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Abstract. We study ADC quadratic forms and Euclidean quadratic forms
over the integers, obtaining complete classification results in the positive case.
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1. Introduction

In [ADCI], the first author introduced Euclidean quadratic form and ADC
form and proved some results about them. This paper continues their study by
looking more closely at the case of (mostly positive) integral quadratic forms.

1.1. Background and Prior Work.

For a monoid M , we let M• denote M with the identity element removed. Let R be
a domain with fraction field K. A norm function on R is a function |· | : R• → Z+

such that |x| = 1 ⇐⇒ x ∈ R× and |xy| = |x||y| for all x, y ∈ R•. We set |0| = 0.
A domain R endowed with a norm function is called a normed ring. We will
assume that the characteristic of R is not 2.

We shall consider quadratic forms q = q(x1, . . . , xn) over R and always assume
them to be nondegenerate: disc q ̸= 0. If (R, | · |) is a normed ring, such a form q is
Euclidean if for all x ∈ Kn \Rn, there exists y ∈ Rn such that 0 < |q(x− y)| < 1.
For the most part we will consider anisotropic forms – i.e., forms such that
q(x) = 0 =⇒ x = 0 – and for such forms the Euclidean condition simplifies
to: for all x ∈ Kn, there exists y ∈ Rn such that |q(x− y)| < 1.

Let q be an anisotropic quadratic form over the normed domain (R, | · |). For
each x ∈ Kn, we define the local Euclideanity

E(q, x) = inf
y∈Rn

|q(x− y)|,

which depends only on the class of x in Kn/Rn. We also define the Euclideanity

E(q) = sup
x∈Kn/Rn

E(q, x).

Let

C(q) = {x ∈ Kn/Rn | E(q, x) = E(q)}.
Elements of C(q) are called critical points. We say that the Euclideanity is
attained if C(q) ̸= ∅. Thus, E(q) is Euclidean if and only if either E(q) < 1 or
E(q) = 1 and the Euclideanity is not attained. The attainment of the Euclideanity
is in general a difficult problem. For positive forms over Z, that the Euclideanity
is attained follows from the elementary geometry of Voronoi cells, as we will recall
in § 4. Already for indefinite binary integral quadratic forms it is conjectured but
not yet proven that the Euclideanity is always attained.

Example 1.1. For any a ∈ R•, E(aq) = |a|E(q). This reduces us to the calculation
of Euclideanities of primitive forms in the sense of § 2.1.

Example 1.2. Let R = Z endowed with the standard (Euclidean) nom | · |. Then
for any quadratic forms q1, q2 over Z we have

(1) E(q1 ⊕ q2) ≤ E(q1) + E(q2).

In fact (1) holds over any normed domain (R, | · |) satisfying the triangle inequality:
|x+ y| ≤ |x|+ |y| for all x, y ∈ R. When R = Z and q1 and q2 are positive forms –
recall that a form q over a subring of R is positive if q(x) > 0 for all x ∈ Rn \ {0}
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– we have equality in (1). This, together with Example 1.1 and the fact that over
Z, E(x2) = 1

4 , implies that for a1, . . . , an ∈ Z+,

E(a1x
2
1 + . . .+ anx

2
n) =

a1 + . . .+ an
4

.

A quadratic form over a (not necessarily normed) domain R is an ADC form if
for all d ∈ R, if there exists x ∈ Kn such that q(x) = d, then there exists y ∈ Rn

such that q(y) = d.

These notions of Euclidean form and ADC form are the subject of [ADCI]. The
jumping-off point for that work was the following result relating the two classes, a
rather direct generalization of classical work of Aubry, Davenport and Cassels.

Theorem 1.3. ([ADCI, Thm. 8]) A Euclidean form is an ADC form.

Much of [ADCI] concerns Euclidean and ADC forms over CDVRs and Hasse do-
mains. We recall the two main results of [ADCI] and two conjectures from [ADCI]
that we will address in the present work.

A Hasse domain R is either an S-integer ring in a number field or the coor-
dinate ring of a regular, geometrically integral affine algebraic curve over a finite
field. Such an R has a natural multiplicative norm: x ∈ R• 7→ #R/(x). We let ΣR

denote the set of height one primes of R; for each p ∈ ΣR, the completed local ring
Rp is a complete discrete valuation ring (CDVR). Let S be the set of all places on
R. Each Rp carries a canonical norm, again given by x ∈ Rp 7→ #Rp/(x).

Theorem 1.4. ([ADCI, Prop. 11, Thm. 19])
Let (R, | · |) be a normed domain, and let q/R be a quadratic form.
a) If q is Euclidean, then the corresponding quadratic lattice is maximal.
b) If R is a CDVR, q is Euclidean iff the corresponding quadratic lattice is maximal.

Let R be a Hasse domain, and let q/R be a quadratic form. The genus g(q) of R
is the set of all equivalence classes of quadratic forms q′ such that q ∼=Kv q′ for all
v ∈ S and q ∼=Rp

q′ for all p ∈ ΣR. A quadratic form q is regular if for all d ∈ R, if
there exists q′ ∈ g(q) such that q′ represents d, then q represents d. The set g(q) is
always finite [O’M, Thm. 103:4]: its cardinality is the class number of q. Thus a
class number one form is necessarily regular. The converse is true in certain cases
but not in general, as we will see below.

For any a ∈ R•, g(aq) = ag(q). Thus q is regular iff aq is regular.

Theorem 1.5. ([ADCI, Thm. 25]) For a quadratic form q over a Hasse domain
R, the following are equivalent:
(i) q is an ADC form.
(ii) q is regular and locally ADC: for all p ∈ ΣR, q/Rp

is ADC.

Conjecture 1. ([ADCI, Conj. 27]) For any Hasse domain R, there are only finitely
many isomorphism classes of anisotropic Euclidean quadratic forms over R.

Conjecture 2. ([ADCI, Conj. 28]) Every Euclidean quadratic form over a Hasse
domain has class number one.
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1.2. ADC Forms over Z.

In the first part of the paper we study ADC forms over Z. By Theorem 1.5,
this necessitates (i) an understanding of ADC forms over Zp for all prime numbers
p and (ii) a classification of regular forms over Z.

We study ADC forms over Zp in § 2. When p is odd, we give a complete clas-
sification: in fact, we work in the context of a complete discrete valuation ring
with residue field of finite odd order. (This local analysis is also applicable to the
study and classification of ADC forms over Hasse domains of positive characteristic,
though we do not consider this case here.) On the other hand, the study of qua-
dratic forms in the dyadic case – i.e., over the ring of integers of a finite extension
of Q2 – is notoriously messy. Lacking any particular insight into these matters, we
confine ourselves to classifying ADC forms over Z2 in at most three variables. This
is sufficient for our applications to forms over Z.

In § 3 these results are applied to the study of ADC forms over Z. In order to
get finite classification theorems we need finiteness theorems for regular forms. It
is an old and widely believed conjecture that there are infinitely many primes p ≡ 1
(mod 4) such that the ring of integers of Q(

√
p) is a PID. It follows from The-

orem 3.3 that for each such prime, the form q(x, y) = x2 + xy + 1−p
4 y2 is ADC,

so there ought to be infinitely many primitive indefinite binary integral ADC forms.

Because of the existence of sign-universal positive integral quaternary forms, for
each n ≥ 5 there are infinitely many sign-universal positive integral n-ary forms,
i.e., infinitely many ADC forms. On the other hand, for each 1 ≤ n ≤ 4 there are
only finitely many primitive, regular positive integral n-ary quadratic forms, hence
only finitely many primitive, positive integral ADC n-ary forms. The main result
of the first part of the paper is a complete enumeration of such forms, with the
proviso that the completeness of our list of primitive positive binary ADC forms is
conditional on the Generalized Riemann Hypothesis (GRH). In summary:

Number of d-Dimensional Primitive Positive Integral ADC Forms

1 1
2 764
3 103
4 6436

The unique primitive positive ADC unary form is of course x2. Tables of primitive
positive ADC binaries and ternaries are given at the end of this paper. The list of
6436 sign-universal positive quaternary forms is available at [QUQF].

To prove this enumeration result we make use of results of Voight, Jagy-Kaplansky-
Schiemann and Bhargava-Hanke. To complete the classification of positive integral
ADC forms we need to deal with imprimitive forms, i.e., forms obtained by scaling
a primitive form by a positive integer d. It is easy to see (Proposition 2.3) that this
scaling integer d must be squarefree. Even more easily one sees that the unary form
dx2 is ADC when d is squarefree. It turns out that starting in dimension 3 an ADC
form over any Hasse domain must be primitive (Theorem 3.5). The imprimitivity
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issue is most interesting for binary forms: here, for each primitive ADC binary
form q there are infinitely many squarefree d such that dq is ADC and infinitely
many squarefree d such that dq is not ADC. The class of such d is given by explicit
congruence conditions in Theorem 3.4.

1.3. Euclidean Forms over Z.

Next we consider the problem of classifying positive Euclidean integral quadratic
forms. More precisely we reconsider it: it was solved by G. Nebe.

Theorem 1.6. ([Ne03]) There are 70 positive Euclidean integral forms.

Notice that Theorem 1.6 verifies Conjecture 1 for positive forms over Z. A direct
computation then verifies Conjecture 2 for positive forms over Z.

Nebe approaches the problem from the perspective of lattices in Euclidean space,
using some theory of root lattices to find all lattices in Euclidean space with cover-
ing radius smaller than

√
2. Our setup so far has been in the language of quadratic

forms theory (with the concession that we have only considered free quadratic
lattices), but for our present work on Euclidean integral forms we would like to
make use of both frameworks, so we give in § 4 a dictionary between the two. In
particular, “Euclideanity” corresponds to “covering radius” and “Euclidean form”
corresponds to “covering radius less than

√
2”.

Remark 1.7. In the published version of [Ne03], Nebe lists 69 positive Euclidean
integral quadratic forms. The present authors started searching for Euclidean forms
in an ad hoc manner before becoming aware of Nebe’s work. When we learned of
her paper we compared our list of examples to hers: the positive form

q = x2
1 + x1x4 + x2

2 + x2x5 + x2
3 + x3x5 + x2

4 + x4x5 + 2x2
5,

with Euclideanity E(q) = 13
14 , was missing from Nebe’s list. Professor Nebe informed

us that this form was not included due to a simple oversight in her casewise analysis.

Such minor slips of computation and tabulation are unfortunately quite common
in results which enumerate all quadratic forms possessing a certain property. One
could ask what changes in the way such computationally intensive work is per-
formed, presented and vetted would be sufficient to eliminate – or, more realis-
tically, signficantly reduce – tabular inaccuracies of this kind. The contemporary
mathematical community is only slowly coming to address this question, which is of
course quite beyond the scope of the present work. We bring it up to emphasize the
desirability of independent corroboration: i.e., multiple research groups performing
the same or overlapping computations, ideally by distinct approaches and methods.

One of our main results corroborates Nebe’s work: rather than verifiying Con-
jecture 1 by enumerating all Euclidean forms and then using this enumeration to
verify a case of Conjecture 2, we do the reverse: we will give an a priori proof that
a positive integral Euclidean form has class number one (Theorem 6.1). We then
use the known classification of class number one positive integral forms in order to
compute all positive integral Euclidean forms: in this way we recover Nebe’s list.

The classification of class number one positive integral forms is a quite different
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result from Nebe’s: in fact it is a much longer calculation. The finiteness of the
set of all positive, primitive integral forms of class number one was proven by G.L.
Watson. He spent much of the rest of his career attempting to give an enumeration
and published several papers on the topic, but he died before completing his work
[Wa63a], [Wa63b], [Wa63c], [Wa72], [Wa74a], [Wa74b], [Wa75], [Wa78], [Wa82],
[Wa84], [Wa88]. A complete enumeration of all class number one maximal lattices
was recently given by J.P. Hanke [Ha11] (maximality is no restriction for our pur-
poses in view of Theorem 1.4a)) and then done (with no maximality condition) by
M. Kirschmer and D. Lorch [KL13]. The case of binary forms has a different flavor;
in recent work, the first author and his collaborators had the occasion to write
down a list of 2779 SL2(Z)-equivalence classes primitive, positive binary forms of
class number one. This list is complete conditional on GRH : this is the same phe-
nomenon encountered for ADC binaries above. In this case however we can avoid
the dependency on GRH by giving a separate treatment of binary Euclidean forms,
including indefinite ones.

We are optimistic that our method of proof of Conjecture 2 can be extended to
other cases, e.g. to totally positive forms over the ring of integers of a totally real
number field. If so, it should be possible to resolve further cases of Conjecture 1:
it is a result of Pfeuffer [Pf79] that there are only finitely many class number one
totally positive forms as we range over all rings of integers of toally real number
fields. In fact, M. Kirschmer has just given an enumeration of the maximal such
forms [Ki12]. Thus the complete classification of positive Euclidean forms over
rings of integers of totally real number fields may be within reach.

1.4. Acknowledgements.

Although the work of this paper has a clear unifying theme – integral quadratic
forms – it required a diverse array of tools, some of them outside our areas of
expertise. Many mathematicians generously contributed their time and expertise
to helping us out. We are grateful to Daniel Allcock, Richard Borcherds, Wai-Kiu
Chan, Noam D. Elkies, Larry Gerstein, Jonathan P. Hanke, Abhinav Kumar, Franz
Lemmermeyer, Pierre Lezowski, Ted Shifrin, and David Speyer for their assistance.

We also thank Jacob Hicks for his substantial computational aid.

2. ADC Forms Over Compact Discrete Valuation Rings

Let K be a field which is complete with respect to a nontrivial discrete valuation v
and with finite residue field k ∼= Fq = Fpa . Let π be a uniformizing element for v.
We assume, as usual, that charK ̸= 2. We say that K is dyadic if char k = 2 (and
for later applications to integral forms, we certainly must consider this case) and
non-dyadic otherwise. Let R be the valuation ring of K. Thus R is a compact
discrete valuation ring: either the ring of integers of a p-adic number field or a
formal power series ring Fq[[t]]. In this section we will give:

• A full classification of ADC forms over any nondyadic compact DVR.
• A classification of ADC forms in dimensions 2 and 3 over Z2.
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2.1. Primitivity and Semiprimitivity.

Let R be a domain with fraction field K. Let q =
∑

1≤i≤j≤n aijxixj ∈ R[x] be

a quadratic form over R. Let D(q) = {q(a) | a ∈ Rn}, and let n(q) = ⟨D(q)⟩, the
ideal of R generated by D(q). Thus R is ADC iff D(q/K) ∩R = D(q).

Lemma 2.1. Let q =
∑

1≤i≤j≤n aijxixj ∈ R[x] be a quadratic form. Let a ∈ R•.

a) We have D(aq) = aD(q) and n(aq) = (a)n(q).
b) If aq is ADC, then q is ADC.
c) We have n(q) = ⟨aij⟩.
d) If R → S is a ring homomorphism, then n(q/S) = (n(q))S.

Proof. a) This is clear from the definitions.
b) If aq is ADC, then

aD(q) = D(aq) = D(aq/K) ∩R = aD(q/K) ∩R,

so

D(q) = D(q/K) ∩ 1

a
R ⊃ D(q/K) ∩R.

Clearly D(q) ⊂ D(q/K) ∩R, so D(q) = D(q/K) ∩R.
c) (c.f. [Wa, p. 4]) Put J = ⟨aij⟩. It is immediate that n(q) ⊂ J . Conversely, let ei
be the ith standard basis vector of Rn; then for all 1 ≤ i ≤ n, q(ei) = aii, and for
all 1 ≤ i ≤ j ≤ n, q(ei + ej) = aii + ajj + aij . It follows that J ⊂ n(q).
d) This follows immediately from part c). �

Two quadratic forms q, q′ over R are unit equivalent if there is u ∈ R× such that
q′ ∼= uq. As noted in [ADCI], replacing a quadratic form by a unit equivalent form
does not disturb whether it is ADC, or Euclidean, or change its Euclideanity E(q).

Remark 2.2. In view of these properties, when studying ADC and Euclidean forms
it is natural to classify forms up to unit-equivalence rather than up to isomorphism,
and we will take this convention here. For forms over Z this amounts to the fol-
lowing – we do not (as usual!) give separate consideration to negative forms; and
for indefinite forms we identify f with −f whether they are integrally equivalent or
not (a somewhat subtle dichotomy). One must take a little care in the interaction
of this convention with Gauss composition of binary forms: c.f. Corollary 5.6.

We further observe that n(q) = n(q′) if q and q′ are unit equivalent.

We say q is primitive if n(q) = R and semiprimitive if there is no a ∈ R• \ R×

with n(q) ⊂ a2R.

Proposition 2.3. Let R be a domain, and let q/R be a nonzero quadratic form.
a) q is primitive iff it is locally primitive: for all m ∈ MaxSpecR, q/Rm

is primitive.
b) If q is ADC, it is semiprimitive.
c) If R is a Dedekind domain and q is ADC, then n(q) is squarefree.

Proof. a) An ideal I in a ring R is proper iff I ⊂ m for some maximal ideal m of R
iff IRm ⊂ mRm ( Rm for some maximal ideal m of R. The result follows from this
and parts b) and c) of Lemma 2.1.
b) Suppose that q is ADC but not semiprimitive: then n(q) ⊂ a2R for a ∈ R• \R×.
By Lemma 2.1a), there is a quadratic form q′/R with q = a2q′. Since q′(ax) =
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a2q′(x) = q(x) and D((a2q)/K) = D(q/K), since q is ADC, so is q′. Moreover,
q/K ∼= q′/K . Thus if q is ADC, then

a2n(q′) = n(q) = n(q/K) ∩R = n(q′/K) ∩R = n(q′).

This identity implies

(0) ( n(q′) ⊂
∩
n≥1

(a2)n,

contradicting the Krull Intersection Theorem [Ma, Thm. 8.10].
c) Combine part b) with [ADCI, Thm. 16]: ADC implies locally ADC. �

2.2. Primitive Square Classes and ADC Forms.

Let R be a UFD with fraction field K. Let ι : R•/R×2 → K×/K×2 be the
canonical map on square classes. Let ΣR be the set of height one prime ideals of
R, and let ZΣ be the free abelian group on Σ. Uniqueness of factorization gives a
short exact sequence

1 → R× → K× V→ ZΣ → 0.

Since ZΣ is free abelian, the sequence splits:

(2) K× ∼= ZΣ ×R×.

Passing to square classes, we get a split exact sequence

1 → R×/R×2 → K×/K×2 V→
⊕
p∈ΣR

Z/2Z.

Since R×2 ⊂ kerV , (2) also induces an exact sequence of monoids

1 → R×/R×2 → R•/R×2 VR→
⊕
p∈Σ

N → 0.

Let us say that a square class s ∈ R•/R×2 is primitive if every component of
VR(s) lies in {0, 1}. Now we observe:

• For every square class s ∈ R, there is a unique primitive square class s0 and
x ∈ R such that s = x2s0.
• For every square class S ∈ K, there is a unique primitive square class s0 of R
such that ι(s0) = S. In other words, ι restricts to a bijection from the primitive
square classes of R to the square classes of K.

Proposition 2.4. Let R be a UFD, and let q/R be a quadratic form. Then q is
ADC iff for every square class of K which is K-represented by q, the corresponding
primitive square class of R is R-represented by q.

Proof. Suppose q is ADC and that q K-represents a square class S of K. Let s ∈ R
be an element of the corresponding primitive squareclass of R: since sS−1 ∈ K×2,
q K-represents s; since q is ADC and s ∈ R, q R-represents s.

Suppose that q R-represents every primitive square class in R whose correspond-
ing square class in K is K-represented by q, and let s ∈ R• be K-represented by q.
We may write s = x2s0 with s0 representing a primitive square class and u ∈ R×.
By assumption, there is v ∈ Rn such that q(v) = s0, and thus q(xv) = x2s0 = s. �
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2.3. Preliminary Generalities.

Let R be a compact DVR with fraction field K, residue field Fq and uniformiz-
ing element π. We define δ to be 0 if R is nondyadic; if R is dyadic, then K is a
finite-dimensional Q2-vector space, and we define δ = dimQ2 K.

Proposition 2.5. Let R be a compact DVR with fraction field K.
a) We have #K×/K×2 = 2δ+2.
b) Suppose R is nondyadic, and fix any r ∈ R× \ R×2. Then 1, r, π, πr is a set of
coset representatives for K×2 in K×.
c) A set of coset representatives for Q×

2 /Q
×2
2 is 1, 3, 5, 7, 2, 6, 10, 14.

Proof. a) [L, Thm. VI.2.22]. b) [L, Thm. VI.2.2]. c) [L, Cor. VI.2.24]. �

Proposition 2.6. Let R be a compact DVR with fraction field K, and let q/R be
an n-ary quadratic form.
a) If n = 2 and q is anisotropic, then q K-represents exactly 2δ+1 square classes of
K (i.e., precisely half of them).
b) If n = 3 and q is anisotropic, then q K-represents exactly 2δ+2−1 square classes
of K: all except the class of −disc(q).
c) If n ≥ 4, then q is K-universal.

Proof. a) Suppose first that q ∼= ⟨1, a⟩ is a principal form. Since q is anisotropic, −a
is not a square in K, and q is the norm form of the quadratic field extension L =
K(

√
−a). By local class field theory [Mi, Thm. I.1.1], K×/NL× ∼= Gal(L/K) ∼=

Z/2Z, so q represents precisely half of the square classes. In general, q is a scalar
multiple of a principal form and then it follows from the above that q(K×) ⊂
K×/K×2 is a coset of an index 2 subgroup. b) [L, Cor. VI.2.15]. c) Every quadratic
form in at least five variables over K is isotropic [L, Thm. VI.2.12], hence [L, Cor.
1.3.5] every form in at least four variables is universal. �

Corollary 2.7. Let q/R be an n-ary ADC form over a compact DVR. If n ≥ 3,
then q is primitive.

Proof. If n ≥ 4, then q/R is ADC iff it is universal, and universal forms are primitive.
Suppose n = 3. If q is isotropic, then it is K-universal; since it is ADC, it is
universal, hence primitive. Otherwise q is aniostropic so K-represents 2δ+2 − 1
square classes in K. However, if q is not primitive then it does not represent any
of the unit square classes, hence it represents at most 2δ+1 square classes. �

2.4. ADC Forms over non-dyadic compact DVRs.

Let R be a compact DVR with residue field Fq, q odd. Then the canonical map
R×/R×2 → F×

q /F×2
q is an isomorphism, and in particular R×/R×2 has order 2.

For x ∈ R×, define
(

x
q

)
to be 1 if x ∈ R×2 – or equivalently, if the reduction of x

modulo (π) is a square in the finite field Fq – and −1 otherwise.

Lemma 2.8. Every quadratic form q over a nondyadic DVR may be diagonalized.
It follows then that q may be written in the form

(3) q =
⊕
i∈N

πiJi(q)
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with each Ji(q) diagonal and unimodular: disc(Ji(q))) ∈ R×. The forms Ji(q)
are called the Jordan components of q and the decomposition (3) is called the
Jordan splitting. We will write di(q) for dimJi(q).

Proof. [C, §8.3]. �
Theorem 2.9. Let q/R be a nondegenerate quadratic form, of dimension n ≥ 1.
a) If v(disc(q)) ≤ 1, then q is Euclidean, hence ADC.
b) Suppose either
(i) d0(q) ≥ 3, or

(ii) d0(q) = 2 and
(

− disc(J0(q))
q

)
= 1.

Then q is universal, hence ADC.
c) If d0(q) = d1(q) = 0, then q is not ADC.
d) If n ≥ 3 and d0(q) = 0, then q is not ADC.
e) If n ≥ 4 and d0(q) = 1, then q is not ADC.
f) Suppose n ≥ 4 and J0(q) is 2-dimensional anisotropic. Then:
(i) If d1(q) = 0, q is not ADC.
(ii) If d1(q) = 1, then q is ADC iff it is universal iff J0(q)⊕ J1(q) is isotropic.
(iii) If d1(q) ≥ 2, then q is universal, hence ADC.

Proof. a) If v(disc(q)) ≤ 1, then the underlying quadratic lattice of q is maximal.
By [ADCI, Thm. 19] q is Euclidean, and thus by [ADCI, Thm. 8] q is ADC.
b) Under either hypothesis, J0(q) is isotropic, hence K-universal. By part a), J0(q)
is ADC and thus universal. Since J0(q) is a subform of q, q is universal.
c) Since d0(q) = d1(q) = 0, q = π2q′ for some form q′. The form q K-represents
some element with valuation 0 or 1, but does not R-represent any such element.
d) This is a special case of Corollary 2.7.
e) Since n ≥ 4, q = ux2

1 + πq′(x2, . . . , xn) is K-universal, but R-represents exactly
one of the two unit square classes in K.
f) Since dim q ≥ 4, q is K-universal, thus it is ADC iff it is R-universal.
(i) Since q = u1x

2
1 + u2x

2
2 + π2q′(x3, . . . , xn) and u1x

2
1 + u2x

2
2 is anisotropic, q does

not R-represent π.
(ii) Since d1(q) = 1, v(disc(J0(q)⊕J1(q))) = 1, so by part a) J0(q)⊕J1(q) is ADC.
Thus if it is isotropic it is universal, and hence so is q. Conversely, if J0(q)⊕ J1(q)
is anisotropic, then it fails to K-represent some element x ∈ R of valuation 0 or 1,
hence J0(q)⊕ J1(q)⊕ π2q′ does not R-represent x.
(iii) Since q has q′ = u1x

2
1+u2x

2
2+πu3x

2
3+πu4x

2
4 as a subform, it suffices to show q′

is universal. But indeed u1x
2
1+u2x

2
2 R-represents 1 and r, and thus π(u3x

2
3+u4x

2
4)

R-represents π and πr. It follows that q is universal. �
Theorem 2.10. Let q(x, y) = ax2 + by2 be a nondegenerate binary form over R.
We may assume v(a) ≤ v(b).
a) If v(ab) ≤ 1, then q is ADC.
b) If v(b) ≥ 2, then q is not ADC.
c) If v(a) = v(b) = 1, then:
(i) πx2 + πy2 ∼= πrx2 + πry2 is ADC iff q ≡ 3 (mod 4).
(ii) πx2 + πry2 is ADC iff q ≡ 1 (mod 4).

Proof. a) A quadratic form q over a non-dyadic CDVR with v(disc(q)) ∈ {0, 1} is
maximal, hence ADC. This gives part a).
b) If v(b) ≥ 2, then q represents at most one primitive square class so is not ADC.
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c) If v(a) = v(b) = 1, then q = πq′, with q′ = u1x
2 + u2y

2, u1, u2 ∈ R×. If q′ is
isotropic, then q is K-universal, but it does not R-represent any unit square class
so is not ADC. If q′ is anisotropic then among primitive square classes it represents
preciesly the unit square classes 1 and r, so q represents precisely π and πr, so is

ADC. A binary form q is isotropic iff
(

− disc q
q

)
= 1, and the result follows. �

For future use we record the following special case of Theorem 2.10.

Corollary 2.11. A primitive binary form q/R is ADC iff v(disc q) ≤ 1.

Theorem 2.12. Let q(x, y, z) = ax2 + by2 + cz2 be a nondegenerate ternary form
over R. We may assume v(a) ≤ v(b) ≤ v(c).
a) If v(abc) ≤ 1, then q is ADC.
b) If v(a) ≥ 1, then q is not ADC.
c) If v(c) ≥ 2, then:
(i) If q ≡ 1 (mod 4), then q is ADC iff v(a) = v(b) = 0 and ab−1 ∈ R×2.
(ii) If q ≡ 3 (mod 4), then q is ADC iff v(a) = v(b) = 0 and ab−1 ∈ R× \R×2.
d) Suppose v(a) = 0, v(b) = 1, and v(c) = 1. Then:
(i) If q ≡ 1 (mod 4), then q is ADC iff ab−1 ∈ K× \K×2.
(ii) If q ≡ 3 (mod 4), then q is ADC iff ab−1 ∈ K×2.

Proof. The key point in most of what follows is that, by Proposition 2.6, an
anisotropic ternary form over K represents precisely 3 out of the 4 square classes.
a) As above, v(abc) ≤ 1 implies q is maximal, hence ADC.
b) If v(a) ≥ 1, then q does not represent either of the two unit square classes, but
as it K-represents at least one of these, q is not ADC.
c) If v(c) ≥ 2, then q represents the same primitive square classes as its binary
subform ax2 + by2. If ax2 + by2 is isotropic, then it it is universal, and then q
is universal, hence ADC. If ax2 + by2 is anisotropic, then it K-represents two of
the primitive square classes and q K-represents at least 3 of the primitive square
classes, so q is not ADC. This leads immediately to the given conditions.
d) Since the ADC condition depends only on unit equivalence, we may assume with-
out loss of generality that a = 1. The form q = x2+πby2+πcz2 does not represent
r, so is not universal. Therefore if q is isotropic it is not ADC. On the other hand,
it represents the three primitive square classes 1, π, πr, so if it is anisotropic it is
ADC. As for any form over a field of characteristic different from 2, q is isotropic
iff x2 + πby2 K-represents −πc. This happens iff b ≡ −c (mod K×2). If q ≡ 1
(mod 4), this holds iff bc−1 ∈ K×; if q ≡ 3 (mod 4), this holds iff bc−1 ∈ K×\K×2.

�
2.5. Binary and Ternary ADC Forms over Z2.

Lemma 2.13. Let q(x, y)/Z2
be a nondegenerate binary quadratic form.

a) The form q is either diagonalizable over Z2 or Z2-equivalent to one of 2a(x2 +
xy + y2) or 2axy for some a ∈ N.
b) We have v(disc q) ∈ {−2} ∪ N.

Proof. a) [C, Lemma 8.4.1]. b) This follows immediately. �
When dealing with binary forms, there is a convenient alternative normalizatin of
the discriminant: we define the Discriminant (note the capitalization!)

∆(ax2 + bxy + cy2) = b2 − 4ac = −4 disc(ax2 + bxy + c2).
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Thus over Z2 we have v(∆(q)) = v(disc q) + 2 ∈ {0, 2, 3, . . .}.

Theorem 2.14. Let q(x, y) be a nondegenerate binary form over Z2.
a) If v(∆(q)) = 0, then q is ADC.
b) Suppose v(∆(q)) = 2. Then:
(i) If q is primitive, then q is ADC iff ∆(q) ≡ 12, 20, 28 (mod 32).
(ii) If q = 2q′, then q is ADC iff ∆(q) ≡ 20 (mod 32).
c) If v(∆(q))) = 3, then q is ADC.
d) If v(∆(q))) = 4, then q is ADC iff q = 2q′ with ∆(q′) ≡ 20 (mod 32).
e) If v(∆(q)) ≥ 5, then q is not ADC.

Proof. a) If v(disc(q)) = −2, then by Lemma 2.13b) q is maximal, hence ADC.
b) (i) Suppose v(disc(q)) = 0 and q is primitive. By Lemma 2.13a), q ∼=Z2 ax2+by2

with a, b ∈ Z×
2 . Because being an ADC form is invariant under unit equivalence,

we may assume WLOG that a = 1, and then we are left with consideration of the
forms x2 + y2, x2 + 3y2, x2 + 5y2, x2 + 7y2. The forms x2 + y2 and x2 + 5y2 have
discriminant 1 (mod 4) and are thus maximal, hence Euclidean. The form x2+3y2

is a nonmaximal lattice in a Q2-quadratic space with associated maximal lattice
x2 + xy + y2. By Proposition 2.6, a binary form represents precisely 4 out of the
8 square classes in Q2. Examining x2 + 3y2 we see that it Z2-represents primitive
elements of the four unit square classes 1, 3, 5, 7 (mod 8) and is thus ADC. The
form x2 + 7y2 is a nonmaximal lattice in the Q2-quadratic space with associated
maximal lattice xy, so in order to be ADC, x2 + 7y2 must be universal. But
x2 + 7y2 ∼=Z2 x2 − y2 does not Z2-represent 2.
(ii) If v(disc q) = 0 and q is not primitive, then by Lemma 2.13a), either disc(q) ≡ 7
(mod 8) and q ∼= 2xy, or disc(q) ≡ 3 (mod 8) and q ∼= 2(x2 + xy + y2). In the
former case q is isotropic but not hyperbolic so is not ADC. In the latter case, it
follows from our previous analysis that the primitive square classes represented by
x2+xy+y2 are 1, 3, 5, 7, so the primitive square classes represented by 2(x2+xy+y2)
are 2 · 1, 2 · 3, 2 · 5, 2 · 7. Since an anisotropic binary form Q2-represents precisely 4
primitive square classes, it follows that 2(x2 + xy + y2) is ADC.
d) Suppose v(disc q) = 2. If q is not diagonalizable then q = 22q′ so q is not
ADC. Thus we may suppose q = ax2 + by2 with either (v(a), v(b)) = (0, 2) or
(v(a), v(b)) = (1, 1). In the former case q represents only one primitive square class
so is not ADC. In the latter case q = 2q′ with q′ = u1x

2 +u2y
2, u1, u2 ∈ Z×

2 . Then
q is ADC iff q′ is ADC, anisotropic, and represents the four unit square classes. By
our previous analysis, this holds iff disc q′ ≡ 3 (mod 8).
e) Suppose v(disc q) ≥ 3. Again, if q is not diagonalizable then q = 22q′, so q is not
ADC. If q is diagonalizable and not of the form 22q′, then either q = u1x

2+2au2y
2

with u1, u2 ∈ Z×
2 and a ≥ 3, or q = 2u1x

2 + 2au2y
2 with u1, u2 ∈ Z×

2 and a ≥ 2.
Either way q represents only one primitive square class so is not ADC. �

For future use we record the following special case of Theorem 2.14.

Corollary 2.15. A primitive binary form q/Z2
is ADC iff

∆(q) ≡ 1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31 (mod 32).

Lemma 2.16. Let q(x, y, z) be a nondegenerate ternary form over Z2. Then q is
Z2-equivalent to a diagonal form, to 2a(xy) + 2buz2 or to 2a(x2 + xy+ y2) + 2buz2

for a, b ∈ N, u ∈ Z×
2 .
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Proof. [C, Lemma 8.4.1]. �

Theorem 2.17. Let q = ax2+ by2+ cz2 be a nondegenerate diagonal ternary form
over Z2: we may assume v(a) ≤ v(b) ≤ v(c).
a) If (v(a), v(b), v(c)) ∈ {(0, 0, 0), (0, 0, 1)}, then q is ADC.
b) If (v(a), v(b), v(c)) ∈ {(0, 1, 1), (0, 1, 2)}, then q is ADC iff it is anisotropic.
c) Otherwise q is not ADC.

Proof. Step 0: Recall that a nondengenerate ternary form q Q2-represents all eight
square classes of Q2 if it is isotropic and represents all but −disc q if it is anisotropic.
In particular, q Q2-represents at least three out of the four unit square classes, so
if q is ADC it must represent at least three of the primitive unit square classes.
Step 1: Suppose (v(a), v(b), v(c)) ∈ {(0, 0, 0), (0, 0, 1)} or that q is anisotropic and
(v(a), v(b), v(c)) ∈ {(0, 1, 1), (0, 1, 2)}. We will (unfortunately) show that q is ADC
by brute force. Since the ADC condition depends only on the unit equivalence class
of q and v(a) = 0, we may assume without loss of generality that a = 1. Then:
• A form with (v(a), v(b), v(c)) = (0, 0, 0) is unit equivalent to at least one of:

⟨1, 1, 1⟩, ⟨1, 1, 3⟩, ⟨1, 1, 5⟩, ⟨1, 1, 7⟩, ⟨1, 3, 3⟩, ⟨1, 3, 5⟩, ⟨1, 3, 7⟩, ⟨1, 5, 5⟩, ⟨1, 5, 7⟩, ⟨1, 7, 7⟩.
We consider a representative example: let q = x2+5y2+5z2. Then q is anisotropic
and thus does not Q2-represent the square class −disc(q) ≡ 7 (mod Q×2). How-
ever, it represents the other 7 primitive Z2-square classes:

1 ∼= 12 + 5 · 02 + 5 · 02,
2 ∼= 50 ∼= 52 + 5 · 22 + 5 · 12,
3 ∼= 11 ∼= 12 + 5 · 12 + 5 · 12,
5 ∼= 02 + 5 · 12 + 5 · 02,
6 ∼= 12 + 5 · 12 + 5 · 02,
10 ∼= 02 + 5 · 12 + 5 · 12,
14 ∼= 22 + 5 · 12 + 5 · 12.

• A form with (v(a), v(b), v(c)) = (0, 0, 1) is unit equivalent to at least one of:

⟨1, 1, 2⟩, ⟨1, 1, 6⟩, ⟨1, 1, 10⟩, ⟨1, 1, 14⟩, ⟨1, 3, 2⟩, ⟨1, 3, 6⟩, ⟨1, 3, 10⟩,
⟨1, 3, 14⟩, ⟨1, 5, 2⟩, ⟨1, 5, 6⟩, ⟨1, 5, 10⟩, ⟨1, 5, 14⟩, ⟨1, 7, 2⟩, ⟨1, 7, 6⟩, ⟨1, 7, 10⟩, ⟨1, 7, 14⟩.
We consider a representative example: let q = x2 + 7y2 + 14z2. q is isotropic and
represents all 8 primitive Z2-square classes:

1 ∼= 12 + 7 · 02 + 14 · 02,
2 ∼= 18 ∼= 22 + 7 · 02 + 14 · 12,
3 ∼= 11 ∼= 22 + 7 · 12 + 14 · 02,
5 ∼= 21 ∼= 02 + 7 · 12 + 14 · 12,
6 ∼= 22 ∼= 12 + 7 · 12 + 14 · 12,
7 ∼= 02 + 7 · 12 + 14 · 02,
10 ∼= 42 ∼= 02 + 7 · 22 + 14 · 12,
14 ∼= 02 + 7 · 02 + 14 · 02.

• An anisotropic form with (v(a), v(b), v(c)) = (0, 1, 1) is unit equivalent to one
of:

⟨1, 2, 2⟩, ⟨1, 2, 6⟩, ⟨1, 6, 14⟩, ⟨1, 10, 10⟩, ⟨1, 10, 14⟩.
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• An anisotropic form with (v(a), v(b), v(c)) = (0, 1, 1) is unit equivalent to one of:

⟨1, 2, 4⟩, ⟨1, 2, 12⟩, ⟨1, 6, 12⟩, ⟨1, 6, 20⟩, ⟨1, 10, 12⟩, ⟨1, 14, 12⟩, ⟨1, 14, 20⟩.
In all cases, the method of proof is the same as above: find x, y, z ∈ Z such that
q(x, y, z) represents 7 of the 8 primitive square classes.
It remains to show that all the other forms are not ADC.
Step 2: Suppose (v(a), v(b), v(c)) = (0, 1, 1) and q is isotropic. We may assume
a = 1 and write b = 2u2, c = 2u3 with u2, u3 ∈ Z×

2 . If q is isotropic and ADC, it
represents each d ∈ {1, 3, 5, 7}. Considering the equation x2 + 2u2y

2 + 2u3z
2 = d

modulo 8 yields u2y
2 + u3z

2 ≡ d−1
2 (mod 4). But no matter what choices of u2

and u3 we take, the quadratic form u2y
2 + u3z

2 modulo 4 takes only two out the
three values {1, 2, 3}, contradiction.
Step 3: Suppose (v(a), v(b), v(c)) = (0, 1, 2) and q is isotropic. We may assume
a = 1 and write b = 2u2, c = 4u3 with u2, u3 ∈ Z×

2 . If q is isotropic and ADC it
represents each d ∈ {2, 6, 10, 14}. Suppose x2 +2u2y

2 +4u3z
2 = 2d; then v(x) > 0,

so we may write x = 2X and simplify to get 2X2+u2y
2+2u3z

2 = d. Since v(d) = 0
we must have v(y) = 0 and thus y2 ≡ 1 (mod 8), so we get 2X2 + 2u3z

2 ≡ d− u2

(mod 8) or X2 + u3z
2 ≡ d−u2

2 (mod 4). For any choice of u2, u3, there is a choice
of d such that this congruence has no solution, contradiction.
Step 4: Suppose v(a) > 0. Then q = 2q′ is not primitive, so represents no primitive
unit square class. Thus q is not ADC.
Step 5: Suppose v(a) = 0 and v(b) ≥ 2, so up to unit equivalence, q = x2 + 4by2 +
4cz2. Going modulo 4 shows that q does not Z2-represent 3 or 7, so is not ADC.
Step 6: Suppose v(a) = v(b) = 0, v(c) ≥ 2, so up to unit equivalence q = x2 +
uy2 + 4cz2 for u ∈ Z×

2 . The mod 4 reduction of q represents only two of the three
classes {1, 2, 3} mod 4, and thus fails to Z2-represent both of {1, 5}, both of {2, 6}
or both of {3, 7}, so is not ADC.
Step 7: Suppose v(c) ≥ 3. No diagonal binary form ax2+by2 Z/8Z-represents more
than four of the six classes {1, 2, 3, 5, 6, 7}. From this it follows that q(x, y, z) =
ax2 + by2 + cz2 = d has no Z2-solution for at least two primitive square classes d,
so q is not ADC. �
Theorem 2.18. Let q(x, y, z) be a nondiagonalizable ternary form over Z2.
a) Suppose q is unit equivalent to 2axy+2bz2 for a, b ∈ N. Then q is ADC iff a = 0
or (a, b) = (1, 0).
b) Suppose q is unit equivalent to 2a(x2 + xy + y2) + 2bz2 for a, b ∈ N. Then q is
ADC iff (a, b) ∈ {(0, 0), (1, 0), (0, 1)}.

Proof. a) If a = 0 then q contains the universal form xy as a subform, so is universal,
hence ADC. If (a, b) = (1, 0) then it is easy to verify that q = 2xy+z2 represents all
8 primitive square classes. Alternately, by [C, p. 118] q = 2xy+z2 ∼ x2+y2+7z2,
so q is ADC by Theorem 2.17.

If a ≥ 1 and b ≥ 1 then q is not primitive, hence not ADC. If a ≥ 2 and b = 0
then q does not represent any of 2, 6, 10, 14 so is not ADC.
b) If (a, b) = (0, 0), then v(disc q) = −2, so q is maximal, hence ADC. If (a, b) =
(0, 1), then v(disc q) = −1, so q is maximal, hence ADC. If (a, b) = (1, 0), then
q = 2(x2+xy+y2)+z2 ∼Q2 2x2+6y2+z2 is anisotropic, so does not Q2-represent
the square class 5 ≡ −disc(q) (mod Q×2

2 ). One verifies directly that it represents
the other 7 primitive Z2-square classes.

If a and b are both at least one then q is not primitive and thus not ADC. If
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either a ≥ 2 or b ≥ 2, then q does not represent any of the four primitive square
classes 2, 6, 10, 14 so is not ADC. �

3. ADC Forms Over Z

Throughout this section all quadratic forms are nondegenerate over Z.

The ADC property depends only on the unit equivalence class of a quadratic form.
Thus over Z, we need only consider positive forms and indefinite forms.

3.1. Unary Forms.

Theorem 3.1. Let R be a UFD or a Hasse domain, a ∈ R•, and q(x) = ax2.
Then R is ADC iff a is squarefree.

Proof. We suppose R is a UFD. Then q is semiprimitive iff (a) is not contained
in any proper ideal of the form (b2) iff a is squarefree. By Proposition 2.3a) these
conditions are necessary for q to be ADC. Conversely, if a is squarefree then aR×2

is the primitive square class corresponding to aK×2, so q is ADC by Proposition
2.4. Next we suppose R is a Hasse domain. By Proposition 2.3c), if q is ADC then
(a) = n(q) is squarefree. For all p ∈ ΣR, Rp is a UFD, so by what we’ve just shown,
q/Rp

is ADC. Thus q is locally ADC; certainly q is regular, so q is ADC. �

3.2. Binary forms.

Let ∆ be a quadratic Discriminant, i.e., an integer which is 0 or 1 modulo 4.
If ∆ > 0, then we denote by C(∆) the set of SL2(Z)-equivalence classes of prim-
itive binary forms of Discriminant ∆. If ∆ < 0, then we denote by C(∆) the set
of SL2(Z)-equivalence classes of primitive, positive binary forms of Discriminant
∆. Elementary reduction theory shows that in either case C(∆) is a finite set.
Moreover, in his Disquisitiones Arithmeticae, Gauss endowed C(∆) with a natural
composition law, under which it becomes a finite abelian group, the class group
of Discriminant ∆. By abuse of notation, we often write “q ∈ C(∆)” to mean: q
is a primitive (and positive, if ∆ < 0) binary form of discriminant ∆.

For q = Ax2 + Bxy + Cy2 ∈ C(∆), the form q = Ax2 − Bxy + Cy2 repesents
the inverse of q in C(∆). A form q such that [q] = [q] is called ambiguous.

A quadratic discriminant ∆ is idoneal if C(∆) ∼= (Z/2Z)a for some a ∈ N – i.e.,
if every q ∈ C(∆) is ambiguous. A form q ∈ C(∆) is idoneal if ∆ is idoneal. A
quadratic discriminant ∆ is bi-idoneal if C(∆) ∼= Z/4Z× (Z/2Z)a for some a ∈ N.
A form q ∈ C(∆) is idoneal if ∆ is idoneal. A form q ∈ C(∆) is bi-idoneal if ∆
is bi-idoneal and q is not ambiguous.

Though in general a regular form over a Hasse domain may have class number
greater than one (we will meet such forms later in this section), an anisotropic
binary form q over the ring of integers of a number field which is regular – or even
almost regular, i.e., represents all but finitely many elements of R which are rep-
resented by the genus g(q) – has class number one [CI08, Thm. A.3]. It seems to us
that the argument works over any Hasse domain of characteristic different from 2.
For classification purposes we want a version of this result over Z which reexpresses
the class number one condition not in terms of the structure of the class group
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C(∆). While this variant is certainly known to some experts in the field, we have
not been able to find it in the literature, so for completeness we indicate a proof.

Theorem 3.2. Let q be a primitive, nondegenerate binary quadratic form of non-
square discriminant ∆: if ∆ < 0, we suppose that q is positive. TFAE:
(i) q is regular.
(ii) q is idoneal or bi-idoneal.

Proof. Step 1: Suppose q is regular. It is an easy consequence of the local theory
recalled in § 2 that the set of prime numbers p - 2∆ which are represented by q is
a union of congruence classes modulo some positive integer N (the classical theory
shows that one may take N = 4∆). Moreover q represents infinitely many prime
numbers [We82] or [Br54], so q represents a full congruence class of primes.
Step 2: We claim that an integral binary form which represents a full congruence
class of primes must be idoneal or bi-idoneal. This is proved in [GoNI, Thm. 1]
for positive forms. In fact the proof also works in the indefinite case, since the
four bulleted “tenets of genus theory” hold also in the indefinite case. (Although
references are given to [Cox89], which states these results for positive forms only,
the proofs do not use this hypothesis. In fact these results were established in
Gauss’s Disquisitiones Arithmeticae; an accessible account can be found in [F].)
Step 3: Suppose q is idoneal or bi-idoneal. Then the aforementioned genus theory
shows that the only forms which are everywhere locally equivalent to q are q and
q. Since q is GL2(Z)-equivalent to q, q has class number 1 and is thus regular. �

Theorem 3.3. Let q(x, y)/Z be a primitive binary quadratic form. Then q is ADC
iff all of the following hold:
(i) q is idoneal or bi-idoneal.
(ii) For all odd primes p, vp(∆(q))) ≤ 1.
(iii) ∆(q) ≡ 1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31 (mod 32).

Proof. The result is an immediate consequence of Theorem 1.5, Theorem 3.2,
Proposition 2.3a) and Corollary 2.11 and Corollary 2.15. �

Theorem 3.4. Let q(x, y)/Z be a nondegenerate binary quadratic form. Suppose

d ∈ Z+ is such that q(x, y) = dq′(x, y) with q′(x, y) a primitive form. Then q is
ADC iff all of the following hold:
(i) q′(x, y) is ADC.
(ii) d is squarefree.

(iii) For each odd prime p dividing d,
(

∆(q′)
p

)
= −1.

(iv) If 2 | d, then either ∆(q′) ≡ 20 (mod 32) or ∆(q′) ≡ 5 (mod 8).

Proof. Step 1: Conditions (i) and (ii) are necessary for q to be ADC by Lemma
2.1b) and Proposition 2.3b). Conversely, if they hold then by Theorem 1.5 q′ is
regular, hence q = aq′ is regular, so by Theorem 1.5 q is ADC iff q/Zp

is ADC for
all primes p. Under condition (ii), q/Zp

is unit-equivalent to either q′ or πq′ for
a uniformizing element π. In the former case q/Zp

is ADC since q′ is. Thus it is
enough to check that if q = πq′ for a primitive ADC form q′/Zp

, then q is locally

ADC iff condition (iii) holds when p is odd, and iff condition (iv) holds when p = 2.
Step 2: Suppose p is odd. By Theorem 2.10, q/Zp

is ADC iff (disc q′ ∈ Z×2
p and

p ≡ 3 (mod 4)) or disc q′ ∈ Z×
p \ Z×2

p and p ≡ 1 (mod 4). If p ≡ 3 (mod 4) then
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−1
p

)
= −1, so

(
∆(q′)

p

)
=
(

−4 disc q
p

)
= −1. If p ≡ 1 (mod 4) then

(
−1
p

)
= 1, so

again
(

∆(q′)
p

)
=
(

−4 disc q′

p

)
= −1.

Step 3: Suppose p = 2. Case 1: v2(∆(q′)) = 0, so v2(∆(q))) = 2. Then by Theorem
2.14b(ii), q = 2q′ is ADC iff ∆(q) ≡ 20 (mod 32) iff ∆(q′) ≡ 5 (mod 8).
Case 2: v2(∆(q′)) = 2, so v2(∆(q)) = 4. By Theorem 2.14d), q is ADC iff ∆(q′) ≡ 20
(mod 32).
Case 3: v2(∆(q′)) ≥ 3, so v2(∆(q)) ≥ 5. By Theorem 2.14e), q/Z2

is not ADC. �
3.3. Ternary Forms.

Theorem 3.5. For n ≥ 3, an n-ary ADC form over a Hasse domain is primitive.

Proof. Let q/R be an n-ary ADC form over a Hasse domain R with n ≥ 3. By
Corollary 2.7, q is locally primitive, so by Proposition 2.3a), q is primitive. �
Theorem 3.6. There are 103 positive ADC ternary forms q/Z.

Proof. Let q be a positive ternary ADC form. By Theorem 1.5, q is regular, whereas
by Theorem 3.5, q is primitive. We now use the main result of [JKS97], which gives
a list of 913 forms among which all primitive, positive, regular integral ternary
forms must lie. For each of these forms, we check whether it is locally ADC using
Theorems 2.12, 2.17 and 2.18: note in particular that Theorem 2.12 implies that
if a prime p does not divide 2 disc q, q is necessarily ADC, so that for each form
there are only finitely many primes to check. (For each such odd prime we do have
to diagonalize q over Zp, and for p = 2 we need to either diagonalize q or put it in
the normal form of Theorem 2.18, so there is some nontrivial – though routine –
computation to do.) We are left with a list of 103 forms.

The [JKS97] enumeration includes regularity proofs of all but 22 of the 913 forms.
The remaining 22 forms are strongly suspected to be regular but the regularity was
not proved in [JKS97]. (Some, but not yet all, of these 22 forms have since been
shown to be regular.) But we got lucky: none of these 22 forms are locally ADC. �
Remark 3.7. In contrast to the binary case (but similarly to the quaternary case
and beyond), positive integral ADC ternary forms need not have class number one:
eight of them have class number two.

3.4. Quaternary Forms.

Theorem 3.8. There are 6436 positive ADC quaternary forms q/Z.

Proof. A form q over a Hasse domain R in at least 4 variables is ADC iff it is sign-
universal. Fortunately for us, the classification of sign-universal positive quaternary
forms q/Z has recently been completed by Bhargava-Hanke [BH]. �
3.5. Beyond Quaternary Forms.

It seems hopeless to classify positive sign-universal forms in 5 or more variables.
Certainly there are infinitely many such primitive forms, e.g. x2

1+ . . .+x2
n−1+Dx2

n.
More generally, any form with a sign-universal subform is obviously sign-universal,
and this makes the problem difficult. However, using the following result we may
verify whether a given form is ADC.

Theorem 3.9. (Bhargava-Hanke [BH]) A positive quadratic form q/Z is sign-
universal iff it Z-represents every positive integer less than or equal to 290.
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4. From Quadratic Forms to Lattices

4.1. Voronoi Cells.

Let (X, d) be a metric space, and let Λ ⊂ X. For distinct P, P ′ ∈ X, put

H(P, P ′) = {x ∈ X | d(x, P ) ≤ d(x, P ′)}.

We define the Voronoi cell

V (Λ, P ) =
∩

P ′∈Λ\{P}

H(P, P ′).

Thus V (Λ, P ) is the locus of points which are as close to P as to any other point of Λ.

Let q(x) = q(x1, . . . , xn) be a positive quadratic form on Rn. We associate the
inner product ⟨x, y⟩ = q(x + y) − q(x) − q(y). Note that we are not dividing by
2 as is often done, hence ⟨x, x⟩ = 2q(x). This convention has the effect that if
q(x) ∈ Z[x], then ⟨Zn,Zn⟩ ⊂ Zn. Then

d(x, y) =
√
⟨x− y, x− y⟩ =

√
2q(x− y)

is a metric on Rn. Since all positive bilinear forms are GLn(R)-equivalent, d differs
from the standard Euclidean metric by a linear change of variables. For P, P ′ ∈ Rn,

H(P, P ′) = {x ∈ Rn | ⟨x− P, x− P ⟩ ≤ ⟨x− P ′, x− P ′⟩}

= {x ∈ Rn | 2⟨x, P ′ − P ⟩ ≤ ⟨P ′, P ′⟩ − ⟨P, P ⟩}.
In particular each H(P, P ′) is a convex subset, hence for any Λ ⊂ Rn, the Voronoi
cells V (Λ, P ) are convex. Now take Λ ⊂ Rn to be a full lattice, i.e., the Z-span of
an R-linearly independent set v1, . . . , vn. Let

R = {α1v1 + . . .+ αnvn | αi ∈ [0, 1]}

be the associated fundamental parallelopiped, and let d be its diameter. Then
every x ∈ Rn has distance at most d from some point of Λ, and it follows that
V (Λ) = V (Λ, 0) is contained in the closed ball of radius d. Thus the intersection∩

P ′∈Λ• H(0, P ′) can be replaced by a finite intersection: all but finitely many of the
hyperplanes will be too far away for the intersection condition to be nonvacuous.
A set of Voronoi vectors for Λ is a finite subset S ⊂ Λ• such that

V (Λ) =
∩

P ′∈S

H(0, P ′).

This description makes clear that the Voronoi cell V (Λ) is a convex polytope; since
−Λ• = Λ•, V (Λ) is symmetric about the origin. Moreover, if q ∈ Q[x] and Λ ⊂ Qn

then all the defining hyperplanes are rational and thus V (Λ) is a rational polytope:
the convex hull of a finite subset of Qn.

For each P ∈ Λ•, the Voronoi cell V (Λ, P ) = P + V (Λ), and thus the Voronoi
cells give a periodic polytopal tiling of Rd. We define the holes of Λ (with respect
to q) to be the vertices of V (Λ, P ), and the deep holes to be the holes x for which
d(0, x) is maximized. This maximal value is called the covering radius and de-
noted by R. The covering radius is thus the least radius r such that the ball B(0, r)
contains the Voronoi cell V (Λ), hence R ≤ d.
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4.2. The Euclideanity and the Covering Radius.

From our discussion of Voronoi cells we infer the following result.

Proposition 4.1. Let q be a positive integral quadratic form. Let

E(q) = sup
y∈Qn

inf
x∈Zn

|q(x− y)|

be its Euclideanity. Let Λ = Zn and endow Rn with the inner product

⟨x, y⟩ = q(x+ y)− q(x)− q(y).

Let V (Λ) be the Voronoi cell and R the covering radius of (⟨, ⟩,Λ).
a) As y ranges over all elements of Rn, the quantity infx∈Zn q(x − y) attains a
maximum value at a rational vector y ∈ Qn.

b) We have E(q) = R2

2 .

c) The form q is Euclidean iff E(q) < 1 iff R <
√
2.

Proof. As y ranges over elements of Rn, infx∈Zn |q(x− y)| = infx∈Zn
1
2 ⟨x− y, x− y⟩

attains its maximum at a deep hole of Λ, which by the above discussion exists and
lies in Qn. This gives part a). Parts b) and c) follow immediately. �

5. Euclidean Binary Integral Quadratic Forms

5.1. The Covering Radius of a Planar Lattice.

Theorem 5.1. Let q(x, y) = ax2+bxy+cy2 be a positive real quadratic form which
is Minkowski-reduced: 0 ≤ b ≤ a ≤ c. Let ⟨x, y⟩ = q(x + y) − q(x) − q(y) be the

associated positive bilinear form and d(x, y) =
√
2q(x− y) be the associated metric.

a) The covering radius of Z2 with respect to d is

R =

√
2ac(a− b+ c)

4ac− b2
.

b) If a, b, c ∈ Z, then the Euclideanity of E is

E(q) =
(ac)(a− b+ c)

4ac− b2
≥ c

4
.

Proof. a) Case 1: b = 0. It is immediate that E(q) = a+c
4 (a more general case –

stil immediate – was recorded as [ADCI, Ex. 2.2]). By way of comparison with the
following case, we record the geometry of the situation: the vertices of the Voronoi
cell for (Rn, d,Z2) are ( 12 ,

1
2 ), (−

1
2 ,

1
2 ), (−

1
2 ,−

1
2 ), (

1
2 ,−

1
2 ). These are all deep holes,

so the covering radius is

R =

√
2q

(
1

2
,
1

2

)
=

√
a+ c

2
.

b) Case 2: b > 0. For x = (x1, x2), y = (y1, y2) ∈ R2, let

d0(x, y) =
√
(x1 − x2)2 + (y1 − y2)2, q0(x) =

d20
2
,

T =
2ac− ab√

(2a)(4ac− b2
, U =

2ac− b2 + ab√
(2a)(4ac− b2)

,

v = (
√
2a, 0), w = (

b√
2a

, T + U).
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Then the map Φ : (R2, d) → (R2, d0) given by

(x, y) 7→ (
√
2ax+

b√
2a

y, (T + U)y)

is an isometry. Let
Λ = Φ(Z2) = Zv + Zw.

Thus the covering radius of (R2, d,Z2) is the same as the covering radius of (R2, d0,Λ),
so it suffices to compute the latter. Since the ordered basis (v, w) of Λ is Minkowski-
reduced, q0(v) and q0(w) are the first and second successive minima of Λ, and then
it is a classical fact – elementary, but nontrivial: see [Aa, pp. 119-122] for a careful
discussion – that S = {v, w,w− v,−v,−w, v−w} is a set of Voronoi vectors in the
sense of § 4.1, so that the Voronoi cell

V (Λ) =
∩

P ′∈S

H(0, P ′)

is a hexagon, with vertices the holes

±(

√
a

2
, T ),±(

b− a√
2a

, U),±(−
√

a

2
, T ).

Evaluating q0 at each of these holes we get R =
√

2ac(a−b+c)
4ac−b2 , so all the holes are

deep holes and R is the covering radius.
b) By Proposition 4.1 we have

E(q) =
R2

2
=

(ac)(a− b+ c)

4ac− b2
=

ac2 − abc+ a2c

ac− b2

≥
(ac2 − b2c

4 ) + (a2c− abc)

4ac− b2
=

c

4
+

ac(a− b)

4ac− b2
≥ c

4
.

�
Corollary 5.2. a) The complete list of positive binary Euclidean integral forms is:

q1 = x2 + xy + xy2, E = 1/3.

q2 = x2 + y2, E = 1/2.

q3 = x2 + xy + 2y2, E = 4/7.

q4 = 2x2 + 2xy + 2y2, E = 2/3.

q5 = x2 + 2y2, E = 3/4.

q6 = 2x2 + xy + 2y2, E = 4/5.

q7 = x2 + xy + 3y2, E = 9/11.

q8 = 2x2 + 2xy + 3y2, E = 9/10.

b) Every positive integral binary Eulidean quadratic form has class number one.

Proof. a) Let q be a positive integral binary quadratic form. Then q is GL2(Z)-
equivalent to a (unique) form ax2 + bxy+ cy2 with 0 ≤ b ≤ a ≤ c and b2 − 4ac > 0.
By Proposition 4.1, E is Euclidean iff E(q) < 1. By Theorem 5.1, E(q) ≥ c

4 , so if
q is Euclidean we must have 1 ≤ c ≤ 3. This gives us a list of 16 triples (a, b, c) on

which to check whether (ac)(a−b+c)
4ac−b2 < 1 holds. Doing so, we arrive at the list given

in the statement of the result.
b) Since scaling a quadratic form does not change its class number, q4 will have
class number 1 iff q1 does. Let q = Ax2 + Bxy + Cy2 be a primitive positive
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integral binary form of discriminant ∆. Then, as we recalled in Theorem 3.2 above,
q has class number one iff it is idoneal or bi-idoneal. For q1, q2, q3, q5 and q11,
the Discriminants are −3, −4, −7 and −8, and #C(∆) = 1. For q6 and q8 the
Discriminants are −15 and −20, and #C(∆) = 2. Thus every form is idoneal. �

Remark 5.3. The Euclidean forms above satisfy a stronger property than was
needed to get class number one: they are all idoneal. Moreover the class group
C(∆(q)) is either trivial or has order 2, and the former holds if and only if q is
principal (i.e., represents 1). These extra conditions can be explained in terms of
Lenstra’s theory of Euclidean ideal classes, which we discuss next.

5.2. Euclidean Rings and Euclidean Ideal Classes.

For a nonsquare integer D which is 0 or 1 modulo 4, let RD = Z[D+
√
D

2 ] be the

quadratic order of discriminant D, and let K = Q(
√
D) be its fraction field. Denote

by x 7→ x the nontrivial field automorphism of K and by N : x 7→ xx the norm map
from K to Q. We put |x| = |N(x)|. Denote by PicRD the Picard group of RD,
i.e., invertible RD ideals modulo principal ideals. Denote by Pic+ RD the narrow
Picard group of RD, i.e., invertible RD ideals modulo principal ideals with totally
positive generators.

We say a quadratic form is non-negative if it is either positive or indefinite.

Theorem 5.4. ([Coh93, Thms. 5.2.8, 5.2.9])
a) Suppose D < 0. Then the mappings

Φ : ax2 + bxy + cy2 7→ aZ+
−b+

√
D

2
Z

Ψ : a 7→ |xω1 − yω2|
|a|

,

where a = Zω1 + Zω2 with
ω2ω1 − ω1ω2√

D
> 0,

induce mutually inverse bijections from the set of SL2(Z)-isomorphism classes of
primitive, positive integral binary quadratic forms of Discriminant D to PicRD.
b) Suppose D > 0. Then the mappings

Φ : ax2 + bxy + cy2 =

(
aZ+

−b+
√
D

2

)
α,

where α is any element of K× such that sign(N(α)) = sign(α),

Ψ : a 7→ N(xω1 − yω2)

N(a)
,

where α = Zω1 + Zω2 with
ω2ω1 − ω1ω2√

D
> 0,

induce mutually inverse bijections from the set of SL2(Z)-isomorphism classes of
primitive, indefinite integral binary quadratic forms of Discriminant D to Pic+ RD.

Remark 5.5. The correspondence of Theorem 5.4 carries principal quadratic forms
(those integrally representing 1) to principal fractional ideals.
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Corollary 5.6. Let D be a quadratic discriminant. As a runs through a full set
of representatives for PicRD, every primitive, non-negative integral binary form of
discriminant D is unit equivalent to at least one form Ψ(a).

Proof. The only nontrivial aspect of this is replacing the narrow Picard group by
the Picard group when D > 0. If PicRD = Pic+ RD there is nothing to show;
otherwise PicRD is the quotient of Pic+ RD by an involution whose action on the
quadratic forms side carries ax2+bxy+cy2 7→ −ax2+bxy−cy2 [F, p. 127]. Since the
latter form is unit equivalent (i.e., equivalent under GL2(Z) together with possibly
scaling by −1) to the former one, the result follows. �

We can use to reduce the classification of Euclidean binary quadratic forms over
Z to work of Lenstra on Euclidean ideals. First observe that because Euclidean
forms give maximal lattices, in the above results we may restrict to fundamental
discriminants D, so that the quadratic order RD of discriminant D is simply the
ring of integers in the quadratic field Q(

√
D). Thus RD is a Dedekind domain with

ideal norm given by |I| = |N(I)| = #RD/I.

Let (R, | · |) be an ideal normed Dedekind domain with fraction field K. A nonzero
fractional R-ideal a is Euclidean if for all v ∈ K, there is w ∈ a such that
|v − w| < |a|. The following result is now immediate.

Theorem 5.7. Let D be a fundamental quadratic discriminant, let RD be the
quadratic ring of discriminant D, with ideal norm |I| = |N(I)| = #RD/I.
a) For an invertible ideal a of RD, the following are equivalent:
(i) The ideal a is Euclidean.

(ii) The integral binary quadratic form Ψ(a) = N(xω1−yω2)
N(a) is Euclidean.

b) The conditions of part a) depend only on the image of a in PicRD.

Using Remark 5.5 we see that Theorem 5.7 induces, in particular, a bijective corre-
spondence between Euclidean quadratic rings and principal Euclidean binary forms.
This suggests attacking the classification problem on the other side of the correpon-
dence, i.e., by classifying Euclidean quadratic rings. As usual for such correspon-
dences, it may sometimes be advantageous to work on one side of the correspondence
and other times on the other side. Our previous results specialize to give the (well
known) classification of Euclidean imaginary quadratic rings.

Proposition 5.8. a) Let ∆ be a negative integer which is 0 or 1 modulo 4, and let
q∆ be the norm form of the imaginary quadratic order of discriminant ∆. Then:

(i) If ∆ ≡ 0 (mod 4), E(q∆) =
|∆|+4
16 .

(ii) If ∆ ≡ 1 (mod 4), E(q∆) =
(|∆|+1)2

16|∆| .

b) The principal positive binary integral Euclidean quadratic forms are q1, q2, q3,
q5 and q7 of Corollary 5.2.

Proof. a) If ∆ ≡ 0 (mod 4) then the quadratic order of Discriminant ∆ is Z[∆/ 2]
and its norm form is q∆(x, y) = x2 − ∆

4 y
2. If ∆ ≡ 1 (mod 4) then the quadratic

order of Discriminant ∆ is Z[ 1+
√
∆

2 ] and its norm form is q∆(x, y) = x2 + xy +(
1−∆
4

)
y2. These forms are positive and Minkowski-reduced, so Theorem 5.1 applies

to compute their Euclideanities. Part b) follows immediately. �
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Of course Proposition 5.8b) simply repeats a special case of Corollary 5.2. But the
link to Euclidean rings explains the phenomenon that beyond simply being idoneal
or bi-idoneal, for these forms the class group C(∆(q)) is trivial.

The classification of Euclidean real quadratic rings is considerably more difficult:
it was initiated by Wantzel in 1848 and completed by Barnes and Swinnerton-Dyer
in 1952. We recommend [Le95] as a source for this and related results.

Theorem 5.9. The real quadratic (norm-)Euclidean rings are precisely those of
discriminant D for

D ∈ {5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76}.
a) The principal, anisotropic indefinite binary integral Euclidean forms are

q9 = x2 + xy − y2, E = 1/4.

q10 = x2 + xy − 3y2, E = 1/3.

q11 = x2 − 2y2, E = 1/2.

q12 = x2 − 3y2, E = 1/2.

q13 = x2 + xy − 4y2, E = 1/2.

q14 = x2 − 7y2, E = 9/14.

q15 = x2 + xy − 8y2, E = 29/44.

q16 = x2 + xy − 5y2, E = 5/7.

q17 = x2 + xy − 10y2, E = 23/32.

q18 = x2 + xy − 18y2, E = 1541/2136.

q19 = x2 + xy − 14y2, E = 14/19.

q20 = x2 − 6y2, E = 3/4.

q21 = x2 + xy − 9y2, E = 3/4.

q22 = x2 + xy − 7y2, E = 4/5.

q23 = x2 − 11y2, E = 19/22.

q24 = x2 − 19y2, E = 170/171.

b) The Euclidean forms which are obtained as imprimitive multiples of the forms
of part a) are

q25 = 2(x2 + xy − y2), E =
1

2
.

q26 = 3(x2 + xy − y2), E =
3

4
.

q27 = 2(x2 + xy − 3y2), E =
2

3
.

Proof. a) See [Le95, Thm. 4.4] and [Le].
b) Whenever we have a primitive integral form with E(q) ≤ 1

n for some n ∈ Z+,
since for d ∈ Z+ we have E(dq) = dE(q), the forms dq with 1 ≤ d < n are
Euclidean. If E(q) = 1

n , then nq is Euclidean iff the supremum is not attained iff
the critical set C(q) is empty. As mentioned above this is conjectured but not yet
guaranteed never to occur for integral binary quadratic forms. Thus for the first
four forms in Theorem 5.9 above we need to make use of Lezowski’s tables [Le],
which record a finite, nonempty critical set C(q) in every case. �
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Lenstra further showed that the ring of integers RD of a quadratic field admits at
most one Euclidean ideal class, and if a nonprincipal Euclidean ideal class exists
then #PicRD = 2. Using these facts he classified all Euclidean ideal classes in
quadratic rings. To deal with imprimitive forms we also need to know the Eu-
clideanities, which were computed by P. Lezowski.

Theorem 5.10. (Lenstra [Le79], Lezowski [Le]) The quadratic ring RD admits a
non-principal Euclidean ideal class iff D ∈ {−20,−15, 40, 60, 85}.
The corresponding positive nonprincipal Euclidean binary quadratic forms are

q8 = 2x2 + 2xy + 3y2, E = 9/10.

q7 = 2x2 + xy + 2y2, E = 4/5.

The corresponding indefinite nonprincipal Euclidean binary quadratic forms are

q28 = 2x2 − 5y2, E = 3/4,

q29 = 3x2 − 5y2, E = 5/6,

q30 = 3x2 − 7xy − 3y2, E =
15

17
.

In summary:

Theorem 5.11. There are 30 anisotropic Euclidean binary quadratic forms q/Z.

6. Positive Euclidean Integral Forms Have Class Number One

6.1. The Theorem.

As promised in § 1, we now present a proof that all positive Euclidean integral
quadratic forms have class number one. Of course one proof is obtained simply by
calculating the class numbers of the 69 + 1 Euclidean forms listed in [Ne03], and
this is what we did first. In searching for an a priori proof, the second author
contacted Noam Elkies and Richard Borcherds. Borcherds indicated that this fell
under the general methodology that Conway used in dealing with the Leech lattice,
and suggested the book by Wolfgang Ebeling [Eb]. Prof. Elkies suggested that we
contact Daniel Allcock, who was a student of Borcherds. Allcock was quite firm
that the Lorentzian method was the proper path. Finally, in § 4.5 of the second
edition of [Eb], the second author found a detailed rendition of Conway’s argument
and was able to adapt it to the present circumstance. We are pleased to be able
to offer this simple version of a technique which has hitherto been associated pri-
marily with the Leech lattice and finite simple groups, and for which other possible
applications have been known to only a few specialists.

Theorem 6.1. Every positive Euclidean form q/Z has class number one.

We will need a preliminary result characterizing the genus of an integral quadratic
form in terms of Lorentzian lattices. This result is alluded to in the seminal
work [CS] but not proved there, so for completeness we give a proof in § 6.2. The
proof of Theorem 6.1 is given in § 6.3.
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6.2. Lorentzian Characterization of the Genus.

Let q(x) be an integral quadratic form. We remind the reader of our convention
that the associated bilinear form is ⟨x, y⟩ = q(x+ y)− q(x)− q(y). This results in
a bilinear Z-lattice which is even in the sense that ⟨x, x⟩ ∈ 2Z for all x ∈ Zn.

Lemma 6.2. Let R be a complete DVR of characteristic different from 2, and let
f, g be nondegenerate quadratic forms over R. If f ⊕H ∼= g ⊕H, then f ∼= g.

Proof. [O’M, IX 92:3, 93:14]. �

Theorem 6.3. Let f and g be nondegenerate integral quadratic forms. TFAE:
(i) f and g are in the same genus.
(ii) f ⊕H and g ⊕H are integrally equivalent.

Proof. (i) =⇒ (ii): Step 1: We claim f⊕H and g⊕H lie in the same spinor genus.
This follows quickly from the results of [C, §11.3], which the interested reader will
now wish to consult for notation. Especially, the Corollary to Lemma 11.3.6 reads:
“If we show Up ⊂ θ(Λp) for all [prime numbers] p, then the genus of Λ consists of
a single spinor genus.” Identifying integral forms with their corresponding lattices,
put Λ = f ⊕ H. By the remark immediately preceding Lemma 11.3.8 we have,
for all prime numbers p, θ(Λp) ⊃ θ(Hp). Further, by [C, Lemmas 11.3.7, 11.3.8],
θ(Hp) ⊃ Up. Therefore Up ⊂ θ(Λp) holds for all p.
Step 2: Since (f ⊕H)⊗Q is nondegenerate, indefinite and of dimension at least 3,
by Eichler’s Theorem [Ei52] its spinor genus consists of a single class.
(ii) =⇒ (i): Suppose f ⊕ H ∼=Z g ⊕ H. Then f ⊕ H ∼=R g ⊕ H, so by Witt
Cancellation f ∼=R g. Moreover, for any prime number p, f ⊕ H ∼=Zp g ⊕ H, so
f ∼=Zp g by Lemma 6.2. Thus g(f) = g(g). �

Remark 6.4. The statement of Theorem 6.3 appears in [CS, p. 378]: “[M]uch
of the importance of the genus...arises from the fact that two forms f and g are

in the same genus if and only if f ⊕
[

0 1
1 0

]
and g ⊕

[
0 1
1 0

]
are integrally

equivalent. This follows from properties of the spinor genus.” (In terms of our
setup, the authors are speaking about the even bilinear lattices associated to integral
quadratic forms.) But so far as we know the literature does not contain a proof.
The above agument was supplied by A. Kumar at our request [K].

6.3. The Proof.

Proof. Let q be a positive integral Euclidean form. Let Λ be the even positive
lattice corresponding to q, so Λ has covering radius less than

√
2. Consider the

Lorentzian lattice L = Λ⊕U corresponding to the indefinite integral form q⊕H.
We may represent elements of L as triples (λ,m, n) with λ ∈ Λ, m,n ∈ Z. Denoting
the induced bilinear form (x, y) 7→ q(x+ y)− q(x)− q(y) on Λ simply as x · y, the
induced bilinear form on L is

(λ1,m1, n1) · (λ2,m2, n2) = λ1 · λ2 +m1n2 +m2n1.

Let ℓ ∈ L be a primitive isotropic vector. The bilinear form on L induces a well-
defined bilinear form on the lattice

E(ℓ) = ℓ⊥/⟨ℓ⟩.
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We claim that E(ℓ) ⊗ Q ∼= Λ ⊗ Q. Indeed, since ℓ is an isotropic vector in the
nondegenerate quadratic space L⊗Q, there is an isomorphism Φ : L⊗Q → H⊕V ′

with Φ(ℓ) = e2. By Witt Cancellation, V ′ ∼= Λ⊗Q, so in particular V ′ is positive.
We have ℓ⊥ = Φ−1(e⊥2 ) = ⟨e2⟩ ⊕ V ′ and thus

ℓ⊥/⟨ℓ⟩ ∼= (e2 ⊕ V ′)/⟨e2⟩ ∼= V ′ ∼= Λ⊗Q.

In particular, E(ℓ) is positive. Further, the Z-isomorphism class of E(ℓ) depends
only on the (AutL)-orbit of ℓ.

Suppose Λ′ is a positive even lattice in the same genus as Λ. By Theorem 6.3
there is an isomorphism Φ : Λ′ ⊕ U → Λ ⊕ U , and then Λ′ ∼= E(Φ(e2)). Thus to
prove the theorem it suffices to show that for every primitive isotropic vector ℓ ∈ L,
there is Φ ∈ AutL such that Φℓ = ±e2 = ±(0, 0, 1): then ±Φℓ = e2 = (0, 0, 1) and

Λ′ ∼= E(ℓ) ∼= E(e2) ∼= Λ.

We will show this by performing a sequence of reflections in special root vectors of
L. For λ ∈ Λ, we define

λ̃ =

(
λ, 1, 1− λ · λ

2

)
∈ L.

Then λ̃ is a root, i.e., λ̃ · λ̃ = 2. Recall that for an anisotropic vector v in a
quadratic space (V, q) over a field K of characteristic different from 2 we can build
an isometry of V , reflection through v:

sv : x 7→ x−
(
2x · v
v · v

)
v.

For an anisotropic vector v in a quadratic Z-lattice, sv need not be integrally de-
fined, but it is if v · v = 2. Thus each λ ∈ Λ yields a reflection sλ̃.

Let z = (ξ, a, b) be a primitive isotropic vector, so

−2ab = ξ2.

• Since z is primitive isotropic, if one of a, b is 0, then (since Λ is anisotropic), ξ = 0
and the other of a, b is ±1.

• Suppose |b| < |a|. Then

z · 0̃ = (ξ, a, b) · (0, 1, 1) = a+ b,

and

s0̃(z) = z − (z · 0̃)0̃ = (ξ,−b,−a).

• Therefore we may assume |a| ≤ |b|. If a = 0, then as above b = ±1 so±z = (0, 0, 1)
and we’re done. So we may assume a ̸= 0. By replacing z with −z if necessary we

may assume a > 0. Since b = −ξ2

2a and 2a2 ≤ |2ab| = ξ2, so
(

ξ
a

)2
≥ 2. Applying

the Euclidean condition, there is λ ∈ Λ \ {0} with(
ξ

a
− λ

)2

< 2.
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Put

(4) a′ =
a

2

(
ξ

a
− λ

)2

,

b′ = b− (a− a′)

(
1− λ2

2

)
=

−ξ2

2a
− (a− a′)

(
1− λ2

2

)
.

Then

z · λ̃ = (ξ, a, b) · (λ, 1, 1− λ2

2
) = a− a′,

so a′ ∈ Z. Finally, put

z′ = sλ̃(z) = (ξ − (a− a′)λ, a′, b′) = (ξ′, a′, b′),

say. If a′ = 0, then sλ̃(z) = (0, 0,±1), and we’re done. So we may assume a′ ̸= 0.
Then (4) gives |a′| < |a| and a′ > 0; it follows that 0 < a−a′ < a. Since −2ab = ξ2,
b < 0; and since

−2a′b′ = (ξ − (a− a′)λ)
2
,

b′ < 0. Since λ2 ≥ 2, we have 1− λ2

2 ≤ 0, and thus

(a− a′)(1− λ2

2
) ≤ 0.

Since

b′ = b− (a− a′)

(
1− λ2

2

)
,

we conclude |b′| ≤ |b|. Therefore we find that z = (ξ, a, b) lies in the same (AutL)-
orbit as z′ = (ξ′, a′, b′) with |a′| + |b′| < |a| + |b|. Continuing in this way, we
eventually generate an element zk = (ξk, ak, bk) in the (AutL)-orbit of z with
akbk = 0 and thus ±zk = (0, 0, 1). �

6.4. The Positive Euclidean Integral Forms Reclassified.

As mentioned above, in view of Theorem 6.1 we get a new proof of Theorem 1.6 by
running through the Kirschmer-Lorch list of primitive, positive class number one
integral quadratic forms available at

www.math.rwth-aachen.de/∼Gabriele.Nebe/LATTICES/index.html#Watson

and computing the Euclideanities of all the forms. A version of their list with
Euclideanities included is available at

http://www.math.uga.edu/∼pete/Class.Number.One.With.Euclideanities.txt

From this list we extract the 67 primitive positive class number one Euclidean
integral forms. In precisely three cases we have E(q) < 1

2 : namely E(x2) = 1
4 and

E(x2+xy+y2) = 1
3 . As discussed in the proof of Theorem 5.9b), this leads to three

more Euclidean forms, 2x2, 3x2 and 2(x2 + xy+ y2). The binary forms on this list
are precisely those of Corollary 5.2, removing the dependence on GRH. Our list of
70 Euclidean forms coincides with the list of [Ne03] augmented with the form of
Remark 1.7. The forms are recorded in Table 3.
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6.5. Remark on the Sharpness of Conjecture 2.

As mentioned in the introduction to [Ne03], it is also of interest to classify in-

tegral lattices Λ in Euclidean n-space with with covering radius R =
√
2.

This classification is not yet complete, but Nebe’s method yields several lattices
with covering radius

√
2 and class number greater than 1. A more dramatic ex-

ample is the Leech lattice ΛL, which has covering radius
√
2 [CPS82], whereas a

positive integral form of class number one has at most 10 variables [Wa63a]. In fact,
Niemeier showed that there are precisely 24 even unimodular lattices of dimension
24 [Ni73]. It follows from the Lorentzian characterization of the genus and the fact
that any two indefinite unimodular lattices of the same signature and type (i.e.,
even or odd) are isomorphic [S, § V.2.2] that the genus of ΛL consists of all 24 even
unimodular lattices of dimension 24: thus the class number of ΛL is 24.
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Table 1: Primitive Positive ADC Binaries: (A,B,C) = Ax2 + Bxy + Cy2

(1, 1, 1) (1, 0, 1) (1, 1, 2) (1, 0, 2) (1, 1, 3) (1, 0, 3) (1, 1, 4) (2, 1, 2)
(1, 1, 5) (1, 0, 5) (2, 2, 3) (1, 0, 6) (2, 0, 3) (1, 1, 9) (3, 1, 3) (2, 1, 5)

(1, 0, 10) (2, 0, 5) (1, 1, 11) (1, 1, 13) (3, 3, 5) (1, 0, 13) (2, 2, 7) (2, 1, 7)
(3, 2, 5) (1, 1, 17) (3, 2, 6) (1, 0, 21) (2, 2, 11) (3, 0, 7) (5, 4, 5) (1, 0, 22)

(2, 0, 11) (1, 1, 23) (5, 3, 5) (1, 1, 29) (5, 5, 7) (1, 0, 30) (2, 0, 15) (3, 0, 10)
(5, 0, 6) (1, 1, 31) (3, 3, 11) (1, 0, 33) (2, 2, 17) (3, 0, 11) (6, 6, 7) (5, 2, 7)

(1, 0, 37) (2, 2, 19) (3, 1, 13) (1, 1, 41) (1, 0, 42) (2, 0, 21) (3, 0, 14) (6, 0, 7)
(5, 4, 10) (1, 1, 47) (7, 3, 7) (1, 1, 49) (3, 3, 17) (5, 5, 11) (7, 1, 7) (3, 1, 17)
(5, 1, 11) (1, 0, 57) (2, 2, 29) (3, 0, 19) (6, 6, 11) (1, 0, 58) (2, 0, 29) (1, 1, 59)
(5, 5, 13) (5, 1, 13) (3, 2, 22) (6, 2, 11) (5, 4, 14) (7, 4, 10) (1, 1, 67) (3, 3, 23)
(5, 2, 14) (7, 2, 10) (1, 0, 70) (2, 0, 35) (5, 0, 14) (7, 0, 10) (5, 3, 15) (7, 4, 11)
(3, 2, 26) (6, 2, 13) (1, 0, 78) (2, 0, 39) (3, 0, 26) (6, 0, 13) (3, 1, 27) (7, 6, 13)
(1, 0, 85) (2, 2, 43) (5, 0, 17) (10, 10, 11) (7, 3, 13) (1, 0, 93) (2, 2, 47) (3, 0, 31)
(6, 6, 17) (7, 2, 14) (1, 1, 101) (11, 9, 11) (1, 0, 102) (2, 0, 51) (3, 0, 34) (6, 0, 17)

(1, 0, 105) (2, 2, 53) (3, 0, 35) (5, 0, 21) (6, 6, 19) (7, 0, 15) (10, 10, 13) (11, 8, 11)
(1, 1, 107) (7, 7, 17) (1, 1, 109) (3, 3, 37) (5, 5, 23) (11, 7, 11) (5, 2, 23) (10, 8, 13)
(1, 1, 121) (3, 3, 41) (7, 7, 19) (11, 1, 11) (1, 0, 130) (2, 0, 65) (5, 0, 26) (10, 0, 13)
(1, 0, 133) (2, 2, 67) (7, 0, 19) (13, 12, 13) (7, 6, 21) (11, 8, 14) (1, 1, 139) (3, 3, 47)
(5, 5, 29) (13, 11, 13) (5, 4, 29) (10, 6, 15) (11, 2, 13) (7, 6, 22) (11, 6, 14) (1, 1, 149)
(5, 5, 31) (7, 7, 23) (13, 9, 13) (5, 2, 31) (10, 8, 17) (1, 1, 157) (3, 3, 53) (11, 11, 17)

(13, 7, 13) (5, 3, 33) (11, 3, 15) (1, 0, 165) (2, 2, 83) (3, 0, 55) (5, 0, 33) (6, 6, 29)
(10, 10, 19) (11, 0, 15) (13, 4, 13) (11, 9, 17) (1, 0, 177) (2, 2, 89) (3, 0, 59) (6, 6, 31)
(1, 1, 179) (5, 5, 37) (11, 11, 19) (13, 13, 17) (11, 5, 17) (1, 0, 190) (2, 0, 95) (5, 0, 38)
(10, 0, 19) (13, 11, 17) (11, 8, 19) (1, 1, 199) (3, 3, 67) (5, 5, 41) (15, 15, 17) (11, 4, 19)
(13, 8, 17) (1, 0, 210) (2, 0, 105) (3, 0, 70) (5, 0, 42) (6, 0, 35) (7, 0, 30) (10, 0, 21)
(14, 0, 15) (7, 4, 31) (14, 10, 17) (11, 10, 22) (13, 4, 17) (7, 3, 33) (11, 3, 21) (11, 4, 22)
(13, 6, 19) (7, 5, 35) (11, 5, 23) (13, 1, 19) (11, 3, 23) (1, 0, 253) (2, 2, 127) (11, 0, 23)

(17, 12, 17) (7, 3, 37) (7, 2, 37) (14, 12, 21) (7, 2, 38) (14, 2, 19) (1, 0, 273) (2, 2, 137)
(3, 0, 91) (6, 6, 47) (7, 0, 39) (13, 0, 21) (14, 14, 23) (17, 8, 17) (11, 4, 26) (13, 4, 22)
(5, 3, 57) (15, 3, 19) (7, 6, 42) (11, 2, 26) (13, 2, 22) (14, 6, 21) (1, 1, 289) (3, 3, 97)
(5, 5, 59) (7, 7, 43) (11, 11, 29) (15, 15, 23) (17, 1, 17) (19, 17, 19) (5, 4, 61) (10, 6, 31)

(11, 7, 29) (11, 6, 29) (17, 16, 22) (17, 7, 19) (13, 8, 26) (17, 2, 19) (1, 0, 330) (2, 0, 165)
(3, 0, 110) (5, 0, 66) (6, 0, 55) (10, 0, 33) (11, 0, 30) (15, 0, 22) (1, 0, 345) (2, 2, 173)
(3, 0, 115) (5, 0, 69) (6, 6, 59) (10, 10, 37) (15, 0, 23) (19, 8, 19) (13, 11, 29) (5, 3, 71)
(1, 0, 357) (2, 2, 179) (3, 0, 119) (6, 6, 61) (7, 0, 51) (14, 14, 29) (17, 0, 21) (19, 4, 19)
(1, 1, 359) (5, 5, 73) (7, 7, 53) (19, 3, 19) (11, 3, 33) (17, 11, 23) (13, 1, 29) (1, 0, 385)
(2, 2, 193) (5, 0, 77) (7, 0, 55) (10, 10, 41) (11, 0, 35) (14, 14, 31) (22, 22, 23) (17, 3, 23)
(7, 6, 57) (14, 8, 29) (17, 2, 23) (19, 6, 21) (11, 9, 39) (13, 9, 33) (5, 1, 83) (15, 9, 29)
(7, 6, 61) (14, 8, 31) (5, 2, 86) (10, 2, 43) (15, 12, 31) (17, 16, 29) (13, 4, 34) (17, 4, 26)

(11, 6, 41) (22, 16, 23) (5, 3, 89) (13, 7, 35) (13, 12, 37) (19, 14, 26) (1, 0, 462) (2, 0, 231)
(3, 0, 154) (6, 0, 77) (7, 0, 66) (11, 0, 42) (14, 0, 33) (21, 0, 22) (7, 4, 67) (13, 8, 37)

(14, 10, 35) (21, 18, 26) (13, 9, 39) (17, 5, 29) (13, 6, 39) (23, 20, 26) (1, 1, 499) (3, 3, 167)
(5, 5, 101) (7, 7, 73) (15, 15, 37) (19, 19, 31) (21, 21, 29) (23, 11, 23) (11, 2, 46) (22, 2, 23)
(7, 3, 73) (19, 13, 29) (7, 2, 73) (13, 12, 42) (14, 12, 39) (21, 12, 26) (11, 1, 47) (19, 17, 31)

(5, 1, 107) (15, 9, 37) (11, 9, 51) (17, 9, 33) (17, 10, 34) (19, 12, 31) (5, 4, 113) (10, 6, 57)
(15, 6, 38) (19, 6, 30) (7, 4, 82) (14, 4, 41) (17, 10, 35) (21, 18, 31) (7, 4, 86) (14, 4, 43)
(5, 2, 122) (10, 2, 61) (15, 12, 43) (23, 18, 30) (5, 3, 123) (15, 3, 41) (11, 4, 59) (17, 2, 38)
(19, 2, 34) (22, 18, 33) (19, 16, 38) (23, 6, 29) (17, 11, 41) (23, 1, 29) (7, 1, 97) (21, 15, 35)
(13, 1, 53) (17, 13, 43) (11, 10, 65) (13, 10, 55) (22, 12, 33) (26, 16, 29) (19, 10, 38) (23, 8, 31)

(13, 10, 59) (26, 16, 31) (1, 1, 751) (3, 3, 251) (7, 7, 109) (11, 11, 71) (13, 13, 61) (21, 21, 41)
(29, 19, 29) (31, 29, 31) (11, 4, 71) (13, 8, 61) (22, 18, 39) (26, 18, 33) (19, 18, 46) (23, 18, 38)
(11, 8, 74) (17, 2, 47) (22, 8, 37) (31, 30, 33) (11, 6, 74) (13, 2, 62) (22, 6, 37) (26, 2, 31)

(17, 15, 51) (19, 5, 43) (1, 1, 829) (3, 3, 277) (5, 5, 167) (13, 13, 67) (15, 15, 59) (17, 17, 53)
(29, 7, 29) (31, 23, 31) (13, 5, 65) (23, 7, 37) (17, 6, 51) (19, 8, 46) (23, 8, 38) (31, 28, 34)
(13, 2, 67) (19, 4, 46) (23, 4, 38) (26, 24, 39) (13, 9, 69) (23, 9, 39) (11, 8, 83) (17, 4, 53)

(22, 14, 43) (33, 30, 34) (11, 10, 85) (17, 10, 55) (22, 12, 43) (31, 24, 34) (13, 1, 73) (17, 9, 57)
(19, 9, 51) (29, 27, 39) (7, 6, 138) (14, 6, 69) (21, 6, 46) (23, 6, 42) (13, 6, 78) (17, 14, 62)
(26, 6, 39) (31, 14, 34) (17, 5, 61) (29, 13, 37) (17, 6, 62) (23, 12, 47) (29, 24, 41) (31, 6, 34)
(13, 2, 82) (23, 8, 47) (26, 2, 41) (31, 24, 39) (19, 3, 57) (23, 1, 47) (7, 2, 158) (14, 2, 79)
(19, 8, 59) (35, 30, 38) (11, 2, 101) (19, 14, 61) (22, 20, 55) (33, 24, 38) (11, 6, 102) (17, 6, 66)
(22, 6, 51) (33, 6, 34) (13, 6, 87) (26, 20, 47) (29, 6, 39) (31, 10, 37) (13, 3, 87) (19, 11, 61)

(23, 19, 53) (29, 3, 39) (11, 10, 110) (22, 10, 55) (29, 4, 41) (33, 12, 37) (19, 3, 67) (31, 1, 41)
(7, 3, 183) (17, 11, 77) (21, 3, 61) (35, 25, 41) (13, 12, 102) (17, 12, 78) (26, 12, 51) (34, 12, 39)

(11, 7, 119) (17, 7, 77) (29, 27, 51) (33, 15, 41) (19, 6, 69) (23, 6, 57) (37, 34, 43) (38, 32, 41)
(13, 10, 106) (23, 4, 59) (26, 10, 53) (39, 36, 43) (1, 0, 1365) (2, 2, 683) (3, 0, 455) (5, 0, 273)

(6, 6, 229) (7, 0, 195) (10, 10, 139) (13, 0, 105) (14, 14, 101) (15, 0, 91) (21, 0, 65) (26, 26, 59)
(30, 30, 53) (35, 0, 39) (37, 4, 37) (42, 42, 43) (19, 9, 73) (31, 19, 47) (11, 3, 141) (31, 25, 55)
(33, 3, 47) (37, 13, 43) (19, 1, 83) (23, 15, 71) (11, 2, 146) (22, 2, 73) (31, 20, 55) (33, 24, 53)

(11, 8, 151) (17, 4, 97) (22, 14, 77) (34, 30, 55) (17, 16, 101) (23, 14, 74) (34, 18, 51) (37, 14, 46)
(23, 10, 74) (29, 22, 62) (31, 22, 58) (37, 10, 46) (19, 18, 94) (29, 16, 61) (37, 32, 53) (38, 18, 47)
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Table 1: Primitive Positive ADC Binaries: (A,B,C) = Ax2 + Bxy + Cy2

(11, 7, 161) (23, 7, 77) (31, 23, 61) (33, 15, 55) (13, 6, 138) (19, 2, 94) (23, 6, 78) (26, 6, 69)
(29, 20, 65) (37, 36, 57) (38, 2, 47) (39, 6, 46) (13, 11, 143) (29, 15, 65) (31, 1, 59) (37, 23, 53)
(7, 5, 265) (21, 9, 89) (31, 13, 61) (35, 5, 53) (19, 14, 101) (23, 8, 82) (38, 24, 53) (41, 8, 46)

(17, 12, 113) (23, 2, 82) (34, 22, 59) (41, 2, 46) (7, 1, 277) (19, 15, 105) (21, 15, 95) (35, 15, 57)
(19, 17, 109) (23, 3, 87) (29, 3, 69) (37, 21, 57) (17, 4, 118) (29, 24, 74) (34, 4, 59) (37, 24, 58)
(19, 2, 106) (31, 16, 67) (38, 2, 53) (41, 36, 57) (17, 15, 129) (23, 3, 93) (31, 3, 69) (43, 15, 51)
(7, 4, 307) (14, 10, 155) (21, 18, 106) (29, 2, 74) (31, 10, 70) (35, 10, 62) (37, 2, 58) (42, 18, 53)

(13, 2, 167) (26, 24, 89) (29, 22, 79) (43, 36, 58) (19, 5, 115) (23, 5, 95) (41, 31, 59) (43, 33, 57)
(11, 3, 201) (33, 3, 67) (41, 29, 59) (43, 25, 55) (13, 8, 173) (19, 6, 118) (26, 18, 89) (38, 6, 59)
(13, 4, 178) (17, 12, 138) (23, 12, 102) (26, 4, 89) (34, 12, 69) (37, 26, 67) (39, 30, 65) (46, 12, 51)
(29, 15, 87) (37, 7, 67) (43, 25, 61) (47, 35, 59) (11, 6, 249) (19, 10, 145) (22, 16, 127) (29, 10, 95)
(33, 6, 83) (38, 28, 77) (55, 50, 61) (57, 48, 58) (37, 2, 74) (41, 32, 73) (43, 24, 67) (47, 12, 59)

(13, 3, 213) (37, 25, 79) (39, 3, 71) (47, 5, 59) (17, 7, 173) (29, 1, 101) (43, 29, 73) (51, 27, 61)
(13, 12, 237) (17, 14, 182) (26, 14, 119) (34, 14, 91) (37, 20, 85) (39, 12, 79) (51, 48, 71) (53, 40, 65)
(11, 7, 301) (43, 7, 77) (47, 23, 73) (55, 15, 61) (11, 8, 326) (22, 8, 163) (23, 16, 158) (33, 30, 115)
(46, 16, 79) (47, 14, 77) (55, 30, 69) (59, 36, 66) (23, 7, 161) (47, 29, 83) (53, 17, 71) (59, 39, 69)
(17, 2, 218) (29, 12, 129) (34, 2, 109) (43, 12, 87) (47, 28, 83) (51, 36, 79) (58, 46, 73) (59, 44, 71)

(29, 27, 149) (37, 13, 113) (41, 3, 101) (47, 41, 97) (17, 16, 257) (29, 8, 149) (31, 4, 139) (34, 18, 129)
(43, 18, 102) (51, 18, 86) (58, 50, 85) (62, 58, 83) (17, 14, 287) (29, 20, 170) (34, 20, 145) (41, 14, 119)
(51, 48, 106) (53, 48, 102) (58, 20, 85) (73, 68, 82) (13, 4, 373) (23, 20, 215) (26, 22, 191) (39, 30, 130)
(43, 20, 115) (46, 26, 109) (65, 30, 78) (69, 66, 86) (19, 7, 259) (31, 9, 159) (37, 7, 133) (41, 39, 129)
(43, 39, 123) (53, 9, 93) (57, 45, 95) (59, 37, 89) (19, 14, 266) (23, 6, 218) (37, 16, 137) (38, 14, 133)
(46, 6, 109) (47, 40, 115) (61, 54, 94) (74, 58, 79) (17, 15, 465) (31, 15, 255) (43, 9, 183) (47, 1, 167)

(51, 15, 155) (61, 9, 129) (71, 49, 119) (85, 15, 93) (11, 3, 771) (33, 3, 257) (41, 19, 209) (55, 25, 157)
(61, 1, 139) (67, 11, 127) (77, 63, 123) (79, 23, 109) (23, 1, 443) (31, 17, 331) (41, 9, 249) (43, 3, 237)

(69, 45, 155) (79, 3, 129) (83, 9, 123) (93, 45, 115)

Table 2: Positive ADC Ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) class number Euclideanity
1 (1,1,1,1,1,1) 1 1

2
2 (1,1,0,1,0,1) 1 7

12
3 (1,0,0,1,0,1) 1 3

4
4 (1,1,1,1,1,2) 1 3

4
5 (1,1,0,1,0,2) 1 5

6
6 (1,0,1,1,1,2) 1 2

3
7 (1,0,1,1,0,2) 1 23

28
8 (1,0,0,1,0,2) 1 1
9 (1,1,0,1,0,3) 1 13

12
10 (1,0,1,1,1,3) 1 9

10
11 (1,1,1,2,2,2) 1 4

5
12 (1,0,1,1,0,3) 2 47

44
13 (1,0,0,1,0,3) 1 5

4
14 (1,1,1,2,1,2) 1 1
15 (1,0,0,2,2,2) 1 11

12
16 (1,1,0,2,1,2) 1 47

52
17 (1,1,1,1,1,5) 1 3

2
18 (1,0,1,1,0,4) 1 79

60
19 (1,0,0,2,1,2) 2 21

20
20 (1,0,0,2,0,2) 1 5

4
21 (1,1,1,2,2,3) 2 71

68
22 (1,0,1,2,2,3) 1 1
23 (2,2,2,2,1,2) 1 7

8
24 (1,0,0,1,0,5) 1 7

4
25 (1,1,0,2,1,3) 1 23

20
26 (1,0,0,2,2,3) 1 23

20
27 (1,1,0,2,0,3) 2 37

28
28 (1,0,1,2,1,3) 1 95

84
29 (1,0,1,2,0,3) 1 29

22
30 (1,0,0,1,0,6) 1 2
31 (1,0,0,2,0,3) 1 3

2
32 (1,1,1,2,2,4) 1 31

24
33 (2,1,1,2,-1,2) 1 19

20
34 (2,2,2,2,2,3) 1 5

4
35 (1,1,0,1,0,10) 1 17

6
36 (1,1,1,3,1,3) 1 3

2
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Table 2: Positive ADC Ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) class number Euclideanity
37 (1,0,0,2,0,4) 1 7

4
38 (1,1,1,2,1,5) 1 7

4
39 (1,0,0,2,2,5) 1 59

36
40 (1,0,0,3,0,3) 1 7

2
41 (1,0,1,3,3,4) 1 4

3
42 (1,0,0,2,0,5) 1 2
43 (1,0,1,1,1,11) 1 121

42
44 (1,0,0,2,2,6) 1 83

44
45 (2,1,0,2,0,3) 1 31

20
46 (1,1,1,3,3,5) 1 37

23
47 (1,0,0,2,0,6) 1 9

4
48 (1,1,0,2,0,7) 1 65

28
49 (1,1,1,4,3,4) 1 8

5
50 (1,0,0,3,2,5) 1 65

28
51 (2,2,0,2,0,5) 1 23

6
52 (2,2,0,3,0,3) 1 33

20
53 (1,0,0,3,3,6) 2 55

28
54 (1,0,1,2,0,9) 1 197

35
55 (2,1,1,2,1,5) 1 2
56 (2,0,0,3,0,3) 1 2
57 (1,1,0,4,0,5) 2 139

60
58 (1,1,1,5,4,5) 1 25

13
59 (1,0,0,1,0,21) 1 23

4
60 (1,1,0,1,0,30) 1 47

6
61 (2,2,0,3,2,5) 1 171

92
62 (2,0,1,3,3,5) 1 79

44
63 (2,1,1,2,-1,7) 1 11

5
64 (2,2,0,3,0,5) 1 43

20
65 (2,0,0,3,2,5) 1 59

28
66 (1,0,0,3,0,10) 1 7

2
67 (1,1,0,3,0,11) 2 157

44
68 (3,0,3,3,3,5) 1 25

14
69 (1,0,0,2,2,18) 1 683

140
70 (3,1,2,3,-2,5) 1 51

28
71 (2,0,0,5,5,5) 1 13

6
72 (2,0,2,3,0,7) 1 137

52
73 (2,1,1,5,-3,5) 1 107

52
74 (2,2,0,2,0,15) 1 53

12
75 (1,0,0,5,0,10) 1 4
76 (2,0,2,3,3,11) 1 121

39
77 (2,0,0,5,0,6) 1 13

4
78 (3,0,0,3,0,7) 1 13

4
79 (3,3,2,5,1,6) 2 183

68
80 (5,4,3,5,-3,5) 1 17

8
81 (1,0,0,10,10,10) 1 43

12
82 (3,1,0,3,0,10) 1 53

14
83 (1,0,0,3,0,30) 1 17

2
84 (5,5,0,5,0,6) 1 19

6
85 (1,0,0,6,6,21) 1 307

52
86 (3,1,0,3,0,14) 1 67

14
87 (3,0,0,7,0,7) 1 17

4
88 (2,0,0,5,0,15) 1 11

2
89 (5,0,0,6,2,6) 1 107

28
90 (2,0,0,6,0,15) 1 23

4
91 (2,2,2,11,1,11) 1 43

8
92 (3,0,0,10,10,10) 1 49

12
93 (6,2,0,6,0,7) 1 121

28
94 (1,0,1,13,13,23) 1 529

78
95 (1,0,0,10,0,30) 1 41

4
96 (1,0,0,21,0,21) 1 43

4
97 (5,0,0,6,0,15) 1 13

2
98 (2,2,0,7,0,39) 1 605

52
99 (1,1,0,9,0,70) 1 1387

70
100 (3,3,3,17,7,17) 1 289

39
101 (3,0,0,10,0,30) 1 43

4
102 (2,2,0,18,0,35) 1 1873

140
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Table 2: Positive ADC Ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) class number Euclideanity
103 (6,0,6,13,0,21) 1 463

52

In the following table, we specify an integral quadratic form q(x1, . . . , xn) by giving a vector in Z
(n)(n+1)

2 ,
the coefficients on and below the main diagonal – in the order a11, a21, a22, a31, . . . , ann – of the
Gram matrix Mq of q, i.e., the symmetric matrix such that if x is the column vector (x1, . . . , xn), then

q(x1, . . . , xn) = xTMqx.

Table 3: Positive Euclidean Forms:

Lower Gram Coefficients Euclideanity
[1] 1/4
[2] 1/2
[3] 3/4

[1, 1/2, 1] 1/3
[1, 0, 1] 1/2

[1, 1/2, 2] 4/7
[2, 1, 2] 2/3
[1, 0, 2] 3/4

[2, 1/2, 2] 4/5
[1, 1/2, 3] 9/11

[2, 1, 3] 9/10
[1, 1/2, 1,−1/2, 0, 1] 1/2

[1, 1/2, 1, 0, 0, 1] 7/12
[1, 0, 1,−1/2, 1/2, 2] 2/3
[1, 1/2, 1, 1/2, 1/2, 2] 3/4

[1, 0, 1, 0, 0, 1] 3/4
[1,−1/1, 2, 1/2,−1, 2] 4/5

[1, 0, 1, 1/2, 0, 2] 23/28
[1, 1/2, 1, 0, 0, 2] 5/6

[2,−1/2, 2,−1,−1/2, 2] 7/8
[1, 0, 1,−1/2, 1/2, 3] 9/10
[1, 1/2, 2, 0, 1/2, 2] 47/52

[1, 0, 2, 0, 1, 2] 11/12
[2, 1/2, 2, 1/2,−1/2, 2] 19/20

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 1] 1/2
[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1] 3/5

[1, 1/2, 1, 0, 0, 1, 0, 0, 1/2, 1] 2/3
[1, 0, 1, 0, 1/2, 1, 0,−1/2, 0, 1] 3/4
[1, 1/2, 1, 1/2, 0, 1, 1/2, 0, 0, 2] 3/4
[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 2] 4/5

[1, 1/2, 1, 1/2, 0, 2, 1/2, 1/2, 1, 2] 4/5
[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 2] 14/17

[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1] 5/6
[1, 1/2, 1, 1/2, 0, 1, 0, 1/2, 0, 2] 11/13

[1, 1/2, 1, 0, 0, 1, 0, 0, 1/2, 2] 19/21
[1, 0, 1, 1/2, 1/2, 2, 1/2, 0, 1, 2] 10/11

[1, 0, 1, 0, 0, 1, 0,−1/2,−1/2, 2] 11/12
[1, 1/2, 1, 1/2, 0, 2, 0, 1/2, 1/2, 2] 13/14

[1, 1/2, 2, 0, 1, 2, 0, 1/2, 1, 2] 29/30
[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 1/2, 1/2, 1,−1/2, 0,−1/2,−1/2, 1] 5/8

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 0, 1, 0, 1/2, 1/2, 0, 1] 3/4
[1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1/2, 1/2, 1/2, 1] 3/4

[1, 1/2, 1,−1/2, 0, 1, 0, 0, 0, 1,−1/2,−1/2, 1/2,−1/2, 2] 33/40
[1, 1/2, 1,−1/2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1/2, 1] 5/6
[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1, 0, 0, 1/2, 1/2, 1] 17/20

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1, 0, 0, 0, 1/2, 2] 6/7
[1, 1/2, 1, 1/2, 1/2, 1,−1/2, 0,−1/2, 1,−1/2,−1/2,−1/2, 1/2, 2] 7/8

[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1, 0, 1/2, 0, 0, 1] 11/12
[1, 0, 1, 0, 1/2, 1, 0, 0, 0, 1,−1/2,−1/2, 0, 1/2, 2] 13/14

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 0, 1, 0, 1/2, 1/2, 0, 2] 41/44
[1, 1/2, 1, 1/2, 0, 1, 0, 1/2, 0, 2, 0, 0, 1/2, 1, 2] 19/20

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0,−1/2, 0, 0, 1] 2/3
[1, 0, 1, 1/2,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1] 3/4

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/2, 1] 5/6
[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1] 6/7

[1,−1/2, 1,−1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 0, 0, 1/2, 1,−1/2, 1/2, 0, 0,−1/2, 2] 13/15
[1, 0, 1, 0, 1/2, 1, 0, 1/2, 1/2, 1, 0, 1/2, 1/2, 1/2, 1, 0,−1/2, 0,−1/2,−1/2, 1] 7/8
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Table 3: Positive Euclidean Forms:

Lower Gram Coefficients Euclideanity
[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1, 1/2, 0, 1/2, 0, 0, 2] 10/11

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/2, 1] 14/15
[1,−1/2, 1, 1/2, 0, 1, 1/2,−1/2, 1/2, 1, 0, 0, 0, 0, 1,−1/2, 1/2,−1/2,−1/2,−1/2, 2] 19/20

[1, 0, 1, 0, 1/2, 1, 0, 1/2, 0, 1, 0,−1/2, 0,−1/2, 1, 1/2,−1/2,−1/2,−1/2, 1/2, 2] 22/23
[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 0, 0, 1] 3/4

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 1/2, 1/2, 1,−1/2, 0,−1/2, 1/2, 1, . . .] 7/8
[. . . 1/2, 1/2, 1/2, 1/2,−1/2, 1, 1/2, 1/2, 1/2, 1/2,−1/2, 1/2, 1]

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0,−1/2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] 11/12
[1, 1/2, 1, 1/2, 0, 1, 1/2, 1/2, 0, 1,−1/2,−1/2,−1/2, . . .] 19/20

[. . . − 1/2, 1,−1/2,−1/2, 0,−1/2, 1/2, 1, 1/2, 0, 0, 1/2, 0, 0, 2]
[1, 1/2, 1, 1/2, 1/2, 1, 0, 0, 0, 1, 0, 0, 0, 1/2, 1,−1/2,−1/2 . . .] 23/24

[. . . − 1/2, 0, 0, 1,−1/2, 0,−1/2, 0, 0, 1/2, 1]
[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, . . .] 1/2

[. . . 1, 1/2, 0, 1/2, 0, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1]
[1,−1/2, 1,−1/2, 1/2, 1,−1/2, 1/2, 1/2, 1, 1/2,−1/2, 0, 0, 1, 1/2,−1/2, 0, . . .] 4/6
[. . . − 1/2, 1/2, 1, 1/2, 0,−1/2,−1/2, 0, 0, 1,−1/2, 1/2, 0, 0,−1/2,−1/2, 0, 2]

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, 1 . . .] 3/4
[. . . 1/2, 0, 1/2, 0, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, 1, 1/2, 0, 1/2, 0, . . .] 5/6
[. . . 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 1]
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