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Abstract. We continue our study of quadratic forms using Geometry of Num-
bers methods by considering universal quaternary positive definite integral
forms of square discriminant. We give a small multiple theorem for such forms
and use it to prove universality for all nine universal diagonal forms. The most
interesting case is x2+2y2+5z2+10w2, which required computer calculations.

1. Introduction

This is the second in a series of papers exploring Diophantine applications of ge-
ometry of numbers (henceforth “GoN”) and associated elementary combinatorial
number theory. Whereas the first paper [GoN1] treats primes represented by pos-
itive definite integral binary quadratic forms, this paper concerns the universality
of positive definite quaternary integral quadratic forms.

In [He54], Hermite applied GoN methods to give a striking new proof that ev-
ery positive integer is a sum of four squares (Lagrange’s Theorem), many years
before Minkowski’s foundational work in GoN [Mi10]. It is thus remarkable that a
systematic study of the application of GoN methods to universality theorems for
quadratic forms seems not to have been undertaken until now. The closest prece-
dent in the literature is a late paper of L.J. Mordell [Mo66]. Mordell proves in
particular a small multiple theorem for certain diagonal quaternary forms of square
discriminant. Especially, his results apply to the multiplicative forms

qa,b = x2 + ay2 + bz2 + abw2

for a, b ∈ Z+. We generalize this to all forms of square discriminant (Theorem 7).
Although our methods apply to many nondiagonal forms of square discriminant

[GoN3], in the remainder of this paper we concentrate on the diagonal case. Work of
Ramanujan [Ra17] and Dickson [Di27] shows that there are precisely nine universal
diagonal positive definite quaternary integral quadratic forms of square discrimi-
nant. Here we give GoN proofs of the universality of all nine of these forms.

Of these nine forms, seven are multiplicative,

q1,1, q1,2, q1,3, q2,2, q2,3, q2,4, q2,5,

and the universality of the two remaining forms can be rather easily deduced from
these (Theorems 17 and 18). Mordell gives GoN proofs of the universality of q1,1,
q1,2, q1,3 and also alludes to Liouville’s reduction of q2,3 to q1,1 (Theorem 15). Simi-
lar methods can be applied to show universality of the forms q2,2 and q2,4 (Theorems
14 and 16), as Mordell likely knew. Because of [GoN1] we possess certain analo-
gous results for representations of primes by binary quadratic forms, and we make
use of them in the proofs. In [Li45], [Li56], Liouville (briefly!) states how to give
elementary (non-GoN) proofs of the universality of these six multiplicative forms.

This leaves q2,5. This form stymied Liouville, who says he can only prove that it
1
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represents all positive even integers [Li56]. The universality of q2,5 was indeed first
proven by Ramanujan and Dickson, using (non-elementary) representation theo-
rems for certain ternary subforms. Mordell does not mention that there are seven
universal multiplicative forms, and the form q2,5 does not appear in [Mo66].

In [Hu19], Hurwitz gave an elementary proof of Lagrange’s Theorem using quater-
nion arithmetic. Recently Deutsch [De08] gave Hurwitz-style universality proofs for
eight of the nine diagonal universal forms of square discriminant, but not for q2,5.
This lack of success is somewhat puzzling because the relevant quaternion algebra
(

2,5
Q

)

still carries a Euclidean quaternion order, as was shown by Fitzgerald [Fi11].

Using quaternionic methods Fitzgerald showed q2,5 represents 16n for all n ∈ Z+.
Thus it seems that the literature contains no elementary proof of the universality

of q2,5.
1 The main result of the present work, Theorem 19, gives an elementary –

though computational – proof of the universality of q2,5. Moreover, in a key step
of the argument we show that if q2,5 represents 2n then it also represents n. This
step does not use GoN methods and thus could be used to complete the elementary
universality proofs of Liouville and Fitzgerald.

Most of the universality proofs for the first eight forms make use of well-chosen
linear changes of variable. This is one of the oldest tricks of the trade, going back
at least to Euler [EG, 141: July 26, 1749]. However, in the proofs of the first eight
theorems (and in the classical literature) the relevant changes of variable are written
down without any systematic justification. (In [Mo66] Mordell exhibits relations
between these changes of variable and the multiplicative structure of the forms qa,b
via (2), but this is not a complete explanation.) In order to prove the universality of
q2,5, we needed to devise and implement an algorithm to search for these changes of
variable, of which some thousands were required. Our algorithm can be used on the
other eight forms as well, and indeed it forms the basis of the universality proofs
of the nondiagonal forms explored in [GoN3]. Work is in progress on extending
the techniques of this paper to study representations by quadratic forms of square
discriminant in an even number of variables over an S-integer ring in a global field.

This work was done in the context of a VIGRE Research Group at the Univer-
sity of Georgia throughout the 2011-2012 academic year, led by the first author
and with participants the other three authors together with Christopher Drupieski
(postdoc), Brian Bonsignore, Harrison Chapman, Lauren Huckaba, David Krumm,
Allan Lacy Mora, Nham Ngo, Hans Parshall, Alex Rice, James Henry Stankewicz,
Lee Troupe (doctoral students) and Jun Zhang (master’s student).

Acknowledgement: We are grateful to David B. Leep for educating us on the early
history of universal quaternary forms, in particular the results of Liouville.

2. Review of Quadratic Forms

2.1. Quadratic forms over a ring.

Let R be a commutative ring, and let n ∈ Z+. An n-ary quadratic form over

1Added in July, 2012: we recently learned that David B. Leep has found a different elementary
proof of the universality of q2,5.



GONII: UNIVERSAL QUATERNARY QUADRATIC FORMS 3

R is a homogeneous quadratic polynomial

(1) q(v) = q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxjxj ∈ R[x1, . . . , xn].

Two quadratic forms q(v) = q(x1, . . . , xn), q
′(v) = q′(x1, . . . , xn) over R are equiv-

alent over R if there is A ∈ GLn(R) such that q(Av) = q′(v). We write q ∼= q′.
Let q(v) be an n-ary quadratic form over R, and let d ∈ R. We say that q R-

represents d if there exists v ∈ Rn such that q(v) = d. We say that q is isotropic
over R if there exists v ∈ Rn, v 6= (0, . . . , 0) such that q(v) = 0; otherwise q is
anisotropic. We say q is universal over R if q R-represents every element of R.

Base change: Let S be another commutative ring, and let ϕ : R → S be a ring
homomorphism. Given an n-ary quadratic form q over R and such a map ϕ, we
may associate an n-ary quadratic form q/S in the evident way: namely

q/S(x1, . . . , xn) =
∑

1≤i≤j≤n

ϕ(aij)xjxj ∈ S[x1, . . . , xn].

Here we will generally have R = Z, and either ϕ : Z → Q, ϕ : Z → R, or
ϕ : Z → Z/nZ. Base change is useful for showing that q does not represent d ∈ R:
if q R-represents d, then for all homomorphisms ϕ : R → S, q/S S-represents ϕ(d):
indeed, if q(x1, . . . , xn) = d, then q/S(ϕ(x1), . . . , ϕ(xn)) = ϕ(d). (For succinctness

we will say that q S-represents d.) For instance, let R = Z and q = x2 + y2.
Then q does not Z-represent any negative intgers. The formal justification of this
is that in the ordered field R any sum of squares is non-negative, so q does not
even R-represent any negative integers. Moreover, q does not represent any n ≡ 3
(mod 4): taking the map ϕ : Z → Z/4Z, by enumeration of cases one sees that
x2 + y2 = 3 has no solution in Z/4Z.

Suppose that R is a domain of characteristic different from 2 and with fraction
field K. For the n-ary quadratic form q(v) of (1), let Mq = (mij) ∈ Mn(K) be
the matrix with mii = aii for all i and mij =

aij

2
for all i 6= j. Then, putting

v = (x1, . . . , xn)
t, we have

(2) q(v) = vtMqv.

The form q is classical if Mq ∈ Mn(R), or equivalently, aij ∈ 2R for all i 6= j.
Diagonal forms are classical. Two n-ary forms q and q′ are equivalent over R iff
there exists A ∈ GLn(R) with Mq′ = AMqA

t. Then detMq′ = (detA)2 detMq,
which shows that the class disc q of detMq modulo (R×)2 is an invariant of the
equivalence class of q, called the discriminant of q. When R = Z, (Z×)2 = {1}, so
disc q is a well-defined integer. In general we say q is nondegenerate if disc q 6= 0.

Let q1(x1, . . . , xm) be an m-ary quadratic form over R and q2(y1, . . . , yn) be an n-
ary quadratic form over R. We define their direct sum q1⊕q2 to be the (m+n)-ary
form q(x1, . . . , xm, y1, . . . , yn) = q1(x1, . . . , xm) + q2(y1, . . . , yn).

2.2. Quadratic forms over a field of characteristic different from 2.

The theory of quadratic forms simplifies considerably when R = K is a field of
characteristic different from 2. The results that we need are literally from Chapter
1 of the theory of quadratic forms over fields (specifically, from [L, Ch. I]).
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Fact 1 [L, Cor. I.2.4]: Every form q over K is K-equivalent to a diagonal form
(a1, . . . , an) := a1x

2
1 + . . .+ anx

2
n. In other words, there is A ∈ GLn(K) such that

AMqA
t = D(a1, . . . , an), where D(a1, . . . , an) is diagonal with (i, i) entry ai.

The binary form H = (1,−1) plays a distinguished role in the theory.

Fact 2 [L, Thm. 1.3.2]: For a nondegenerate binary form q(x, y) over K, the
following are equivalent:
(i) q is K-equivalent H.
(ii) disc q = −1.
(iii) q is isotropic.

Fact 3 [L, Thm. 1.3.4(2)]: For a nondegenerate quadratic form q over K, the
following are equivalent:
(i) q is isotropic.
(ii) There exists a quadratic form q′ such that q ∼= q′ ⊕H.

A quadratic form is hyperbolic if it is isomorphic to
⊕r

i=1 H for some r ∈ N.

2.3. Totally isotropic subspaces.

We may view an n-ary quadratic form q as a map q : Kn → K. A K-subspace W
of Kn is called totally isotropic for q if q|W ≡ 0.

Fact 4 [L, Thm. 1.3.4(1)]: Let q : Kn → K be a nondegenerate quadratic form,
and let W ⊂ Kn be a totally isotropic subspace of dimension r. Then q ∼= Hr ⊕ q′.

Proposition 1. Let q be a nondegenerate, isotropic quaternary quadratic form over
a field K of characteristic different from 2. The following are equivalent:
(i) q is hyperbolic.
(ii) disc q = 1.
(iii) q admits a two-dimensional totally isotropic subspace.

Proof. (i) =⇒ (ii): A quaternary hyperbolic form q is equivalent to the diagonal
form (1,−1, 1,−1), which has discriminant 1.
(ii) =⇒ (i): Since q is isotropic, by Fact 3, q ∼= H ⊕ q′, with q′ binary. We have

1 = disc q = (discH) · (disc q′) = − disc q′,

so disc q′ = −1. By Fact 2, q′ ∼= H, so q ∼= H⊕ H.
(i) =⇒ (iii): We may assume q = H ⊕ H = (1,−1, 1,−1), in which case W =
〈e1 − e2, e3 − e4〉 is a 2-dimensional totally isotropic subspace.
(iii) =⇒ (i): This follows immediately from Fact 4. �

3. Quaternary Forms of Square Discriminant

3.1. A multiplicative identity.

Lemma 2. (Lagrange [La70]) Let R be a commutative ring, and let
a, b, x1, x2, x3, x4, y1, y2, y3, y4 be elements of R. Then:

(x2
1 + ax2

2 + bx2
3 + abx2

4)(y
2
1 + ay22 + by23 + aby24) = (x1y1 − ax2y2 − bx3y3 − abx4y4)

2

+a(x1y2 + x2y1 + bx3y4 − bx4y3)
2 + b(x1y3 − ax2y4 + x3y1 + ax4y2)

2
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+ab(x1y4 + x2y3 − x3y2 + x4y1)
2.

Proof. The proof is a direct application of Littlewood’s Principle: all purely alge-
braic identities are trivial to prove (though not necessarily trivial to discover). �

Corollary 3. Let R be any commutative ring, let a, b ∈ R, and let qa,b be the
diagonal quadratic form (1, a, b, ab). Then the set of elements of R which are R-
represented by qa,b is multiplicatively closed.

In view of Corollary 3 we call a quadratic form qa,b multiplicative.

3.2. An application of geometry of numbers.

Lemma 4. Let p be an odd prime, and let q(v) be an n-ary quadratic form over
Fp = Z/pZ. If n ≥ 3, then q is isotropic.

Proof. This is a special case of the Chevalley-Warning Theorem [IR, Thm. 10.2.1].
For the convenience of the reader, we give a (yet) more elementary proof.
Step 1: We show that any nondegenerate binary quadratic form q(x, y) over Fp is
universal. By Fact 1 above, we may assume q is diagonal, say q(x, y) = ax2 + by2,
with ab ∈ F×

p . Let d ∈ Fp. We may rewrite the equation q(x, y) = d as

x2 =
d− by2

a
.

Then as x and y range over all elements of Z/pZ, both the left and right hand sides

take on p−1
2

+ 1 = p+1
2

distinct values. Since p < p+1
2

+ p+1
2

, these values sets
cannot be disjoint, which leads to a solution (x, y).
Step 2: It is enough to show every ternary form over Fp is isotropic; since degenerate
forms are isotropic, we may assume q(x, y, z) = ax2 + by2 + cz2 with abc ∈ F×

p . By
Step 1, there are x0, y0 ∈ Fp such that q(x0, y0) = −c, and then q(x0, y0, 1) = 0. �

Theorem 5. Let q(v) be a nondegenerate quaternary integral quadratic form of
square discriminant. For each squarefree positive integer n prime to 2 disc q, there
is an index n2 subgroup Λn ⊂ Z4 such that for all v ∈ Λn, q(v) ≡ 0 (mod n).

Proof. Step 1: Let n = p1 · · · pr, with p1, . . . , pr distinct odd primes. Suppose that
for all 1 ≤ i ≤ r there exists a subgroup Λi of Z4 of index p2i such that for all
v ∈ Λi, q(v) ≡ 0 (mod pi). Then taking Λn =

⋂r
i=1 Λi, an easy Chinese Remainder

Theorem argument gives [Z4 : Λn] = n2 and for all v ∈ Λn, q(v) ≡ 0 (mod n).
Step 2: We are reduced to considering the case n = p for p ∤ 2 disc(q) and a ∈ Z+.
Let q be the reduction of q modulo p. Since p ∤ disc(q), disc q = 1 (mod (F×

p )
2): in

particular q is nondegenerate. By Proposition 1, q admits a 2-dimensional totally
isotropic subspace W ⊂ F4

p. Now reduction modulo p induces an isomorphism of

commutative groups Z4/(pZ4)
∼→ F4

p. Taking Λp = ϕ−1(W ) gives an index p2

subgroup of Z4 such that for all v ∈ Λp, q(v) ≡ 0 (mod p). �

Theorem 6. (Korkine-Zolotarev) Let q(v) be a positive definite real quaternary
quadratic form, and let Λ ⊂ Z4 be a finite index subgroup. Then there exists
0 6= v ∈ Λ such that

q(v) ≤ (4 disc q)
1

4

√

[Z4 : Λ].

Proof. In [Ca, § X.3.2] the result is stated with Λ = Z4. Our version follows: if Λ =
AZ4, replace q(v) with q(Av), of discriminant (detA)2 disc q = [Z4 : Λ]2 disc q. �



6 PETE L. CLARK, JACOB HICKS, KATHERINE THOMPSON, AND NATHAN WALTERS

For a positive definite real quaternary quadratic form q, put

KZ(q) = (4 disc q)
1

4 ,

M(q) =

(

4
√
2

π

)

(disc q)
1

4 =

(

4

π

)

KZ(q).

Theorem 7. Let q(x, y, z, w) be a positive definite integral quadratic form of square
discriminant. Let n ∈ Z+ be squarefree and prime to 2 disc q. Then there exist
x, y, z, w, k ∈ Z such that

q(x, y, z, w) = kn

and

1 ≤ k ≤ ⌊(4 disc q) 1

4 ⌋ = ⌊KZ(q)⌋.
Proof. Applying Theorem 6 to Λn from Theorem 5, we get v ∈ Z4 such that

q(v) ≡ 0 (mod n)

and

(3) 0 < q(v) ≤ (4 disc q)
1

4

√

[Z4 : Λ] = KZ(q) · n.
�

Theorem 6 is classical, but not so easy. One gets a version of Theorem 6 with a
slightly worse constant more easily by applying Minkowski’s Convex Body Theorem
to the ellipsoids ΩR = q(x, y, z, w) ≤ R2: there is a nonzero element v ∈ Λ with

q(v) ≤ 4
√
2

π
(disc q)

1

4

√

[Z4 : Λ]

and thus a version of Theorem 7 with (3) replaced by

(4) 1 ≤ k ≤
⌊

4
√
2

π
(disc q)

1

4

⌋

=
⌊

M(q)⌋ =
⌊

4

π
KZ(q)

⌋

.

In all the cases considered here we can make do with M(q) instead of KZ(q).

4. Nine Universality Theorems

convention: For the remainder of this paper, all quadratic forms considered will
be positive definite quadratic forms over Z, so we make the convention that “form”
means “positive definite quadratic form over Z”, a representation of n means a
Z-representation of the integer n, and “universal” means “positive universal”, i.e.,
the form q integrally represents every positive integer.

4.1. Some history of universal forms.

Recall the following theorem, a high water mark of classical number theory.

Theorem 8. (Lagrange [La70]) Every positive integer is the sum of four squares.

Proof. Apply Corollary 3 with a = b = 1: we get the set of integers Z-represented
by q = (1, 1, 1, 1) is multiplicatively closed. Since 1 = 12 + 02 + 02 + 02 and
2 = 12+12+02+02 are represented by q, it’s enough to show q Z-represents every
odd prime p. Apply Theorem 7 with n = p: there are x, y, z, w, k ∈ Z such that

x2 + y2 + z2 + w2 = kp,



GONII: UNIVERSAL QUATERNARY QUADRATIC FORMS 7

with
1 ≤ k ≤ ⌊(4 disc q) 1

4 ⌋ = ⌊
√
2⌋ = 1.

Thus k = 1 and every odd prime is a sum of four squares: done! �

Thus Lagrange’s Theorem is the assertion that (1, 1, 1, 1) is universal. Which other
forms are universal? As we have already mentioned, Liouville proved several further
universality theorems [Li45], [Li56]. The following result surveys more recent work.
(When we enumerate forms, we really mean integral equivalence classes of forms.)

Theorem 9. a) There is no universal form in fewer than four variables.
b) For every n ≥ 5, there are infinitely many universal forms.
c) (Ramanujan-Dickson) There are precisely 54 diagonal universal quaternary forms.
d) (Halmos) A diagonal quaternary form is universal iff it represents 1 through 15.
e) (Conway-Schneeberger, Bhargava) A classical form is universal iff it represents
1 through 15. Moreover there are precisely 204 such forms.
f) (Bhargava-Hanke) A form is universal iff it represents 1 through 290. Moreover
there are, up to equivalence, precisely 6436 such quaternary forms.

Proof. a) See e.g. [Co, p. 142]. b) Since q1,1 is universal, for all n ≥ 4 and all d ∈ Z+

so is (1, . . . , 1 (n times), d). This exhibits infinitely many pairwise nonisomorphic
universal (n+ 1)-ary forms for all n ≥ 4. c) See [Ra17] and [Di27]. d) See [Ha38].
This follows directly from the proof of part c), but P.R. Halmos seems to have been
the first to have explicitly noticed this. e) See [Co00] and [Bh00]. f) See [BH05]. �

Parts b) through f) of Theorem 9 rely heavily on the theory of ternary forms as
well as the local theory over Qp and Zp. Thus these proofs are not elementary in
our sense, but we hope to apply GoN methods to ternary forms in the near future.
Parts b) through e) are still relatively elementary in the sense of not requiring high
technology: especially, Bhargava’s proof of the “15 Theorem” is a triumph of insight
over hard computations or deep theory. In contrast, the proof of the “290 Theorem”
uses both lengthy computer calculations and sophisticated modular forms theory.

What about GoN methods? Our GoN proof Theorem 8 is far from the first. Rather
Hermite was first [He54]. Another GoN proof was given by J.H. Grace [Gr27].

The results of §3 bring GoN methods to bear on all quaternary forms of square
discriminant. The work of Bhargava-Hanke shows that there are 112 such universal
forms – a sizable number – so it makes sense to concentrate first on diagonal forms.
Of the 54 universal diagonal forms, nine have square discriminant:

(5) (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 3, 3), (1, 2, 2, 4), (1, 2, 3, 6), (1, 2, 4, 8), (1, 2, 5, 10),

(6) (1, 1, 1, 4), (1, 1, 2, 8).

Remark 4.1: It is an easy exercise to write down a list of 54 forms such that any
universal quaternary form is integrally equivalent to at most one form in the list.
In particular, it is elementary to see that there can be no diagonal universal forms
of square discriminant other than the nine listed in (5) and (6).

The seven forms of (5) are multiplicative forms qa,b = (1, a, b, ab) – whereas the
two forms of (6) are not, although (1, 1, 1, 4) is closely related to q1,1 and (1, 1, 2, 8)
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is closely related to q1,2.

We will show that all of these forms are universal. First observe:

Lemma 10. A form representing all squarefree positive integers is universal.

Proof. Every positive integer n may be written uniquely in the form A2b with b
squarefree. If q(x1, . . . , xn) = b, then q(Ax1, . . . , Axn) = A2b = n. �

4.2. Binary subforms.

Theorem 11. a) A prime p > 2 is represented by x2 + y2 iff p ≡ 1 (mod 4).
b) A prime p > 2 is represented by x2 + 2y2 iff p ≡ 1, 3 (mod 8).
c) A prime p > 3 is represented by x2 + 3y2 iff p ≡ 1 (mod 3).
d) A prime p > 2 is represented by x2 + 4y2 iff p ≡ 1 (mod 4).
e) A prime p > 5 is represented by x2 + 5y2 iff p ≡ 1, 9 (mod 20).
f) A prime p > 5 is represented by 2x2 + 5y2 iff p ≡ 7, 13, 23, 27 (mod 40).

Proof. These results are part of the classical theory of binary forms; the point is
to give completely elementary proofs. For treatment using the Thue-Vinogradov
Lemma, see [GoN0]. For treatment using GoN, see [GoN1]. �

4.3. Six multiplicative forms.

Let q = qa,b be one of the forms of (5). One checks that q represents all primes
p ≤ disc q. By Lemma 2, to establish universality it suffices to show q represents
every p > disc q. By Theorem 7, for any such p there are x, y, z, w, k ∈ Z such that

q(x, y, z, w) = kp, 1 ≤ k ≤ M(q) =

⌊

4
√
2

π
(disc q)

1

4

⌋

.

Theorem 12. The form q1,2 = x2 + y2 + 2z2 + 2w2 is universal.

Proof. By Theorem 11a), it suffices to show that q1,2 represents every prime p ≡ 3
(mod 4); fix such a p. We have M(q1,2) = 2, so there are k, x, y, z, w ∈ Z with

x2 + y2 + 2z2 + 2w2 = kp, k ∈ {1, 2}.
If k = 1, we’re done, so suppose x2 + y2 + 2z2 + 2w2 = 2p. Then x ≡ y (mod 2).
Case 1: x and y are both even. So we may take x = 2X , y = 2Y to get

2X2 + 2Y 2 + z2 + w2 = p.

Case 2: x and y are both odd. Then

p =
1

2
(x2+ y2)+ z2+w2 =

(

x+ y

2

)2

+

(

x− y

2

)2

+ z2+w2 = X2+Y 2+ z2+w2.

Since p ≡ 3 (mod 4), exactly 3 of X,Y, z, w are odd: without loss of generality
suppose z and w are odd. Then

p = X2 + Y 2 + 2

(

z + w

2

)2

+ 2

(

z − w

2

)2

= X2 + Y 2 + 2Z2 + 2W 2.

�

Theorem 13. The form q1,3 = x2 + y2 + 3z2 + 3w2 is universal.
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Proof. Here M(q1,3) = 3, so for all p > 3, there are k, x, y, z, w ∈ Z with

x2 + y2 + 3z2 + 3w2 = kp, k ∈ {1, 2, 3}.
Case 1: Suppose k = 2. Then x+ y and z + w have the same parity.
Case 1a): Suppose x+ y, z + w are both even. Then x±y

2
, z±w

2
∈ Z, so

(

x+ y

2

)2

+

(

x− y

2

)2

+ 3

(

z + w

2

)2

+ 3

(

z − w

2

)2

=
2p

2
= p.

Case 1b): x + y and z + w are both odd. Without loss of generality x and z are
odd and y and w are even, so

2p ≡ x2 + y2 + 3z2 + 3w2 ≡ 1 + 3 ≡ 0 (mod 4),

so p is even, contradiction.
Case 2: Suppose k = 3, i.e., x2 + y2 + 3z2 + 3w2 = 3p. Then 3 | x2 + y2, so x and
y are both divisible by 3. Substituting x = 3X , y = 3Y and simplifying gives

z2 + w2 + 3X2 + 3Y 2 = p.

�

Theorem 14. The form q2,2 = x2 + 2y2 + 2z2 + 4w2 is universal.

Proof. It suffices to show that q2,2 represents every prime p > 2. Taking z = w = 0
and applying Theorem 11b), we see q represents all p ≡ 1, 3 (mod 8); taking y =
z = 0 and applying Theorem 11d), we see q2,2 represents all p ≡ 1 (mod 4), so we
may assume p ≡ 7 (mod 8). By Theorem 8, there are x, y, z, w ∈ Z such that

(7) x2 + y2 + z2 + w2 = p.

Up to order, the only way to write 7 as a sum of three squares in Z/8Z is 7 =
1+ 1+ 1+ 4, so we may assume that in (7) we have y, z odd and w even, and thus

x2 + y2 + z2 + w2 = x2 + 2

(

y − z

2

)2

+ 2

(

y + z

2

)2

+ 4
(w

2

)2

= p.

�

Theorem 15. The form q2,3 = x2 + 2y2 + 3z2 + 6w2 is universal.

Proof. (Liouville [Li45]) Let n ∈ Z+. By Theorem 8, there are x, y, z, w ∈ Z
with n = x2 + y2 + z2 + w2. After replacing some of x, y, z, w by their negatives
and reordering, we may assume 3 | y + z + w; further, two of y, z, w must have
the same parity, so after reordering them we may assume y ≡ z (mod 2). Then
Z = y+z+w

3
, W = y+z−2w

2
, Y = y−z

2
are all integers, and, as one readily checks,

n = x2 + y2 + z2 + w2 = x2 + 2Y 2 + 3Z2 + 6W 2.

�

Theorem 16. The form q2,4 = x2 + 2y2 + 4z2 + 8w2 is universal.

Proof. It suffices to show that q represents each p > 2. By Theorem 11d), every
p ≡ 1 (mod 4) is represented by x2 + 4z2, so we may assume p ≡ 3 (mod 4). By
Theorem 14 there are x, y, z, w ∈ Z such that

(8) p = x2 + 2y2 + 2z2 + 4w2.
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If y is even, put y = 2Y to get p = x2 +2z2+4w2 +8Y 2; and similarly if z is even.
So suppose y and z are both odd. Also x is odd, so reducing (8) modulo 4 gives

p ≡ x2 + 2y2 + 2z2 + 4w2 ≡ 1 + 2 + 2 ≡ 1 (mod 4).

�

4.4. Two non-multiplicative forms.

Theorem 17. The form q = x2 + y2 + z2 + 4w2 is universal.

Proof. Let n ∈ Z+ be squarefree, so in particular 4 ∤ n. By Theorem 8 there are
x, y, z, w ∈ Z such that n = x2 + y2 + z2 + w2. Since 4 ∤ n, x, y, z, w cannot all be
odd. Without loss of generality, w = 2W for W ∈ Z and thus

n = x2 + y2 + z2 + (2W )2 = x2 + y2 + z2 + 4W 2.

�

Theorem 18. The form q = x2 + y2 + 2z2 + 8w2 is universal.

Proof. Step 1: We claim q represents every n ≡ 3 (mod 4). By Theorem 12 there
are x, y, z, w ∈ Z such that

(9) n = x2 + y2 + 2z2 + 2w2.

If w is even, we may substitute w = 2W to get

n = x2 + y2 + 2z2 + 8W 2,

and similarly if z is even. Thus we may assume z, w are both odd. Reducing (9)
modulo 4 gives n ≡ x2 + y2 (mod 4), so n 6≡ 3 (mod 4).
Step 2: Suppose n1 and n2 are odd positive integers both represented by q. We
claim that n1n2 is also represented by q. Indeed, if

n1 = x2
1 + x2

2 + 2x2
3 + 2(2x4)

2, n2 = y21 + y22 + 2y23 + 2(2y4)
2,

then by Lemma 2 we have

(10) n1n2 = z21 + z22 + 2z23 + 2(2x1y4 + x2y3 − x3y2 + 2x4y1)
2.

with z1, z2, z3 ∈ Z. Equation (10) exhibits n1n2 in the form q(v) iff x2y3 − x3y2 is
even. Since n1 is odd, then x2

1 + x2
2 is odd and thus exactly one of x1, x2 is even.

By interchanging x1 and x2 if necessary, we may assume that x2 is even. In exactly
the same way we may assume that y2 is even and thus that x2y3 − x3y2 is even.
Step 3: Every odd n ∈ Z+ is represented by q. By Step 2 it is enough to show that
every odd prime number p is represented by q. If p ≡ 1 (mod 4), then by Theorem
11a) p = x2

1 + x2
2, whereas if p ≡ 3 (mod 4) then q represents p by Step 1.

Step 4: Suppose n = 2n′ ≡ 2 (mod 4). Since n′ is odd, by Step 3, there are integers
y1, y2, y3, y4, with y2 = 2Y2, such that n′ = y21 + y22 + 2y23 + 2(2y4)

2. Then

n = 2 · n′ = (02 + 02 + 2 · 12 + 2(2 · 0)2)(y21 + y22 + 2y23 + 2(2y4)
2)

= z21 + z22 + z23 + 2(−y2)
2 = z21 + z22 + z23 + 8Y 2

2 .

�
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4.5. The form q2,5 = (1, 2, 5, 10).

Theorem 19. The form q2,5 = x2 + 2y2 + 5z2 + 10w2 is universal.

To prove Theorem 19 we need to clarify and systematize the rather ad hoc methods
used for the other universality proofs, so we begin by laying out a general strategy.

Let q(v) be an n-ary integral quadratic form, and let d ∈ Z. We wish to show
that q represents d, and say we know that it integrally represents kd for some
“small” positive integer k, i.e., there exists x ∈ Zn such that q(x) = kd.

Suppose first that we can find A ∈ Mn(Z) such that we have an identity of
quadratic forms q(Av) = kq(v). Then q(Ax) = kq(x) = k2d, and thus

q(A
(x

k

)

) = d.

This gives an integral representation of d by q provided Ax ∈ (kZ)n, a condi-
tion which depends only the classes of x1, . . . , xn (mod k). Since q(x) = kd,
we need only consider admissible n-tuples, i.e., (x1, . . . , xn) ∈ (Z/kZ)n such that
q(x1, . . . , xn) ≡ 0 (mod k). And we do not need the same matrix A to work for
each admissible n-tuple: we only need that for each admissible n-tuple x ∈ (Z/kZ)n

there is some Ax ∈ Mn(Z) such that q(Av) = kq(v) and Axx ≡ 0 (mod k).
However, in most cases this is asking too much.

Lemma 20. For all k ∈ Z+, {A ∈ Mn(Z) | q(Av) = kq(v)} is finite.

Proof. Mn(R) is an n2-dimensional Euclidean space in which Mn(Z) sits as a dis-
crete subgroup. Since q is positive definite, the set of A ∈ Mn(R) with q(Av) =
kq(v) for all v ∈ Rn is bounded, so its intersection with Mn(Z) is finite.

However, for our applications we want an algorithmic enumeration of Oq(k).
This can be achieved by revisiting the above argument more quantitatively.
Step 1: Suppose q = q0 = x2

1 + . . .+ x2
n, so

Oq(R) = {A ∈ Mn(R) | q(Av) = q(v)}

is the standard real orthogonal group On(R). Mn(R) endowed with the Frobe-

nius norm A = (aij) 7→ |A| =
√

∑

1≤i,j≤n a2ij is a Banach algebra: for all

A,B ∈ Mn(R), |AB| ≤ |A||B| (this amounts to the Cauchy-Schwarz inequality).
Let q0 = x2

1 + . . . + x2
n. Then Oq0(R) = {A ∈ Mn(R) | q0(Av) = q(v)} is the

standard orthogonal group On(R), and thus for all A ∈ Oq0(R), |A| =
√
n. All

positive definite n-ary forms are R-equivalent, so choose P ∈ GLn(R) such that
q(v) = q0(Pv). Then Oq(R) = P−1Oq0 (R)P : if A ∈ Oq0(R), then q(P−1APv) =
q0(APv) = q0(Pv) = q(v), and conversely. So for A ∈ Oq(R),

|A| = |P−1PAP−1P | ≤ |P−1||PAP−1||P | ≤
√
n|P ||P−1|.

Step 2: For A ∈ Mn(R), k ∈ R>0, q(Av) = kq(v) iff q( A√
k
v) = q(v) ⇐⇒ A√

k
∈

Oq(R). Thus if A ∈ Mn(R) and q(Av) = kq(v),

|A| ≤
√
kn|P ||P−1|.

So we may compute Oq(k) by running through {A ∈ Mn(Z) | |A| ≤
√
kn|P ||P−1|}

and testing to see whether q(Av) = kq(v) holds. �
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Remark 4.2: The algorithm given above was chosen because it is (we hope) easily
understood by a wide audience. We do not claim any particular efficiency.

However, we may also consider matrices with denominators. For k, r ∈ Z+, put

Oq(k, r) = {A ∈ Mn(Z) | q
(

A

r
v

)

= kq(v)} = {A ∈ Mn(Z) | q(Av) = kr2q(v)}.

By Lemma 20, Oq(k, r), is finite for each fixed k and r, but for fixed k the sets
Oq(k, r) tend to grow in size with r.2 This improves our chances of success: we
say a tuple x ∈ (Z/krZ)n is admissible if q(x) ≡ 0 (mod k). Let Aq(k, r) denote
the set of all admissible tuples. We say that Oq(k, r) covers Aq(k, r) if for each
x ∈ Aq(k, r), there exists Ax ∈ Oq(k, r) such that Axx ≡ 0 (mod kr). If for some
r ∈ Z+ we have that Oq(k, r) covers Aq(k, r), then for all d ∈ Z+, if there exists
x ∈ Zn such that q(x) = kd, then Ax

(

x
kr

)

∈ Zn and q(Ax

(

x
kr

)

) = d.

We now turn to the proof of Theorem 19. As usual, we apply Theorem 7: since
⌊M(q)⌋ = 5, for any prime p > 5 there exists (x, y, z, w) ∈ Z4 with x2+2y2+5z2+
10w2 = kp with k ∈ {1, 2, 3, 4, 5}. So to complete the proof, it suffices to find, for
each k ∈ {2, 3, 4, 5}, a positive integer r such that Oq(k, r) covers Aq(k, r).

Theorem 21. Let q = q2,5 = x2 + 2y2 + 5z2 + 10w2. Then:
a) The 26768 elements of Oq(2, 8) cover all #Aq(2, 8) = 32768 admissible tuples,
and thus for all d ∈ Z+, if q represents 2d then it also represents d.
b) For no r < 8 does Oq(2, r) cover Aq(2, r).
c) The 83072 elements of Oq(3, 8) cover all #Aq(3, 8) = 135168 admissible tuples,
and thus for all d ∈ Z+, if q represents 3d then it also represents d.
d) For no r < 8 does Oq(3, r) cover Aq(3, r).
e) The 10384 elements of Oq(4, 4) cover all #Aq(4, 4) = 16384 admissible tuples.
f) For no r < 4 does Oq(4, r) cover Aq(4, r).
g) The 16 elements of Oq(5, 1) cover all #Aq(5, 1) = 25 admissible tuples, and thus
for all d ∈ Z+, if q represents 5d then it also represents d.

Proof. A computer calculation. The C++ code used for this may be found at
http://www.math.uga.edu/∼pete/MinimalCode.cpp. �

This completes the proof of Theorem 19.

Remark 4.3: Notice that – without any GoN input – Theorem 21a) yields:

Theorem 22. For all d ∈ Z+, if q2,5 represents 2d, then it also represents d.

As described in the introduction, Theorem 22 completes a quaternionic proof of the
universality of (1, 2, 5, 10) initiated by Deutsch and continued by Fitzgerald.

Remark 4.4: The case k = 5 is easy enough to be treated by hand. Indeed, if
x2 + 2y2 + 5z2 + 10w2 = 5p, then 5 | x2 + 2y2, so x and y are both divisible by 5.
Putting x = 5X , y = 5Y and simplifying gives z2 + 2w2 + 5X2 + 10Y 2 = p.

2One can show that for any multiplicative form q, for all k ∈ Z+,
⋃

∞

r=1 Oq(k, r) is infinite.
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