
WARNING’S SECOND THEOREM WITH RELAXED OUTPUTS

PETE L. CLARK

Abstract. We present a generalization of Warning’s Second Theorem to poly-

nomial systems over a finite local principal ring with restricted input and

relaxed output variables. This generalizes a recent result with Forrow and
Schmitt (and gives a new proof of that result). Applications to additive group

theory, graph theory and polynomial interpolation are pursued in detail.
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1. Introduction

1.1. Notation and Terminology.

We denote the non-negative integers by N and the positive integers by Z+.

Let n, a1, . . . , an ∈ Z+, and let N ≤
∑n
i=1 ai be an integer. As in [CFS14, §2.1], we

put

m(a1, . . . , an;N) :=

{
1 N < n

min
∏n
i=1 yi n ≤ N ≤

∑n
i=1 ai

;

1
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the minimum is over (y1, . . . , yn) ∈ Zn with yi ∈ [1, ai] for all i and
∑n
i=1 yi = N .

All of our rings will be commutative and with multiplicative identity. Let R be
a ring, B ⊂ R a subset, I an ideal of R, and x ∈ R. We write “x ∈ B (mod I)” to
mean that there is b ∈ B such that x− b ∈ I.

Let R be a ring. As in [Cl14], we say a subset A ⊂ R satisfies Condition (F) (resp.
Condition (D)) if A is nonempty, finite and for any distinct elements x, y ∈ A,
x− y is a unit in R (resp. is not a zero-divisor in R).

Throughout this paper Fq denotes an arbitrary finite field, of order q and char-
acteristic p.

1.2. Prior Results.

We begin with the results of Chevalley and Warning.

Theorem 1.1. Let n, r, d1, . . . , dr ∈ Z+ with d := d1 + . . .+dr < n. For 1 ≤ i ≤ r,
let fi(t1, . . . , tn) ∈ Fq[t] = Fq[t1, . . . , tn] be a polynomial of degree di. Put

Z := Z(f1, . . . , fr) = {x ∈ Fnq | f1(x) = . . . = fr(x) = 0}.
a) (Chevalley’s Theorem [Ch35]) We have #Z = 0 or #Z ≥ 2.
b) (Warning’s Theorem [Wa35]) We have #Z ≡ 0 (mod p).
c) (Warning’s Second Theorem [Wa35]) We have #Z = 0 or #Z ≥ qn−d.

Chevalley’s proof of Theorem 1.1a) can be easily modified to yield Theorem 1.1b).
Warning’s real contribution was Theorem 1.1c), a result which has, perhaps, been
too little appreciated. It is sharp in the following strong sense: for any d1, . . . , dr ∈
N with d := d1 + . . . + dr < n, there are f1, . . . , fr ∈ Fq[t] with deg fi = di for all
1 ≤ i ≤ r such that #Z(f1, . . . , fr) = qn−d. One can build such examples by com-
bining norm forms associated to field extensions Fqa/Fq and linear polynomials. On
the other hand, although in these examples the equations are generally nonlinear,
the solution sets are still affine subspaces. In [HB11], Heath-Brown showed that
under the hypotheses of Theorem 1.1c), when Z is nonempty and is not an affine
subspace of Fnq one always has #Z > qn−d, and in fact #Z ≥ 2qn−d for all q ≥ 4.

Apart from [HB11] there had been little further exploration of Theorem 1.1c) until
[CFS14], which established the following result.

Theorem 1.2. (Restricted Variable Warning’s Second Theorem [CFS14]) Let K
be a number field with ring of integers ZK , let p be a nonzero prime ideal of ZK ,
and let q = #ZK/p, so ZK/p ∼= Fq. Let A1, . . . , An be nonempty subsets of ZK
such that for each i, the elements of Ai are pairwise incongruent modulo p, and put
A =

∏n
i=1Ai. Let r, v1, . . . , vr ∈ Z+. Let P1, . . . , Pr ∈ ZK [t1, . . . , tn]. Put

ZA := {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA := #ZA.

Then zA = 0 or zA ≥ m
(

#A1, . . . ,#An; #A1 + . . .+ #An −
∑r
j=1(qvj − 1) deg(Pj)

)
.

This generalizes Theorem 1.1c) in two directions: first, instead of working over
finite fields, we work modulo powers of a prime ideal in the ring of integers of a
number field. In the case K = Q we are studying systems of congruence modulo
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(varying) powers of a (fixed) prime p. Second, we study solutions in which each
variable is independently restricted to a finite subset of ZK satisfying the condition
that no two distinct elements are congruent modulo p.

Theorem 1.2 extends work of Schanuel [Sc74], Baker-Schmidt [BS80], Schauz
[Sc08], Wilson [Wi06] and Brink [Br11]. These works are largely motivated by ap-
plications to combinatorics. For combinatorial applications we work over K = Q
and get congruences modulo powers of p. The most classical applications concern
the case in which each variable is restricted to take values 0 and 1. More recently
there has been a surge of interest in more general subsets Ai: this yields weighted
analogues of the more classical combinatorial problems.

The previous works used either ad hoc methods or Alon’s Combinatorial Nullstel-
lensatz and yielded nonuniqueness theorems: results with conclusion “there cannot
be exactly one solution.” To prove Theorem 1.2 we instead applied the Alon-Füredi
Theorem, which yields a lower bound on the number of solutions in terms of the
quantity m(a1, . . . , an;N). To collapse this type of result to a nonuniqueness theo-
rem one simply uses the following observation, a form of the Pigeonhole Principle:

(1) m(a1, . . . , an;N) ≥ 2 ⇐⇒ N > n.

Applying (1) to Theorem 1.2, one recovers a result of Brink.

Corollary 1.3. (Brink [Br11]) Let K be a number field with ring of integers ZK ,
let p be a nonzero prime ideal of ZK , and let q = p` be the prime power such that
ZK/p ∼= Fq. Let P1(t1, . . . , tn), . . . , Pr(t1, . . . , tn) ∈ ZK [t1, . . . , tn], let v1, . . . , vr ∈
Z+, and let A1, . . . , An be nonempty subsets of ZK such that for each i, the elements
of Ai are pairwise incongruent modulo p, and put A =

∏n
i=1Ai. Put

ZA := {x ∈ A | Pj(x) ≡ 0 (mod pvj ) ∀1 ≤ j ≤ r}, zA := #ZA.

If
∑r
j=1(qvj − 1) deg(Pj) <

∑n
i=1 (#Ai − 1), then zA 6= 1.

The case of K = Q had earlier been established by Schauz and Wilson (indepen-
dently), so we call this result the Schauz-Wilson-Brink Theorem. If we further
specialize to Ai = {0, 1} for all i we recover Schanuel’s Theorem.

1.3. The Main Theorem.

For the convenience of readers who are primarily interested in combinatorial appli-
cations, we state the main result of this paper first in a special case.

Theorem 1.4. Let p be a prime, let n, r, v ∈ Z+, and for 1 ≤ i ≤ r, let 1 ≤ vj ≤ v.
Let A1, . . . , An, B1, . . . , Br ⊂ Z be nonempty subsets each having the property that
no two distinct elements are congruent modulo p. Let f1, . . . , fr ∈ Z[t1, . . . , tn]. Put

ZB
A := {x ∈

n∏
i=1

Ai | ∀1 ≤ j ≤ r, fj(x) ∈ Bj (mod pvj )}.

Then ZB
A = ∅ or

#ZB
A ≥ m

#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(pvj −#Bj) deg fj

 .
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Corollary 1.5. Maintain the setup of Theorem 1.4.
a) If Ai = {0, 1} for all 1 ≤ i ≤ n, then ZB

A = ∅ or

#ZB
A ≥ 2n−

∑r
j=1(p

vj−#Bj) deg(fj).

b) If Ai = {0, 1} for all i and fj(0) = 0 ∈ Bj for all j, there is 0 6= x ∈ ZB
A if

n >

r∑
j=1

(pvj −#Bj) deg(fj).

Proof. Applying Theorem 1.4 in the case A1 = . . . = An = {0, 1} and using the
fact that for any 0 ≤ k ≤ n, we have m(2, . . . , 2; 2n − k) = 2n−k [CFS14, Lemma
2.2c)], we get part a). Combining with (1) we get part b). �

If in Corollary 1.5b) we further require that all the polynomials are linear, we re-
cover a result of Alon-Friedland-Kalai [AFK84, Thm. A.1]. For some (not all)
combinatorial applications linear polynomials are sufficient, and Ai = {0, 1} corre-
sponds to the “unweighted” combinatorial setup. In this setting we see that the
advantage of Corollary 1.5a) over part b) is directly analogous to that of Theorem
1.2 over Brink’s Theorem, namely a quantitative refinement of Alon-Füredi type.
In fact this gives an accurate glimpse of our method of proof of the Main Theorem:
we will establish and apply suitably generalized versions of a valuation-theoretic
lemma of Alon-Friedland-Kalai and of the Alon-Füredi Theorem.

To state the full version of the Main Theorem we need some algebraic prelimi-
naries. A principal ring is a commutative ring in which every ideal is principal.
A ring is local if it has exactly one maximal ideal. (When we write “(r, p) is a
local ring,” we mean that p is the unique maximal ideal of r.) Let (r, p) be a
local principal ring such that p = (π) is principal. By Nakayama’s Lemma, we
have

⋂
i≥0 p

i = (0), so for every nonzero x ∈ r, there is a unique i ∈ N such that

x ∈ pi \pi+1, so x = πiy and y is a unit in r, so (x) = (πi) = pi. Thus every nonzero
ideal of r is of the form pi for some i ∈ N. There are two possibilities:

(i) For all a ∈ Z+, pa 6= 0. Then r is a discrete valuation ring (DVR).
(ii) There is a positive integer v, the length of r, such that pv−1 6= (0) and pv = (0).

If r is moreover finite then (ii) must hold. Thus in any (nonzero) finite princi-
pal local ring (r, p) there is a positive integer v such that the ideals of r are

r = p0 ) p ) p1 ) . . . ) pv = (0).

Theorem 1.6. Let (r, p) be a finite local principal ring of length v and with residue
field Fq. Let n, r ∈ Z+, and for 1 ≤ j ≤ r, let 1 ≤ vj ≤ v. Let a1, . . . , an, b1, . . . , br ⊂
r be nonempty subsets each having the property that no two distinct elements are
congruent modulo p. Let f1, . . . , fr ∈ r[t] = r[t1, . . . , tn]. Put

za,b := {x ∈
n∏
i=1

ai | ∀1 ≤ j ≤ r, fj(x) ∈ bj (mod pvj )}.

Then za,b = ∅ or

#za,b ≥ m

#a1, . . . ,#an;

n∑
i=1

#ai −
r∑
j=1

(qvj −#bj) deg fj

 .
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Consider the following variant of Theorem 1.6.

Theorem 1.7. Let R be a domain, and let p be a maximal ideal of R with fi-
nite residue field R/p ∼= Fq and such that the localization Rp is a DVR.1 Let
n, r, v1, . . . , vr ∈ Z+. Let A1, . . . , An, B1, . . . , Br ⊂ R be nonempty subsets each
having the property that no two distinct elements are congruent modulo p. Let
r, v1, . . . , vr ∈ Z+. Let f1, . . . , fr ∈ R[t] = R[t1, . . . , tn]. Put

ZB
A :=

{
x ∈

n∏
i=1

Ai | ∀1 ≤ j ≤ r, fj(x) ∈ Bj (mod pvj )

}
.

Then #ZB
A = 0 or

#ZB
A ≥ m

#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(qvj −#Bj) deg(fj)

 .

Proposition 1.8. Theorems 1.6 and 1.7 are equivalent.

Proof. Theorem 1.6 =⇒ Theorem 1.7: let r = R/pv and let q : R → r be the
quotient map. For 1 ≤ i ≤ n, let ai = q(Ai); for 1 ≤ j ≤ r, let fj = q(fj) and

bj = q(Bj). Then deg fj ≤ deg fj . The hypothesis that no two distinct elements of
any one of these sets are congruent modulo p ensures #ai = #Ai and #bj = #Bj .

Applying Theorem 1.6 to r,a1, . . . , an, b1, . . . , br,v1, . . . , vr,f1, . . . , fr gives

#ZB
A = #za,b ≥ m

#a1, . . . ,#an;

n∑
i=1

#ai −
r∑
j=1

(qvj −#bj) deg(fj)


≥ m

#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(qvj −#Bj) deg(fj)

 .

Theorem 1.7 =⇒ Theorem 1.6: by [Hu68, Cor. 11], there is a principal ideal do-
main R and a maximal ideal p in R such that R/pv ∼= r. Thus the pair (R, p) satisifes
the hypotheses of Theorem 1.7. We may lift A1, . . . , An, B1, . . . , Br, f1, . . . , fr from
r to R so as to preserve the sizes of the sets and the degrees of the polynomials.
Apply Theorem 1.7. �

Example 1.9. Let r be a finite ring, and let A ⊂ r satisfy Condition (D). For
1 ≤ j ≤ r, let fj ∈ r[t1] be a univariate polynomial of degree dj ≥ 0, and let
B1, . . . , Br ⊂ r be finite and nonempty. Put

zBA := {x ∈ A | f1(x) ∈ B1, . . . , fr(x) ∈ Br}.
Suppose first that dj ≥ 1 for all j. Then for each y ∈ r, the polynomial fj − y
also has degree dj, and because A satisfies Condition (D), there are at most deg(fj)
elements of A such that fj(x) = y. So there are at most (#r − #Bj)(deg fj)
elements x ∈ A such that fj(x) /∈ Bj and thus

#zBA ≥ #A−
r∑
j=1

(#r−#Bj)(deg fj).

1The latter condition holds for all maximal ideals when R is a Dedekind domain and for all
maximal divisorial ideals when R is a Krull domain [GHK, Thm. 2.3.11].
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Now suppose that some fj is constant. Then: if the constant value lies in Bj then
fj(A) ⊂ Bj, whereas if the constant value does not lie in Bj then zBA = ∅.

This establishes a stronger result than Theorem 1.6 when n = 1. In particular:
the finite ring r need not be local and principal, the target sets B1, . . . , Br may be
arbitrary nonempty subsets, and we do not need to separately allow zBA = ∅ if each
polynomial has positive degree.

1.4. Comparison With Theorem 1.2.

Theorem 1.2 is the special case of Theorem 1.7 obtained by taking R = ZK and
Bj = {0} for all j. So on the face of it Theorem 1.7 is a twofold generalization
of Theorem 1.2: in place of (ZK , p) we may take any pair (R, p) with R a domain
and p a maximal ideal of R such that R/p is finite; and in place of polynomial
congruences we are studying polynomial systems with relaxed output sets Bj .

However, the first generalization turns out not to be an essential one. Indeed,
Theorem 1.6 shows that the result can be phrased in terms of finite, local principal
rings. But every finite local principal ring is isomorphic to ZK/pv for some prime
ideal p in the ring of integers ZK of a number field K [Ne71], [BC15, Thm. 1.12].

Example 1.10. Consider r = Fp[t]/(t2): it is a finite, local principal ring with
residue cardinality p and length 2. Further, it is a commutative Fp-algebra of di-
mension 2 that is not reduced (i.e., it has nonzero nilpotent elements), and these
properties characterize r up to isomorphism. So let K = Q(

√
p) and let p be the

unique prime ideal of ZK dividing p. The ring ZK/pZK = ZK/p2 is also a nonre-
duced Fp-algebra of dimension 2, so r = Fp[t]/(t2) ∼= ZK/p2.

Nevertheless it is natural to think in terms of domains, and the reduction to the
ring of integers of a number field seems artificial. The proof of Theorem 1.2 used
the fact that ZK has characteristic zero in an essential way: a key technical tool was
the use of Schanuel-Brink operators to replace a congruence modulo pv in ZK
with a system of congruences modulo p. As Schanuel pointed out, this construction
is morally about Witt vectors and thus particular to unequal characteristic. Our
proof of Theorem 1.7 does not reduce to the number field case but works directly
in any Dedekind domain. Applied to R = ZK with Bj = {0} for all j, it gives a
new proof of Theorem 1.2. This new approach feels more transparent and more
fundamental, and we hope that it will be more amenable to further generalization.

1.5. Applications of the Main Theorem.

The generalization from polynomial congruences to polynomial congruences with
relaxed outputs enables a wide range of applications. As in [CFS14], whenever one
has a combinatorial existence theorem proved via the Schauz-Wilson-Brink Theo-
rem (or an argument that can be viewed as a special case thereof) one can instead
apply Theorem 1.2 to get a lower bound on the number of solutions. Moreover, most
applications of Schauz-Wilson-Brink include a homogeneity condition ensuring the
existence of a trivial solution. Theorem 1.2 applies also in the inhomogeneous case.

All of these applications can be generalized by allowing relaxed outputs. In
[CFS14] we gave three combinatorial applications of Theorem 1.2: to hypergraphs,
to generalizations of the Erdős-Ginzburg-Ziv Theorem, and to weighted Davenport
constants. In the former two cases, we can (and shall) immediately apply the Main
Theorem to get stronger results. We include the proof of the hypergraph theorem
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to showcase the use of nonlinear polynomials. We omit the proof of the EGZ-type
theorem: the proof given in [CFS14] of the special case adapts immediately.

Our Main Theorem leads to a generalization of the weighted Davenport constant
that we call the relaxed weighted Davenport constant. This constant may
be of interest in its own right; moreover, it can be used to extend results of Alon-
Friedland-Kalai on divisible subgraphs. This is a privileged application as the re-
laxed output aspect of the Main Theorem was inspired by [AFK84].

One reason that the combinatorial applications are interesting is that the upper
bounds they give are – in the unweighted, zero-output case – accompanied by lower
bounds coming from elementary combinatorial constructions, which has the effect
of showing sharpness in Schanuel’s Theorem in certain cases. It is an interesting
challenge, not met here, to find other types of restricted input sets Ai and relaxed
output sets Bj illustrating sharpness in our generalized theorems.

Finally, we give an application of the Main Theorem to “relaxed polynomial in-
terpolation”. As a special case we will deduce a generalization of a Theorem of
Troi-Zannier [TZ97] which was proved by them via more combinatorial means.

1.6. Acknowledgments.

Thanks to Dino Lorenzini, Paul Pollack, Bob Rumely and Lori D. Watson for
helpful discussions. Thanks to J.R. Schmitt for introducing me to this rich circle of
ideas, for many helpful remarks, and for Example 3.2. I am grateful to the referee
for an extraordinarily careful, detailed and informative report.

2. Proof of the Main Theorem

2.1. A Generalized Alon-Friedman-Kalai Lemma.

The following result is a generalization of [AFK84, Lemma A.3].

Lemma 2.1. Let R be a DVR, with maximal ideal p = (π) and finite residue field
Fq. Let v ∈ Z+, and let S(v) be a set of coset representatives for pv in R. Let
T ⊂ R satisfy Condition (F): no two distinct elements of T are congruent modulo
p, and let T be the image of T in R/pv. Let x ∈ R. Put

P(x, v, T ) :=
∏

y∈S(v)\T

(x− y)

and

c(v) :=

v−1∑
i=1

(
qi − 1

)
.

Then we have:

(2) ordp P(x, v, T ) ≥ c(v),

(3) ordp P(x, v, T ) = c(v) ⇐⇒ there is y ∈ T such that ordp(x− y) ≥ v.
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Proof. Put P0 =
∏
y∈S(v)\{pv} y.

Step 1: Suppose T = {y0} and ordp(x− y0) ≥ v. If y runs through S(v) \ T , then
x − y runs through a set of representatives of the nonzero cosets of pv in R, and
since if x ≡ y 6≡ 0 (mod pv) then ordp x = ordp y, we have

ordp P(x, v, T ) = ordp P0

=

v−1∑
i=0

i · (#{x ∈ (pi ∩ S(v)) \ (pi+1 ∩ S(v))}) =

v−1∑
i=0

i · (qv−i − qv−i−1)

= (qv−1 − qv−2) + 2(qv−2 − qv−3) + 3(qv−3 − qv−4) + . . .+ (v − 1)(q − 1)

= (qv−1 + qv−2 + . . .+ 1)− (v − 1) =

v−1∑
i=1

(qi − 1) = c(v).

Step 2: Suppose T = {y0} and ordp(x− y0) < v. Then there is a unique y1 ∈ S(v)

with x ≡ y1 (mod pv), and y1 6= y0. Then we have P(x, v, T ) = P0

(
x−y1
x−y0

)
, so

ordp P(x, v, T ) = c(v) + ordp(x− y1)− ordp(x− y0) > c(v).

Step 3: Suppose #T > 1. Then P(x, v, T ) is obtained from omitting factors from a
product considered in Step 1 or Step 2. Because no two elements of T are congruent
modulo p, the number of y ∈ T such that ordp(x− y) ≥ 1 is either 0 or 1, and thus
P(x, v, T ) can be obtained from the product in Step 1 or Step 2 by omitting only
factors of zero p-adic valuation. So ordp P(x, v, T ) ≥ c(v), and strict inequality

holds precisely when there is some y ∈ S(v) \ T with ordp(x− y) ≥ v. �

2.2. Alon-Füredi Over a Ring.

The aim of this section is to prove the following result.

Theorem 2.2. (Alon-Füredi Over a Ring) Let R be a ring, and let A1, . . . , An ⊂ R
satisfying Condition (D). Put A =

∏n
i=1Ai and ai = #Ai for all 1 ≤ i ≤ n. Let

f ∈ R[t] = R[t1, . . . , tn]. Put

UA := {x ∈ A | f(x) 6= 0} and uA := #UA.

Then either uA = 0 or uA ≥ m(a1, . . . , an; a1 + . . .+ an − deg f).

When R is a field, this is the Alon-Füredi Theorem [AF93, Thm. 4]. The key
observation that the Combinatorial Nullstellensatz works over an arbitrary ring
provided we impose Condition (D) is due to Schauz [Sc08]. It was further developed
in [Cl14, §3]. The relevance of Condition (D) is shown in the following result.

Theorem 2.3. (CATS Lemma [Cl14, Thm. 12]) Let R be a ring. For 1 ≤ i ≤ n,
let Ai ⊂ R be nonempty and finite. Put A =

∏r
i=1Ai. For 1 ≤ i ≤ n, let

ϕi =
∏
ai∈Ai

(ti − ai).

a) (Schauz [Sc08]) The following are equivalent:
(i) For all 1 ≤ i ≤ n, the set Ai satisfies condition (D).
(ii) For all f ∈ R[t] = R[t1, . . . , tn], if degti f < #Ai for all 1 ≤ i ≤ n and f(a) = 0
for all a ∈

∏n
i=1Ai, then f = 0.

(iii) If f |A ≡ 0, there are g1, . . . , gn ∈ R[t1, . . . , tn] such that f =
∑n
i=1 giϕi.

b) (Chevalley-Alon-Tarsi) The above conditions hold when R is a domain.
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With Theorem 2.3 in hand, Theorem 2.2 can be established following the original
argument of [AF93]. However, I find this argument a bit mysterious. Theorem 2.2 is
the backbone of this work and a key barrier to further generalizations of Theorem
1.7. Because of this I feel the need to give the most conceptually transparent
argument possible. For this we adapt a proof of Alon-Füredi due to Ball and Serra.

Proof. Step 1: We establish a variant of the Punctured Combinatorial Nullstellen-
satz of Ball-Serra [BS09, Thm. 4.1].2 Let R be a ring, let A1, . . . , An ⊂ R satisfying
Condition (D), and for 1 ≤ i ≤ n let ∅ 6= Yi ⊂ Ai. Put

A :=

n∏
i=1

Ai and Y :=

n∏
i=1

Yi.

For 1 ≤ i ≤ n, put

ϕi(t) =
∏
ai∈Ai

(ti − ai), ψi(t) =
∏
yi∈Yi

(ti − yi).

Let f ∈ R[t] = R[t1, . . . , tn]. Suppose that for all x ∈ A \Y, f(x) = 0. Then we
claim there are g1, . . . , gn, u ∈ R[t] such that

f =

n∑
i=1

giϕi + u

n∏
i=1

ϕi
ψi
, deg u ≤ deg f −

n∑
i=1

(#Ai −#Yi) .

proof of claim: We perform polynomial division on f by the monic polynomial
ϕ1, then divide the remainder by the monic polynomial ϕ2, and so forth, finally
dividing by ϕn to get f =

∑n
i=1 giϕi + r. By [Cl14, §3.1], we have deg r ≤ deg f

and degti r < degϕi for all i. Dividing rψ1 by ϕ1 we get

rψ1 = r1ϕ1 + s1.

Then

degt1 s1 < degϕ1

whereas for all i 6= 1,

degti s1 ≤ degti rψ1 = degti r < degϕi.

Since s1 vanishes identically on A and A satisfies Condition (D), Theorem 2.3
applies to show s1 = 0: that is, we may write r = ϕ1

ψ1
r1. Continuing this process

with respect to t2, . . . , tn, we get r =
∏n
i=1

ϕi

ψi
u with

deg u ≤ deg r −
n∑
i=1

(deg(ϕi)− deg(ψi)) ≤ deg f −
n∑
i=1

(#Ai −#Yi) .

Step 2: Put A =
∏n
i=1Ai, and let f ∈ R[t1, . . . , tn]. We may assume that f does

not vanish identically on A. We go by induction on n. The base case n = 1 follows
from Theorem 2.3. Suppose n ≥ 2 and the result holds for n− 1. Define

Yi :=

{
Ai, 1 ≤ i ≤ n− 1

{y ∈ An | f(t1, . . . , tn−1, y) 6= 0} i = n
.

2The result established here is obtained from the Punctured Combinatorial Nullstellensatz by
(i) working over an arbitrary ring under Condition (D) and (ii) neglecting multiplicities.
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By our hypothesis on f , Yn 6= ∅. Let y ∈ Yn. We apply Step 1 to f , getting

f =

n∑
i=1

giϕi + u
ϕn
ψn

and put w(t1, . . . , tn−1) = u(t1, . . . , tn−1, y). Then

degw ≤ deg u ≤ deg f −#An + #Yn,

and for all x′ = (x1, . . . , xn−1) ∈
∏n−1
i=1 Ai, we have f(x′, y) = 0 ⇐⇒ w(x′) = 0.

By induction there are a1, . . . , an−1 ∈ Z+ with 1 ≤ ai ≤ #Ai for all i and

n−1∑
i=1

ai =

(
n−1∑
i=1

#Ai

)
− degw ≥

(
n−1∑
i=1

#Ai

)
− deg u

such that w is nonvanishing at at least
∏n−1
i=1 ai points of

∏n−1
i=1 Ai. The a1, . . . , an−1

depend on y, but if we choose a1, . . . , an−1 so as to minimize
∏n−1
i=1 ai, then we find

(
∏n−1
i=1 ai)(#Yn) points of X at which f is nonvanishing, hence

UA ≥ m(#A1, . . . ,#An;

n−1∑
i=1

ai + #Yn).

Since
n−1∑
i=1

ai + #Yn ≥ (

n−1∑
i=1

#Ai)− deg u+ (deg u+ #An − deg f) =

n∑
i=1

#Ai − deg f,

we have UA ≥ m(#A1, . . . ,#An;
∑n
i=1 #Ai − deg f). �

Remark 2.4. Theorem 2.2 is sharp in the following sense: let R be a ring,
A1, . . . , An ⊂ R satisfying Condition (D), and put A =

∏n
i=1Ai. Let d ∈ Z+.

There is a degree d polynomial f ∈ R[t1, . . . , tn] which is nonzero at precisely
m(#A1, . . . ,#An;

∑n
i=1 #Ai − d) points of A. In fact something stronger holds:

let y = (y1, . . . , yn) ∈ Zn with 1 ≤ yi < #Ai for all i. For 1 ≤ i ≤ n, choose
Yi ⊂ Ai with #Yi = yi, and put f =

∏n
i=1

∏
x∈Yi

(ti − x). Then deg f =
∑n
i=1 yi

and f is nonvanishing precisely on
∏n
i=1(Ai \Yi), a subset of size

∏n
i=1(#Ai− yi).

Remark 2.5. Both of the main results of [BS09] – namely Theorems 3.1 and 4.1
– can be generalized by replacing the arbitrary field F by an arbitrary ring R under
the assumption that the sets satisfy Condition (D). In the former case the argument
adapts immediately; in the latter case it requires some mild modifications.

2.3. Proof of the Main Theorem.

Proof. We will prove Theorem 1.7. We may assume R is a DVR, and thus our
assumption on A1, . . . , An, B1, . . . , Br becomes Condition (F). Let A =

∏n
i=1Ai.

For 1 ≤ j ≤ r, let Bj be the image of Bj in R/pvj . For a ∈ Z+, let S(a) be a set
of coset representatives for pa in R. Put

Q(t) :=

r∏
j=1

∏
y∈S(vj)\Bj

(fj(t)− y) ∈ R[t].

For 1 ≤ j ≤ s put

cj :=

vj−1∑
i=1

(qi − 1),
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and put

c :=

r∑
j=1

cj .

Let R = R/pc+1. Let Q be the image of Q in R and A the image of A in R
n
. Then

degQ ≤ degQ =

r∑
j=1

(qvj −#Bj) deg fj .

Because of Condition (F), the natural map A 7→ A is a bijection. Let

U = {x ∈ A | Q(x) 6= 0}.

Let x ∈ A. Using Lemma (2.1), we get

x ∈ U ⇐⇒ Q(x) 6= 0

⇐⇒ ordp(Q(x)) ≤ c (2)⇐⇒ ∀1 ≤ j ≤ r, ordp

∏
y∈S(v)\Bj

(fj(x)− y) ≤ cj

(3)⇐⇒ ∀1 ≤ j ≤ r, ∃bj ∈ Bj such that ordp(fj(x)− bj) ≥ vj

⇐⇒ x ∈ ZB
A .

Thus #U = zBA. Applying Theorem 2.2 to R, Q and A, we get: #ZB
A = 0 or

#ZB
A ≥ m(#A1, . . . ,#An;

n∑
i=1

#Ai − degQ)

≥ m(#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(qvj −#Bj) deg(fj)). �

3. Applications

3.1. Hypergraphs.

A hypergraph is a finite sequence F = (F1, . . . ,Fn) of finite subsets of some
fixed set X. We say that n is the length of F . The maximal degree of F is
maxx∈X #{1 ≤ i ≤ n | x ∈ Fi}. For m ∈ Z+ and ∅ 6= B ⊂ Z, put

NF (m,B) := #{J ⊂ {1, . . . , n} | #(
⋃
i∈J
Fi) ∈ B (mod m)},

and for n, d ∈ Z+, put

Nn,d(m) := minNF (m, 0),

the minimum ranging over hypergraphs of length n and maximal degree at most d.
Let fd(m) be the least n ∈ Z+ such that for any hypergraph F of maximal degree d
and length n, there is a nonempty J ⊂ {1, . . . , n} such that m | #(

⋃
i∈J Fi). Thus

(4) fd(m) = min{n ∈ Z+ | Nn,d(m) ≥ 2}.
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Theorem 3.1. Let p be a prime number, and let ∅ ⊂ B ⊂ Z be a subset, no
two distinct elements of which are congruent modulo p. Let d, n ∈ Z+, and let
F = (F1, . . . ,Fn) be a hypergraph of maximal degree at most d. Then:
a) NF (pv, B) is either 0 or at least 2n−d(p

v−#B).
b) If 0 ∈ B and n > d(pv − #B), then there is ∅ 6= J ⊂ {1, . . . , n} such that
pv | #

⋃
i∈J Fi.

Proof. Put

h(t) :=
∑

∅6=J⊂{1,...,n}

(−1)#J+1(#
⋂
j∈J
Fi)

∏
j∈J

tj .

Then deg h ≤ d and h(0) = 0. For any x ∈ {0, 1}n, put Jx := {1 ≤ j ≤ n | xj = 1}.
The Inclusion-Exclusion Principle implies

h(x) = #
⋃
j∈Jx

Fj ,

so NF (pv, B) = {x ∈ {0, 1}n | h(x) ∈ B (mod pv)}. Applying Theorem 1.5a)
establishes part a), and applying Theorem 1.5b) establishes part b). �

When B = {0}, Theorem 3.1a) is [CFS14, Thm. 4.8]a) and Theorem 3.1b) gives
the upper bound in a result of Alon-Kleitman-Lipton-Meshulam-Rabin-Spencer
[AKLMRS, Thm. 1]. They also showed that fd(m) ≥ d(m − 1) + 1, so Theo-
rem 3.1b) is sharp when #B = 1. The following example extends this construction
and implies that Theorem 3.1b) is sharp for all d,#B ∈ Z+.

Example 3.2. (J.R. Schmitt) Let b, d ∈ Z+. Choose m, a ∈ Z+ with m > b
and gcd(a,m) = 1. Let {Ai,j}1≤i≤m−b, 1≤j≤d be pairwise disjoint sets, each of
cardinality m. Let {Vi}1≤i≤m−b be disjoint sets, each of cardinality a and disjoint
from all the Aij. Put

B = {m,m− a,m− 2a, . . . ,m− (b− 1)a} ⊂ Z/mZ,

and consider the hypergraph

F = {Aij ∪ Vi}1≤i≤m−b,1≤j≤d.
Then F has length d(m− b) but #

⋃
F∈F0

/∈ B (mod m) for any ∅ 6= F0 ⊂ F .

3.2. Relaxed Weighted Davenport Constants.

Let (G,+) be a nontrivial finite commutative group. The Davenport constant
D(G) is the least number n such that for any sequence {gi}ni=1 in G, there is a
nonempty subset J ⊂ {1, . . . , n} such that

∑
i∈J gi = 0. There are unique integers

1 < n1 | n2 . . . | nr such that

G ∼=
r⊕
i=1

Z/niZ;

let us call r the rank of G. The pigeonhole principle implies

D(G) ≤ #G.

Let ei ∈
⊕r

i=1 Z/niZ be the element with ith coordinate 1 and all other coordinates
zero. Then the sequence

n1−1︷ ︸︸ ︷
e1, . . . , e1,

n2−1︷ ︸︸ ︷
e2, . . . , e2, . . . ,

nr−1︷ ︸︸ ︷
er, . . . , er
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shows that

(5) D(G) ≥ 1 +

r∑
i=1

(ni − 1) =: D∗(G),

as observed by van Emde Boas and D. Kruyswijk [EBK69, Thm. 5]. For surveys
of classical work on the Davenport constant, see [GHK, Ch. 5] and [GG06]. For
our purposes the most important result is the equality D(G) = D∗(G) when G
is a p-group [EBK69], [O69a]. In fact, as first observed by Schanuel [Sc74], for a
p-group G the Davenport constant can be expressed in terms of systems of congru-
ences modulo powers of p with solutions in Ai = {0, 1}. (We will shortly encounter
a generalization of this.)

Let G be a finite commutative group of exponent e, and let A = {Ai}∞i=1 be a
sequence of finite, nonempty subsets of Z. Then given a finite sequence g = {gi}ni=1

in G we may associate an A-weighted subsequence {aigi}ni=1 by selecting ai ∈ Ai
for 1 ≤ i ≤ n. An A-weighted subsequence is empty if ai = 0 ∈ Ai for each i.

When each Ai contains 0 and at least one other element, we define the weighted
Davenport constant DA(G) as the least n such that every sequence {gi}ni=1 in G
has a nonempty A-weighted zero-sum subsequence: i.e., there are a1 ∈ A1, . . . , an ∈
An, not all 0, such that

∑n
i=1 aigi = 0. Let {gi}D(G)

i=1 be a sequence in G, and for
each 1 ≤ i ≤ D(G), let ai ∈ Ai \ {0}. By definition of D(G), there is a nonempty
subset J ⊂ {1, . . . , D(G)} such that

∑
i∈J aigi = 0. For 1 ≤ i ≤ D(G), let

bi :=

{
ai i ∈ J
0 i /∈ J

.

Then {bigi}D(G)
i=1 is an A-weighted zero-sum subsequence. Thus we have

DA(G) ≤ D(G) ≤ #G.

Theorem 3.3. (Troi-Zannier [TZ97], Brink [Br11]) Let G ∼=
⊕r

i=1 Z/pvi be a
p-group of exponent pv. Let n ∈ Z+, and let A = (A1, . . . , An) with each Ai ⊂
Z nonempty, containing 0, and such that no two distinct elements are congruent
modulo p. If

n∑
i=1

(#Ai − 1) >

r∑
j=1

(pvi − 1) = D∗(G)− 1,

every sequence of length n in G has a nonempty A-weighted zero-sum subsequence.

Troi-Zannier’s proof uses group ring methods. They remark on their inability to
push through a Chevalley-Warning style proof in the general case; this is what
Brink does using the Schauz-Wilson-Brink Theorem.

When A1 = . . . = An = A, we write DA(G) for D(A1,...,An)(G). This version
of the weighted Davenport constant was introduced by Adhikari-Rath [AR06]. In
this case, Theorem 3.3 becomes the upper bound

(6) For all p-groups G, DA(G) ≤
⌈
D∗(G)

#A− 1

⌉
.
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Thangadurai gives some evaluations of DA(G) when G = Z/pZ using elementary
methods [Th07, Thm. 2] and when G =

⊕r
i=1 Z/pZ using (6) [Th07, Cor. 1.2].

For more information on a (not identical, but closely related) weighted Davenport
constant, see [G, Ch. 14-16]. For a recent arithmetic interpretation of weighted
Davenport constants, see [HK14].

Here is a further generalization of the Davenport constant. We give ourselves:
• A positive integer r.
• A finite group G =

⊕r
i=1 Z/niZ with 1 < n1 | . . . | nr.

• A sequence A = {Ai}∞i=1 of nonempty finite subsets of Z.
• A nonempty subset B ⊂ G.

We put

NB
A (g) = #{a ∈

n∏
i=1

Ai |
n∑
i=1

aigi ∈ B},

i.e., the number of A-weighted subsequences of g with sum in B. For b ∈ B, we

put N b
A(g) = N

{b}
A (g).

Henceforth we suppose that each Ai and B contains 0 and that #Ai ≥ 2 for
all i. We define the relaxed weighted Davenport constant DB

A(G) as the
least n ∈ Z+ such that every length n sequence in G has a nonzero A-weighted
subsequence with sum in B. We have

DB
A(G) ≤ DA(G) ≤ D(G).

We write DB(G) for DB
{0,1}. It would be interesting to give upper bounds on NB(g)

depending only on #B and n (the length of g).

For a length n sequence g = {gi}ni=1 ∈ G, let

Σ(g) =

{∑
i∈J

gi | J ⊂ {1, . . . , n}

}
⊂ G

be the set of all subsequence sums of g.

For a general group G we have little insight into the quantity DB
A(G), and we

will content ourselves here with a few observations.

Theorem 3.4.
Let (G,+) be a finite commutative group, and let g = {gi}ni=1 be a sequence in G.
a) ([Ol69b, Thm. 2]) We have N0(g) = max{1, 2n+1−D(G)}.
b) ([CCQWZ11, Thm. 2]) For all x ∈ Σ(g), we have Nx(g) ≥ 2n+1−D(G).
c) ([CCQWZ11, Prop. 4]) If for some y ∈ G we have Ny(g) = 2n+1−D(G), then
Nx(g) ≥ 2n+1−D(G) for all x ∈ G.

Corollary 3.5. Let g be a sequence of length n in G, and let {0} ( B ⊂ G. Then:
a) We have NB(g) ≥ (#(

∑
(g) ∩B)) · 2n+1−D(G).

b) We have that NB(g) is 0 or is at least 2n+1−D(G) + 1.

Proof. a) By Theorem 3.4b), each b ∈ B which occurs as a subsequential sum of g
must occur at least 2n+1−D(G) times.
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b) We have NB(g) = 0 iff
∑

(g) ∩ B = ∅. We may assume this is not the case:
there is y ∈

∑
(g) ∩ B, and then part a) gives NB(g) ≥ 2n+1−D(G). Certainly

NB(g) ≥ Ny(g), and by Theorem 3.4c), if Ny(g) = 2n+1−D(G), then

NB(g) ≥ (#B)2n+1−D(G) > 2n+1−D(G). �

Remark 3.6. Suppose 0 ∈ B and B is a large subset of G. When
∑

(g) ∩ B is
large, Corollary 3.5a) gives a good lower bound on NB(g). When

∑
(g)∩B is small,

then there ought to be significantly more than 2n+1−D(G) zero-sum subsequences.

Remark 3.7. If B is a subgroup of G, then DB
A(G) = DA(G/B).

However, when G is a p-group, our Main Theorem can be applied.

Theorem 3.8. Let p be a prime; let 1 ≤ v1 ≤ . . . ≤ vr, and let G =
⊕r

j=1 Z/pvjZ.

Let {Ai}∞i=1 be a sequence of subsets of Z, and for 1 ≤ j ≤ r let Bj ⊂ Z. Suppose
each Ai and Bj is nonempty and has no two distinct elements congruent modulo p.

Let B =
∏r
j=1Bj and let B be the image of B under the natural homomorphism

Zr → G. Let g = {gi}ni=1 be a sequence in G.
a) The number of A-weighted subsequences of g with

∑n
i=1 aigi ∈ B is either 0 or

at least

m

#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(pvj −#Bj)

 .

b) If 0 lies in each Ai and Bj, then there is a nonempty A-weighted subsequence of

g with sum
∑n
i=1 aigi ∈ B if

(7)

n∑
i=1

(#Ai − 1) >

r∑
j=1

(pvj −#Bj).

Proof. a) Let g̃ be a length n sequence in Zr that maps to g under the homomor-

phism Zr → G. Write g̃i = (ã
(i)
1 , . . . , ã

(i)
r ), and for all 1 ≤ j ≤ r, put

fj(t) :=

n∑
i=1

ã
(i)
j ti.

Now apply Theorem 1.4. b) Apply part a) and (1). �

Remark 3.9. Taking B = {0} gives [CFS14, Thm. 4.6]. The latter implies Corol-
lary 3.3, which implies the result of van Emde Boas-Kruyswijk and Olson that
D(G) = D∗(G) for p-groups.

The following result is the generalization of Theorem [CFS14, Thm. 4.11] obtained
by applying the Main Theorem. The proof carries over immediately and is omitted.

Theorem 3.10. Let k, r, v1 ≤ . . . ≤ vr be positive integers, and let G =
⊕r

i=1 Z/pviZ.
Let A1, . . . , An, B1, . . . , Br be subsets of Z, each nonempty with distinct elements
pairwise incongruent modulo p and with 0 ∈ Ai for all i. Put

A :=

n∏
i=1

Ai, aM := max #Ai.
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For 1 ≤ i ≤ r, let Bi be the image of B under the natural map Z → Z/pviZ. For
x ∈ G, let EGZA,k(B) be the number of (a1, . . . , an) ∈ A such that

a1x1 + . . .+ anxn ∈
r∏
j=1

Bj and pk | #{1 ≤ i ≤ n | ai 6= 0}.

Then either EGZA,k(B) = 0 or

EGZA,k(B) ≥ m(#A1, . . . ,#An; #A1+. . .+#An−
r∑
j=1

(pvj−#Bj)−(aM−1)(pk−1)).

3.3. Divisible Subgraphs.

Here, a graph G is a relation ∼ – called incidence – between two finite sets V (G)
and E(G) such that every e ∈ E(G) is incident to exactly two elements of V (G).
If #V (G) = r we will identify V (G) with {1, . . . , r}. The degree of x ∈ V (G) is
#{e ∈ E(G) | x ∼ e}. A subgraph is induced by restricting the incidence relation
to a subset E′ ⊂ E. We say a graph is empty if E = ∅. For q ∈ Z+, a graph
G = (V (G), E(G)) is q-divisible if for all x ∈ V (G), q | deg x [AFK84]. An empty
graph is q-divisible for all q. We say a graph is q-atomic if it admits no nonempty
q-divisible subgraph.

For r ≥ 2 and q ∈ Z+, let E(r, q) be the least n ∈ Z+ such that every graph
with r vertices and n edges admits a nonempty q-divisible subgraph. We have
E(2, q) = q for all q; henceforth we suppose r ≥ 3.

Theorem 3.11. ([AFK84]) For r ≥ 3 and q ∈ Z+, we put

E(r, q) :=

{
(q − 1)r + 1 q odd

(q − 1)r − q
2 + 1 q even

.

a) We have E(r, q) ≤ E(r, q).
b) We have E(r, q) = E(r, q) if q is a prime power.

The proof of part a) is by a simple direct construction of q-atomic graphs that
we do not revisit here. The proof of part b) is by connection with the Davenport
constant.3 By making this connection explicit we can slightly sharpen their results.

Theorem 3.12. For r ≥ 3, q ∈ Z+, we put

G(r, q) :=

{⊕r
i=1 Z/qZ q odd⊕r−1
i=1 Z/qZ⊕ Z/ q2Z q even

and

D(r, q) := D(G(r, q)).

a) We have (cf. (5))

(8) D∗(G(r, q)) = E(r, q) ≤ E(r, q) ≤ D(r, q).

b) A graph with r vertices and n edges has at least 2n+1−D(r,q) q-divisible subgraphs.
c) [AFK84, Thm. 3.5] If q is a prime power, then E(r, q) = E(r, q) and a graph
with r vertices and n edges has at least 2n+1−E(r,q) q-divisible subgraphs.

3Essentially. The term “Davenport constant” does not appear in [AFK84].



WARNING’S SECOND THEOREM WITH RELAXED OUTPUTS 17

Proof. a) The equality D∗(G(r, q)) = E(r, q) is immediate, and E(r, q) ≤ E(r, q) is
Theorem 3.11a). Let G be a graph with r vertices and n edges, and let

A := (a
(i)
j )1≤i≤n, 1≤j≤r

be its incidence matrix. Then

I ⊂ {1, . . . , n} 7→ xI ∈ {0, 1}n, xIi =

{
1 i ∈ I
0 i /∈ I

induces a bijection between the q-divisible subgraphs of G and the solutions x ∈
{0, 1}n to the system of linear congruences

∀1 ≤ j ≤ r,
n∑
i=1

tja
(i)
j ≡ 0 (mod q)

and thus to zero-sum subsequences of a = {a(i)}ni=1 in
⊕r

j=1 Z/qZ. Thus

E(r, q) ≤ D(

r⊕
j=1

Z/qZ).

When q is odd, D(r, q) = D(G(r, q)). When q is even, the fact that every edge is
incident to precisely two vertices can be exploited to improve the bound:

(9) ∀1 ≤ i ≤ e,
n∑
j=1

a
(i)
j = 2 ≡ 0 (mod 2).

In group-theoretic terms, (9) means that the terms of a lie in the subgroup

G′ = {(x1, . . . , xn) ∈
n⊕
i=1

Z/qZ |
∑
j

xj ≡ 0 (mod 2)} ∼= G(r, q).

Thus again we find E(r, q) ≤ D(r, q).
b) We have seen that q-divisible subgraphs correspond bijectively to zero-sum sub-
sequences of a sequence a in a group isomorphic to G(r, q). Apply Theorem 3.4b).
c) Since q is a prime power, G(r, q) is a p-group and thus

D(G(r, q)) = D∗(G(r, q)) = E(r, q).

The result now follows from parts a) and b). �

Remark 3.13. Alon-Friedland-Kalai conjecture that E(r, q) ≤ (q − 1)r + 1 for all
q ∈ Z+ [AFK84, Conj. 3.7]. This would follow if D∗(G) = D(G) for all direct sums
of copies of one finite cyclic group (an important open problem in the area). When
q is odd, this conjecture is equivalent to E(r, q) = E(r, q); when q is even it gives

(q − 1)r − q

2
+ 1 ≤ E(r, q) ≤ (q − 1)r + 1.

Again E(r, q) = E(r, q) would follow from D∗(G(r, q)) = D(G(r, q)). To the best of
my knowledge, whether this equality holds for all even q is also open.

Remark 3.14. We have allowed graphs with multiple edges, and in fact the graphs
used in the proof of Theorem 3.11a) have multiple edges. We have not allowed
loops, but we could have, as we now discuss. There are two possible conventions on
how loops contribute to the incidence matrix (equivalently, the degree of a vertex).
• If we take the topologist’s convention that placing a loop at a vertex in-

creases its degree by 2, then Theorem 3.12 holds verbatim for graphs with loops.
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• If we take the algebraist’s convention that placing a loop at a vertex in-
creases its degree by 1, then the parity phenomenon of (9) is lost, and for even q
as well as odd we get E(r, q) ≤ D(

⊕r
i=1 Z/qZ). In this case, the graph with q − 1

loops placed at every vertex is q-atomic and shows

D∗(

r⊕
i=1

Z/qZ) = (q − 1)r + 1 ≤ E(r, q).

When q is a prime power we get E(r, q) = (q − 1)r + 1 whether q is even or odd.

The connection with Davenport constants motivates us to explore a more gen-
eral graph-theoretic setup. We first present a generalization which gives a graph-
theoretic interpretation to the Davenport constant of any finite commutative group.
The proofs are quite similar to those given above and are left to the reader.

Let q = (q1, . . . , qr) ∈ (Z+)r with 1 < q1 | q2 | . . . qr and put

G(q) =

r⊕
i=1

Z/qiZ.

When q1 is even, there is a surjective group homomorphism

Φ : G(q)→ Z/2Z, (x(1), . . . , x(r)) 7→
r∑
j=1

x(j) (mod 2).

Thus G′(q) := Ker Φ is an index 2 subgroup of G(q). In this case we set q′ =
( q12 , q2, . . . , qr).

Lemma 3.15. If q1 is even, then

G′(q) ∼= G(q′).

If q1 is odd, we put G′(q) = G(q).

Let G = (V,E) be a finite graph with V = {1, . . . , r}. A subgraph G′ = (V,E′) is
q-divisible if for all 1 ≤ j ≤ r, qj | deg j. More generally, for g = (g(j))rj=1 ∈ G(q),
a subgraph G′ is of type (q, g) if for all 1 ≤ j ≤ r we have

deg j ≡ g(j) (mod qj).

We then get the following generalization of Theorem 3.12.

Theorem 3.16. Let q ∈ (Z+)n, and let G be a finite graph with vertex set V =
{1, . . . , r} and n edges, and let g ∈ G(q). Let a be the incidence matrix of G,
regarded as a sequence of length n in G′(q). Then the number of subgraphs of G of

type (q, g) is Ng(G′(a)), hence is 0 or at least 2n+1−D(G′(q)).

3.4. Divisibility in Weighted Graphs.

Let G = G(q) =
⊕r

i=1 Z/qiZ be an (arbitrary) finite commutative p-group. We give
ourselves a sequence A = {Ai}∞i=1 of finite nonempty subsets of Z. For 1 ≤ j ≤ r,
let Bj ⊂ Z/qjZ be nonempty subsets, and put B =

∏r
i=1Bj , viewed as a sub-

set of G. We will give a graph theoretic application of the quantities DB
A(G) and

NB
A (G,n) which further generalizes the results of the previous section.
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Let G be a finite graph with vertex set V = {1, . . . , r} and edge set E = {1, . . . , n}.
An element a ∈

∏n
i=1Ai may be viewed as giving an integer weight ai to each edge

i of G: we call this data an A-weighted subgraph of G. (The case Ai = {0, 1}
for all i recovers the usual notion of a subgraph.) For a weighted subgraph (G, a)
and a vertex j ∈ V , the weighted degree of j is

dA(j) :=
∑
i∼j

ai,

that is, the sum of the weights of the edges incident to j. A weighted subgraph
(G, a) is B-divisible if for all 1 ≤ j ≤ r, we have dA(j) ∈ Bj (mod Z/qjZ).

This setup is designed so that the number of A-weighted B-divisible subgraphs
is equal to the number of A-weighted B-sum subsequences of the sequence a in
G′(q) corresponding to the incidence matrix. Thus we may apply the results of
§3.2 to deduce the following result.

Theorem 3.17. a) Let G(q), A = {Ai}∞i=1, B =
∏r
j=1Bj be as above, and let G

be a finite graph with vertex set V = {1, . . . , r} and edge set E = {1, . . . , n}. Let a
be the incidence matrix of G, viewed as a sequence of length n in G′(q). Then the
number of B-divisible A-weighted subgraphs of G is NB

A (a).
b) If each Ai contains 0 and at least one element not divisible by qr = expG(q)
and each Bj contains 0, then there is a nonempty A-weighted B-divisible subgraph
of G whenever n ≥ DB

A(G′(q)).
c) Let p be a prime, let 1 ≤ v1 ≤ . . . ≤ vr ∈ Z and put q = (pv1 , . . . , pvr ). Let
A1, . . . , An, B1, . . . , Br each have the property that no two distinct elements are
congruent modulo p. Then:
(i) the number of A-weighted B-divisible subgraphs of G is either 0 or at least

m

#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(pvj −#Bj)

 .

(ii) Suppose that 0 lies in Ai for all 1 ≤ i ≤ n and 0 lies in Bj for all 1 ≤ j ≤ r.
Then there is a nonempty A-weighted B-divisible subgraph if

n∑
i=1

(#Ai − 1) >

r∑
j=1

(pvj −#Bj).

Remark 3.18. Theorem 3.17c)(ii) with Ai = {0, 1} recovers [AFK84, Thm. A.4].

3.5. Polynomial Interpolation With Relaxed Targets.

Our final application of the Main Theorem lies not in combinatorics but in algebra,
specifically the problem of polynomial interpolation in commutative rings.

Theorem 3.19. Let (r, p) be a finite, local principal ring with residue field Fq
and length v. Let f1, . . . , fn ∈ r[t1, . . . , tN ] be r-linearly independent, and let V =
〈f1, . . . , fn〉 be the r-module spanned by f1, . . . , fn, so that every f ∈ V may be
uniquely written as

f =

n∑
i=1

ci(f)fi, ci(f) ∈ r.
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Let X = {xj}rj=1 ⊂ rN be finite of cardinality r. Let A1, . . . , An, B1, . . . , Br ⊂ r
satisfy Condition (F). For 1 ≤ j ≤ r, let 1 ≤ vj ≤ v.
a) Let S be the set of f ∈ V such that
(i) ci(f) ∈ Ai for all 1 ≤ i ≤ n and
(ii) f(xj) ∈ Bj (mod pvj ) for all 1 ≤ j ≤ n.
Then #S = 0 or

#S ≥ m(#A1, . . . ,#An;

n∑
i=1

#Ai −
r∑
j=1

(qvj −#Bj)).

b) Suppose that 0 is an element of each Ai and Bj and that

n∑
i=1

#Ai −
r∑
j=1

(qvj −#Bj) > n.

Then there is 0 6= f ∈ S.

Proof. a) For 1 ≤ j ≤ r, let Lj : r[t1, . . . , tN ]→ r by f 7→ f(xj); this is an r-linear
map, hence so is its restriction to the r-submodule V . The basis f1, . . . , fn gives
us an identification of V with rn under which f =

∑n
i=1 ci(f)fi corresponds to

(c1(f), . . . , cn(f)) ∈ rn. In this way we may view each Lj as a linear polynomial
on rn. For f = (c1(f), . . . , cn(f)) ∈ rn the condition Lj(f) ∈ Bj (mod pvj ) corre-
sponds to f(xj) ∈ Bj (mod pvj ). So Theorem 1.6 applies.
b) The hypotheses imply that 0 ∈ S and
m(#A1, . . . ,#An;

∑n
i=1 #Ai −

∑r
j=1(qvj −#Bj)) ≥ 2. �

Corollary 3.20. For each x ∈ F×q , let Bx be a subset of Fq containing 0. There is
a nonzero polynomial f ∈ Fq[t] of degree at most n such that f(0) = 0, f(x) ∈ Bx
for all x ∈ F×q if

n > q −
∑
x∈F×q #Bx

q − 1
.

Proof. Order the elements of Fq as x1 = 0, x2, . . . , xq. We apply Theorem 3.19b)
with n + 1 in place of n, r = Fq, N = 1, f1 = 1, f2 = t1, . . . , fn+1 = tn1 , X = Fq,
A1 = . . . = An+1 = Fq, B1 = {0}, Bj = Bxj

for 2 ≤ j ≤ q, v1 = . . . = vr = 1:
there is a nonzero polynomial of degree at most n with f(0) = 0 and f(x) ∈ Sx for
all x ∈ F×q if

n+ 1 <

n+1∑
i=1

#Ai −
q∑
j=1

(q −#Bj) = (n+ 1)q − (q − 1)− q(q − 1) +
∑
x∈F×q

#Bx,

which is equivalent to

n > q −
∑
x∈F×q #Bx

q − 1
. �

Corollary 3.20 is due to Troi and Zannier when q = p is a prime [TZ97, Thm. 2].
Their proof is quite different: it uses Theorem 3.3 and an auxiliary result involving
integer-valued polynomials. It does not seem to carry over to Fq.
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