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Abstract. Let M | N be positive integers, and let ∆ be the discriminant of an order in
an imaginary quadratic field K. When ∆K < −4, the first author determined the fiber of
the morphism X0(M,N)→ X(1) over the closed point J∆ corresponding to ∆ and showed
that all fibers of the map X1(M,N) → X0(M,N) over J∆ were connected. [Cl22a]. In
the present work we complement the work of [Cl22a] by addressing the most difficult cases
∆K ∈ {−3,−4}. These works provide all the information needed to compute, for each
positive integer d, all subgroups of E(F )[tors], where F is a number field of degree d and
E/F is an elliptic curve with complex multiplication.
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1. Introduction

1.1. Main Results. This paper is a direct continuation of [Cl22a], which determined the
∆-CM locus on the modular curves X0(M,N)/Q for ∆ the discriminant of an order in an

imaginary quadratic field K different from Q(
√
−1) or Q(

√
−3). This work also gave a

completely explicit description of the primitive residue fields of ∆-CM closed points: i.e.,
the residue fields Q(P ) of ∆-CM points P ∈ X0(M,N) for which there is no ∆-CM point
P ′ ∈ X0(M,N) such that Q(P ′) embeds into Q(P ) as a proper subfield. Finally, the work
[Cl22a] also gave an inertness result for the fibers of X1(M,N) → X0(M,N) over ∆-CM
points on X0(M,N), which yields a complete description of the multiset of degrees of ∆-CM
closed points on X1(M,N)/Q. Using only the knowledge of the degrees of primitive residue
fields of ∆-CM points on X0(M,N) yields the corresponding knowledge of degrees of prim-
itive residue fields of ∆-CM points on X1(M,N), which is precisely what is needed in order
to classify torsion subgroups of ∆-CM elliptic curves over number fields of any fixed degree.

In the present work we treat the excluded fields Q(
√
−1) and Q(

√
−3). If ∆ = f2∆K

and ∆K ∈ {−3,−4}, then for all M | N we determine the ∆-CM locus on X0(M,N)/Q
and explicitly determine all primitive residue fields of ∆-CM points on X0(M,N)/Q. Fi-

nally, we show that the fibers of X1(M,N)→ X0(M,N) over ∆-CM points are connected.1

Taken together, the works [Cl22a] and the present work give a complete description of
torsion subgroups of CM elliptic curves over number fields. In particular, we get an al-
gorithm that takes as input a positive integer d and outputs the complete, finite list of
groups isomorphic to E(F )[tors] where F is a number field of degree d and E/F is a CM
elliptic curve, conditionally on knowing the finite list of imaginary quadratic orders of class
number properly dividing d. With current knowledge about class numbers, this allows us
to enumerate CM torsion in number field degree d ≤ 200. If we are willing to assume the
Generalized Riemann Hypothesis (GRH), then by [LLS15, Cor. 1.3] we can enumerate CM
torsion in number field degree d ≤ 18104. This enumeration will appear in a future work.

1.2. Review of the ∆K < −4 case. Let us outline the proof of the computation of the
fiber of X0(M,N) → X(1) over the closed ∆-CM point J∆ on X(1) given in [Cl22a] so
that we can see what must be modified to treat the ∆K ∈ {−3,−4} case.

Step 1: We handle the case X0(1, `a) = X0(`a) for a prime power `a.

1The difference between “inertness” and “connectedness” is that the latter allows ramification. The map
X0(M,N)→ X(1) can only ramify over 0, 1728 and ∞.



CM ELLIPTIC CURVES: VOLCANOES, REALITY AND APPLICATIONS, PART II 3

Step 1a: The `-power isogeny graph corresponding to a ∆-CM elliptic curve with ∆ =
`2Lf20∆K (where gcd(`, f0) = 1) has the structure of an `-isogeny volcano. This is an
infinite graph that is very close to being a rooted tree and with vertex set stratified into
levels indexed by Z≥0; the set of vertices at level L corresponds to the set of j-invariants
of (∆ = `2Lf20∆K)-CM elliptic curves, which is a torsor under PicO(∆), the Picard group
of the imaginary quadratic order O(∆) of discriminant ∆. Cyclic `a-isogenies with ∆-CM
source elliptic curve correspond to paths of length a in this volcano with initial vertex
at level L. From this it is easy to see that if ϕ : E → E′ is such an isogeny and if the
target elliptic curve has level L′, then over K the field of moduli of ϕ is the ring class field
K(f0`

max(L,L′)), which is equal to K(j(E), j(E′)). It follows that

Q(j(E), j(E′)) ⊆ Q(ϕ) ⊆ K(j(E), j(E′)).

Step 1b: Thus the field of moduli Q(ϕ) of ϕ is determined when Q(j(E), j(E′)) contains K:
this happens if and only if Q(j(E), j(E′)) has no real embedding (j(E) and j(E′) are “not
coreal”). Otherwise we are left to decide whether Q(ϕ) is Q(j(E), j(E′)) or K(j(E), j(E′)).
Both the coreality question and the dichotomy between the two possible fields can be an-
swered in terms of the natural action of complex conjugation on the `-isogeny volcano.
Determining the explicit action of gR = {1, c} on the `-isogeny volcano is one of the main
contributions of [Cl22a]. In the end, depending upon whether or not the path is fixed

under complex conjugation or not,2 we get that Q(ϕ) is isomorphic to Q(f0`
max(L,L′) –

that is, isomorphic to a rational ring class field – the field obtained by adjoining to Q the
j-invariant of an elliptic curve with CM by the imaginary quadratic order of discriminant
(f0`

max(L,L′))2∆K – or to the ring class field K(f0`
max(L,L′)) – which is obtained by adjoin-

ing to K the same j-invariant.

Step 2: We pass from the prime power case X0(`a) to the case X0(N).
Step 2a: For any closed point p /∈ {0, 1728,∞} on the j-line X(1), if N = `a1

1 · · · `arr , let
F be the fiber of π : X0(N) → X(1) over p, and for 1 ≤ i ≤ r let Fi be the fiber of
X0(`aii ) → X(1) over p. Then we show that F is the fiber product of F1, . . . , Fr over
SpecQ(p). Since each Fi is the spectrum of a finite product of number fields, each isomor-
phic to either a rational ring class field or a ring class field, F is determined by Fi in terms
of tensor products of these rational ring class fields and ring class fields.
Step 2b: Letting Q(f) := Q(j(C/O(f2∆K))) be the rational ring class field of conductor f,
we show that

(1) K(f1)⊗K(gcd(f1,f2) K(f2) = K(lcm(f1, f2))

and

(2) Q(f1)⊗Q(gcd(f1,f2) Q(f2) = Q(lcm(f1, f2)).

2Since closed points on X0(`a) correspond to certain equivalence classes of paths, the actual answer is
slightly more complicated than this but can still be determined from the action of complex conjugation on
the isogeny graph.
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These identities allow us to write down F explicitly as a product of number fields.

Step 3: Lifting a point P on X0(N) induced by an isogeny ϕ : E → E′ to a point P̃
X0(M,N) involves scalarizing the modulo M Galois representation on E, with the effect

that Q(P̃ ) is obtained from Q(P ) by adjoining the projective M -torsion field Q(P )(PE[M ]).
This uses that because ∆ < −4, the projective M -torsion field is independent of the choice
of Q(P )-rational model. Indeed, for all M ≥ 3, if E is a ∆ = f2∆K-CM elliptic curve, we
find that Q(P )(PE[M ]) = Q(P )K(M f).

1.3. The ∆K ∈ {−3,−4} case. When ∆K ∈ {−3,−4} and E is a ∆ = f2∆K-CM elliptic
curve, then for certain f > 1 some of the above steps still hold. However, when f = 1,
none of the above arguments hold as stated. While some of the change are routine, in
several places we have to make arguments that are significantly more intricate than those
of [Cl22a]. Let us describe the modifications:

Step 1a: When ∆K ∈ {−3,−4}, ` is a prime numer, and f0 > 1, then again the `-power
isogeny graph of a (∆ = (`Lf0)2∆K)-CM elliptic curve is an `-volcano. When f0 = 1, the
`-power isogeny graph is no longer an `-volcano. This is in fact the least of our worries,
as the deviation from “volcanoness” is minor and had already been well understood: the
differences involve multiple edges descending from the surface and in subtleties involving
orientations of edges which necessitate more care in the notion of a “nonbacktracking path.”
The structural information we need is found, for instance, in [Su13].

Step 1b: When f20∆K ∈ {−3,−4}, there is in fact no canonical action of complex con-
jugation on the `-isogeny graph. To define the action of complex conjugation on isogenies,
we need a priori a chosen R-model on the elliptic curve. Every real elliptic curve has
precisely two nonisomorphic R-models. When ∆ < −4 these two R-models are quadratic
twists of each other, so the action of gR on finite subgroup schemes of E/R is independent
of the choice of R-model. However, when ∆ ∈ {−3,−4} this is no longer the case.

It turns out that when f20∆K ∈ {−3,−4}, in most cases we can define a noncanonical
action of gR on the `-isogeny graph that allows us to determine fields of modulo of ∆-CM
points on X0(N) in terms of real and complex paths, as in [Cl22a]. But there are two cases
in which we need to pass from this isogeny graph to a certain double cover and define an
action of gR on that. By looking carefully on how surface edges change the R-structure of
a ∆K-CM elliptic curve we are able to carry out the analysis as in [Cl22a].

Step 2a: The fiber product result referred to above [Cl22a, Prop. 3.5] is false when
j ∈ {0, 1728}: the modular curve X0(`a1

1 · · · `arr ) is a desingularization of the fiber product
of the morphisms X0(`aii ) → X(1). For lack of this scheme-theoretic result we need other
techniques to compute the composite level fibers. We make use of the Atkin-Lehner invo-
lution wN to reduce to either the ∆K < −4 case or the case when both the source and
target are ∆K-CM, in which case we have a proper isogeny in the sense of [Cl22a, §3.4]
and we can reason via ZK-ideals.
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Step 2b: When ∆ ∈ {−3,−4}, equations (1) and (2) hold for certain pairs f1, f2 ∈ Z+ and
fail for others: in general the compositum K(f1)K(f2) is a proper subfield of K(lcm(f1, f2));
and the same holds for rational ring class fields Q(f1) and Q(f2). In §2 we use class field
theory to show that it is still the case that K(f1) and K(f2) are linearly disjoint over
K(gcd(f1, f2)) and to determine the index of K(f1)K(f2) in K(lcm(f1, f2)); we do the same
for rational ring class fields; and again we calculate tensor products of rational ring class
fields and ring class fields. This calculation is relatively straightforward, but the difference
in the answer causes complications related to Step 2a: when ∆K < −4, if N1, N2 are co-
prime positive integers, to show that the residue field Q(P ) of a point P ∈ X0(N) contains
e.g. a ring class field K(N1N2), it suffices to show that it contains each of K(N1) and
K(N2). When ∆K ∈ {−3,−4}, we cannot argue in this way. Instead our method is to find
a rationally isogenous elliptic curve with CM conductor divisible by N1N2.

Step 3: When ∆ ∈ {−3,−4}, the projective M -torsion field F (PE[M ]) of a ∆-CM el-
liptic curve may depend upon the model. Nevertheless we compute the residue field
Q(P ) for any ∆-CM point P ∈ X0(M,M) (this amounts to computing the minimal
possible projective M -torsion field as we range over models). Using this and the maps
α : X0(M,N) → X0(M,M) and β : X0(M,N) → X0(N), we can bootstrap from
β(P ) ∈ X0(N) to P ∈ X0(M,N), with some care: the case ∆ = −4 behaves exceptionally
to all the rest.

1.4. The CM fibers of X1(M,N) → X0(M,N) are connected. In [Cl22a, Thm. 1.2],
the first author showed an especially close relationship between points on X0(M,N) and
points on X1(M,N) for points which do not have CM by ∆ ∈ {−3,−4}. In particular,
this theorem states that the fiber of the map X1(M,N) → X0(M,N) is inert over any
point which does not have CM by one of these two discriminants. This has the important
consequence that determining the degrees of closed ∆-CM points on X0(M,N) and on
X1(M,N) are equivalent problems. The following theorem generalizes this result to include
points with −3 and −4-CM.

Theorem 1.1. Let M | N ∈ Z+, and suppose that x ∈ X0(M,N)/Q is a ∆-CM point. Let
π : X1(M,N)→ X0(M,N) denote the natural morphism.

(i) If ∆ < −4 or if M ≥ 2, then π is inert over x.
(ii) Suppose that ∆ ∈ {−3,−4} and M = 1.

(a) If x is a ramified point of the map X0(M,N) → X(1) or if N ≤ 3, then π is
inert over x.

(b) Otherwise, i.e., if N ≥ 4 and x is an elliptic point on X0(M,N), then we have

eπ(x) =

{
2 if ∆ = −4

3 if ∆ = −3
and fπ(x) =

{
φ(N)/4 if ∆ = −4

φ(N)/6 if ∆ = −3

for the ramification index and residual degree of x.

In particular, in all cases we have that the fiber of π over x consists of a single point.
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Proof. For the proof, we first recall some basic relevant facts: for N ≤ 2 the map π is an
isomorphism. For N ≥ 3 it is a (Z/NZ)∗/{±1}-Galois covering, hence has degree φ(N)/2.
All points on X(N) = X1(N,N) not above 0, 1728 ∈ X(1) are unramified. For N ≥ 4
the curve X1(N) (and hence X(N)) has no elliptic points of periods 2 or 3, from which
it follows that all points over 0, 1728 ∈ X(1) are ramified with ramification index 2 or 3.
The curve X1(2) has a single elliptic point of period 2 over 1728 ∈ X(1), while the curve
X1(3) has a single elliptic point of period 3 over 0 ∈ X(1). (One can see these claims
regarding elliptic points and ramification from elementary arguments involving congruence
subgroups, in fact this is [DS05, Exc. 2.3.7]).

For ∆ < −4 the claim is [Cl22a, Thm 1.2], so suppose that ∆ ∈ {−3,−4}. For M ≥ 2,
the point x must be non-elliptic (i.e., is a ramified point of the map X0(M,N) → X(1)).
We can see this, for instance, via our analysis of paths on GK,`,1 for any prime ` |M ; in all

cases we find that any pair of independent `a
′

isogenies for a′ ≥ 1 must include at least one
with a corresponding path in GK,`,1 which descends, and hence any −3 or −4-CM point on

X0(`a
′
, `a), and hence on X0(M,N) for M ≥ 2, must be non-elliptic. In this case we then

have that a pair (E,C)/Q(x) inducing x is well-defined up to quadratic twist, as all models
for E are defined over Q(x). For this reason, the same argument involving the modulo N
±-Galois representation given in [Cl22a, Thm 1.2] applies. Similarly, this argument applies
in case (2)(a) if x is a ramified point of the map X0(M,N)→ X(1).

We now assume that x is an elliptic ∆-CM point on X0(M,N) with ∆ ∈ {−3,−4}. If
N = 2, then π is an isomorphism, so the claim is trivial. If N = 3, then because there is
a single elliptic point on X1(3) it follows that it must comprise the entire fiber above x,
giving the inertness claim. Assuming now that N ≥ 4, we know that x is elliptic while
every point in π−1(x) is ramified with respect to the map X1(N) → X(1), giving the
claimed ramification index. Note that it follows that the residual degree is at most the
claimed residual degree in each case.

To provide the lower bound on the residual degree, we need only modify the argument of
the ∆ < −4 case slightly in a predictable way. If ∆ = −4, then a pair (E,C)Q(x) inducing
x is well-defined up to quartic twist. Letting qN : ZK → ZK/NZK denote the quotient
map, by tracking that action of Galois on a generator P of C we get a well-defined reduced
mod N Galois representation

ρN : gQ(x) → (ZK/NZK)× /qN (Z∗K)

which is independent of the chosen model and surjective (see [BC20a, §1.3]). As the set
{P,−P, iP,−iP} is stable under the action of gQ(y) for y ∈ π−1(x), we then must have

φ(N)

4
= #

(
ρN
(
gQ(x)

))
| [Q(y) : Q(x)],

giving the result for ∆ = −4. For ∆ = −3, exchanging “quartic” for “cubic” and µ4 for µ3

results in the required divisibility φ(N)
6 | fπ(x).

�
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Remark 1.2. The M = 1 with ∆ < −4 case of Theorem 1.1 is used explicitly in [CGPS22]
to transfer from knowledge of the least degree of a ∆-CM point on X1(N), which is com-
puted in [BC20b], to knowledge of the least degree of a ∆-CM point on X0(N). A shadow
of Theorem 1.1 is also seen in the referenced study in the ∆ ∈ {−3,−4} case. A positive
integer N is of Type I or Type II, using the terminology of [CGPS22], if X0(N) has an
elliptic point of order 3 or 2, respectively. If N is of type I, then there is a single primitive
degree among all elliptic points on X0(N) which is the least degree of a −4-CM point
on X0(N). In this case, the single point lying above any elliptic −4-CM point on X1(N)
provides the least degree of a −4-CM point on X1(N) (and the analogous statements hold
for Type II and ∆ = −3).

2. Composita of Ring Class Fields and of Rational Ring Class Fields

Let K be an imaginary quadratic field, of discriminant ∆K . We put

wK := #Z×K =


6 if ∆K = −3

4 if ∆K = −4

2 if ∆K < −4

.

Let O be a Z-order in K. For f ∈ Z+, there is a unique Z-order O in K with [ZK : O] = f
and then fZK is the conductor ideal (O : ZK) [Cl22a, §2.1]. We denote by K(f) the ring
class field of O [Cl22a, §2.3]. If j∆ := j(C/O), then we have

K(f) = K(j∆).

We recall from [Cx89, Cor. 7.24] the formula

(3) d(f) := [K(f) : K(1)] =

{
1 if f = 1

2
#Z×K

f
∏
`|f

(
1−

(
∆K
`

)
1
`

)
if f ≥ 2

.

As in [Cl22a, §2.6], we also define the rational ring class field

Q(f) := Q(j∆).

In [Cl22a, §2] we studied composita of ring class fields and of rational ring class fields (with
a fixed imaginary quadratic field K, in both cases) when ∆K < −4. The results were quite
clean: for f1, f2 ∈ Z+, the fields K(f1) and K(f2) are linearly disjoint over K(gcd(f1, f2))
and we have K(f1)K(f2) = K(lcm(f1, f2)) [Cl22a, Prop. 2.2] and the same holds with each
K(fi) replaced by Q(fi) [Cl22a, Prop. 2.10a)].

Here we treat ∆K ∈ {−3,−4}.

Proposition 2.1. Let K be a quadratic field with ∆K ∈ {−3,−4}, let f1, f2 ∈ Z+, and put

m := gcd(f1, f2), M := lcm(f1, f2).

a) Suppose that m > 1. Then:

K(f1)K(f2) = K(M).
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b) If the order of discriminant f21∆K has class number 1, then we have

K(f1)K(f2) = K(f2).

c) Let f1, . . . , fr ∈ Z+ be pairwise relatively prime, and further assume that:
• If ∆K = −3, then no fi lies in {1, 2, 3}; and
• If ∆K = −4, then no fi lies in {1, 2}.
Then:

[K(f1 · · · fr) : K(f1) · · ·K(fr)] =
(wK

2

)r−1
.

d) In all cases we have that K(f1) and K(f2) are linearly disjoint over K(m), and thus
K(f1) ∩K(f2) = K(m).

Proof. We will use the classical description of ring class groups and ring class fields, with
notation as in [Cx89, §7]. For f ∈ Z+, let IK(f) be the group of fractional ZK-ideals prime
to f and let PK,Z(f) be the subgroup of principal fractional ideals generated by an element
α ∈ ZK such that α ≡ a (mod fZK) for some a ∈ Z with gcd(a, f) = 1. By class field
theory, we have K(f1)K(f2) = K(M) if and only if

PK,Z(f1) ∩ PK,Z(f2) = PK,Z(M).

Clearly in all cases we have

PK,Z(f1) ∩ PK,Z(f2) ⊇ PK,Z(M).

a) • Suppose ∆K = −4 and m > 1, so the units of ZK are ±1,±
√
−1. Let (α) ∈

PK,Z(f1) ∩ PK,Z(f2). We may choose α such that

α ≡ af1 (mod f1ZK)

and then there is u ∈ Z×K such that

uα ≡ af2 (mod f2ZK).

If u ∈ {±1}, then the argument of Case 1 works to show that (α) ∈ PK,Z(M). After
replacing α with −α if necessary, the other case to consider is that

√
−1α ≡ af2 (mod f2ZK).

If this holds then
af2
af1
≡ i (mod mZK),

which is manifestly false.

• Suppose ∆K = −3 and m > 1, so the units of ZK are ±1,±ω, ±ω, where ω = 1+
√
−3

2 .
As above, we may suppose that α ≡ af1 (mod f1ZK) and α is congruent modulo f2ZK to
either ωaf2 or to ωaf2 . We then get

af2
af1
≡ ω or ω (mod mZK),

which is again manifestly false.
b) This is a trivial case, listed for completeness: if the order of discriminant f21∆K has class
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number 1 then K(f1) = K(1) (and conversely), so K(f1)K(f2) = K(1)K(f2) = K(f2).3

c) We claim that the extensions K(f1), . . . ,K(fr) are mutually linearly disjoint over K(1):
that is,

K(f1)⊗K(1) · · · ⊗K(1) K(fr) = K(f1) · · ·K(fr).

Since everything in sight is Galois, it is enough to check that (K(f1) · · ·K(fr−1))∩K(fr) =
K(1). But the conductor of K(f1) · · ·K(fr−1) divides f1 · · · fr−1 and the conductor of K(fr)
divides fr, so the conductor of their intersection is the unit ideal, so the intersection is
contained in the Hilbert class field K(1), hence is equal to K(1). From this it follows that

[K(f1 · · · fr) : K(f1) · · ·K(fr)] =
δ(f1 · · · fr)∏r
i=1 δ(fi)

,

and the latter expression may be evaluated using (3).
d) It is immediate that K(m) ⊆ K(f1) ∩K(f2).

The case m = 1 is easy: then K(f1) ∩ K(f2) has conductor dividing f1 and f2, so its
conductor is the unit ideal, so K(f1) ∩K(f2) is contained in the Hilbert class field of K,
which is the ring class field K(1).

Henceforth we suppose that m > 1, and thus by part a) we have K(f1)K(f2) = K(M).
We claim the formula

d(m)d(M) = d(f1)d(f2).

First we observe that this formula g(m)g(M) = g(f1)g(f2) holds for any multiplicative
function g : Z+ → C. If we had ∆K < −4 then the function d would be multiplicative.
Instead we have ∆K ∈ {−3,−4}, in which case d is a constant multiple of a multiplicative
function except for its value at 1. This justifies the claim. The claim can be rewritten as

[K(f1)K(f2) : K(m)] = [K(M) : K(m)] = [K(f1) : K(m)][K(f2) : K(m)],

so K(f1) and K(f2) are linearly disjoint over K(m), and thus K(m) = K(f1) ∩K(f2). �

Proposition 2.2. Let K be a quadratic field with ∆K ∈ {−3,−4}. Let f1, f2 ∈ Z+, and
put m = gcd(f1, f2), M = lcm(f1f2). Let

D := {−3,−4,−12,−16,−27};
this is the set of imaginary quadratic disciminants ∆ = f2∆K with fundamental discrimi-
nant ∆K ∈ {−3,−4} and class number 1. Let

S := {f ∈ Z+ | f2∆K ∈ D}.
a) The fields Q(f1) and Q(f2) are linearly disjoint over Q(m):

Q(f1)⊗Q(m) Q(f2) ∼= Q(f1)Q(f2).

b) If f1 ∈ S, then we have:

Q(f1)⊗Q(m) Q(f2) ∼= Q(f2),

Q(f1)⊗Q(m) K(f2) ∼= K(f1)⊗Q(m) Q(f2) ∼= K(f2),

3This gives rise to cases in in which K(M) ) K(f1)K(f2): e.g. when ∆K = −3 we have K(2)K(3) = K(1)
but [K(6) : K(1)] = 3.
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and
K(f1)⊗Q(m) K(f2) ∼= K(f2)×K(f2).

c) If f1, f2 /∈ S and m > 1, then we have

Q(f1)⊗Q(m) Q(f2) ∼= Q(f1)Q(f2) = Q(M),

Q(f1)⊗Q(m) K(f2) ∼= Q(f2)K(f2) = K(M),

and
K(f1)⊗Q(m) K(f2) ∼= K(M)×K(M).

d) Let f1, . . . , fr be elements of Z+\S that are pairwise relatively prime. Then Q(f1) · · ·Q(fr)

is a subfield of Q(f1 · · · fr) of index
(
wK
2

)r−1
, and moreover

Q(f1) · · ·Q(fr) ∼= Q(f1)⊗Q(m) · · · ⊗Q(m) Q(fr),

Q(f1)⊗Q(m) · · ·Q(fr−1)⊗Q(m) K(fr) ∼= Q(f1) · · ·Q(fr−1)K(fr).

Finally, if 2 ≤ s ≤ r, then

Q(f1)⊗Q(m) · · ·⊗Q(m) Q(fr−s)⊗Q(m)K(fr−s+1)⊗Q(f) · · ·⊗Q(f)K(fr) ∼= (K(f1) · · ·K(fr))
2s−1

.

Proof. a) As in the proof of [Cl22a, Prop. 2.10], this follows from the fact that K(f1) and
K(f2) are linearly disjoint over K(m).
b) If f1 ∈ S, then Q(m) = Q(f1) = Q(1), and all the statements follow easily.
c) Using part a) and Proposition 2.1a), we get

[Q(M) : Q(m)] = [K(M) : K(m)] = [K(f1)K(f2) : K(m)] = [K(f1)⊗K(m) K(f2) : K(m)]

= [Q(f1)⊗Q(m) Q(f2) : Q(m)] = [Q(f1)Q(f2) : Q(m)],

so Q(f1)Q(f2) = Q(M). The other two statements of part c) follow easily.
d) Again it follows from Proposition 2.1 that the field extensions Q(f1), . . . ,Q(fr) are mu-
tually linearly disjoint over Q(1). So

[Q(f1) · · ·Q(fr) : Q(1)] =

r∏
i=1

[Q(fi) : Q(1)] =
(wK

2

)1−r
[Q(f1 · · · fr) : Q(1)].

The other two statements of part d) follow easily. �

3. The Isogeny Graph GK,`,f0
3.1. Defining the graph. Let K be an imaginary quadratic field, and let ` be a prime
number. There is a directed multigraph GK,` as follows: the vertex set V of GK,` is the
set of j-invariants j ∈ C of K-CM elliptic curves, i.e., j-invariants of complex elliptic
curves with endomorphism ring an order in the imaginary quadratic field K. In general,
for j ∈ V we denote by Ej a complex elliptic curve with j-invariant j. As for the edges:
let π1 : X0(`) → X(1) be the natural map, let wN ∈ Aut(X0(N)) be the Atkin-Lehner
involution, and let π2 := π1 ◦ wN : here we work over C. For j, j′ ∈ V, write

(π2)∗π
∗
1([j]) =

∑
P

eP [P ].
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Then the number of directed edges from j to j′ is ej′ . Equivalently, let E/C be any elliptic
curve with j-invariant j. Then the number of edges from j to j′ is the number of cyclic
order ` subgroups C of E such that j(E/C) = j′.

In [Cl22a, §4] we recalled the complete structure of the graph GK,`,f0 when f20∆K < −4
and saw in particular that it was an `-volcano in the sense of [Cl22a, §4.2]. Now we need to
describe the structure of GK,`,f0 when f20∆K ≥ −4: i.e., when f0 = 1 and ∆K ∈ {−3,−4}.

3.2. ∆K = −4. Suppose ∆K = −4, f0 = 1, and let ` be a prime number.

Example 3.1. Let K = Q(
√
−1), ` = 2 and f0 = 1. The surface of this graph consists of

CM j-invariants of discriminant −4, of which there is 1: j = 1728. Level one consists of
CM j-invariants of discriminant −16, of which there is again 1: j = 23 · 33 · 113. Level two
consists of CM j-invariants of discriminant −64, of which there are 2. As always, they
form a single Galois orbit. We have

J−64(t) = t2 − 82226316240t− 7367066619912.

There is one horizontal edge at the surface (a loop), corresponding to the unique Z[
√
−1]-

ideal p2 of norm 2. The remaining two edges emanating outward from j = 1728 connect it
to j = 23 · 33 · 113. This corresponds to the fact that the pullback of the degree 1 divisor
J1728 under π : X0(2)→ X(1) is [J1728] + 2[J23·33·113 ].

One of the three order 2 subgroups of E1728 is E[p2]. The other two are interchanged by
the action of µ4/µ2 on E1728[2].
The vertex j = 1728 has outward degree 3 and inward degree 2, while the vertex j =
23 · 33 · 113 has outward degree 3 and inward degree 4.

Figure 1. the graph GQ(
√
−1),2,1 up to level 3

Next suppose ` ≡ 1 (mod 4). Then there are two loops emanating from the surface vertex
v0, corresponding to the two prime ideals p1, p2 = p1 of Z[

√
−1] lying over `. Let v1 be any

one of the `−1
2 level one vertices. There are two directed edges from v0 to v1. The natural

action of µ4/µ2 on edges with emanating from v0 fixes each of the two surface loops and
interchanges the pair of edges from v0 to v1. For each vertex at level L ≥ 1 there is one
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upward edge and ` downward edges.
Finally suppose ` ≡ 3 (mod 4). There are no surface edges. For each vertex v1 at level 1

there are two edges from v0 to v1. These two edges are interchanged by the µ4/µ2-action.
For each vertex at level L ≥ 1 there is one upward edge and ` downward edges.

3.3. ∆K = −3. Suppose ∆K = −3, f0 = 1, and let ` be a prime number.

Example 3.2. Let K = Q(
√
−3), ` = 3 and f0 = 1. The surface of this graph consists of

CM j-invariants of discriminant −3, of which there is 1: j = 0. Level one consists of CM
j-invariants of discriminant −3 · 32, of which there is again 1: j = −215 · 3 · 53. Level two
consists of CM j-invariants of discriminant −3 · 34, of which there are 3, forming a single
Galois orbit. We have J−3·34 =

t3+1855762905734664192000t2−3750657365033091072000000t+3338586724673519616000000000.

There is one horizontal edge at the surface (a loop), corresponding to the unique Z[1+
√
−3

2 ]-
ideal p3 of norm 3. The remaining three edges emanating outward from j = 0 connect it
to j = −215 · 3 · 53. This corresponds to the fact that the pullback of the degree 1 divisor J0

under π : X0(3)→ X(1) is [J0] + 3[J−215·3·53 ].
One of the four order 3 subgroups of E0 is E[p3]. The other three are interchanged by

the action of µ6/µ2 on E0[2].
The vertex j = 0 has outward degree 4 and inward degree 2, while the vertex j = −215 ·3 ·53

has outward degree 4 and inward degree 6.

Next suppose ` ≡ 1 (mod 3). Then there are two loops emanating from the surface vertex
v0 corresponding to the two prime ideals of Z[ζ6] lying over `. Let v1 be any one of the
`−1

3 level one vertices. There are three directed edges from v0 to v1. The natural action
of µ6/µ4 on surface edges fixes each of the two surface loops and cyclically permutes the
three edges from v0 to v1.

Finally suppose ` ≡ 2 (mod 3). There are no surface edges. For each vertex v1 at level
1 there are three edges from v0 to v1. These edges are cyclically permuted by the µ4/µ2-
action. For each vertex at level L ≥ 1 there is one upward edge and ` downward edges.

3.4. Paths and `a-isogenies. When f20∆K < −4, [Cl22a, Lemma 4.2] gives a bijective
correspondence between isomorphism classes of cyclic `a isogenies ϕ : E → E′ where E/C is
a K-CM elliptic curve for which the prime to ` part of the conductor of the endomorphism
ring is f0 and length a nonbacktracking paths in GK,`,f0 . In these cases every edge in GK,`,f0
has a canonical inverse edge, so the directedness of GK,`,f0 does not really intervene.

When f20∆K ∈ {−3,−4}, the notion of a nonbacktracking path in GK,`,f0 is a bit more
subtle when the path involves ascent to and descent from the surface. If we descend from
any surface vertex v0 to a level one vertex v1 and then ascend back to v0, then the latter
edge must represent the dual isogeny of the former edge, since it is the unique isogeny
between these two elliptic curves, so this counts as backtracking. On the other hand, if we
start at a level one vertex v1 take the unique edge e : v1 → v0 and then descend back down
to v1, we have a choice of 2 edges when ∆K = −4 and 3 edges when ∆K = −3. Then e
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corresponds to an `-isogeny ϕ : E1 → E0 and exactly one of the edges from v0 to v1, say
e′, corresponds to ϕ∨. So a path containing e followed by e′ counts as backtracking, but a
path containing e followed by any other edge from v0 to v1 does not.

With this understanding, [Cl22a, Lemma 4.2] extends to all ∆K , ` and f0.

Lemma 3.3. Let K be an imaginary quadratic field, ` a prime number and f0 a positive
integer prime to `. There is a bijective correspondence from the set of isomorphism classes
of cyclic `a-isogenies of CM elliptic curves with endomorphism algebra K and prime-to-`-
conductor f0 to the set of length a paths without backtracking in the isogeny graph GK,`,f0.

Moreover the proof of [Cl22a, Lemma 4.2] still works to establish Lemma 3.3.

4. Action of Complex Conjugation on GK,`,f0
This section is the analogue of [Cl22a, §5] for f20∆K ∈ {−3, 4}. We define an action of
gR = {1, c} on the isogeny graph GK,`,f0 that is crucial for our subsequent analysis...almost.
We will see that in two cases there is no such action that is suitable for our purposes, so
instead we define an action on a certain double cover of GK,`,f0 .

4.1. The Field of Moduli of a Cyclic `a-isogeny.

Theorem 4.1. Let `a be a prime power, let K be an imaginary quadratic field, and let
ϕ : E → E′ be a cyclic `a-isogeny of K-CM elliptic curves over C, and let Q(ϕ) be the
field of moduli of ϕ. Let ∆ = `2Lf20∆K be the discriminant of the endomorphism ring of E

(here gcd(f0, `) = 1), let ∆′ = `2L
′
f20∆K be the discriminant of the endomorphism ring of

E′, and put L = max(L,L′) and f = `Lf0. Then:

a) There is a field embedding Q(f) ↪→ Q(ϕ).
b) We have Q(ϕ) ⊆ K(f).

Proof. This result is a special case of [Cl22a, Thm. 5.1] when f20∆K < −4, so we may assume
that ∆K ∈ {−3,−4} and f0 = 1. a) Certainly Q(ϕ) contains both Q(j(E)) ∼= Q(`Lf0) and

Q(j(E′)) ∼= Q(`L
′
f0). At least one of these fields is isomorphic to Q(`Lf0) = Q(f).

b) As usual, without loss of generality we may assume that j(E) = j∆. Let (E0)/K(f) be

any K-CM elliptic curve with endomorphism ring of discriminant f2∆K . Since ∆ | f2∆K ,
there is a canonical K(f)-rational isogeny ϕ0 with source elliptic curve E0 and whose target
elliptic curve has j-invariant j∆ = j(E). We choose this target elliptic curve as our model
for E over K(f), and our task is to show that for this model of E, the kernel of ϕ is a
gK(f)-stable subgroup. In fact we will show that if ϕ is any cyclic `a-isogeny with source
elliptic curve E/K(f) and target elliptic curve of level L′, then ϕ is defined over K(f) in the
sense that its kernel is gK(f)-stable.

The isogeny ϕ decomposes into ϕ3 ◦ ϕ2 ◦ ϕ1 with ϕ1 : E → E1 ascending, ϕ2 : E1 → E2

horizontal and ϕ3 : E2 → E′ descending. We define b, h, d ∈ N by

degϕ1 = `b, degϕ2 = `h, degϕ3 = `d.

The isogeny ϕ1 is unique, so it is certainly defined over K(f). If ϕ2 6= 1, then ϕ2 is, up
to isomorphism on its target, given as E1 → E1/E1[I] for a nonzero ZK-ideal I, so ϕ2
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is defined over K(j(E1)) = K ⊆ K(f). Thus it suffices to show that the descending `d-
isogeny ϕ3 : E2 → E′ is defined over K(f). For this the more difficult case is when E2 lies
at the surface. If E2 lies below the surface, then whether the kernel of ϕ3 is gK(f)-stable
is independent of the model of E2, and the dual isogeny ϕ∨3 : E′ → E2 is ascending so is
defined over K(j(E′)) = K(j∆′) ⊆ K(f) on any model of E′, so ϕ3 is also defined over
K(f). Thus we may assume that E2 lies at the surface. Since ϕ2 : E1 → E2 is horizontal,
also E1 lies at the surface. By our choice of E, we have that E1 is the target elliptic
curve of a cyclic K(f)-rational `a-isogeny with source elliptic curve E0. By [BC20a, Prop.

4.5] and its proof, we have that the modulo `L-Galois representation on (E1)/K(f) consists

of scalar matrices, which means that every cyclic `L-isogeny on E1 is defined over K(f).
Since d = L′ ≤ L, the same holds for every cyclic `d-isogeny on E1. If ϕ2 = 1 this tells
us directly that ϕ3 is defined over K(f). In general: since ϕ2 is horizontal, ZK has class
number 1 and K(f) contains K, then ϕ2 is given, up to an isomorphism on the tareget,
by a K(f)-rationally defined endomorphism of E2, so E3 is K(f)-rationally isomorphic to
E2. It follows that every downward cyclic `b-isogeny on E2 has gK(f)-stable kernel, so ϕ3

is defined over K(f). �

Thus we get a simple dichotomy for the field of moduli Q(ϕ) of a cyclic `a-isogeny ϕ: for
the specific value of f given in Theorem 4.1 in terms of the endomorphism rings of the
source and target elliptic curves of ϕ, we know that Q(ϕ) is isomorphic to either Q(f) or
to K(f). As in [Cl22a, §5], we can resolve this dichotomy by understanding the action of
complex conjugation on paths in the isogeny graph.

4.2. Action of Complex Conjugation on GK,`,f0. First of all we have an action of
complex conjugation — by this we will always really mean an action of the group gR = {1, c}
— on the set of vertices of GK,`,f0 : indeed, the vertices are j-invariants of complex elliptic
curves, so this is just obtained by restricting the natural action of c on C. From [Cl22a,
§2.5] we know that for all L ∈ Z≥0, the number of real vertices in level L is

rL := # PicO(`2Lf20∆K)[2],

and Gauss’s genus theory of binary quadratic formulas yields a formula for rL in terms of
the number of odd prime divisors of ∆ and the class of ∆ modulo 32 [Cl22a, Lemma 2.8].

In the absence of multiple edges, this action of c on the vertex set of GK,`,f0 determines the
action on the graph. When f20∆K < −4 the only possible multiple edges are surface edges,
on which the action of c is easy to understand: the two nonisomorphic R-structures on a
real vertex differ from each other by quadratic twisting by −1, so the action of complex
conjugation on the set of order `-subgroups is independent of the choice of R-structure.
The answer is then that an edge running beween two real surface vertices is not fixed by
complex conjugation in the split case and is fixed by complex conjugation in the ramified
case (there are no surface edges in the inert case).

We are in the case where f20∆K ∈ {−3,−4}. Then we still have:
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• If v is a vertex at level L ≥ 1 and e : v → w is a downward edge, then it is the
only edge from v to w, so e is real if and only if v and w are. (Again, because we are below
the surface, AutEv = {±1}, so the action of complex conjugation on subgroups of Ev is
independent of the chosen R-model.)

• An upward edge e : v → w gets mapped under complex conjugation to the unique
upward edge with initial vertex c(v), so e is real if and only if v is real.

The trickier cases are those of a surface edge and of an edge running from the (unique,
real) surface vertex v0 to a real level 1 vertex. We will discuss these in detail shortly.

In general, we make use of the following convention: for all L ∈ Z≥0 we mark one vertex
at level L: the one with j-invariant

jL := j(C/O(`2L∆K)).

In our diagrams, this is always the leftmost vertex in a given level. The lattice O(`2L∆K)
gives rise to a particular model EL over Q(j`2L∆K

) and hence to a particular model over R.
These models are compatible: for all L ≥ 1, the upward edge from jL to jL−1 is realized
by the Q(jL)-rational isogeny C/O(`2L∆K)→ C/O(`2L−2∆K).

• Suppose ∆ = −4 and ` > 2. We have r0 = 1 and rL = 2 for all L ≥ 1. Each real
vertex v in level L ≥ 1 has an odd number, `, of descendant vertices, so at least one of
these must be fixed by complex conjugation, and it follows that v has exactly one real
descendant.

It remains to discuss the action of complex conjugation on the set of directed edges em-
anating from the surface vertex v0, which corresponds to “the” elliptic curve E/C with
j-invariant 1728. By [Cl22a, Thm. 5.3], for any real elliptic curve and any odd prime `,
there are exactly 2 order `-subgroups of E(C) stabilized by complex conjugation. When
` ≡ 1 (mod 4) there are two surface loops corresponding to E[p] and E[p] where p, p are the
two Z[

√
−1]-ideals of norm `. These two edges are interchanged by complex conjugation

(independently of the chosen R-structure on E). So the two real edges must be downward
edges. For each real level one vertex v, there is a pair of edges from v0 to v; evidently
complex conjugation stabilizes the pair, so if one is real, then both are real. It follows
that for exactly one of the two level 1 real vertices both edges from the surface to that
vertex are real, whreas for the other level 1 real vertex neither edge is real. Which is which
depends upon the chosen R-structure on v0: indeed, indeed, for each level 1 real vertex v,
the unique upward edge e : v → v0 can be defined over Q(j(Ev)) and hence over R; this
provides an R-model for E on which the dual isogeny is real.

If our path starts at v0 and ends up at level L then it is clear that the field of moduli
is K(`L) if the path includes a surface edge and Q(`L) otherwise. The harder case is if our
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path starts at jL with L ≥ 1 and ascends to the surface. In this case when we ascend to the
surface we get the real model for E given by the lattice Z[

√
−1], and in this real model it is

the two edges from j0 to j1 that are real. The significance of this for our counting problem
is that if we start below the surface and ascend to the surface there is a unique way to
extend the path so that the corresponding isogeny is fixed under complex conjugation: we
take the unique edge from j0 to j1 that is not the inverse of the ascending edge from j1 to j0.

Thus one sees that in this case we are able to define an action of gR on GK,`,1, but to
do so we had to make a choice that was appropriate for our applications.

Figure 2. GQ(
√
−1),`,1 up to level 2 in the cases of ` split (` = 5, left) and

inert (` = 3, right) in Q(
√
−1), with vertices and edges fixed by complex

conjugation colored orange

• Suppose ∆ = −3 and ` > 3. As above, we have r0 = 1 and rL = 2 for all L ≥ 2.
And again, each real vertex v in level L ≥ 1 has an odd number, `, of descendant vertices,
so v has a unique real descendant. If ` ≡ 1 (mod 3) there is a pair of surface loops that
are interchanged by complex conjugation; if ` ≡ 2 (mod 3) there are no surface edges.
So by [Cl22a, Thm. 5.3] in either R-model of “the” elliptic curve E/C with j-invariant 0
corresponding to the surface vertex v0 there are precisely 2 order `-subgroups stable under
complex conjugation. But this time things work out more nicely: there are three edges
from v0 to each of the two real level 1 vertices, which as a set are stable under complex
conjugation. Since 3 is odd, at least one edge in each set must be fixed by c, hence exactly
one because there are two such edges altogether.
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Figure 3. GQ(
√
−3),`,1 up to level 2 in the cases of ` split (` = 7, left) and

inert (` = 5, right) in Q(
√
−3), with vertices and edges fixed by complex

conjugation colored orange

• Suppose ∆ = −3 and ` = 2. Now we have r0 = r1 = 1, r2 = 2 and rL = 4 for all L ≥ 3.
This means that every vertex of level L ≤ 3 is real. For each L ≥ 3, the real vertices of
level L can be partitioned into pairs in which each pair has a common neighbor in level
L − 1, and in each pair, exactly one of the two vertices has two real descendants and the
other vertex has no real descendants. This follows from the same argument as in the proof
of [Cl22a, Lemma 5.7c)].

Figure 4. GQ(
√
−3),2,1 up to level 4, with vertices and edges fixed by com-

plex conjugation colored orange

• Suppose ∆ = −4 and ` = 2. We have r0 = r1 = 1 and rL = 2 for all L ≥ 2. For all
L ≥ 2, the vertex vL corresponding to j-invariant jL = j(C/O(−22L+2) is real; the other
real vertex in level L therefore must be the other descendant vertex from vL−1.

Let us now discuss the action of complex conjugation on edges. Let E/C be “the” el-
liptic curve of j-invariant 1728. In either R-model of E, the surface loop corresponds to
the isogeny with kernel E[p], where p is the unique prime ideal of Z[

√
−1] lying over 2,

which is stable under complex conjugation.
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If we choose the R-model of E with real lattice Z[
√
−1], then all three order 2 sub-

groups are stable under complex conjugation: they can be seen quite clearly as 1
2 +Z[

√
−1,

√
−1
2 + Z[

√
−1] and 1+

√
−1

2 + Z[
√
−1]. So it may seem that we have defined an action of

complex conjugation on GQ(
√
−1),2,1.

However this graph cannot be used for our study of isogenies! To see why, consider either
of the two paths that starts at the vertex v1 in level 1, ascends to level 0, takes the surface
loop, and then descends back down to level 1. These correspond to two cyclic 8-iosgenies
with source elliptic curve of discriminant −16. However, contrary to what the graph sug-
gests, neither of these two isogenies is defined over R. Our graph is letting us down because
the surface loop, which can be realized on uniformizing lattices as C/Z[ζ4]→ C/(1+ζ4)Z[ζ4]
is an isogeny of real elliptic curves, but the source and target have different R-structures.
Recall that every elliptic curve E/C with j(E) ∈ R has precisely two nonisomorphic R-
models [SiII, Prop. V.2.2]. When j /∈ {0, 1728}, these two models are just quadratic −1
twists of each other, but this is not the case when j ∈ {0, 1728}. When j = 1728 (i.e.,
∆ = −4), for our purposes the most useful way to distinguish between the two models is to
observe that in the model C/Z[ζ4] all three order 2 subgroups are real, whereas in the model
C/(1 + ζ4)Z[ζ4] there is exaxctly one real order 2 subgroup, generated by 1 + (1 + ζ4)Z[ζ4].
This means that in our length 3 paths considered above, once we take the surface loop, we
arrive at an elliptic curve over R for which the two order 2 subgroups that correspond to
the 2 downward edges from v0 to v1 are now interchanged by complex conjugation.

We remedy this by passing from G = GQ(
√
−1),2,1 to the double cover G̃ by unwrapping

the surface loop, to get a graph that now at each level L, consists of two copies of the
vertex set of G at level L. We decree that complex conjugation acts on the second copy of
the vertex set the same way it does on the first copy. The surface edge between the two
copies of v0 is real, but in the second copy the two downward edges from v0 to v1 are now
complex. Complex conjugation acts on all other edges in the second copy the same as it
does in the first copy (away from the surface the action of complex conjugation on cyclic
subgroups is independent of the choice of R-model).

Figure 5. the double cover G̃ of GQ(
√
−1),2,1 up to level 3, with vertices and

edges fixed by complex conjugation colored orange

Remark 4.2.
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a) In Figure 5, we did not draw the upward edge with initial vertex the level 1 vertex

in the right hand copy of G = GQ(
√
−1),2,1. As far as the group action of gR on G̃

is concerned, it is clear that this edge must be c-fixed. However the c-fixedness of
this edge has no elliptic curve interpretation – no nonbacktracking path starting in

the lefthand copy of G in G̃ contains this edge. Drawing this edge as c-fixed seems
to invite confusion, so we have not done so.

b) It’s interesting to compare G̃ to the graph of [Cl22a, Lemma 5.7]. These graphs are
not isomorphic, but their enumerations of real and complex paths are the same.

c) It is also interesting (and perhaps confusing, at first) to compare the change of
real structures induced by the horizontal edge in GQ(

√
−1),2,1 to the end of the

proof of Theorem 4.1, in which the source and target curves of a horizontal edge
are rationally isomorphic. The difference is that in the setting of Theorem 4.1
the ground field contains K. As for the horizontal edge, it corresponds to the
ideal (1 + ζ4), which is real and principal...but not “real-principal”: i.e., it is not
generated by a real element and thus its kernel is not the kernel of an R-rationally
defined endomorphism.

• Suppose ∆ = −3 and ` = 3. We have rL = 1 for all L ≥ 0, so the unique real vertex in
level L is vL, corresponding to the elliptic curve C/O(−32L+1).

There is a sort of “more benign” analogue of the phenomenon encountered in the previous
case: the surface loop in this graph corresponds to the R-isogeny C/Z[ζ6]→ C/(1−ζ3)Z[ζ6].
The source and target elliptic curves are isomorphic over C but have different R-structures.
Indeed, by [BCS17, Lemma 3.2], if Λ1 and Λ2 are real lattices in C, then they determine
the same R-isomorphism class of elliptic curves if and only if they are real homothetic:
there is α ∈ R× such that Λ2 = αΛ1. The two lattices Z[ζ6] and (1− ζ3)Z[ζ6] are not real
homothetic: one can see this directly or use [BCS17, Lemma 3.6a)].

So we defined an action of complex conjugation on the three downward edges with initial
vertex the surface vertex v0: one is real and two are complex. After we take the surface
loop we are now considering the action of complex conjugation on a nonisomorphic real
elliptic curve. Because of this, the principled response is to again pass from GQ(

√
−3),3,1

to the double cover G̃ by unwrapping the surface loop to get a graph that at each level L
consists of two copies of the vertex set of G at level L, and we define the action of complex
conjugation in the same way as above.
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Figure 6. the double cover G̃ of GQ(
√
−3),3,1 up to level 2, with vertices and

edges fixed by complex conjugation colored orange

While in the previous case the change of R-structure changed the number of order ` = 2
subgroups fixed by complex conjugation, in this case ` = 3, so [Cl22a, Thm. 5.1] applies to
show that in any R-model exactly one of the three “downward” order 3 subgroups is real.
So while in the previous case we needed to pass to the double cover in order to ensure the
correctness of our enumeration of real and complex paths, in this case the enumeration of

real and complex paths is the same whether we pass from G to G̃ or not.

5. CM Points on X0(`a)/Q

Let ` be a prime number, and let ∆ = `2L∆K be an imaginary quadratic discriminant
with ∆K ∈ {−3,−4}. In this section we will compute the fiber of X0(`a) → X(1) over
J∆. For ∆ < −4 there is no ramification, so we determine which residue fields occur and
with what multiplicity. For ∆ ∈ {−3,−4}, a closed point on X0(`a) in the fiber over J∆

has ramification, of index 2 or 3 in the respective cases of ∆ = −4 and −3, exactly when a
path in its closed point equivalence class includes a descending edge from level 0 to level 1,
i.e. exactly when the path is not completely horizontal. The residue field of a closed point
on a finite-type Q-scheme is a number field that is well-determined up to isomorphism; it
is not well-defined as a subfield of C. Thus when we write that the residue field is Q(f) for
some f ∈ Z+, we mean that it is isomorphic to this field.
Without loss of generality we may take our source elliptic curve to have j-invariant j∆.
Our task is then to:

(i) Enumerate all nonbacktracking length a paths P in GK,`,f0 .
(ii) Sort them into closed point equivalence classes C(P ), and record the field of moduli for
each equivalence class (we record any number field isomorphic to Q(f) as Q(f)).
(iii) Record how many closed point equivalence classes give rise to each field of moduli.
In §3.4 we have addressed the added subtlety in the notion of backtracking when f2

0 ∆K ∈
{−3,−4}, and in §4.2 we have provided a meaningful description of the action of complex
conjugation on paths in GK,`,1. This provides the means to carry out our path-type analysis
steps (i) through (iii), just as done in [Cl22a, §7] for f2

0 ∆K < −4. What we find is that the
resulting enumeration of path types and corresponding residue fields for f2

0 ∆K ∈ {−3,−4}
is exactly as in [Cl22a, §7] for any given ` and splitting behavior of ` in K, and so we refer
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the reader to the enumeration provided therein.

A check on the accuracy of our calculations is as follows: let ψ : Z+ → Z+ be the multi-
plicative function such that for any prime power `a we have ψ(`a) = `a−1(` + 1). For all
N ∈ Z+, we have (e.g. [CGPS22, Lemma 4.1a)])

deg(X0(N)→ X(1)) = ψ(N).

Letting dϕ and eϕ denote, respectively, the residual degree and ramification index of the
closed point [ϕ] with respect to the map X0(`a)→ X(1), we must have∑

C(ϕ)

dϕ · eϕ = ψ(`a) = `a + `a−1,

where the sum extends over closed point equivalence classes of points in the fiber over J∆.

6. The Projective Torsion Field

Let F be a field of characteristic 0, let E/F be an elliptic curve, and let N ∈ Z≥2. The
projective N-torsion field F (PE[N ]) is the kernel of the modulo N projective Galois
representation, i.e., the composite homomorphism

ρN : gF
ρN→ AutE[N ]→ AutPE[N ],

where PE[N ] denotes the projectivization of the 2-dimensional Z/NZ-module E[N ](F ).
After choosing a Z/NZ-basis for E[N ], we may view ρN as a homomorphism from gF
to PGL2(Z/NZ). Thus F (PE[N ])/F is a finite degree Galois extension. The projective
N -torsion field of E/F is also characterized as the minimal algebraic extension of F over
which all cyclic N -isogenies with source elliptic curve E are defined.

The following result is a small refinement of [BC20a, Prop. 4.5].

Proposition 6.1. Let ∆ = f2∆K be an imaginary quadratic discriminant, let N ≥ 2, and
let E/K(N f) be a ∆-CM elliptic curve.

a) The following are equivalent:
(i) We have K(N f)(PE[N ]) = K(N f).
(ii) There is a K(N f)-rational cyclic N -isogeny ϕ : E → E′, where E′ is an N2∆-

CM elliptic curve.
b) For every ∆-CM elliptic curve E/K(N f), there is an elliptic curve E0/K(N f) with

j(E0) = j(E) and such that E0 satisfies the equivalent conditions of part a). More-
over, an elliptic curve E′/K(N f) with j(E′) = j(E) satisfies the equivalent conditions

of part a) if and only if E′ is a quadratic twist of E0.

Proof. As usual, it is no loss of generality to assume that j(E) = j∆.
a) The implication (ii) =⇒ (i) follows from [BC20a, Prop. 4.5] and its proof. As for (i)
=⇒ (ii), we may take ϕ to be the dual of the isogeny ψ : C/O(N2∆) → C/O(∆), which
because of (i) must be K(N f)-rational on E.
b) The isogeny ψ is defined over Q(N f), hence also over K(N f). Since N2∆ < −4, the
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K(N f)-rational model of an elliptic curve with j-invariant jN2∆ is unique up to quadratic
twist. If F is a field of characteristic different from 2, ψ : E1 → E2 is an F -rational isogeny
with kernel C, and d ∈ F×/F×2, then C remains F -rational on the quadratic twist Ed1 and
we have Ed1/C

∼=F E
d
2 . This shows that the elliptic curve E0 of part b) exists and is unique

up to quadratic twist; finally, quadratic twists do not change rationality of isogenies hence
do not change projective torsion fields. �

For an imaginary quadratic discriminant ∆, let O(∆) be the imaginary quadratic order of
discriminant ∆ and let

w∆ := #O(∆)×.

Theorem 6.2. Let ∆ = f2∆K be an imaginary quadratic discriminant, and let N ≥ 3.

a) Let P ∈ X0(N,N) be a ∆-CM closed point. Then Q(P ) = K(N f).
b) Let F be a field of characteristic 0, and let E/F be a ∆-CM elliptic curve. Then

F (PE[N ]) ⊇ K(N f) and [F (PE[N ]) : FK(N f)] | #w∆
2 .

Proof. Again we may assume without loss of generality that j(P ) = j∆.
a) By Proposition 6.1, there is a ∆-CM elliptic curve E/K(N f) on which the projective
modulo N Galois representation is trivial. This elliptic curve induces a ∆-CM closed
point P0 ∈ X0(N,N) such that Q(P0) can be embedded into K(N f). Moreover, in the
notation of [Cl22a, §1.1], the subgroup H0(N,N) of GL2(Z/NZ)/{±1} used to define
the modular curve X0(N,N) is the subgroup of scalar matrices, which is normal, hence
X0(N,N)→ X(1) is a Galois covering of curves over Q. It follows that all residue fields of
closed points of X0(N,N) lying over the closed point J∆ of X(1) are isomorphic. It follows
that Q(P ) is isomorphic to a subfield of K(N f). By [DR73, Prop. VI.3.2] there is an elliptic
curve E/Q(P ) inducing P with trivial projective modulo N Galois representation. As in the
proof of Proposition 6.1 we have a Q(P )-rational isogeny ϕ : E → E′ with j(E′) = jN2∆,
so Q(P ) contains Q(N f). Since [K(N f) : Q(N f)] = 2, we have either Q(P ) = Q(N f) or
Q(P ) = K(N f). However, if Q(P ) = Q(N f), then since Q(N f) ⊂ R, we get a real elliiptic
curve with real projective N -torsion field, contradicting [Cl22a, Cor. 5.4].
b) From part a) we know that F (PE[N ]) ⊇ K(N f). Consider the base extension of E to
L := FK(N f). It follows from part a) that there is a character χ : gL → µw∆ such that
the twist of E/L by χ has trivial projective mod N Galois representation. There is then a
cyclic field extension M/L of degree dividing w∆

2 such that

χ(gM ) ⊂ {±1},

which means that there is a quadratic twist of E/M for which the projective mod N
Galois representation is trivial. But quadratic twists do not affect the projective modulo
N Galois representation, so the projective Galois representation on E/M is trivial, and
[M : FK(N f)] | w∆

2 . �

When N = 2, the projective N -torsion field of an elliptic curve E/F is just its 2-torsion
field F (E[2]). Because of this the N = 2 analogue of Theorem 6.2 had already been known,
but for future reference we record the result anyway.
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Proposition 6.3. Let ∆ = f2∆K be an imaginary quadratic discriminant, let F be a field
of characteristic 0, and let E/F be a ∆-CM elliptic curve. Let P ∈ X0(2, 2)/Q be a ∆-CM
point. Then:

a) If ∆ < −4 is odd, then Q(P ) = K(2f).
b) If ∆ < −4 is even, then Q(P ) ∼= Q(2f).
c) If ∆ = −4, then Q(P ) = Q = Q(2f).
d) If ∆ = −3, then Q(P ) = K = K(2f).

Proof. Again, because X0(2, 2) = X(2) → X(1) is a Galois covering, all the residue fields
of P on X0(2, 2) lying over the closed point J∆ of X(1) are isomorphic.
a),b) Suppose ∆ < −4. The results follow from [BCS17, Thm. 4.2] together with the
observation that there is a point P of order 2 on E(F ) such that E/〈P 〉 has 4∆-CM.
(They can also be obtained from an analysis of 2-isogeny graphs.)
c) The −4-CM elliptic curve E : y2 = x3 − x has Q(E[2]) = Q.
d) For all B ∈ Q×, the curve

EB : y2 = x3 +B

is a −3-CM elliptic curve with Q([E])2) = Q(ζ3, B
1/3). Each of these fields contains

Q(ζ3) = K, so Q(P ) ⊇ K. Moreover Q(E1) = K, so Q(P ) = K. �

7. Primitive Residue Fields of CM points on X0(`a
′
, `a)

Let ∆ = f2∆K be an imaginary quadratic discriminant, let ` be a prime and let 0 ≤ a′ ≤ a
be integers. In this section we extend the work of [Cl22a, §7], determining all prim-
itive residue fields and degrees of ∆-CM points on X0(`a′, `a), to the cases in which
∆K ∈ {−3,−4}.

It is no loss of generality to assume that the j-invariant of our ∆-CM elliptic curve is
j∆, and we shall do so throughout this section.

For X(H)/Q a modular curve, we call the residue field Q(P ) of a closed ∆-CM point
P ∈ X(H) a primitive residue field of ∆-CM points on X(H) if there is no other ∆-CM
point Q ∈ X(H) together with an embedding of the residue field Q(Q) into Q(P ) as a
proper subfield. We call the degree d = [Q(P ) : Q] a primitive degree of ∆-CM points
on X(H) if there is no ∆-CM point Q ∈ X(H) such that [Q(Q) : Q] properly divides d.

Throughout this section, when working with a ∆ = f2∆K-CM point we put

L := ord`(f).

7.1. X0(`a). In the case of a′ = 0, i.e., of X0(`a), our results of §5 imply immediately that
the case analysis is exactly as in [Cl22a, §8.1]. We recall the answer here for completeness:

Case 1.1: Suppose `a = 2.
Case 1.1a: Suppose

(
∆
2

)
6= −1. The primitive residue field is Q(f) (which equals Q(2f)
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when
(

∆
2

)
= 1).

Case 1.1b: Suppose
(

∆
2

)
= −1. The primitive residue field is Q(2f).

Case 1.2: Suppose `a > 2 and
(

∆
`

)
= 1. The primitive residue fields are Q(`af) and K(f).

Case 1.3: Suppose `a > 2 and
(

∆
`

)
= −1. The primitive residue field is Q(`af).

Case 1.4: Suppose `a > 2,
(

∆
`

)
= 0 and L = 0. The primitive residue field is Q(`a−1f).

Case 1.5: Suppose ` > 2, L ≥ 1 and
(

∆K
`

)
= 1.

Case 1.5a: Suppose a ≤ 2L. In this case there is a Q(f)-rational cyclic `a-isogeny, so the
only primitive residue field is Q(f).
Case 1.5b: Suppose a > 2L. Then the primitive residue fields are Q(`a−2Lf) and K(f).

Case 1.6: Suppose ` > 2, L ≥ 1, and
(

∆K
`

)
= −1.

Case 1.6a: Suppose a ≤ 2L. As in Case 1.5a, there is a Q(f)-rational cyclic `a-isogeny, so
the only primitive residue field is Q(f).
Case 1.6b: Suppose a > 2L. In this case the primitive residue field is Q(`a−2Lf).

Case 1.7: Suppose ` > 2, L ≥ 1,
(

∆K
`

)
= 0.

Case 1.7a: Suppose a ≤ 2L+1. As in Case 1.5a, there is a Q(f)-rational cyclic `a-isogeny,
so the only primitive residue field is Q(f).
Case 1.7b: Suppose a ≥ 2L+ 2. In this case the primitive residue field is Q(`a−2L−1f).

Case 1.8: Suppose ` = 2, a ≥ 2, L ≥ 1, and
(

∆K
2

)
= 1.

Case 1.8a: Suppose L = 1. The primitive residue fields are Q(2af) and K(f).
Case 1.8b: Suppose L ≥ 2 and a ≤ 2L− 2. The primitive residue field is Q(f).
Case 1.8c: Suppose L ≥ 2 and a ≥ 2L− 1. The primitive residue fields are Q(2a−2L+2f)
and K(f).

Case 1.9: Suppose ` = 2, a ≥ 2, L ≥ 1, and
(

∆K
2

)
= −1.

Case 1.9a: Suppose L = 1. The primitive residue fields are Q(2af) and K(2a−2f).
Case 1.9b: Suppose L ≥ 2 and a ≤ 2L− 2. The primitive residue field is Q(f).
Case 1.9c: Suppose L ≥ 2 and a ≥ 2L− 1. The primitive residue fields are Q(2a−2L+2f)

and K(2max(a−2L,0)f).

Case 1.10: Suppose ` = 2, a ≥ 2, L ≥ 1,
(

∆K
2

)
= 0, and ord2(∆K) = 2.

Case 1.10a: Suppose a ≤ 2L. The primitive residue field is Q(f).
Case 1.10b: Suppose a ≥ 2L + 1. The primitive residue fields are Q(2a−2Lf) and
K(2a−2L−1f).

Case 1.11: Suppose ` = 2, a ≥ 2, L ≥ 1,
(

∆K
2

)
= 0, and ord2(∆K) = 3.

Case 1.11a: Suppose a ≤ 2L+ 1. The primitive residue field is Q(f).
Case 1.11b: Suppose a ≥ 2L+ 2. The primitive residue field is Q(2a−2L−1f).

7.2. A field of moduli result. Now suppose that 1 ≤ a′ ≤ a are integers, and let
P ∈ X0(`a

′
, `a) be a closed ∆-CM point. Then we have morphisms

α : X0(`a
′
, `a)→ X0(`a

′
, `a
′
) and β : X0(`a

′
, `a)→ X0(`a).
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Theorem 7.1. Let ` be a prime number, let 1 ≤ a′ ≤ a be positive integers and let
P ∈ X0(`a

′
, `a) be a closed ∆-CM point.

a) We have
Q(α(P ), β(P )) ⊆ Q(P ) ⊆ K(α(P ), β(P )).

b) We have Q(P ) = Q(α(P ), β(P )) if any of the following conditions holds:
(i) ∆ 6= −4.

(ii) `a
′ ≥ 3.

(iii) a = 1.

Proof. Since Q(P ) is an extension of both Q(α(P )) and Q(β(P )), clearly

Q(P ) ⊇ Q(α(P ), β(P )).

If ∆ < −4, then conversely Q(P ) ⊆ Q(α(P ), β(P )): indeed, in this case, the projective
torsion field is independent of the model. So we may suppose ∆ ∈ {−3,−4}.
Step 2: We will show that

(4) K(α(P ), β(P )) = K(`a
′
f)K(β(P )).

Since ∆ ∈ {−3,−4}, the point β(P ) ∈ X0(`a) corresponds to a path of length a with initial

vertex at the surface; if the terminal vertex has level L′, then K(β(P )) = K(`L
′
), so if we

put
L := max(a′, L′),

then
K(α(P ), β(P )) = K(`L).

We may factor an isogeny inducing β(P ) as ϕd ◦ ϕh where ϕh is horizontal and ϕd is
descending of length L′. By the results of §6, there is an elliptic curve E

/K(`L)
with j-

invariant j∆ on which the modulo `L Galois representation is given by scalar matrices.
The point β(P ) is induced by a cyclic `a-isogeny of C-elliptic curves ϕ : E → E′; since

∆ = ∆K , this isogeny factors as ϕd ◦ ϕh, where ϕh : E → E′′ is horizontal of degree `a−L
′

and ϕd : E′′ → E′ is descending of degree `L
′
. We claim that every isogeny of this form is

defined over K(`L). Indeed, as in the proof of Theorem 4.1 we have that ϕh is defined over

K(`L) and moreover E′′ ∼=K(`L)
E. It follows that the modulo `L

′
-Galois representation on

E′′ is given by scalar matrices, so ϕd is also defined over K(`L) and thus ϕ is as well.

Step 3: By Theorem 6.2 and Proposition 6.3 we have that Q(α(P )) = K(`a
′
f) if either

`a
′ ≥ 3 or ∆ is odd. Thus in either of these cases we have

(5) Q(P ) = K(`a
′
f)Q(β(P )).

Step 4: Finally, if a = 1 then α : X0(2, 2)→ X0(2) is the identity map, so Q(P ) = Q(α(P ))
holds trivially. �

Corollary 7.2. Let a ≥ 2, and let P ∈ X0(2, 2a) be a −4-CM point. Let ϕ : E → E′ be
an isogeny of complex elliptic curves inducing β(P ) ∈ X0(2a).

a) If ϕ is purely descending, then Q(P ) = Q(β(P )) ∼= Q(2a).
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b) Otherwise, Q(P ) = K(β(P )) = K(2a−1).

Proof. Since jE = 1728, there are precisely two possibilities for ϕ: it either consists of a
descending edges, or it has one horizontal edge followed by a− 1 descending edges.

In the former case, we have Q(ϕ) ∼= Q(2a). Moreover, on the model of E that makes ϕ
Q(ϕ)-rational, we evidently have a descending Q(ϕ)-rational 2-isogeny. As for any −4-CM
elliptic curve defined over Q(ϕ), we have a horizontal Q(ϕ)-rational 2-isogeny. Thus the
gQ(ϕ)-action on the three order 2 subgroup schemes of E fixes two of the subgroups, so it
must also fix the third. We conclude that Q(P ) = Q(β(P )) in this case.

Now suppose that ϕ consists of a horizontal edge followed by a−1 ≥ 1 descending edges.
Now Q(ϕ) ∼= Q(2a−1), which is real number field, so if Q(P ) = Q(β(P )) then we would
have Q(P ) ∼= Q(2a−1), a real number field. But as we saw in §4.2, the horizontal 2-isogeny
ι : E → E′ on a real ellliptic curve with j-invariant 1728 interchanges the two R-structures
on this elliptic curve, and on precisely one of the two R-structures do we have an R-rational
descending 2-isogeny. If Q(P ) ⊆ R then we would have R-rational descending 2-isogenies
defined on both the source and target of ι, which is not possible. Therefore in this case
Q(P ) ⊇ Q(β(P )), so by Theorem 7.1 we have Q(P ) = K(β(P )) = K(2a−1). �

7.3. X0(`a
′
, `a). Using Theorem 7.1, Corollary 7.2 and the work of §5 and §6, it is easy to

compute all primitive residue fields Q(P ) of ∆-CM points P ∈ X0(`a
′
, `a). Indeed:

• Suppose `a
′ ≥ 3. Then for any ∆-CM point P ∈ X0(`a

′
, `a), equation (5) applies.

So if L′ is the minimal level such that there is a nonbacktracking path in GK,`,f0 starting

in level L (where ∆ = `2Lf20∆K), the unique primitive residue field is K(`max(a′,L′)). So:

Case 2.1: If
(

∆K
`

)
= 1, the primitive residue field is K(`a

′
f).

Case 2.2: If
(

∆K
`

)
= −1, the primitive residue field is K(`max(a′,a−2L)f).

Case 2.3: If
(

∆K
`

)
= 0, the primitive residue field is K(`max(a′,a−2L−1)f).

• Suppose `a
′

= 2 and ∆ is odd. Again equation (5) applies and the unique primitive

residue field is K(2max(a′,L′)f) = K(2max(1,L′)f). So:

Case 3.1: If a = 1, the primitive residue field is K(2f).
Case 3.2: If a ≥ 2 and

(
∆
2

)
= 1, the primitive residue field is K(2f) = K(f).

Case 3.3: If a ≥ 2 and
(

∆
2

)
= −1, the primitive residue field is K(2af).

• Suppose `a
′

= 2 and ∆ is even. For a ∆-CM point P ∈ X0(2, 2a) Theorem 7.1 and
Corollary 7.2 tell us that if ∆ 6= −4, if a = 1 or if an isogeny ϕ inducing β(P ) is purely
descending then

Q(P ) = Q(α(P ), β(P )),

and otherwise we have Q(P ) = K(2a−1) = K(2a−1f).
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Our casework for ∆-CM points on X0(2, 2a) is then as follows:

Case 4.0: a = 1. The primitive residue field is Q(2f).

Case 4.1: a ≥ 2, L = 0 and ord2(∆K) = 2. The primitive residue fields are Q(2af)
and K(2a−1f).
Case 4.2: a ≥ 2, L = 0 and ord2(∆K) = 3. The primitive residue field is Q(2a−1f).

Case 4.3: a ≥ 2, L = 1 and
(

∆K
2

)
= 1. The primitive residue fields are Q(2af) and K(2f).

Case 4.4:
(

∆K
2

)
= 1, L ≥ 2 and 2 ≤ a ≤ 2L− 1. The primitive residue field is Q(2f).

Case 4.5:
(

∆K
2

)
= 1, L ≥ 2 and a ≥ 2L. The primitive residue fields are Q(2a−2L+2f)

and K(2f).

Case 4.6:
(

∆K
2

)
= −1, L = 1 and a = 2. The primitive residue fields are Q(22f) and

K(2f).

Case 4.7:
(

∆K
2

)
= −1, L = 1 and a ≥ 3. The primitive residue fields are Q(2af) and

K(2a−2f).

Case 4.8:
(

∆K
2

)
= −1, L ≥ 2 and 2 ≤ a ≤ 2L− 1. The primitive residue field is Q(2f).

Case 4.9:
(

∆K
2

)
= −1, L ≥ 2 and a = 2L. The primitive residue fields are Q(22f) and

K(2f).

Case 4.10:
(

∆K
2

)
= −1, L ≥ 2 and a ≥ 2L + 1. The primitive residue fields are

Q(2a−2L+2f) and K(2a−2Lf).
Case 4.11: ord2(∆K) = 2, L ≥ 1 and 2 ≤ a ≤ 2L+1. The primitive residue field is Q(2f).
Case 4.12: ord2(∆K) = 2, L ≥ 1 and a ≥ 2L + 2. The primitive residue fields are
Q(2a−2Lf) and K(2a−2L−1f).
Case 4.13: ord2(∆K) = 3, L ≥ 1 and 2 ≤ a ≤ 2L+1. The primitive residue field is Q(2f).
Case 4.14: ord2(∆K) = 3, L ≥ 1 and a ≥ 2L + 2. The primitive residue field is
Q(2a−2L−1f).

8. CM points on X0(M,N)/Q

Throughout this section ∆ = f2∆K is an imaginary quadratic discriminant with ∆K ∈
{−3,−4}, and M | N are positive integers. We now discuss how to use our work developed
thus far to determine the ∆-CM locus on X0(M,N)/Q. In §8.1 we recall how the compiling
across prime powers process works for ∆ < −4, and in §8.2 we provide a result for compiling
across prime powers for ∆ ∈ {−3,−4}. In the remainder of this section, we give an explicit
description of all primitive residue fields and primitive degrees in this case.

8.1. Compiling Across Prime Powers with ∆ < −4. For this section, we suppose
∆ < −4 with ∆K ∈ {−3,−4}. With this assumption, [Cl22a, Prop. 3.5] applies and
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our compiling across prime powers process works much the same as in [Cl22a, §9.1]. We
elaborate here for completeness of our discussion.

For a prime ` and integers 0 ≤ a′ ≤ a, the fiber F of X0(`a
′
, `a)→ X(1) over the closed

point J∆ is a finite étale Q(J∆)-scheme, i.e. is isomorphic to a product of finite degree
field extensions of Q(f). Our work up to now shows that the residue field of any CM point

on X0(`a
′
, `a) is either a ring class field or a rational ring class field, and so there are

non-negative integers b0, . . . , ba, c1, . . . , ca such that F ∼= SpecA, where

(6) A =

a∏
j=0

Q(`jf)bj ×
a∏
k=0

K(`kf)ck .

When a′ = 0, the explicit values of the bj ’s and ck’s can be determined from our results in

§5. When `a
′ ≥ 3 or ∆ is odd, by Theorem 6.2 we have bj = 0 for all 0 ≤ j ≤ a.

We now explain how the previous results allow us to compute the fiber F = SpecA of

X0(M,N) → X(1) over J∆ for any positive integers M | N , where M = `
a′1
1 · · · `

a′r
r and

N = `a1
1 · · · `arr . For 1 ≤ i ≤ r, let Fi ∼= SpecAi be the fiber of X0(`

a′i
i , `

ai
i ) → X(1) over

J∆. By [Cl22a, Prop 3.5] we have

(7) A ∼= A1 ⊗Q(J∆) · · · ⊗Q(J∆) Ar.

It follows that A is isomorphic to a direct sum of terms of the form

B := B1 ⊗Q(f) · · · ⊗Q(f) Br,

where for 1 ≤ i ≤ r we have that Bi is isomorphic to either Q(`jii f) for some 0 ≤ ji ≤ a or
to K(`jif) for some 0 ≤ ji ≤ a.

Let s be the number of indices 1 ≤ i ≤ r such that K is contained in Bi, i.e. such that

Bi ∼= K(`jii ). Because f > 1, Proposition 2.2 gives:f

B ∼=

{
Q(`j11 · · · `

jr
r f) if s = 0

K(`j11 · · · `
jr
r f)2s−1

otherwise.

(Note that `2jii ∆ ∈ {−12,−16,−27} can only occur if ji = 0, due to our f > 1 assumption.)
We therefore reach the following extension of [Cl22a, Theorem 9.1]:

Theorem 8.1. Let ∆ = f2∆K be an imaginary quadratic discriminant with ∆ < −4. Let
M | N ∈ Z+. Let P be a ∆-CM closed point on X0(M,N).

a) The residue field Q(P ) is isomorphic to either Q(M f) or K(M f) for some M | N .
b) Let M = `a1

1 · · · `arr , N = `a1
1 · · · `arr be the prime power decompositions of M and

N . For 1 ≤ i ≤ r, let πi : X0(M,N) → X0(`
a′i
i , `

ai
i ) be the natural map and put

Pi := πi(P ). The following are equivalent:
(i) The field Q(P ) is formally real.

(ii) The field Q(P ) does not contain K.
(iii) For all 1 ≤ i ≤ r, the field Q(Pi) is formally real.
iv) For all 1 ≤ i ≤ r, the field Q(Pi) does not contain K.
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8.2. Compiling Across Prime Powers with ∆ ∈ {−3,−4}. Throughout this section,
we assume that ∆ ∈ {−3,−4}.

Proposition 8.2. Suppose that ϕ : E → E′ is a cyclic N -isogeny, with N having prime-
power factorization N = `a1

1 · · · `arr . For each i ∈ {1, . . . , r}, let ϕi : E → Ei be the

`i-primary part of ϕ. Let bi such that Q(ϕi) is isomorphic to either K(`bii ) or to Q(`bii ).
Then

Q(`b11 · · · `
br
r ) ⊆ Q(ϕ) ⊆ K(`b11 · · · `

br
r ).

Proof. Let C = ker(ϕ), and for each i ∈ {1, . . . , r} let Ci ≤ C be the Sylow-`i subgroup of
C, that is Ci = ker(ϕi). Let f denote the conductor of End(E), and for 1 ≤ i ≤ r let fi
denote the conductor of End(Ei). Let

I = {i | ord`i(fi) > ord`i(f))} ⊆ {1, . . . , r},

and let

C ′ =
〈
{Ci}i∈I

〉
⊆ C.

Then ϕ factors as ϕ = ϕ′′ ◦ ϕ′, where ϕ′ : E → E/C ′. Using the fact that isogenies of
degree prime to `i cannot change the `i-part of the conductor, we see that End(E/C ′) has

conductor divisible by `b11 · · · `brr . Thus we have

Q(`b11 · · · `
br
r ) ⊆ Q(ϕ′) ⊆ Q(ϕ).

It remains to show the containment Q(ϕ) ⊆ K(`b11 · · · `brr ). If j(E) 6∈ {0, 1728}, then this
follows from Theorem 4.1 and [Cl22a, Prop. 3.5], so we suppose j(E) ∈ {0, 1728}. If
j(E′) = j(E), then ϕ is (up to isomorphism on the target) an endomorphism of E, hence
defined over K. If j(E′) 6= j(E) then j(E′) 6∈ {0, 1728}, so our previous work applies via
consideration of the dual isogeny as Q(ϕ) ∼= Q(ϕ∨). �

Proposition 8.2 provides bounds on the field of moduli of an isogeny. We now use this
result to determine the exact field of moduli in the case where our source elliptic curve has
−3-CM or −4-CM, which we state from the perspective of determining the residue field of
the corresponding CM point on X0(N).

Theorem 8.3. Let N ∈ Z+ with prime-power factorization `a1
1 · · · `arr , and suppose x ∈

X0(N) is a ∆-CM point with ∆ ∈ {−3,−4}. Let πi : X0(N)→ X0(`aii ) be the natural map,
and let xi = πi(x). Let Pi be any path in the closed point equivalence class corresponding
to xi in GK,`i,1, and let di ≥ 0 be the number of descending edges in Pi.

a) If there is some 1 ≤ i ≤ r such that `i splits in K and the path Pi contains a surface
edge, then

Q(x) = K(`d1
1 · · · `

dr
r ).

b) In every other case, we have

Q(x) ∼= Q(`d1
1 · · · `

dr
r ).
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Proof. Let ϕ : E → E′ be a cyclic N -isogeny inducing the point x. For each 1 ≤ i ≤ r, let
ϕi : E → Ei be the `i-primary part of ϕ: that is, the kernel of ϕi is the `i-Sylow subgroup
of the kernel of ϕ.
Case 1: Suppose that E′ is also a ∆K-CM elliptic curve. By [Cl22a, §3.4], the isogeny
ϕ is isomorphic over C to E → E/[I] for a nonzero ideal I of ZK , and we have Q(ϕ) ∼=
Q(j(E)) = Q if I is real ideal (i.e., I = I) and Q(ϕ) = K(j(E)) = K is I is not a real
ideal. If we factor I = pc11 · · · pcrr into prime powers and pi lies over `i, then we have (up
to an isomorphism on the target) that ϕi : E → E/[pcii ]. Notice that the path in GK,`i,1
corresponding to ϕi lies entirely on the surface. If some `i splits in K, then pcii is not a real
ideal, so Q(ϕ) = K. If no `i splits in K, then each pcii is real, so I is real and Q(ϕ) = Q.
Case 2: Otherwise E′ is a ∆ = f2∆K-CM elliptic curve for some f > 1. Since Q(ϕ) =
Q(ϕ∨), we may compute the field of moduli of the dual isogeny ϕ∨ : E′ → E. Since
AutE′ = {±1}, the rationality of a subgroup of E′ is independent of the model, so we have
Q(ϕ) = Q(ϕ1) · · ·Q(ϕr), and the result now follows from [Cl22a, Thm. 5.1]. �

Corollary 8.4. Let ϕ : E → E′ be an isogeny of K-CM elliptic curves defined over C. Let
f (resp. f′) be the conductor of End(E) (resp. of End(E′)). Then the field of moduli Q(ϕ)
of ϕ contains a subfield isomorphic to Q(lcm(f, f′)).

Proof. Theorems 8.1 and 8.3 imply that Q(ϕ) is isomorphic to Q(M f) or K(M f) for some
M ∈ Z+. Using the fact that Q(ϕ) = Q(ϕ∨) we find that f′ |M f, and the result follows. �

When ∆K < −4, then Corollary 8.4 holds just because Q(ι) ⊇ Q(j(E), j(E′)). However:

Corollary 8.5. Let ∆K ∈ {−3,−4}, let f, f′ be coprime positive integers not lying in the
set S of Proposition 2.1: that is, if ∆K = −3 then f, f′ > 3 and if ∆K = −4 then f, f′ > 2.
Let ϕ : E → E′ be an isogeny of K-CM elliptic curves defined over C such that End(E) has
conductor f and End(E′) has conductor f′. Then ϕ cannot be defined over K(j(E), j(E′)).

Proof. This follows from Corollary 8.4 and Proposition 2.1. �

Next we obtain a version of Theorem 8.3 in the M ≥ 2 case, finding in particular that the
residue field of a CM point on X0(M,N) is isomorphic to either a rational ring class field
or a ring class field in all cases.

Theorem 8.6. Let M,N ∈ Z≥2 with M | N , and write

M = `
a′1
1 · · · `

a′r
r , N = `ar1 · · · `

ar
r .

Let

α : X0(M,N)→ X0(M,M), β : X0(M,N)→ X0(N)

and

∀1 ≤ i ≤ r, πi : X0(N)→ X0(`aii )

be the canonical maps. Let ∆ ∈ {−3,−4}, let P be a ∆-CM closed point of X0(M,N) and
let yi := πi(β(P )). Let di be the number of descending edges in yi, and put

di := max(a′i, di).
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a) Suppose M ≥ 3 or (M = 2 and ∆ = −3). Then

Q(P ) = K(`d1
1 · · · `

dr
r ).

b) Suppose M = 2 and ∆ = −4; we put `1 = 2.
(i) If a1 ≥ 2 and y1 ∈ X0(2a) is not purely descending, then

Q(P ) = K(`d1
1 · · · `

dr
r ).

(ii) Otherwise, we have

Q(P ) ∼=

{
K(2a1 · `d2

2 · · · `drr ) if K ⊆ Q(yi) for some 2 ≤ i ≤ r,
Q(2a1 · `d2

2 · · · `drr ) otherwise.

Proof. a) Our hypotheses on M imply (cf. §6) that

Q(α(P )) = K(`
a′1
1 · · · `

a′r
r ).

In particular, this implies that Q(P ) ⊃ K. Applying Proposition 8.3 we get

K(β(P )) = K(`d1
1 · · · `

dr
r ).

Using this and Proposition 2.1a), we get:

Q(P ) ⊇ Q(α(P ), β(P )) = K(α(P ), β(P )) = K(`
a′1
1 · · · `

a′r
r )K(`d1

1 · · · `
dr
r ) = K(`d1

1 · · · `
dr
r ).

Conversely, using Proposition 6.1, let E
/K(`

d1
1 ···`

dr
r )

be an elliptic curve with j-invariant j∆

and with modulo `d1···dr
1 -Galois representation given by scalar matrices. For 1 ≤ i ≤ r, let

ϕi : E → Ei be a cyclic `aii -isogeny of C-elliptic curves containing di descending edges. It

follows from the proof of Theorem 7.1, that the kernel Ci of ϕi is a K(`d1
1 · · · `drr )-rational

subgroup scheme, hence so is C = 〈C1, . . . , Cr〉, which is the kernel of ϕ. Thus we have

found a K(`d1
1 · · · `drr )-rational model of P .

b) (i) By Corollary 7.2, we have Q(P ) ⊇ K. The rest of the argument is the same as that
of part a).
(ii) First, suppose that y1 is purely descending and let ϕ : E → E′ be an isogeny defined
over Q(β(P )) that induces the point π1(β(P )) ∈ X0(2a1). Then the initial edge of ϕ is
downward, so as in the proof of Corollary 7.2 every order 2 subgroup of E is Q(β(P ))-
rational. This provides Q(P ) = Q(β(P )), and the stated isomorphism then follows from
Proposition 8.3.

Lastly, suppose that a1 = 1 and that the 2-isogeny inducing y1 is horizontal. This final
case can be reduced to the previous one via automorphisms of the modular curve X0(2, N).
Indeed, observe that the map π : X0(2, N) → X0(N2 ) is a GL2(Z/2Z) ∼= S3 Galois cover.
The level N -structure associated to X0(2, N) may viewed as an elliptic curve equipped
with an ordered triple (C,C1, C2), where C is a cyclic subgroup of E of order N

2 and C1

and C2 are distinct cyclic subgroups of E of order 2. The map π can then be viewed
as (E,C,C1, C2) 7→ (E, 〈C,C1〉). The GL2(Z/2Z) action fixes E and C, and on the pair
(C1, C2) the action is the natural and simply transitive one on pairs of order 2 subgroups of
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E[2]. Therefore if P ∈ X0(2, N) is induced by a tuple (E,C,C1, C2) with C1 a horizontal
2-isogeny, then C2 is necessarily descending and we have Q(P ) = Q(P ′) where P ′ is induced
by (E,C,C2, C1). By the previous case, we have that

Q(P ′) = Q(β(P ′))

is the field of moduli of the isogeny E → E/〈C,C2〉. Again, the stated isomorphism follows
via Proposition 8.3. �

Theorems 8.3 and 8.6 are the key ingredients for the determination of primitive residue
fields and primitive degrees of ∆-CM points on X0(M,N), which we will provide in the
next section. However, there remains the problem of computing the set of all ∆-CM points
on X0(M,N) with a given rational ring class field or ring class field as residue field. The
following results solve this problem.

Theorem 8.7. Let N ∈ Z≥2 have prime power factorization N = `a1
1 · · · `arr . For 1 ≤ i ≤ r,

let Pi ∈ X0(`aii ) be a ∆-CM point, and let πi : X0(N) → X0(`aii ) denote the natural map.
Let F be the set of closed points P ∈ X0(N) such that πi(P ) = Pi for all 1 ≤ i ≤ r. Put

s := #{1 ≤ i ≤ r | Q(Pi) contains K}.

If s = 0, then #F = 1. If s ≥ 1, then F consists of 2s−1 points, each with residue field the
same ring class field.

Proof. Step 1: Suppose that ∆ = f2∆K < −4. Let F be the fiber of X0(N) → X(1) over
J∆, and for 1 ≤ i ≤ r let Fi be the fiber of X0(`aii )→ X(1) over J∆. Then by [Cl22a, Prop.
3.5] we have that F is the fiber product of F1, . . . , Fr over SpecQ(f). By our hypothesis,
we have either ∆K < −4 or f > 1. If ∆K < −4, the result follows from this and [Cl22a,
Prop. 2.10], as is recorded in [Cl22a, §9.1]. If ∆K ∈ {−3,−4} and f > 1, the result follows
from this and Proposition 2.2.

For the remainder of the argument we suppose that ∆ ∈ {−3,−4}. Let P ∈ F , let
ϕ : E → E′ be an isogeny inducing the point P , and put C := Kerϕ∨. The endomorphism
ring of E′ has discriminant (f′)2∆K for some f′ | N .
Step 2: We suppose that f′ > 1. For each 1 ≤ i ≤ r, let Ci := C[`aii ] and (ϕ∨)i be the
isogeny E′ → E′/Ci =: Ei. Then ϕ∨ factors as ψi ◦ (ϕ∨)i, wehre ψi : Ei → E is a cyclic
N
`
ai
i

-isogeny. Let fi be the conductor of the endomorphism ring of Ei, so ord`i(fi) = 0, since

the conductor of End(E) is 1 and deg(ψi) is prime to `i.
For 1 ≤ i ≤ r, the path in GK,`i,1 corresponding to (ϕ∨)i therefore terminates at the

unique surface vertex, hence it consists of ord`i(f
′) ascending edges, which are uniquely

determined by E′, followed by ai − ord`i(fi) horizontal edges. If `i does not split in K the
path corresponding to (ϕ∨)i is therefore uniquely determined, whereas if `i splits in K there
are two such paths which are complex conjugates of each other and therefore determine
the same closed point equivalence class. Let P ′i ∈ X0(N) be the f2∆K-CM point induced
by (ϕ∨)i, and let F ′ be the set of closed points P ′ ∈ X0(N) such that πi(P

′) = P ′i for all
1 ≤ i ≤ r. Thus passage to the dual isogeny gives a residue-field preserving bijection from
F to F ′. Let 1 ≤ i ≤ r. Because the path corresponding to Pi begins at the surface and
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the path corrsesponding to P ′i ends at the surface, we have that Q(Pi) contains K if and
only if `i splits in K in ord`i(f

′) < ai if and only if Q(P ′i ) contains K. Applying Step 1, we
get that if s = 0 then #F = #F ′ = 1, while if s ≥ 1 then

#F = #F ′ = 2s−1.

Step 3: We suppose that f′ = 1. In this case every element of F is induced by an isogeny
ϕI : E → E/E[I] for I a nonzero ZK-ideal such that ZK/I is cyclic, and degϕI = ||I|| :=
#ZK/I. Moreover the field of moduli of ϕI is Q if I = I and K otherwise [Cl22a, §3.4].
For distinct I and J , the isogenies ϕI and ϕJ induce the same closed point on X0(N) if and
only if J = I, so closed point equivalence classes in this case correspond to orbits under
gR. For a prime power `a, there is an ideal I of norm `a such that ZK/I is cyclic if and
only if (` ramifies in ZK and a = 1) or ` splits in K. In the ramified case there is a unique
ideal of norm `, while in the split case the two ideals of norm `a are pa and pa where p and
p are the two primes of ZK lying over `. If s is the number of 1 ≤ i ≤ r such that `i splits
in ZK , then if s = 0 then N the unique prime number that ramifies in ZK so #F = 1.
If s ≥ 1, then the number of ideals I of norm N such that ZK/I is cyclic is 2s, and the
number of gR-orbits of such ideals is 2s−1. �

Corollary 8.8. Let M | N be in Z+ with prime-power factorizations M = `
a′1
1 · · · `

a′r
r and

N = `a1
1 · · · `arr with `1 ≤ . . . ≤ `r. Let π : X0(M,N) → X0(N) denote the natural map,

and let πi : X0(N) → X0(`a1
1 ) denote the natural map for 1 ≤ i ≤ r. Let Pi ∈ X0(`a1

1 ) be
∆-CM points for each index i, and let F be the set of closed points P ∈ X0(M,N) such
that πi(π(P )) = Pi for all 1 ≤ i ≤ r. For each 1 ≤ i ≤ r, let di denote the number of
descending edges occurring in a path in GK,`i,f0 corresponding to Pi. Put

s := #{1 ≤ i ≤ r | Q(Pi) contains K},

and put

ε =

{
1 if s = 0, (M,∆) = (2,−4) and a1 6∈ {1, d1},
0 otherwise.

We then have that F consists of

#F = 2max(s−1,0)−ε ·Mϕ(M) ·

 ∏
i with a′i>di=0

`
a′i−1
i

(
`i −

(
∆

`i

))−1

·

 ∏
i with a′i>di>0

`
a′i−di
i

−1

points with isomorphic residue fields.

Proof. Given a point P ′ ∈ X0(N), Theorem 8.6 determines the residue field of any point
Q ∈ π−1(P ′) in terms of P ′ and M , so we know that each point in F has the same
residue field up to isomorphism. If ∆ < −4 then the map π is unramified. If ∆ = −4
(resp. ∆ = −3), then the map π has ramification index 1 if and only if the path in GK,`,1
corresponding to xi is purely horizontal for each i. Therefore, because M ≥ 2 (see the
discussion in §1.4 for more details), the point P necessarily has ramification index e = 2
(resp. e = 3) exactly with respect to π in this situation, and otherwise has ramification
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index 1. In any event, letting P ′ ∈ X0(N) be a point with πi(P
′) = Pi for all 1 ≤ i ≤ r,

we must have that the number of points P ∈ F lying above P ′ is

deg(π)

e · [Q(P ) : Q(π(P ))]
=

Mϕ(M)

e · [Q(P ) : Q(π(P ))]

The ε = 1 case, by Theorem 8.6, is exactly the case in which Q(P ′) is isomorphic to a
rational ring class field while Q(P ) is a ring class field. In the ε = 0 case, we then have

e · [Q(P ) : Q(π(P ))] = e ·
[
Q
(
`
max{a′1,d1}
1 · · · `max{a′1,d1}

1

)
: Q
(
`d1
1 · · · `

dr
r

))
=

 ∏
i with a′i>di=0

`
a′i−1
i

(
`i −

(
∆K

`i

)) ·
 ∏
i with a′i>di>0

`
a′i−di
i

 ,

while the only change in this quantity in the ε = 1 case is an additional factor of 2. This
combined with the result of the previous theorem gives the result as stated. �

8.3. Primitive Residue Fields and Primitive Degrees I. In this section and the next,
we extend the results of [Cl22a, §9.2-9.3] to handle ∆K ∈ {−3,−4}. Given our extensions

of the results on primitive residue fields of ∆-CM points on X0(`a
′
1 , `a1) for ` prime and on

compiling across prime powers this proceeds nearly exactly as therein.
In this section, as in [Cl22a, §9.2], we suppose that either M = 1 or that (M = 2 and

∆ is even). This assumption implies that there is a closed ∆-CM point on X0(M,N) with
residue field isomorphic to Q(N f), and therefore there is a unique B | N such that Q(Bf)
is a primitive residue field of ∆-CM points on X0(M,N). For each 1 ≤ i ≤ r, take bi to be

the least integer Bi such that Q(`Bi
i f) is isomorphic to the residue field of a ∆-CM point

on X0(`
a′i
i , `

ai
i ). We then have

B = `b11 · · · `
br
r .

There is at most one other primitive residue field of a ∆-CM point on X0(M,N), and
there is one other exactly when there are two primitive residue fields for ∆-CM points on

X0(`
a′i
i , `

ai
i ) for some 1 ≤ i ≤ r. In this case, letting ci, for 1 ≤ i ≤ r, be the least natural

number Ci such that there is a ∆-CM point on X0(`
a′i
i , `

ai
i ) with residue field isomorphic to

either Q(`Ci
i f) or to K(`Ci

i f), we have that the other primitive residue field is K(Cf), where

C = `c11 · · · `
cr
r .

If there is a unique primitive residue field of ∆-CM points on X0(M,N), then of course
there is a unique primitive degree [Q(P ) : Q] of such points. Supposing we are in the case
of two primitive residue fields Q(Bf) and K(Cf), we put

b := [Q(Bf) : Q] and c := [K(Cf) : Q].

We will have a unique primitive degree if and only if one of b and c divides the other,
and we will soon see that we always have c ≤ b, so the question is whether c | b. This
divisibility certainly holds if the analogous divisibility holds at every prime power, but as
seen in [Cl22a] this is not a necessary condition. The following theorem determines exactly
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the situation, generalizing [Cl22a, Thm. 9.2]. The proof is only mildly more complicated
than the proof of this prior result, owing to handling the ∆ = −4 case.

Theorem 8.9. Let ∆ = f2∆K be an imaginary quadratic discriminant, and let M =

`
a′1
1 · · · `

a′r
r | N = `a1

1 · · · `arr . We suppose that either M = 1 or (M = 2 and ∆ is even).

For 1 ≤ i ≤ r, let bi ≥ 0 be the unique natural number such that Q(`bii f) occurs up to

isomorphism as a primitive residue field of a closed ∆-CM point on X0(`
a′i
i , `

ai
i ). Let ci be

equal to bi if there is a unique primitive residue field of ∆-CM points on X0(`
a′i
i , `

ai
i ) and

otherwise let it be such that the unique non-real primitive residue field of a closed ∆-CM

point on X0(`
a′i
i , `

ai
i ) is K(`cii f). Put B := `b11 · · · `brr and C := `c11 · · · `crr . Let s be the number

of 1 ≤ i ≤ r such that there is a non-real primitive residue field of a closed ∆-CM point on

X0(`
a′i
i , `

ai
i ).

a) If s = 0, the unique primitive residue field of a ∆-CM point on X0(M,N) is Q(Bf),
so the unique primitive degree of a ∆-CM point on X0(M,N) is [Q(Bf) : Q].

b) If s ≥ 1 and there is some 1 ≤ i ≤ r such that there are two primitive residue fields

of closed ∆-CM points on X0(`
a′i
i , `

ai
i ) and we are not in Case 1.5b) with respect to

∆ and `aii , then:
(i) There are two primitive residue fields of ∆-CM points on X0(M,N): Q(Bf)

and K(Cf).
(ii) The unique primitive degree of ∆-CM points on X0(M,N) is [K(Cf) : Q].

c) If s ≥ 1 and for all 1 ≤ i ≤ r such that there are two primitive residue fields

of closed ∆-CM points on X0(`
a′i
i , `

ai
i ) we are in Case 1.5b), then there are two

primitive degrees of ∆-CM points on X0(M,N): [Q(Bf) : Q] and [K(Cf) : Q].

Proof. The case s = 0 is immediate from the above discussion. Henceforth we suppose
s ≥ 1. We then have (up to isomorphism) two primitive residue fields of ∆-CM closed
points on X0(M,N): Q(Bf) and K(Cf), and as above we put

b := [Q(Bf) : Q], c := [K(Cf) : Q].

For each 1 ≤ i ≤ r, let Fi be a primitive residue field of a closed point of a ∆-CM elliptic

curve on X0(`
a′i
i , `

ai
i ); if there is any non-real such field, take Fi to be nonreal. Note that

for each i such that there are two primitive residue fields Q(`bii f) and K(`cii f) we have

[K(`cii f) : Q] ≤ [Q(`bii f) : Q]. By Propositions 2.1 and 2.2, there is 0 ≤ r′ ≤ r − 1 such that

2s−1 · [K(Cf) : Q(f)] =
(ωK

2

)r′
·
(
dimQ(f) F1 ⊗Q(f) ⊗ · · · ⊗Q(f) Fr

)
≤
(ωK

2

)r′
·
(

dimQ(f) Q(`b11 f)⊗Q(f) · · · ⊗Q(f) Q(`brr f)
)

= [Q(`b11 f) · · ·Q(`brr ) : Q(f)].

It follows that c ≤ b. Thus there is a unique primitive degree exactly when c | b, as
claimed in the above discussion.
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Because K(Cf) ⊆ K(Bf) = KQ(Bf), we have c | 2b. In particular, we have ordp(c) ≤
ordp(b) for every odd prime p.
Case 1: Suppose ∆K 6= −4. By Proposition 2.1 we have

ord2(c) = 1 + ord2([Q(Cf) : Q(f)]) = 1 +

r∑
i=1

[Q(`cif) : Q(f)]

ord2(b) = ord2([Q(Bf) : Q(f)]) =

r∑
i=1

[Q(`bif : Q(f)].

It follows that c | b if and only if there is some 1 ≤ i ≤ r such that there are two primitive

residue fields of ∆-CM closed points on X0(`
a′i
i , `

ai
i ) for which we have

ord2([Q(`cif) : Q(f)]) < ord2([Q(`bif) : Q(f)],

which holds if and only if

ord2([K(`cif) : Q(f)]) ≤ ord2([Q(`bif) : Q(f)].

This holds in every case in which there are two primitive residue fields except Case 1.5b).
Case 2: Suppose ∆K = −4. Let rc be the number of indices 1 ≤ i ≤ r such that `i

2ci∆K 6∈
{−4,−16}, and let rb be the number of indices 1 ≤ i ≤ r such that `i

2bi∆K 6∈ {−4,−16}.
We have 0 ≤ rc ≤ rb ≤ r. Proposition 2.1 then gives:

ord2(c) = 1 + ord2 ([Q(C) : Q])

= 1 + ord2 ([Q(C) : Q(`1
c1) · · ·Q(`r

cr)]) + ord2 ([Q(`1
c1) · · ·Q(`r

cr) : Q])

= rc +

r∑
i=1

ord2 ([Q(`i
ci) : Q])

and

ord2(b) = ord2 ([Q(B) : Q])

= ord2

(
[Q(B) : Q(`1

b1) · · ·Q(`r
br)]
)

+ ord2

(
[Q(`1

b1) · · ·Q(`r
br) : Q]

)
= rb − 1 +

r∑
i=1

ord2

(
[Q(`i

bi) : Q]
)
.

We see then that c | b if and only if
r∑
i=1

ord2 ([Q(`i
ci) : Q]) < rb − rc +

r∑
i=1

ord2

(
[Q(`i

bi) : Q]
)
.

We find that c | b if and only if rb > rc or there is some 1 ≤ i ≤ r such that ci < bi for
which we are not in Case 1.5b) with respect to ∆ and `aii . Comparing with the statement
of the result, we must show: in every case in which rb > rc there is some 1 ≤ i ≤ r for
which ci < bi and we are not in Case 1.5b) for ∆ and `aii . So:
• If ∆ /∈ {−4,−16}, then rb = rc, so there are two primitive degrees if and only if we are
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in Case 1.5b) for all 1 ≤ i ≤ r for which ci < bi, as claimed.
• If ∆ ∈ {−4,−16} then Case 1.5b) cannot occur for any i and thus c | b, as claimed. �

8.4. Primitive Residue Fields and Primitive Degrees II. In this section we treat
the case in which either M ≥ 3, or (M = 2 and ∆ is odd). Thanks to the work of §7, this
case follows exactly as in [Cl22a, §9.3]. In particular, our assumptions imply that there is
a unique primitive residue field, which is a ring class field K(Cf).

Let M = `
a′1
1 · · · `

a′r
r and N = `a1

1 · · · `arr . For an index i ∈ {1, . . . , r}, if the only primitive

residue field of a ∆-CM point on X0(`
a′i
i , `

ai
i ) is Q(`cf) then put ci := c. Otherwise, the

primitive residue fields of ∆-CM points on X0(`
a′i
i , `

ai
i ) are of the form Q(`bf) and K(`cf),

and we put ci := c. We then have

C = `ci1 · · · `
cr
r .
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