vp(α,
∑r

j=1djnj) = α−max

{
0 ≤ j ≤ α

∣∣∣ D1 + · · ·+Dj ≤
∑r

j=1djnj

p−1

}
,

and where the numbers β, r, β1, . . . , βr, d1, . . . , dr, N, α1, . . . , αN ∈ Z+ with

d1p
β1 ≥ d2p

β2 ≥ · · · ≥ drp
βr and α1 ≥ α2 ≥ · · · ≥ αN

are fixed given (and β is large enough). Also recall that α :=
∑N

i=1 αi ,

[n̂(β)] :=

r∏
ℓ=1

{0, 1, . . . , n̂ℓ(β)} with n̂ℓ(β) := (pβℓ− 1) + (β − 1)pβℓ−1(p− 1) ,

and (
D1, D2, . . . , Dα

)
:=
(
1, 1, . . . , 1︸ ︷︷ ︸
α′

1 times

, p, p, . . . , p︸ ︷︷ ︸
α′

2 times

, . . . , pα1−1, pα1−1, . . . , pα1−1︸ ︷︷ ︸
α′

α1
times

)
.
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5.1. A Preparatory Lemma. It turns out that the minimization of N (n) leads to
another optimization problem that can be stated and solved in more general terms as
follows:

Lemma 5.1. Assume D ∈ N, and let α,Λ1,Λ2, . . . ,Λα, V1, V2, . . . ∈ Z+. Suppose that
(Λj)

α
j=1 is monotone increasing, that (Vj)

∞
j=1 is monotone decreasing, and that Λ1 ≤ V1.

Also presume that Vj = V1 for all 1 ≤ j ≤ s0 , where

s0 :=
⌈
(Λ1 + · · ·+ Λi0 −D)/V1

⌉
, with i0 := max{1 ≤ i ≤ α | Λi ≤ V1} .

Then the function S : N −→ Z given by

S(s) := s− i
(
V1 + V2 + · · ·+ Vs +D

)
,

with

i(x) := max
{
0 ≤ i ≤ α | Λ1 + · · ·+ Λi ≤ x

}
,

has a minimum at the point s0 , and

S(s0) =

{
s0 − i0 if s0 > 0,

−i(D) if s0 = 0.

Proof. By definition, s0 is the smallest element of N with s0 ≥ (Λ1 + · · ·+ Λi0 −D)/V1 ,
i.e. with

(3) Λ1 + · · ·+ Λi0 ≤ s0V1 +D .

We calculate S(s0), S(s0−s) and S(s0+s), for all permissible s ∈ Z+, to show that S(s0)
is a minimum of S. For this purpose it is convenient to extend the sequence (Λj)

α
j=1 to

an infinite sequence by setting Λα+1,Λα+2, . . . := ∞. With that extension

i0 = max{i ∈ Z+ | Λi ≤ V1} and i(x) = max
{
i ∈ N | Λ1 + · · ·+ Λi ≤ x

}
.

Case 1, s0 > 0 : In this case, by (3),

Λ1 + · · ·+ Λi0 ≤ V1 + · · ·+ Vs0 +D(4)

but, by the minimality of s0 in (3), also

Λ1 + · · ·+ Λi0 > V1 + · · ·+ Vs0−1 +D .(5)

In the last inequality, if s0 ≥ 2, each summand Vj on the right is at least as large as each
of the summands Λi on the left, because Λ1 ≤ · · · ≤ Λi0 ≤ V1 = · · · = Vs0−1. Therefore,
we can remove an equal number of those summands on both sides without destroying the
inequality. Also, the bigger left sum must contain more of the smaller Λ-summands than
the smaller right sum contains of the bigger V -summands, because D ≥ 0 . In particular,
for each 0 < s ≤ s0 ,

(6) Λ1 + · · ·+ Λi0−s+1 > V1 + · · ·+ Vs0−s +D .

But, also · · · ≥ Λi0+2 ≥ Λi0+1 > V1 = Vs0 ≥ Vs0+1 ≥ · · · . So, we can also add an equal
number of subsequent summands on both sides of (5). For each s ∈ N,

(7) Λ1 + · · ·+ Λi0+s+1 > V1 + · · ·+ Vs0+s +D .
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Based on these inequalities, we can now calculate S(s0), S(s0−s) and S(s0+s). It follows
from (4) and (7) with s = 0 that

S(s0) = s0 − i0 .

It follows from (6) that, for each 0 < s ≤ s0 ,

S(s0 − s) ≥ s0 − s− (i0 − s) = s0 − i0 = S(s0) .

And, it follows from (7) that, for each s ∈ N,
S(s0 + s) ≥ s0 + s− (i0 + s) = S(s0) .

We see that S attains a minimum at s0 and S(s0) = s0 − i0 .

Case 2, s0 = 0 : In this case, by (3),

Λ1 + · · ·+ Λi(D)D ≤ D(8)

and

Λ1 + · · ·+ Λi(D)+1 > D .(9)

So,
S(0) = 0− i

(
0 +D

)
= −i(D) .

We also have · · · ≥ Λi(D)+2 ≥ Λi(D)+1 ≥ Λi0+1 > V1 ≥ V2 ≥ · · · since i(D) ≥ i0, as in
this case Λ1 + · · · + Λi0 ≤ D. Hence, we can add summands to (9), in the same way as
we did it to get (7) from (5). For each s ∈ N,

Λ1 + · · ·+ Λi(D)+s+1 > V1 + · · ·+ Vs +D ,

and thus
S(s) ≥ s− (i(D) + s) = S(0) .

We see that S attains a minimum at 0 and S(0) = −i(D). □

5.2. The Minimum Value of N over [n̂(β)]. Now we are ready to determine the
minimum value minn∈[n̂(β)] N (n) .

Lemma 5.2. With the parameters and settings above, and the derived values ᾰ1, . . . , ᾰN , ᾰ, Ă,B
as in Theorem 1.7. Also let β ∈ Z+ be such that

β > s0 :=

⌈
Ă − B
d1pβ1−1

⌉
.

If Ă > B, then
min

n∈[n̂(β)]
N (n) = s0 + α− α′

1 + · · ·+ α′
ᾰ1

= s0 + α− ᾰ .

If Ă ≤ B, then
min

n∈[n̂(β)]
N (n) = Vp

(
α , (p− 1)B

)
= α − max

{
1 ≤ j ≤ α | D1 + · · ·+Dj ≤ B

}
.

min
n∈[n̂(β)]

N (n) =

{
s0 + α− α′

1 + · · ·+ α′
ᾰ1

= s0 + α− ᾰ if s0 > 0,

Vp

(
α , (p− 1)B

)
= α−max

{
1 ≤ j ≤ α | D1 + · · ·+Dj ≤ B

}
if s0 = 0.
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Proof. We shrink the domain [n̂(β)] of the variable n till we reach a single point where
the minimum is attained and can be calculated. We proceed in four steps.

Step 1: If n1 ≤ pβ1−1 then
⌈n1 − (pβ1− 1)

(p− 1)pβ1−1

⌉
= 0 . So, as Vp(α, •) is monotone decreasing,

n1 ≤ pβ1− 1 =⇒ N (n1, n2, . . . , nr) ≥ N (pβ1− 1, n2, . . . , nr).

This shows that, in order to find a minimum, we may replace values of n1 below pβ1− 1
with pβ1− 1 ∈ [n̂1(β)]. More generally, for each 1 ≤ j ≤ r, we may assume nj ≥ pβj − 1
and write nj as uj + pβj− 1 with uj ≥ 0, which leads to the simplifications⌈

nj − (pβj− 1)

(p− 1)pβj−1

⌉
=

⌈
uj

(p− 1)pβj−1

⌉
=

⌈
uj

(p− 1)pβj−1

⌉
and

Vp

(
α ,
∑r

j=1djnj

)
= Vp

(
α ,
∑r

j=1djuj + (p− 1)B
)
.

So, with

U(u) :=

r∑
j=1

⌈
uj

(p− 1)pβj−1

⌉
+ Vp

(
α ,
∑r

j=1djuj + (p− 1)B
)

and updated ranges

ûj(β) := n̂j(β)− (pβj− 1) = (β − 1)pβj−1(p− 1) for j = 1, . . . , r,

we have N (n) = U(u) and

min
n∈[n̂(β)]

N (n) = min
u∈[û(β)]

U(u) .

Step 2: To find a minimum of U over [û(β)] =
∏r

j=1[ûj(β)], we can replace the domain

[ûj(β)] of each uj with the smaller domain

[ûj(β)] ∩ pβj−1(p− 1)Z = {0, pβj−1(p− 1), . . . , (β − 1)pβj−1(p− 1)}

= pβj−1(p− 1)[β − 1].

If the jth argument uj ∈ [ûj ] of U(u1, . . . , ur) is replaced with the next larger multiple
of pβj−1(p− 1), which still lies inside [ûj(β)] = [(β − 1)pβj−1(p− 1)] and can be written

as pβj−1(p− 1)
⌈

uj

pβj−1(p−1)

⌉
, then the summand

⌈
uj

pβj−1(p−1)

⌉
of U(u) stays the same and

U(u) certainly does not increase, i.e.

U
(
pβ1−1(p− 1)

⌈ u1

pβ1−1(p− 1)

⌉
, . . . , pβr−1(p− 1)

⌈ ur

pβr−1(p− 1)

⌉)
≤ U(u1, . . . , ur).

The minimum is already attained over the smaller domain
∏r

j=1

(
pβj−1(p − 1)[β − 1]

)
.

Hence, with

T (t1, . . . , tr) := U
(
pβ1−1(p− 1)t1, . . . , p

βr−1(p− 1)tr
)

= t1 + · · ·+ tr + Vp

(
α ,
∑r

j=1djp
βj−1(p− 1)tj + (p− 1)B

)
we have

min
n∈[n̂]

N (n) = min
u∈[û]

U(u) = min
t∈[β−1]r

T (t).
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Step 3: In our search for a minimum of T (t1, . . . , tr), we can now modify any two
arguments ti and tj with i < j by replacing tj with tj − 1 and ti with ti + 1. If we view
the expression djp

βj−1(p − 1)tj as sum of tj equal summands djp
βj−1(p − 1), this step

changes one of the tj summands djp
βj−1(p− 1) inside the argument of Vp(α, •) into one

additional summand dip
βi−1(p− 1), of which we then have ti + 1. Since

d1p
β1−1 ≥ d2p

β2−1 ≥ · · · ≥ drp
βr−1

and Vp(α, •) is monotone decreasing, we have

T (. . . , ti + 1, . . . , tj − 1, . . . ) ≤ T (. . . , ti, . . . , tj , . . . ).

The only restriction to such modifications is that each argument tj must stay within its
domain [β − 1]. Through repeated applications of this modification, we can empty some
tj and fill others. This shows that the minimum is attained at a point (t1, . . . , tr) of the
form (β − 1, β − 1, . . . , β − 1, x, 0, 0, . . . , 0). At such points, we have

T (t1, t2, . . . , tr) = s+ Vp

(
α , (p− 1)(V1 + V2 + · · ·+ Vs + B)

)
,

where s = t1 + t2 + · · ·+ tr = β − 1 + β − 1 + · · ·+ β − 1 + x ≤ r(β − 1), and where(
Vj

)r(β−1)

j=1
:=
(
d1p

β1−1, . . . , d1p
β1−1︸ ︷︷ ︸

β−1 times

, . . . , drp
βr−1, . . . , drp

βr−1︸ ︷︷ ︸
β−1 times

)
.

Hence, with the function

S : [r(β − 1)] → N , S(s) := s+ Vp

(
α , (p− 1)(V1 + V2 + · · ·+ Vs + B)

)
,

we have

min
n∈[n̂(β)]

N (n) = min
t∈[β−1]r

T (t) = min
s∈[r(β−1)]

S(s).

Step 4: To find the minimum of S, we use Lemma 5.1 with D := B, α := α1 + · · ·+αN ,
and Λj := Dj for all 1 ≤ j ≤ α. We also use the values Vj as defined above for all
j ≤ r(β − 1), and set Vj := Vr(β−1) for all j > r(β − 1). With that infinite sequence
(Vj)

∞
j=1 the domain of S can be extended to N , with the hope not to alter its minimum

in doing so, as the expression

Vp

(
α , (p−1)(V1+ · · ·+Vs+B)

)
= α−max

{
0 ≤ i ≤ α | Λ1+ · · ·+Λi ≤ V1+ · · ·+Vs+B

}
makes sense for or all s ∈ N. The extended function S : N → N is then almost the same
as the function S : N → Z in Lemma 5.1. For all s ∈ N,

S(s) := S(s) + α .

We also have Λ1 ≤ V1 as required in Lemma 5.1. Moreover, as in our situation the
sequence (Λi) contains repetitions of length α′

1, α
′
2, . . . , the parameter

i0 := max{1 ≤ i ≤ α | Λi ≤ V1}

in Lemma 5.1 can be written as

i0 = α′
1 + · · ·+ α′

ᾰ1
,

where

ᾰ1 := min
{
αi, β1 + ⌊logp

(
d1
)
⌋
}

= max{1 ≤ j ≤ α1 | pj−1 ≤ d1p
β1−1} .
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Applying Lemma 3.1 with m := 1 and x := p to the sequence (ᾰ1, . . . , ᾰN ) and its
conjugate (α′

1, . . . , α
′
ᾰ1
), we further see that

Λ1 + · · ·+ Λᾰ1
= α′

1p
0 + · · ·+ α′

ᾰ1
pᾰ1−1 =

N∑
i=1

pᾰi− 1

p− 1
=: Ă.

In particular, the definition of s0 in Lemma 5.1 coincides with the current one:

s0 :=
⌈
(Λ1 + · · ·+ Λi0 − B)/V1

⌉
=

⌈
Ă − B
d1pβ1−1

⌉
≤ β − 1 .

This shows that Vj = V1 for all 1 ≤ j ≤ s0, as required in that lemma, but it also shows
that the minimum point s0 of S lies inside [r(β − 1)]. Hence, the minimum point s0 of S
is also a minimum point of S|[r(β−1)] and of S|[r(β−1)]. Thus, Lemma 5.1 yields

min
n∈[n̂(β)]

N (n) = min
s∈[r(β−1)]

S(s)

= S(s0) + α

=

{
s0 + α− i0 if s0 > 0,

α− i(B) if s0 = 0,

=

{
s0 + α− α′

1 + · · ·+ α′
ᾰ1

if Ă > B,
α−max

{
1 ≤ i ≤ α | D1 + · · ·+Di ≤ B

}
if Ă ≤ B,

=

{
s0 + α− ᾰ if Ă > B,
Vp(α , (p− 1)B) if Ă ≤ B,

where we used the last formula in Theorem 4.3 and the equation

α− α′
1 + · · ·+ α′

ᾰ1
=

N∑
i=1

(
αi − ᾰi

)
=

N∑
i=1

αi − ᾰ1

which follows from Lemma 3.1 with m := 1 and x := 1 applied to the conjugate
(α′

1, . . . , α
′
ᾰ1
) of the sequence (ᾰ1, . . . , ᾰN ). □

6. Appendix

When A is finite we define the summation invariant

σ
(
A,B

)
:= sup

{
d ∈ N ∪ {−∞}

∣∣ ∫ f = 0 for all f ∈ Fd(A,B)
}
.

We will not need the following three lemmata, but they shows some connections to Pete’s
“GeneralizedAx”.

Lemma 6.1. Let α, β ∈ Z+, then

ηp(α, β) := min{n ∈ N | νp(α, n) < β} =

{
pα−β+1− 1 if β ≤ α,

0 otherwise.

Proof. It suffices to consider the case β ≤ α, as otherwise νp(α, 0) = α < β. Assume
n ∈ N is such that νp(α, n) < β. By our new formula for νp(α, n), this can only be if
n ≤ pα − 1 and νp(n+1) > α−β. But, νp(n+1) > α−β can only be if n+1 ≥ pα−β+1,
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i.e. if n ≥ pα−β+1− 1. Therefore, ηp(α, β) ≥ pα−β+1− 1. Now, if n := pα−β+1− 1 then
νp(α, n) = β − 1 < β. So, we also have ηp(α, β) ≤ pα−β+1− 1. □

Lemma 6.2. Let α ∈ Z+ and n ∈ N. If n ≤ pα − 1 then

νp(α, n) ≥ max{β ∈ Z | n < pα−β+1− 1} = α− ⌊logp(n+ 1)⌋.

Proof. By definition, we have νp(α, n) ≥ β for at least all β ∈ Z with n < η(β). So,

νp(α, n) = max{β | νp(α, n) ≥ β}
≥ max{β | n < η(β)}

= max{β | n < pα−β+1− 1}
= max{β | β ≤ α− ⌊logp(n+ 1)⌋}
= α− ⌊logp(n+ 1)⌋.

□

Lemma 6.3. Let α, β ∈ Z+. Then

σ
(
Z/αZ,Z/βZ

)
=

{
pα−β+1 − 2 if β ≤ α,

−∞ otherwise.

Proof. If β > α, then every constant nonzero function has nonvanishing integral, and
σ
(
Z/αZ,Z/βZ

)
= −∞ follows. So, we may assume β ≤ α. Then, as n < ηp(α, β) implies

νp(α, n) ≥ β, Theorem 2.1b) and Lemma 2.3 tell us that

σ
(
Z/αZ,Z/βZ

)
≥ ηp(α, β)− 1 = pα−β+1 − 2 .

That also
σ
(
Z/αZ,Z/βZ

)
< pα−β+1− 1

follows from νp(α, p
α−β+1−1) = β−1 < β. So, σ

(
Z/αZ,Z/βZ

)
= pα−β+1−2, indeed. □
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