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Abstract. We give an exposition of a recent result of M. Kapovich on the

cardinal Krull dimension of the ring of holomorphic functions on a connected
C-manifold. By reducing to the one-dimensional case we give a stronger lower

bound for Stein manifolds.

1. Introduction

Recently Kapovich proved the following striking result: if a connected C-manifold
M has a noncontant holomorphic function, then the ring Hol(M) of holomorphic
functions on M has a chain of prime ideals of length the continuum c = 2ℵ0 [Ka15].

Here we give an exposition of Kapovich’s Theorem, in which the algebraic part
of the proof is shortened and simplified. Kapovich defines a class of “ample rings”
and shows – by a beautiful use of Sard’s Theorem that we follow closely – that if
Hol(M) ) C then Hol(M) is ample, and then he shows that any ample ring has a
chain of prime ideals of continuum length [Ka15, Thm. 4]. The proofs, and even
the definition of ample rings, make use of hyperreals and hypernatural numbers.

We observe that the analytic part of Kapovich’s argument shows that if Hol(M) )
C then Hol(M) admits an infinite sequence of discrete valuations {vk} which are
independent in the sense that for any sequence {nk} of natural numbers there is
f ∈ Hol(M) such that vk(f) = nk for all k, and then we show (Theorem 1.4) that
any ring admitting a sequence of independent discrete valuations has a chain of
prime ideals of continuum length. In place of nonstandard analysis our proofs use
ultralimits. In order to understand these, a reader need only know what an ultra-
filter is and that an ultrafilter on a compact space converges to a unique point.

Although c is a large number, it may not be large enough! Results of Henriksen
[He53] and Alling [Al63] show that if M is a noncompact Riemann surface then
Spec Hol(M) has a chain of length 2ℵ1 . Building on these results we show (Theo-
rem 3.3) that for a connected C-manifold M , if M ∼= V ×N for a Stein manifold V
of positive dimension, then Hol(M) admits a chain of prime ideals of length 2ℵ1 .

1.1. Krull dimensions of partially ordered sets and topological spaces.

Throughout, all rings are commutative and with multiplicative identity. For a
ring R, SpecR is the set of prime ideals of R, partially ordered under inclusion.

A chain is a linearly ordered set; its length is its cardinality minus one. The
cardinal Krull dimension carddimX of a partially ordered set X is the supre-
mum of lengths of its chains. For a ring R we put carddimR = carddim SpecR.
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The prime spectrum SpecR of a ring is endowed with the Zariski topology, in
which the closed sets are V (I) = {p ∈ SpecR | p ⊃ I} as I ranges over all ideals

of R. For p1, p2 ∈ SpecR we have p1 ⊂ p2 ⇐⇒ p2 ∈ {p1}. Thus carddimR is a
topological invariant of SpecR.

For a topological space X, define the cardinal Krull dimension carddimX as
the supremum of lengths of chains of closed irreducible subspaces of X. Since for
a ring R, the map p 7→ V (p) gives an antitone bijection from SpecR to the set of
closed irreducible subspaces of SpecR, we have carddimR = carddim SpecR.

Our use of “cardinal” is twofold: (i) it is common to say “dimR is infinite” if
there are arbitrarily long finite chains in SpecR. For the class of rings considered
here we will show that the Krull dimension is always zero or infinite, and we will
also address (though not completely answer) the more refined question of how infi-
nite it is. (ii) There is also a notion of ordinal Krull dimension of rings [GoRo]
that we do not discuss here.

Remark 1.1.
a) Let X and Y bre partially ordered sets. If there is an injective isotone map
ι : Y → X, then carddimY ≤ carddimX.
b) If f : R1 → R2 is surjective or a localization map, then f∗ : SpecR2 → SpecR1

is an injective isotone map, so carddimR2 ≤ carddimR1.

1.2. Holomorphic functions on a C-manifold.

Let M be a C-manifold. (Our definition includes that M is Hausdorff and second
countable.) Let Hol(M) be the ring of global holomorphic functions f : M → C.
We have C ↪→ Hol(M) via the constant functions.

Lemma 1.2. The ring Hol(M) is a domain iff M is connected.1

Proof. If M = M1

∐
M2 with M1,M2 6= ∅, let fi be the characteristic function of

Mi. Then f1, f2 ∈ Hol(M) \ {0} and f1f2 = 0.
Conversely, let f ∈ Hol(M) \ {0} and let U be the set of x ∈ M such that the

power series expansion at x is zero (as a formal series: i.e., every term is zero).
For all x ∈ U , f vanishes identically in some neighborhood of x, so U is open. If
x ∈ M \ U , then some mixed partial derivative of f is nonvanishing at x. These
mixed partials are continuous, so there is a neighborhood Nx of x on which this
condition continues to hold, and thus Nx ⊂ M \ U and U is closed. Since M is
connected and U ( M , we have U = ∅. For f, g ∈ Hol(M) \ {0}, let x ∈ M . The
power series of f and g at x are each nonzero, hence the same holds for fg. So fg
does not vanish identically on any neighborhood of x: thus fg 6= 0. �

From now on we will assume that all our C-manifolds are connected.

1.3. Kapovich’s Theorems: Statements.

Theorem 1.3. (Kapovich [Ka15]) Let M be a C-manifold such that Hol(M) ) C.
Then Spec Hol(M) admits a chain of length c = 2ℵ0 . Thus carddim Hol(M) ≥ c.

A discrete valuation on a ring R is a surjective function

v : R→ N ∪ {∞}

1Our convention is that the empty topological space is not connected.
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such that
(DV0) For all x ∈ R, v(x) =∞ ⇐⇒ x = 0.
(DV1) For all x, y ∈ R, v(xy) = v(x) + v(y).
(DV2) For all x, y ∈ R, v(x+ y) ≥ min v(x), v(y).

Here we use standard conventions on arithmetic in the extended real numbers:
for all x ∈ [0,∞], x +∞ = ∞ and min(x,∞) = x. Conditions (DV0) and (DV1)
ensure that a ring admitting a discrete valuation is a domain. A V∞-ring is a ring
R admitting a sequence {vk}k∈Z+ of discrete valuations such that for any sequence
{nk}∞k=1 of natural numbers there is x ∈ R\{0} such that vk(x) = nk for all k ∈ Z+.
The following results together imply Theorem 1.3. We give the proofs in §2.

Theorem 1.4. If R is a V∞-ring, then carddimR ≥ c.

Theorem 1.5. Let M be a C-manifold. If M admits a nonconstant holomorphic
function, then Hol(M) is a V∞-ring.

2. Kapovich’s Theorems: Proofs

2.1. Preliminaries on ultralimits.

Let I be a set, X a topological space, and x• : I → X be a function. Let F
be an ultrafilter on I. We say x ∈ X is an ultralimit of x• and write F limx• = x
if x•(F)→ x: that is, for every neighborhood U of x ∈ X, we have x−1• (U) ∈ F .

Remark 2.1. From the general theory of filter convergence (e.g. [Cl-C]) we deduce:
(i) If X is Hausdorff, an I-indexed sequence x• : I → X has at most one ultralimit.
(ii) If X is quasi-compact, every I-indexed sequence has at least one ultralimit.
(iii) If X is compact, every I-indexed sequence has a unique ultralimit.

In our application we will have I = N, ω a fixed nonprincipal ultrafilter and X =
[0,∞]. Thus we have an ordinary sequence {xk} in [0,∞], and ω limxk = x means:
for all ε > 0, the set of k ∈ N such that |xk − x| < ε lies in ω. Because [0,∞] is
compact, any sequence in [0,∞] has a unique ultralimit.

Remark 2.2. Let ω be a nonprincipal ultrafilter on Z+.
a) If limk→∞ xk = x in the usual sense, then also ω limxk = x.
b) Let {xk}, {yk} be sequences in [0,∞]. Then:
(i) ω lim(xk + yk) = ω limxk + ω lim yk.
(ii) ω lim min(xk, yk) = min(ω limxk, ω lim yk).
(iii) ω lim max(xk, yk) = max(ω limxk, ω lim yk).

2.2. Proof of Theorem 1.4.

For t ∈ (0,∞), put pt = {x ∈ R \ {0} | ω limk
vk(x)
kt > 0}. Each pt is a prime ideal,

and for all t1 ≥ t2 we have pt1 ⊂ pt2 . Since R is a V∞-ring, there is xt ∈ R \ {0}
such that vk(xt) = dkte for all k ∈ Z+, and we have xt ∈ pt, xt /∈ ps for all s > t.
So {pt | t ∈ (0,∞)} is a chain of prime ideals of R of cardinality c.

2.3. Proof of Theorem 1.5.

Let h : M → C be holomorphic and nonconstant. By the Open Mapping The-
orem, U = h(M) is a connected open subset of C. In particular U is metrizable
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and not compact, so there is a sequence {zk}∞k=1 of distinct points of U with no
limit point in U . We do not disturb the latter property by successively replacing
each zk with any point in a sufficiently small open ball, so by Sard’s Theorem we
may assume that each zk is a regular value of h. For k ∈ Z+, let pk ∈ h−1(zk) and
let vk : Hol(M) \ {0} → N be the order of vanishing of h at pk: that is, the least N
such that there is a mixed partial derivative of order N which is nonvanishing at pk.
Then vk is a discrete valuation. Let {nk}∞k=1 be as sequence of natural numbers.
By the Weierstrass Factorization Theorem [Ru87, Thm. 15.11], there is g ∈ Hol(U)
such that ordzk(g) = nk and thus – since pk is a regular value for h – for all k ∈ Z+

we have vk(g ◦ h) = nk.

3. The cardinal Krull dimension of a Stein manifold

We will prove a stronger lower bound on the cardinal Krull dimension of Hol(M)
when M is a Stein manifold: a C-manifold which admits a closed (equivalently
proper) holomorphic embedding into CN for some N ∈ Z+. Stein manifolds play
the role in the biholomorphic category that affine varieties play in the algebraic
category (of quasi-projective varieties V/C, say) – and a nonsingular affine variety
over C is a Stein manifold. That is, the Stein manifolds are the C-manifolds which
have “enough” global holomorphic functions: in particular, for points x 6= y on a
Stein manifold M , there is f ∈ Hol(M) with f(x) 6= f(y). At the other extreme lie
the compact C-manifolds, which play the role in the biholomorphic category that
projective varieties play in the algebraic category – and a nonsingular projective
variety over C is a compact C-manifold. In complex dimension one this is a simple
dichotomy: a Riemann surface is a Stein manifold iff it is noncompact [GuRo, p.
209]. However, if M is a compact C-manifold of complex dimension at least 2 and
x ∈M , then M◦ = M \ {x} is a noncompact C-manifold with HolM◦ = C.

Theorem 3.1. (Henriksen-Alling) If S, T are noncompact Riemann surfaces then

carddim Hol(S) = carddim Hol(T ) ≥ 2ℵ1 .

Proof. Henriksen showed Spec Hol(C) admits a chain of length 2ℵ1 [He53, Thm.
5]. For noncompact Riemann surfaces S and T , Alling showed Spec Hol(S) and
Spec Hol(T ) are homeomorphic [Al79, Thm. 2.14], and as in §1.1 it follows that

carddim Hol(S) = carddim Hol(C) ≥ 2ℵ1 . �

Lemma 3.2. Let M,N be C-manifolds. Then

carddim Hol(M ×N) ≥ carddim Hol(M).

Proof. Let y0 ∈ N . Pulling back holomorphic functions via the embedding

ι : M ↪→M ×N, x 7→ (x, y0)

gives a ring homomorphism ι∗ : Hol(M ×N)→ Hol(M). If f ∈ Hol(M), we put

F : M ×N → C, (x, y) 7→ f(x).

Then F ∈ Hol(M ×N) and ι∗(F ) = f . So we may apply Remark 1.1b). �

Theorem 3.3. Let M be a C-manifold of the form V ×N for a Stein manifold V
of positive dimension. Then carddim Hol(M) ≥ carddim Hol(C) ≥ 2ℵ1 .
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Proof. Lemma 3.2 reduces us to the case in which M is a Stein manifold. If f : M →
C is a nonconstant holomorphic function, then a connected component M ′ of the
preimage of a regular value is a closed submanifold with dimCM

′ = dimCM −1. A
closed C-submanifold of a Stein manifold is a Stein manifold [GuRo, p. 210], so we
may repeat the process, eventually obtaining a closed embedding ι : S ↪→ M with
S a connected, one-dimensional Stein manifold, hence a connected, noncompact
Riemann surface. Now if Y is a closed C-submanifold of a Stein manifold X then
the map HolX → HolY obtained by restricting holomorphic functions to Y is
surjective [GuRo, Thm. VIII.18], so ι∗ : Hol(M) → Hol(S) is surjective. By
Remark 1.1b) and Theorem 3.1, we have carddimM ≥ carddimS ≥ 2ℵ1 . �

4. Final Remarks

4.1. A little set theory.

For a C-manifold M , the ring Hol(M) is a subring of the ring of all continuous
C-valued functions. For any separable topological space X, the set of continuous
functions f : X → C has cardinality at most cℵ0 = (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 = c.
Since C ⊂ Hol(M), we have # Hol(M) = c. It follows that Hol(M) has at most 2c

ideals and thus carddim Hol(M) ≤ 2c. Moreover

c = 2ℵ0 ≤ 2ℵ1 ≤ 2c.

Whether either inequality is strict is independent of the ZFC axioms, but e.g.
the Continuum Hypothesis (CH) gives c < 2ℵ1 = 2c. Thus under CH we have
carddim Hol(M) = 2c for any Stein manifold M . It may well be the case that the
determination of carddim Hol(C) is independent of the ZFC axioms.

4.2. A little history.

Ideal theory in rings of holomorphic functions was initiated by Helmer, who showed
that Hol(C) is a non-Noetherian domain in which every finitely generated ideal is
principal [He40]. A paper of Schilling [Sc46] contains the assertion that every
nonzero prime ideal of Hol(C) is maximal. Kaplansky observed that this is false:
there are prime ideals p which are nonzero and nonmaximal. In [He53], Henriksen
shows that for such a prime ideal p, the quotient R/p is a valuation ring: equiva-
lently, the set of ideals of R containing p is linearly ordered under inclusion. The
unique maximal ideal mp containing p is free: for all z0 ∈ C there is f ∈ mp

such that f(z0) 6= 0. Every other maximal ideal of Hol(C) is fixed : of the form
mz0 = 〈z−z0〉 for a unique z0 ∈ C, and mz0 contains no nonzero prime ideals. Hen-
riksen also shows that for every free maximal ideal m, the set Spec Hol(C)m of prime
ideals contained in m is linearly ordered under inclusion. (In [Al63], Alling sharpens
this to the statement that Hol(C)m is a valuation ring.) Moreover he shows that
# Spec Hol(C)m ≥ 2ℵ1 . Using an extension of the Mittag-Leffler Theorem due to
H. Florack, Alling [Al63] extends these results from C to any noncompact Riemann
surface. Later Alling showed [Al79] that for noncompact Riemann surfaces S and
T , the spaces Spec Hol(S) and Spec Hol(T ) are homeomorphic.

The above results are all for complex dimension one, in which noncompact man-
ifolds are Stein. The ideal theory of Hol(M) for a C-manifold M of dimension
at least two seems to have received less attention. In 2012 G. Elencwajg asked
[MO] whether there is a C-manifold M with 0 < carddim Hol(M) < ℵ0. This was
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answered by Kapovich [Ka15]. Kapovich’s first proof of Theorem 1.4 was closely
modelled on a criterion used by A. Sasane [Sa08, Thm. 2.2] to show (again) that the
Krull dimension of the ring of holomorphic functions on a domain Ω ⊂ C infinite.

I believe Sasane’s proof is faulty: it seems to assume that Cohen’s Multiplicative
Avoidance Theorem [K, Thm. 1.] gives a unique ideal, which is not true. I cor-
responded with Kapovich, and he immediately repaired the argument. In fact, he
sent me a version which used ultralimits (in a somewhat different way) to show that
if Hol(M) ) C, then carddim Hol(M) ≥ ℵ0. I wrote back to suggest proving the
stronger bound carddim Hol(M) ≥ c, and he soon did so, rephrasing his argument
in terms of hyperreals. Our approach to Theorem 1.4 uses some ideas from [He53].

Added in revision: Professor Sasane saw a copy of this note on my webpage
and contacted me about it. He confirmed the mistake in his argument and sent me
a draft of a corrigendum, which shows that Spec Hol(Ω) contains arbitrarily long
finite chains. He points out that he was inspired by work of von Renteln [vR77].
Thus [Ka15] and the present work also have some indebtedness to von Renteln.
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