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Introduction

In this paper we are motivated by the following problem: Let A/K be an abelian
variety defined over a number field. What can be said about the size of the torsion
subgroup of A(K), as a function of K (and especially, of d = [K : Q]) and A (and
especially, of g = dimA)? When g = 1, deep work initiated by Mazur, continued
by Kamienny and brought to culmination by Merel [Mer] tells us that there is a
function F = F (d) such that for any number field K with [K : Q] = d and any
elliptic curve E/K , #E(K)[tors] ≤ F (d).

We would like to know on the one hand “the truth” about the asymptotics of
the minimal such function F : work of Merel and Parent gives an explicit bound,
but it is exponentially larger than what we suspect it should be (and certainly, than
any examples we can provide). On the other hand, we would like to know that F (d)
extends to a function F (g, d) which majorizes the order of the torsion subgroup of
every g-dimensional abelian variety defined over a degree d number field.

We are not in a position to generalize either Merel’s uniform boundedness theo-
rem to higher g or the precise classification results of Mazur, Kamienny and Parent
to higher d. Instead we will give a generalization of the following fact, which can
be viewed as “Step 0” of Mazur’s classification of the torsion subgroups of rational
elliptic curves: namely, that it would suffice to bound the order of the torsion sub-
group of elliptic curves over any completion of K. Unfortunately this cannot always
be done: for any prime p and any positive integer N , there exists an elliptic curve
E/Qp with a point of exact order N . However, for sufficiently large N (depending
on p), one can say a great deal about what these curves must be. Indeed, it is
known that the order of E(Qp)[tors] is uniformly bounded as E/Qp ranges over
all elliptic curves which are not Tate curves, i.e., do not have split multiplicative
reduction. This implies that the “bad elliptic curves” are restricted in moduli: they
have nonintegral j-invariant. But the restriction is not only on moduli, since an
elliptic curve with non-integral j-invariant can still have additive or nonsplit multi-
plicative reduction over its field of definition but become a Tate curve after a field
extension.

It is not quite clear to whom this result should be attributed. Perhaps John
Tate is a good choice, as the two key points are his work on p-adic uniformization
and his algorithmic computation / classification of the special fiber of the Néron
model, from which one deduces the boundedness of the component group when the
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reduction is not split multiplicative. In any case, it was Flexor and Oesterlé [FO]
who did a serious analysis of what these bounds turn out to be, getting especially
striking results in the case of additive reduction. They also observed, building on
work of Frey, that the uniform boundedness of torsion on elliptic curves would fol-
low from their local results together with the Szpiro Conjecture.

We say that an abelian variety defined over a complete local field has anisotropic
reduction (or is an “AR abelian variety”) if its Néron special fiber does not con-
tain a copy of Gm.1 The Main Theorem of this paper gives explicit bounds on the
torsion subgroup of a g-dimensional AR abelian variety defined over a p-adic field
K, depending only on g, p and [K : Qp]. This includes the case in which A has
potentially good reduction, and in this case the existence of a bound can be found
in the literature [Sg92], [Sg01].

Our results go further than what was previously known in two respects. First,
as in the elliptic curve case, we require only the weaker hypothesis of anisotropic
reduction. Second, following the spirit of Flexor and Oesterlé, we are interested
not just in boundedness but in the bounds themselves. The bounds that we get
are not optimal, but they are as a function of g significantly better than what was
previously known even for the smaller class of abelian varieties with complex mul-
tiplication.

Indeed, at the end of the paper we give applications of the Main Theorem to clas-
sifying torsion subgroups of abelian varieties over Q – not (alas. . .) for all abelian
varieties, but for abelian varieties which have everywhere anisotropic reduction.
We hope to convince the reader that, in general, these kinds of restricted global
classification results are within reach, and that by getting such classifications and
comparing them to the known examples of torsion points on not necessarily AR
abelian varieties, one can begin to get a sense of the true order of magnitude of
F (g, d). We also note what seems to be the higher-dimensional analogue of Flexor
and Oesterlé’s global observation: namely, that our results, together with a cer-
tain “generalized Szpiro conjecture” would imply uniform boundedness of rational
torsion on all Hilbert-Blumenthal abelian varieties.

1. Statements of Main Results

In this paper, a complete field means a field K complete with respect to a discrete
valuation v, and a local field is a complete field with finite residue field, whose
characteristic we denote by p. The absolute ramification index of a local field is
e = v(p) ≤ ∞. If A/K is an abelian variety over a local field, then A(K)[p∞]
denotes the subgroup of p-primary torsion and A(K)[tors]′ denotes the subgroup
of torsion of order prime to p.

Recall that an abelian variety over a complete field K is said to have potentially
good reduction if there exists a finite field extension L/K such that the base change
of A to L is the generic fiber of an abelian scheme over the valuation ring of L. If R
is any Dedekind domain with quotient field K, we will say that an abelian variety
A/K has (R)-integral moduli if for every prime ideal v of R, the base change of A

1Implicit in this terminology is the extension of the concept of an “anisotropic linear group”

– i.e., one that does not contain a split torus – to arbitrary algebraic groups. See §2 for more
details.
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to the completion of K at v has potentially good reduction. Sometimes for brevity
we shall speak of an IM abelian variety, which means an abelian variety defined
over a number field and having OK-integral moduli.

For a g-dimensional variety A over a local field K, we define numerical invariants
α, µ and β to be, respectively, the dimensions of the unipotent, toric and abelian
parts of the special fiber of the Néron model. Relevant aspects of the structure
theory of the Néron model are recalled in §2.

For a positive integer a, define

M(a, 2) := ba
2
c+

∞∑
j=0

b a
2j
c,

and if p is an odd prime

M(a, p) :=
∞∑

i=0

b a

qi(q − 1)
c.

Let η(a) =
∏

p p
M(a,p), where the product extends over all primes.

Let γp(m) = blogp(
pm
p−1 )c.

Main Theorem. Let K be a local field with residue cardinality q = pf and absolute
ramification index e. Let A/K be a g-dimensional abelian variety.
a) Suppose A/K has potentially good reduction. Then

(1) #A(K)[tors]′ ≤ b(1 +
√
q)2cg.

b) Suppose that K is a p-adic field and A/K has anistropic reduction. Then

(2) #A(K)[tors] ≤ 22αpfα+2gγp(e)(q + 1)µb(1 +
√
q)2]βη(2u).

and

(3) #A(K)[tors]′ ≤ 2α(q + 1)µb(1 +
√
q)2cβ .

c) Suppose K is p-adic and A/K has purely unipotent reduction (µ = β = 0). Then

(4) #A(K)[tors] ≤ η(2g) · p2gγp(e·η(2g)).

In particular, if ` 6= p is a prime divisor of #A(K)[tors], then ` ≤ 2g + 1.
d) If K = Fq((T )), then there exists a sequence of elliptic curves {(En)/K , all of
which are ordinary with supersingular (good) reduction, such that pn | #En(K)[tors].

Some remarks are in order. First, since the right hand side of (4) is at most
b(1 +

√
q)2cg, part a) is a consequence of part b), and indeed the bound of part a)

holds for all AR abelian varieties. We have chosen to isolate part a) because the
proof uses significantly less machinery.

Since γp(m) = 0 for p� m, the bound in part c) may be viewed as being inde-
pendent of p. Thus the result is, qualitatively, a generalization of work of Flexor
and Oesterlé, who proved the remarkable bound #E(K)[tors] ≤ 48e for elliptic
curves with additive reduction over p-adic fields. However, taking g = 1, the bound
we get in part c) is (unfortunately) quadratic in e. In fact we suspect that, for all g,
one should be able to get a bound of the form C(g)eg rather than C(g)e2g. (It will
be seen that the problem is our less complete understanding of component groups
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of Néron models of higher-dimensional abelian varieties.)
In contrast to the case of p-adic fields, there is not much in the literature concern-

ing torsion groups of (even) elliptic curves over local fields of positive characteristic.
Part d) of the main theorem shows that this case is qualitatively different from the
p-adic case: we find that whereas for a locally compact field K of characteristic zero
the torsion subgroup of an elliptic curve E/K is uniformly bounded on any affinoid
subdomain of the compactified moduli space P1

/K which does not contain the cusp
∞, in positive characteristic torsion becomes infinite not only as one approaches
the boundary of the moduli space but also as one approaches a higher Newton
polygon stratum. It would be interesting to explore the analogous phenomenon on
the moduli space of g-dimensional abelian varieties.

The proof of parts a)-c) of the Main Theorem in the case of potentially good reduc-
tion is obtained by combining several techniques and concepts that are certainly
well known to the experts: the Chevalley decomposition of an algebraic group, the
functorial properties of the Néron model and the base-changing map, the structure
of the component group, the group of rational points of an algebraic group over a
finite field, and the torsion subgroup of the formal group. In the general case we
need to work in a more general context: we use Raynaud’s extension of the notion
of a Néron model to semiabelian varieties together with an analytic uniformiza-
tion result which reduces the general case to the potentially good reduction case
together with an analysis of the case of linear tori.

We have chosen to present an account, in some detail, of each of these topics; this
occurs in §2. In particular, we get a three step filtration on A(K)[tors]. Separate
bounds for the orders (or at least, the exponents) of the successive graded quotients
occur in §3.1− 3.4, and then these bounds are used to get the proof of the theorem
in §3.5.

One consequence of the Main Theorem is that totally indefinite quaternionic Shimura
varieties with Γ1(N)-level structure will, for sufficiently large N , fail to have points
rational over any given p-adic field. Because it is somewhat technical to make
precise the moduli problem corresponding to a Γ1(N)-level structure in the higher-
dimensional case, we will content ourselves here with the case of Shimura curves over
Q, in which case a careful description of the moduli problem may be found in [Buz].

Given D > 1 a squarefree positive integer, let B = BD be the indefinite ratio-
nal quaternion algebra with discriminant D. For any positive integer N prime to
D, we let XD

1 (N)/Q be the Shimura curve associated to the group B× and the
congruence subgroup Γ1(N).

Theorem 1. For each prime number p and a positive integer d ≥ 1, there exists a
constant N0 = N0(p, d) with the following property: for any p-adic field K/Qp with
[K : Qp] ≤ d and any integer N ≥ N0, XD

1 (N)(K) = ∅.
Note that the integer N0 does not depend upon the quaternionic discriminant D.

Proof: For N ≥ 4 and F/Q any field of characteristic zero, to a point P ∈
XD

1 (N)(F ) we can associate A/F an abelian surface, ι : B ↪→ EndF (A) ⊗ Q a
quaternionic multiplication (QM) structure, and x ∈ A(F ) a point of exact order
N . Now suppose K is a local field and P = (A, ι, x) ∈ XD

1 (N)(K).
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Claim: A QM surface necessarily has potentially good reduction. Indeed, any
d-dimensional abelian variety admitting as a subring of endomorphisms an order O
in a 2d-dimensional division algebra has potentially good reduction (note that this
includes also the CM case).

Proof of the claim: by a theorem of Grothendieck, after a finite base change there
is no additive part; moreover, the character group, if nontrivial, would be the un-
deryling Z-module of a (necessarily faithful) representation of O, but its dimension
is at most d, whereas any nontrivial representation of O has dimension at least 2d.

Thus the result follows immediately from the Main Theorem.

The remainder of the paper pursues applications of the Main Theorem to bounding
torsion on certain abelian varieties over number fields. An immediate consequence
is the following:

Corollary 2. Let A/K be of dimension g and defined over K with [K : Q] = d.
a) Assume that A has anisotropic reduction at places v2,v3 of K over 2 and 3. Then
#A(K)[tors] ≤ B(g, d) := b(1 + 2

d
2 )2cgb(1 + 3

d
2 )2cg.

b) Assume that A has potentially good reduction at a place v2 of K over 2.
Then the maximum prime order of a torsion point is b(1 + 2

d
2 )2cg.

Proof: For part a), let ι2 : A(K)[tors] → A(Kv2)[tors]
′ be the composite of the

natural embedding of the global torsion points into the local torsion points with
projection onto the prime-to-2-torsion, and define ι3 : A(K)[tors] → A(Kv3)[tors]

′

similarly. Then the product map

ι2 × ι3 : A(K)[tors] → A(Kv2)[tors]′ ×A(Kv3)[tors]′

is evidently an injection, so the result follows from Theorem 1a). Injecting the odd
order torsion into A(Kv2)[tors]′ gives part b).

Remark: The existence of a strong bound on torsion for IM varieties is due to
Alice Silverberg [Sg92], [Sg01]. She gives the bound:

(5) #A(K)[tors] ≤ b(1 + 2#GL2g(Z/3Z)d/2)(1 + 3#GL2g(Z/4Z)d/2)c2g.

As an example of the improvement that the present results provide, in the case of
abelian surfaces over Q, Corollary 2 gives #A(Q) ≤ 1225, while Silverberg’s bound
is approximately 4.0262× 101275357349.

But the bound of Corollary 2 is still visibly far from the truth: because we are
double counting the prime-to-6 torsion, we will in practice get much better bounds
by applying part a) of the Main Theorem prime by prime and collating the results.
The point that we want to emphasize is that, at least when d is small, this colla-
tion process leads to short lists of possible orders for the torsion subgroup – i.e., it
becomes feasible to give serious individual consideration to each of the elements on
the list as to whether or not they actually arise globally.

We give one instance where our methods can be used to give a classification re-
sult, and one instance where we are tantalizingly close to a classification.
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Theorem 3. Let E/Q be an elliptic curve with everywhere anistropic reduction
(i.e., has no prime of split multiplicative reduction). Then E(Q)[tors] is one of the
following groups.

(6) 0, Z/2Z, Z/3Z, Z/4Z, Z/6Z, Z/2Z⊕ Z/2Z.
Conversely, all such groups occur among elliptic curves E/Q with j = 0 and j =
1728.

Remark: Theorem 3 extends a result of Gerhard Frey [Fr], which itself extends a
result of Loren Olson [Ols]. Olson’s paper gives a complete classification of the
possible torsion subgroups of CM elliptic curves over Q (in fact a separate classi-
fication for each of the 13 j-invariants). Frey’s theorem extends the classification
to elliptic curves with integral j-invariant. What is notable is that the purely local
methods of the Main Theorem rule out all extraneous possibilities except for Z/5Z.

Theorem 3 is proved in Section 4.

In the next result (and in Section 5) we use the interval notation [a, b] to mean
the set of all integers x such that a ≤ x ≤ b.

Theorem 4. Let A/Q be an abelian surface with everywhere anisotropic reduction.
Then the order of the torsion subgroup #A(Q)[tors] lies in the following set:

(7) [1, 16] ∪ [18, 20] ∪ {22, 24, 25, 28, 30, 36, 48, 60, 72}.
Conversely, every value in the set [1, 10] ∪ {12, 16, 18, 19, 20, 24, 36} is known
to occur.

Remark: Note well that Theorem 4 leaves us with 11 numbers N for which we do
not know whether there exists an AR abelian surface A/Q with A(Q)[tors] = N .
This is nevertheless a substantial improvement over what was previously known
even in the special case of CM abelian surfaces, cf. [Sg88], [VanM].

Section 4 is devoted to the proof of Theorem 5. The upper bounds are purely
local but use more than the Weil bound (1), which is far from being sharp for
higher-dimensional abelian varieties over F2 and F3.

We end this introduction with some further remarks comparing our function B(g, d)
to the “true function” F (g, d), i.e., the supremum over all #A(K)[tors] where
dim(A) = g, [K : Q] = d. As F (g, d) is not even known to be finite for g > 1,
some of these remarks are necessarily speculative.

Notice that the behavior of the function B(g, d) is essentially symmetric in g and
d: when either variable is fixed, it is exponential in the other variable. Clearly
the bound must be exponential in g: as above, there exists a CM elliptic curve
E/Q with #E(Q)[tors] = 6, so the g-dimensional abelian variety A/Q = Eg

has #A(Q)[tors] = 6g. Unfortunately we do not have the right exponential:
B(g, 2) = 35g, which is surely too large. More reasonable (but still not optimal, by
Theorem 3) is B(g, 1)[odd] = 5g.

On the other hand, being exponential in d is probably very far from the truth.
The main theorem of [HS] gives

#E(K)[tors] ≤ 1977408d log d
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for all elliptic curves with integral moduli. For the class of CM elliptic curves,
[Sg88], [Sg92] and [PY] show that the exponent of the torsion group is at most
d log log d. On the other hand, choosing a fixed CM elliptic curve and trivializing
its p-torsion for successively large primes p gives fields K with

E(K)[tors] ≥ C ′(E)d
√

log log d,

so that the above upper bounds are quite close to being sharp. We see no reason
to expect better lower bounds for d� 0.

2. Some background

In this section we will briefly recall some key definitions and results about Néron(-
Raynaud) models of semiabelian varieties as well as the Serre-Tate theory of abelian
varieties with potentially good reduction.

2.1. The Chevalley decomposition. Assume for the moment that K is any per-
fect field, and let G/K be a smooth, geometrically connected commutative algebraic
group over K. Then there is a (unique and functorial) short exact sequence, the
Chevalley decomposition:

0 → T ⊕ U → G→ B → 0,

where T/K , U/K , and B/K are respectively a linear torus, a commutative unipotent
group and an abelian variety (e.g. [BLR]). We consistently use the following
notation: µ = dimT (the toric rank), α = dimU (the unipotent rank) and β =
dimB (the abelian rank). In the extremal cases G = T, U or B we say that G
is purely toric, purely unipotent or purely abelian. If α = 0 one says that G is
semiabelian; if µ = 0 we may say that G is atoric.

2.2. Tori. By definition, a (linear) torus T/K is an algebraic group such that
T sep

/K
∼= Gr

m for some r. To every torus we associate its character group X(T ) =
Hom(T (Ksep),Gm(Ksep)) which is a free abelian group of rank r endowed with
the structure of a gK-module. The association T 7→ X(T ) gives an antiequiva-
lence from the category of tori over K to the category of Z[gK ]-modules which
are finitely generated and torsion-free as abelian groups. Moreover, the associa-
tion T 7→ X(T )⊗Z Q gives an antiequivalence from the isogeny category of tori to
the category of finite-dimensional representations of gK on Q-vector spaces which
are continuous (i.e., have finite image). In particular, tori up to isogeny form a
semisimple category.

We say that a torus is split if it is isomorphic to Gr
m already over K. Let X(T )g

denote, as usual, the submodule of g-invariants (which is always Z-torsion free),
and let X(T )g be maximal torsion-free quotient of X(T ) on which g acts trivially
(i.e., the usual coinvariants divided out by the torsion subgroup). Then the maps
X(T )g → X(T ) and X(T ) → X(T )g give rise to, respectively, the maximal split
quotient torus and the maximal split subtorus of T . These tori are isogenous, and
we denote by s their common rank, the split toric rank. If s = 0 we say T is
anisotropic.

If G/K is now any smooth commutative algebraic group, we can define X(G) to be
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the character group of its toric part; the assignment G 7→ X(G) is (co-)functorial
in G. In particular, we can speak of G/K being anisotropic, i.e., X(G)g = 0.

2.3. Néron models of semiabelian varieties. Now let GK be a commutative
algebraic group over a complete (always discretely valued!) field K. A Néron-
Raynaud model for G is a smooth, separated group scheme G/R whose generic
fiber is isomorphic to GK and which satisfies the Néron mapping property: if X
is any smooth R-scheme, then every morphism uK : XK → GK of the generic
fibers extends uniquely to a morphism u : X → G. As this is a universal mapping
property, the Néron-Raynaud model for GK , if it exists, is unique up to a unique
isomorphism.

It is a famous (and difficult) theorem of Néron that such a model exists when
G = A is an abelian variety. Not quite as well-known is Raynaud’s generalization
of Néron’s existence theorem to the case of semi-abelian varieties. (Conversely,
since K is perfect, if G/K admits a Néron model then it has no unipotent part.)
There is one caveat in the passage to the semiabelian case: the group scheme G/R

need not be of finite type. In particular, the special fiber G/k is a locally algebraic
group, i.e., of the form

0 → G0
/k → G/k → Φ/k → 0

where G0
/k is a geometrically connected algebraic group and Φ/k is a possibly infi-

nite étale group scheme. We will identify Φ with the gk-module Φ(ksep) and also
write Φ′ = Φ/Φ[p∞] where p is the characteristic of the residue field. (If k has
characteristic zero, we mean that Φ′ = Φ.) Then G/R is of finite type iff Φ(ksep) is
finite iff G/Kunr is anisotropic, where Kunr is the maximal unramified extension of
K. For proofs of all these facts, see [BLR].

In particular, if G = A is an abelian variety, then the Néron special fiber is an
algebraic group G/k, hence is the extension of a finite étale group scheme Φ/k, the
component group, by a smooth geometrically connected algebraic group G0

/k. The
Néron component group of an abelian variety is quite mysterious; despite much
effort and interesting work, we are, except in the case of elliptic curves (or of Ja-
cobians of curves with rational points), very far from a complete understanding of
its structure. In contrast, in the purely toric case the finitely generated compo-
nent group Φ is a purely cohomological quantity and is accordingly much better
understood:

Theorem 5. ([Xa]) Let T/K be a torus defined over a complete field K with perfect
residue field k. Let I = gKunr ⊂ gK be the inertia subgroup, and Φ the component
group of the Néron special fiber of T . Then there is an exact sequence of gk-modules

0 → Hom(H1(I,X(T )),Q/Z) → Φ → Hom(X(T )I ,Z) → 0.

Note that H1(I,X(T )), being a Galois cohomology group with coefficients in a Ga-
lois module which is finitely generated as an abelian group, is finite [CL]. Moreover
Hom(X(T )I ,Z) is a gK-module whose underlying abelian group has rank equal to
the split rank of T/Kunr . It follows that Φ(k) ∼= Zs ⊕ (H1(I,X(T ))gk)∨, where s
is the split toric rank of the Néron special fiber of T/K ; here the “∨” denotes the
Pontrjagin dual of a finite abelian group.
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Corollary 6. Let T/R be the Néron model of a torus T/K defined over a complete
field K, with valuation ring R and with perfect residue field. There is an exact
sequence

0 → T 0(R)[tors] → T (K)[tors] → (H1(I,X(T ))gk)∨.

Proof: This follows immediately from the previous theorem, using the equality
T (R) = T (K) (guaranteed by the Néron mapping property) and the fact that
T (R)/T 0(R) = T (k)/T 0(k) (because the kernel of reduction is contained in T 0(R)).

The alert reader may be wondering why we are considering Néron models of tori in
order to bound torsion on abelian varieties. The explanation is the following result,
which allows us to reduce the anisotropic reduction case to the case of potentially
good reduction and to the case of tori.

Theorem 7. (Uniformization Theorem) Let A/K be a g-dimensional abelian vari-
ety over a complete field. Then there exists a semiabelian variety S/K of dimension
g, whose abelian part has potentially good reduction, a gK-module M whose under-
lying abelian group is torsion free of rank equal to the toric rank of S and an exact
sequence of gK-modules

(8) 0 →M → S(Ksep) → A(Ksep) → 0.

Moreover rkZ M
gK = s, the split toric rank of the Néron special fiber of A. For

every finite extension L/K, the identity components of the Néron special fibers of
S/L and A/K are isomorphic.

Proof: The theorem is a direct consequence of some of the main results of [BX].
Indeed, the exactness of the sequence follows from [BX, Theorem 1.3], using the fact
that exactness of a sequence of rigid K-analytic étale sheaves is equivalent to the
exactness of the sequence of points over Ksep. Next, the proof of [BX, Proposition
5.1] shows that the ranks of Mg

K and X(S)g
K coincide, so both quantities are equal

to the split toric rank of Sk. The last sentence follows from [BX, Theorem 2.3].

2.4. Potentially good reduction. Let A/K be an abelian variety over a com-
plete field. If the residue field of K is algebraically closed, then Serre and Tate
showed that there is a unique minimal field extension L/K over which A acquires
potentially good reduction. This extension is given explicitly as L = K(A[N ]), the
field obtained by trivializing the Galois action on the N division points, for any N
which is at least 3 and prime to the residue characteristic p of K.

It follows from this (and the fact that formation of the Néron model commutes
with étale base change, which is immediate from its defining property) that if K
is any complete field and A/K has potentially good reduction, then A/K(A[N ]) has
good reduction for N ≥ 3 and prime to p.

Similarly, the numbers µ, α, β associated to A/K are invariant under unramified
base extensions. Since A has bad reduction iff max(µ, α) > 0, it is evident that
if A/K has potentially good, but bad, reduction then any extension over which it
acquires good reduction must have some ramification. If K is a local field, one can
choose (noncanonically) a totally ramified extension L/K over which A acquires
good reduction [ST, p. 498].
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Proposition 8. For any abelian variety A over a local field K, the invariants µ and
β of the Néron special fiber are nondecreasing under arbitrary finite base extensions.
In particular, if A/K has potentialy good reduction, µ = 0.

Remark: This fact is certainly well known to the experts, and the second statement
can be found (without proof) in the original paper of Serre and Tate [ST, p. 500].
We will sketch the proof here, for completeness, but also because it is a prototype of
a certain kind of argument about Néron models (namely, use of the base-changing
map) that we will see again in the proof of part c) of the Main Theorem.

Proof: If L/K is a finite field extension, let R and S be the valuation rings of
K and L, let (AR)/S be the base change of the Néron model of AK to S, and
let AS be the Néron model of AL. Since (AR)/S is smooth, the universal prop-
erty of the Néron model AS furnishes us with a morphism uS : (AR)/S → AS ,
the base change map, and in particular a morphism of the geometric special fibers
uksep : AR(ksep) → AS(ksep). A drop in either the toric or the abelian rank means
that this map kills some nontrivial `-torsion point for some (indeed, every) ` 6= p.
But since [`] is an étale endomorphism of AR and of AS , such an `-torsion point
lifts uniquely to an `-torsion point in A(Lunr) = AS(Sunr) which would then have
lie in the kernel of the reduction map. But again, the fact that AS [`] is étale means
that the reduction map is an isomorphism on `-torsion; this gives a contradiction.

2.5. The Kernel of Reduction. If G/R is a smooth group scheme over the valua-
tion ring of a complete fieldK, the completion Ĝ/R of G along the identity section is
a formal Lie group over R, i.e., given by a formal group law F = (F1, . . . , Fd), Fi ∈
R[[X1, . . . , Xd, Y1, . . . , Yd]]. Let R : G(R) → G(k) be the reduction map. The ker-
nel of reduction is an open K-analytic subgroup of G(K); as a space, it is the open
unit polydisk mdim G (where m is the maximal ideal of R); the group law is simply
x+y = (x1, . . . , xd)+(y1, . . . , yd) = (F1(x, y), . . . , Fd(x, y)). We write G1 = Ker(R)
for this structure, referred to in [LALG] as a “standard analytic group.”

3. Proof of the Main Theorem

From the results of the preceding section, we know that if A/K is an abelian variety
over a complete field K with valuation ring R, there exists a filtration

0 = Fil3 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = A(K)

on the group of K-rational points A(K) = A(R); namely Fil1 ⊂ A(R) is the
subgroup of points reducing to the identity component of the Néron model and
Fil2 ⊂ A(R) is the kernel of reduction. Let Fili(T ) = Fili ∩A(K)[tors] be the in-
duced filtration on the torsion subgroup, and write Hi = Fili+1(T )/Fili+2(T ) for
the successive quotients. We have canonical injections H1 ↪→ Φ(k), H2 ↪→ A0(Fq)
and H3 ↪→ A1(R)[tors]. Thus one can get a bound on A(K)[tors] by giving separate
bounds on these three latter quantities.

We can also get away with a bit less: if one has bounds on just the exponents of
these three quantities, say exp(Φ(k)) ≤ c1, exp(A0(Fq)) ≤ c2, exp(A1(R)[tors]) ≤
c3, then clearly we have exp(A(K)[tors]) ≤ c1c2c3, and from this it follows that
#A(K)[tors] ≤ (c1c2c3)2g. What will actually occur is a mixture of these two ar-
guments: we will get bounds on the order of A0(Fq); our bounds for the order of
A1(R)[tors] are those which come from bounds on the exponent by raising to the
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(2g)th power; and we will have bounds only on the exponent of Φ(k).

In §3.1 we bound the torsion in formal groups associated to abelian varieties in
terms of e and g; there is also some discussion of what happens when e = ∞. In
§3.2 we bound the number of Fq-rational points on a connected algebraic group
G/Fq

in terms of its invariants α, µ, β. In §3.3 we come to the heart of the matter,
which is bounding the exponent of Φ(k). In the case of potentially good reduction,
the bounds come directly from work of McCallum and Edixhoven-Liu-Lorenzini.
(In this case the bounds apply to the geometric component group Φ(k).) In the
general case of anisotropic reduction, we use the Uniformization Theorem to bound
the exponent of the component group Φ(k) of A in terms of the component group
of an abelian variety with potentially good reduction and the component group of
an anisotropic torus. Thus we must provide bounds on the component group of
an anistropic torus, and this turns out to a be a straightforward piece of Galois
cohomology.

All these bounds are put together in §3.4 to prove the first three parts of the
Main Theorem.

Part d) is proved in §3.5.

3.1. Bounds for the torsion subgroup of a formal group. Recall our notation
γp(m) = blogp(

pm
p−1 )c.

Proposition 9. Let F (X,Y ) be a d-dimensional formal group law over the valu-
ation ring R of K, with associated “standard” K-analytic Lie group G1 = F (m).
Let H ⊂ G1 be any finite subgroup. Then the exponent of H divides pγp(e).

Proof: This is well known when g = 1; e.g. [EC, Thm. 6.1]. The proof works
verbatim in the higher-dimensional case provided we have a formal power series
identity of the form

[p](T1, . . . , Tg) = p ((T1, . . . , Tg) + ϕ(T1, . . . , Tg)) + ψ(T1, . . . , Tg),

where the lowest-degree form of ϕ has degree at least 2 and the lowest-degree form
of ψ has degree at least p. But precisely this is shown in [LALG, § II.IV.7-9].

An immediate consequence is that if p > e + 1, there is no torsion in the formal
group. This special case is much better known, as there is then a “pure thought”
proof available: if 0 6= P ∈ A(K)[tors], apply Raynaud’s theory of finite flat group
schemes to the schematic closure of 〈P 〉 in the Néron model to conclude that the
reduction of P still generates a constant group scheme of orderN in the special fiber.

Remark: When e = ∞ (i.e., when K has positive characteristic) the Proposition
asserts nothing. We have instead the following result, whose proof was supplied to
us by Bjorn Poonen.

Proposition 10. Let K be a complete local field of equal characteristic p > 0, and
A/K an abelian variety. Then the torsion subgroup of the kernel of reduction is
finite.
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Proof: Let G1 ⊂ A(K) be the kernel of reduction and let (Gi)i≥1 be the standard
decreasing filtration on G1: Gi consists of g-tuples of elements of K whose valua-
tion is at least i. Note that we have ∩iG

i = 0; moreover, Gi/Gi+1
∼= (k,+) is a

group of exponent p. Since G1 ⊂ A(K) we have #G1[p] ≤ pg, so G1[p] is a finite
group. It follows that Gn[p] = 0 for all sufficiently large n, and if GN [p] = 0, then
G1[tors] = G1[pN ] is a group of order at most pgN .

Remark: That the p-power torsion in the kernel of reduction of an elliptic curve
over Fq((T )) can be arbitrarily large follows from part d) of the Main Theorem, as
the bounds on H2 and H1 are valid in positive characteristic. Thus Proposition 10
is the best possible positive characteristic analogue of Proposition 9.

3.2. Bounds for the identity component of the Néron special fiber. Let
G/Fq

be a smooth, commutative geometrically connected algebraic group. Evidently
#G(Fq) is finite, as for any variety over a finite field. In order to get precise (and
uniform) bounds on #G(Fq), the Chevalley decomposition reduces us to separate
consideration of the cases in which G is purely unipotent, purely toric or purely
abelian. Here is the result:

Proposition 11. Let G/Fq
be a smooth, geometrically connected algebraic group of

dimension g.
a) If G = U is unipotent, #G(Fq) = qg.
b) If G = T is toric, #G(Fq) ≤ (q + 1)g.
c) If G = B is abelian, #G(Fq) ≤ b(1 +

√
q)2cg.

For each prime power q and positive integer g, all three bounds can be attained.

Proof: We begin by noting that isogenous algebraic groups over a finite field Fq have
the same number of Fq-rational points. Part a) follows immediately from this and
from the fact that a commutative unipotent group over a perfect field is isogenous
to a product of finite Witt-vector groups [AGCF, p. 176].

Recall from §2.2 that the isogeny category of tori over Fq is antiequivalent to the
category of representations of gFq

on finite-dimensional Q-vector spaces. Since gFq
=

Ẑ is procyclic, the isogeny class of a torus T/Fq
can be read off from the factorization

of the characteristic polynomial of σ acting on X(T )⊗Q: T is isogenous to Gr
m ×∏N

i=1 Ta, where the Ta are norm tori. That is, for each field extension Fqa of
Fq there is an anisotropic torus Ta, defined as the kernel of the norm map N :
ResFqa /Fq

(Gm) → Gm; evidently #Ta(Fq) = qa−1
q−1 . It is now easily checked that the

largest number of rational points on a g-dimensional torus T/Fq
is (q+1)d, attained

by the dth power of the norm torus T2 corresponding to a quadratic extension.
Now let B/Fq

be a g-dimensional abelian variety. Then #B(Fq) can be read off
from the action of Fr on any `-adic Tate module (` 6= p):

#B(Fq) = # Ker(1− Fr) = det(1− Fr | T`B) =
2d∏

i=1

(1− ωi),

where for 1 ≤ i ≤ 2d, ωi are the characteristic roots of Frobenius. The bound that
we want is a small refinement on the Weil bound following from an improvement
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due to Serre: namely,

(9) |
2g∑

i=1

ωi| ≤ gb2√qc,

whereas Weil’s bound is b2g√qc. We may order the roots ωi such that ωi+g = ωi =
q
ωi

for i = 1, . . . , g; writing ρi = ωi + ωi, we have

P (X) =
g∏

i=1

(X2 − ρiX + q).

Note that ρi ≤ 2
√
q, so that q + 1− ρi is a positive real number. Thus

#B(k) =
g∏

i=1

(q+1−ρi) ≤ (
1
g

g∑
i=1

(q+1−ρi))g = (q+1− 1
g

g∑
i=1

ρi)g ≤ (q+1+b2√qc)g,

where the latter inequality is Serre’s bound (9), and the former inequality is ob-
tained by replacing a geometric mean by the corresponding arithmetic mean.

As for the sharpness of the bound, it is enough to know that there exists an
elliptic curve E/Fq

with #E(Fq) = q+1+ b2√qc, and this is a case of the Deuring-
Waterhouse theorem [Wat, Thm 4.1].

3.3. Bounds for the component group of an abelian variety with poten-
tially good reduction. In this section all our bounds will be on the geometric
component group, so for brevity, we write Φ = Φ(k), and Φ′ = Φ(k)/(Φ(k)[p∞]).

The bounds on Φ and Φ′ are given in terms of two auxiliary functions which mea-
sure the size of a finite abelian group in slightly different ways. For H any finite
abelian group, we define (following [LO]) the Lenstra-Oort delta function

δLO(H) =
∑

` prime

(`− 1) ord`(#H)

and (following [Lor1], [Lor2], [Ed]) the Lorenzini-Edixhoven delta function

δLE(⊕d
i=1Z/`ai

i Z) =
d∑

i=1

(`ai
i − 1) .

The following properties characterize δLO, δLE and the connection between them:

(δ0) For any prime number `, δLO(Z/`Z) = δLE(Z/`Z) = `− 1.
(δ1) If 0 → H ′ → H → H ′′ → 0 is exact, then δLO(H) = δLO(H1) + δLO(H2).
(δ2) δLO(H) = min{H′ | #H′=#H} δLE(H ′); in particular δLO(H) ≤ δLE(H).

Moreover, one easily verifies that the following properties hold for either δ function:

(δ3) If H ⊂ G, δ(H) ≤ δ(G).
(δ4) δ(H1 ⊕H2) = δ(H1) + δ(H2).
(δ5) If δ(H) ≤ N , #H ≤ 2N .

Theorem 12. (Edixhoven, [Ed, Cor. 3.4]) Let K be a complete field with residue
characteristic p ≥ 0. Suppose that A/K is an atoric abelian variety. Then δLE(Φ′) ≤
2u, where u(A) ≤ dim(A) is the unipotent rank.
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It follows that δLO(Φ′) ≤ 2u. On the other hand, it is rather easier to prove this
latter bound directly than to prove Edixhoven’s theorem: indeed, the δLO bound
was shown by Lenstra-Oort in the purely unipotent case and extended by McCallum
to the general atoric case. Because of (δ2), the Lenstra-Oort bound gives the same
information about the order of Φ′ as Edixhoven’s bound, but Edixhoven’s bound
can give more information on the exponent of Φ′. The following result is immediate
from either bound, using (δ5):

Corollary 13. Let A/K be a g-dimensional atoric abelian variety over a local field.
Then #Φ′ ≤ 22u ≤ 22g.

Theorem 14. ([McC], [ELL]) Let A/K be an abelian variety with potentially good
reduction over a local field. Let L/Kunr be the (unique, minimal, Galois) extension
over which Aunr

/K acquires good reduction. Then Φ is skilled by [L : Kunr].

Because good reduction can be obtained by trivializing the Galois action on either
the 3- or the 4-torsion subgroup, Theorem 14 leads to a bound on the exponent of
Φ. Since any finite subgroup of the group of K-rational points on a g-dimensional
abelian variety requires at most 2g generators, a bound on the exponent is all we
need in order to bound the torsion. (In fact one does not need any information
about the component groups of abelian varieties to prove a qualitative version of
the main theorem, but the bounds would be worse.)

Theorem 15. (Minkowski, [Min]) Let G be a finite group. Suppose that for all
sufficiently large prime numbers `, there exists a monomorphism of groups G ↪→
GLa(Fl). Then #G | η(a). Especially, if a prime number p divides #G, then
p ≤ a+ 1.

From these results we draw the following consequence (known to the experts in
equivalent forms; e.g. [Lor1, Prop. 3.1]).

Corollary 16. Let A/K be an abelian variety over a complete field with residue
characteristic p. Suppose A has potentially good reduction, and let u be the unipotent
rank of the Néron special fiber. Then the degree of the field extension L/Kunr cut
out by the action of the inertia group on any `-adic Tate module (` 6= p) divides
η(2u).

Proof: Choose any ` > 2g + 1 and prime to p, so by the Serre-Tate theory re-
called in Section 2.4 the field L is contained in Kunr(A[`]). Let G = Gal(L/Kunr),
and observe that G acts faithfully on the F`-vector space A[`]/A[`](Kunr). Since
` 6= p, A[`](Kunr) is canonically isomorphic, under the reduction map, to A[`](k).
By Theorems 14 and 15, since ` > 2g + 1 the component group has no `-torsion.
Neither is there any `-torsion coming from the unipotent part, so we conclude that
dimFl

A[`](Kunr) = 2β. In other words, for all sufficiently large `, the finite group
G admits a faithful F`-representation of dimension 2g − 2β = 2u, so #G ≤ η(2u)
by Theorem 15.

In summary: if A/K is a g-dimensional abelian variety with potentially good re-
duction over a locally compact field of residue characteristic p, and unipotent rank
u, then we have #Φ′(k) ≤ 22u and expΦ(k) | η(2u).
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3.4. Bounds for the component group of an anisotropic torus. Recall from
§3.3 that if T/K is an anistropic torus, Φ(k) ∼= (H1(I,X(T ))gK )∨. Thus the follow-
ing simple cohomological result will give a bound on Φ(k).

Lemma 17. Let G be a finite solvable group and M a Z[G]-module whose un-
derlying abelian group is torsion-free of finite rank g. Let r be the Z-rank of the
submodule MG. Then

δLO(H1(G,M)) ≤ g − r.

Proof: [BX, p. 483]; what is there called δ̃ is our δLO.

Corollary 18. If T/K is a g-dimensional anisotropic torus over a p-adic field, then
#Φ(k) ≤ 2α(T ) ≤ 2g.

Proof: Recall that the dimension of the unipotent part of the Néron special fiber of
a torus T/K is equal to the rank of the largest anisotropic subtorus of T/Kunr [Xa].
In other words, α(T ) = g − r(TKunr), so we may apply the lemma with G equal to
the inertia group I = gKunr (which is well-known to be prosolvable, e.g. [CL]) and
M = X(T ) together with the bound (δ5).

3.5. The proof of parts a)-c) of the Main Theorem. We have now introduced
all the techniques and bounds necessary to strongly bound the torsion subgroup
of an anistropic abelian variety over a p-adic field. In fact we can now do this in
several different ways.

First, it is quite elementary that #A(K)[tors]′ ≤ b(1 +
√
q)2]g in the case of po-

tentially good reduction. Namely, as recalled in Section 2.4, we can make a totally
ramified base extension L/K such that A/L has good reduction, and then

A(K)[tors]′ ⊂ A(L)[tors]′ ⊂ A(Fq)[tors]′ ⊂ A(Fq),

where Fq is the common residue field of K and L. The claim now follows from
Proposition 11c).

Similarly, one get can a strong bound on A(K)[tors] just by injecting it into
A(L)[tors]; we then use Proposition 9 to bound the torsion in the formal group,
which for A/L has order at most p2gγp(eL), where by Corollary 16 eL ≤ e · η(2u) ≤
e · η(2g). In particular, if p � e then we will still have no torsion in the formal
group even over L; this gives part a) of the Main Theorem. Note that this argu-
ment makes no mention of component groups or even of Néron models and as such
is much more elementary than the improvements which follow.

The general (i.e., anisotropic) case can be reduced to the case of potentially good
reduction using the Uniformization Theorem (Theorem 7) and Corollary 16. Let
us first fix notation: let

0 → S1 → S → S2 → 0

be the Chevalley decomposition for the uniformizing K-group scheme S of Theorem
7, so S1 is linear torus and S2 is an abelian variety with potentially good reduction.
For i = 1, 2, let αi, µi, βi denote the dimensions of the unipotent, toric and abelian
parts of the Néron special fiber of Si. By Theorem 8, we have α1 + α2 = α, and
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µ1 + µ2 = µ; note that β1 = 0, so β = β2. Taking Galois cohomology of the
uniformization sequence (8), we get

0 →Mg → S(K) → A(K) → H1(g,M).

Moreover, since A has anisotropic reduction, Theorem 7 gives Mg = 0, so by
Corollary 18 we have

#A(K)[tors] ≤ #S(K)[tors] ·#H1(g,M) ≤ 2α1 ·#S(K)[tors].

Applying the three-step filtration to #S(K)[tors], we get

#S(K)[tors] ≤ p2gγp(e) ·#S(Fq) ·#ΦS1(k) ·#ΦS2(k).

We know from the Uniformization Theorem that the identity components of the
Néron special fibers of S and A coincide, so

#S(Fq) = #A(Fq) ≤ qα(q + 1)µb(1 +
√
q)2cβ .

Applying Corollary 18 again, we have #ΦS1(k) ≤ 2α1 ; from Section 3.3 we have
#ΦS2(k) ≤ #ΦS2(k) ≤ η(2u). We conclude

#A(K)[tors] ≤ 22α1pfα+2gγp(e)(q + 1)µb(1 +
√
q)2cβη(2u),

giving the first bound of part b) of the Main Theorem. If we instead look only
at the prime-to-p torsion, then we can neglect the contribution from the formal
group and the unipotent part of the special fiber and also use the better bounds
of Corollary 13 for the prime-to-p part of the component group. As we invite the
reader to check, this gives the second bound of part b) of the Main Theorem.

Assume now that A/K has purely unipotent reduction. Then the reduction map
induces an injection A(K)[tors]′ ↪→ Φ(k)′ (in fact, since k is finite, it is an isomor-
phism, so we conclude from Minkowski’s theorem (Theorem 15) that every prime
` 6= p dividing A(K)[tors] satisfies ` ≤ 2g + 1. To get a bound on A(K)[tors]
depending only on e and g, let L/K be a finite extension over which A acquires
semiabelian reduction. By an argument using the base-change map as in §2.4, we
conclude that under the natural map A(K) ↪→ A(L), Fil1(A(K)[tors]) maps to
Fil2(A(L)[tors]); in other words, all torsion points reducing to the identity compo-
nent in the Néron special fiber of AK reduce to the identity of the Néron special
fiber of AL. Thus we get

#A(K)[tors] ≤ #Φ(AK) ·Fil2(A(L)[tors]) ≤ η(2g) · p2gγp(eL) ≤ η(2g) · p2gγp(e·η(2g)),

which is part c) of the main theorem.

3.6. The proof of part d) of the Main Theorem. Our result will be deduced
readily from the following theorem of Igusa:

Theorem 19. (Local monodromy theorem) Let K = Fq((T )), let j0 ∈ Fq be a
supersingular j-invariant, and let E/K be an elliptic curve with j-invariant j(E) =
T + j0, so E is ordinary with good supersingular reduction. Consider

ρ : GalK → Aut(Tp(E)) ∼= Z×p ,

the Galois representation on the étale part of the p-adic Tate module of E, Then
the restriction of ρ to GalFq((T )) is surjective.
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Remark: Recall that there is always at least one supersingular j-invariant j0 ∈ Fp;
in particular elliptic curves E/K as in Igusa’s theorem always exist.

It follows that if E/K is such an elliptic curve, then for all n, Ln = K(E(K[pn]))
is a totally ramified extension of K. By definition of L we have that pn | #E(Ln).
However, since L/K is totally ramified, by the classification of locally compact fields
of positive characteristic, L must be (non-canonically!) isomorphic to Fq((T )). In
other words, there exists a change of variables T 7→ fn(T ), with respect to which
we can view E/Ln as an elliptic curve En/K with j-invariant fn(T ) + j0, and such
that pn | #E(K). This completes the proof of part d) of the Main Theorem.

4. The Proof of Theorem 3

Let E/Q be a rational elliptic curve with anisotropic reduction at every prime num-
ber. In particular, applying the Main Theorem to E/Q2 we get that the odd-order
torsion in E(Q) is a group of order at most b(1 +

√
2)2c = 5, so is either trivial, or

Z/3Z or Z/5Z. Applying the Main Theorem to E/Q3 we get that the prime-to-3
torsion injects into a group of order at most b(1 +

√
3)2c = 7, so is trivial, or is

Z/2Z, Z/2Z × Z/2Z, Z/4Z or Z/5Z. Finally, considering E/Q5 we get that the
prime-to-5-torsion injects into a group of order at most b(1+

√
5)2c = 10. Collating

this information and comparing with the statement of Theorem 3, we see that what
remains to be shown is that there cannot exist a rational 5-torsion point.

To recover Frey’s Theorem we need to show the nonexistence of a 5-torsion point
in the special case of integral moduli. This is easier and we present, “just for fun,”
the following quick proof. Namely, by a well-known result of Tate, E/Q does not
have good reduction everywhere. Moreover, we claim that it is not possible for it
to have good reduction except possibly at p = 5. Otherwise the conductor of E
would have to divide 25, but since X0(25) has genus zero, there are (by the elliptic
modularity theorem!) no such elliptic curves. Thus we get a prime p 6= 5 of bad,
so necessarily additive reduction, and part c) of the Main Theorem applies to show
that E(Qp)[5] = 0.

For the general case we will show that an elliptic curve E/Q endowed with a
rational 5-torsion point must have a prime of split multiplicative reduction by a
direct computation with the modular curve X1(5). The following calculation uses
the fact that Q(X1(N)) = Q(t) – i.e., that N ≤ 12 and is not 11 – as well as the
fact that X1(N) is a fine moduli space – i.e., that N ≥ 5.

Indeed, these two facts imply that there is a universal (generalized) elliptic curve
E → X1(5). Following Kubert [Kub], for a suitable choice of parameter t ∈
Q(X1(N)) we get the equation

Et : Y 2 + (1− t)XY − tY = X3 − tX2.

We record some of the basic invariants:

∆(t) = t7 − 11t6 − t5,

c4(t) = t4 − 12t3 + 14t2 + 12t+ 1,

c6(t) = −t6 + 18t5 − 75t4 − 75t2 − 18t− 1,
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γ(t) = −c4(t)
c6(t)

.

From the equation for ∆, we see that the fiber over t = 0 corresponds to the cuspidal
points (i.e., the semistable singular curves needed to compactify the moduli space).
The fibers over t = ±1 are isomorphic to E = X0(11), which has split multiplicative
reduction at 11. For any other value of t ∈ Q there exists some prime number p
dividing either the numerator or the denominator of t.

Assume first that p divides the numerator of t. Then the displayed Weierstrass
equation has Zp-integral coefficients and has vp(c4(t)) = 0 < 4, so that the equation
is minimal [EC, Remark VII.1.1]. Since vp(∆(t)) > 0 and vp(c4(t)) = 0, the
reduction is multiplicative [EC, Prop. VII.5.1]. Moreover, we claim that γ(t) is a
square in Q×

p . Indeed, since γ(t) lies in the group U1 ⊂ Z×p of units congruent to 1
modulo p, this is clear for odd p. For the case p = 2, it suffices to calculate that

γ(2t) ≡ 1− 4t+ 4t2 (mod 8Z2[[t]])

and observe that this latter polynomial is congruent to 1 mod 8 for all integers t.
Thus by the theory of Tate curves (e.g. [AEC, §V.2]), Et has split multiplicative
reduction at p.

If vp(t) = n < 0, then rescaling the Weierstrass equation by

(x, y) = (p−2nx′, p−3ny′),

we get back to the first case.

That all these groups occur already among elliptic curves E/Q with j-invariant
0 or 1728 is a very classical fact, which can readily be reestablished by looking at
the Weierstrass equations y2 = x3 +Dx (j = 0) and y2 = x3 +D (j = 1728). This
completes the proof of Theorem 3.

Remark: We were hoping for the opposite result, i.e., for an anisotropic elliptic
curve E/Q with a rational 5-torsion point. This would have implied that the bound
A(Q)[odd] ≤ 5g coming from Corollary 2 was sharp.

5. The proof of Theorem 4

5.1. Bounds obtained from the Main Theorem. Let A/Q be an abelian sur-
face with everywhere anisotropic reduction. As usual, applying part a) of the Main
Theorem prime by prime leads to a short list of possible orders of torsion groups.
Indeed, in this case, the odd order torsion injects into a group of order at most
#A(F2) ≤ b(1 +

√
2)2c2 = 25 and the prime-to-3 torsion injects into a group of

order at most #A(F3) ≤ b(1 +
√

3)2c2 = 49. This implies that the the possible
orders of torsion groups are of the form 2a · y, where 0 ≤ a ≤ 5 and y lies in the set

(10) 1, 3, 5, 7, 32, 11, 13, 3 · 5, 17, 19, 3 · 7, 23, 52.

5.2. Some Tate-Honda Theory. Suppose one wishes to enumerate all the possi-
ble values of #A(Fq), where A/Fq

is a d-dimensional abelian variety. Recall that for
two abelian varieties A1, A2 over Fq, the following are equivalent: a) that they are
isogenous, b) that their Frobenius characteristic polynomials coincide, c) that they
have the same number of rational points over every finite field extension. Thus, to
perform the enumeration, it is enough to know the set of all Frobenius polynomials
P (T ) of d-dimensional A/Fq

: just evaluate at T = 1.
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This problem – namely, which polynomials arise as Frobenius polynomials? – is
addressed by the theory of Tate and Honda. The definitive introduction to this
theory is still to be found in Waterhouse’s thesis [Wat]; here we will just give an
“explicit formula” for #A(Fp) where A is an abelian surface.

Proposition 20. There are three “types” of abelian surface A/Fp, whose Frobenius
polynomials are as follows:
a) Type I: PA(T ) = (T 2 − a1T + p)(T 2 − a2T + p), where a1, a2 are integers such
that |a1|, |a2| < 2

√
p; #A(Fp) = (p+ 1− a1)(p+ 1− a2).

b) Type II: PA(T ) = (T 2 − p)2; #A(Fp) = (p− 1)2.
c) Type III: PA(T ) = T 4 − 2aT 3 + (a2 + 2p− 2db2)T 2 − 2apT + p2, where d > 1 is
a squarefree integer, a, b ∈ 1

2Z are such that a + b
√
d is in the ring of integers of

Q(
√
d), b 6= 0 and |a|+ |b|

√
d < 2

√
p; #A(Fp) = (p+1)2 +(a− 1)2− 2ap− db2− 1.

Proof (sketch): The Frobenius polynomial PA(t) of any abelian surface A/Fq
is a

quartic Weil q-polynomial, i.e., a polynomial with integral coefficients whose roots
have norm

√
q under every Archimedean valuation. Moreover, either A ∼Fq

E1×E2

or A is Fq-simple. The former case is precisely Type I, so it suffices to consider the
Fq-simple surfaces. Henceforth we will abbreviate Fq-simple to “simple” (although
we warn the reader that it is more standard to use “simple” to mean “geometrically
simple”).

If A/Fq
is a simple abelian surface, PA(t) is either irreducible or is of the form

Q(T )2 for Q(T ) an irreducible quadratic. Over a general finite field Fq it is some-
what intricate to describe which Weil polynomials of the second type correspond
to abelian surfaces, but over Fp this can only happen if the field Q(π) generated
by a Frobenius root π is real, i.e., π = (±)

√
p. This is Type II. Otherwise Q(π)

is a quartic CM field which is best understood in terms of the real quadratic sub-
field Q(β), where β = π + p

π . Indeed, the condition on β that it be “the β” of
some quartic Weil p-number π is just that it be an irrational real quadratic integer
β = a+b

√
d which has norm strictly less than 2

√
p in both Archimedean valuations,

i.e., |a|+ |b|
√
d < 2

√
p. The corresponding π is then a solution of T 2− βT + p = 0.

This is Type III.

5.3. Compiling the bounds. Using Proposition 12, we record #A(Fp) for p =
2, 3, 5:

Fact 21. Let A/Fp be an abelian surface over the finite field Fp, p ≤ 5. Then:

#A(F2) ∈ [1, 16] ∪ [19, 20] ∪ [25].

#A(F3) ∈ [1, 16] ∪ [18, 25] ∪ [28, 30] ∪ [34, 36] ∪ [42] ∪ [49].
#A(F5) = [4] ∪ [6, 50] ∪ [52, 56] ∪ [58, 64] ∪ [69, 72] ∪ [79, 81] ∪ [90] ∪ [100].

Note the sparsity for p = 2 and p = 3: by the time we get to p = 5 there is such an
enormous interval of assumed values that nothing further is ruled out.2

Working prime by prime, we now use Fact 21 to eliminate many of the values

2In [DH], one finds evidence that the smaller size of the central interval Id,q – i.e., the largest

symmetric interval I centered at qd + 1 such that if N ∈ I, then there exists A/Fq
of dimension d

with #A(Fq) = N – for q = 2 and 3 than for other prime powers is a general phenomenon.
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from the list 2a · y, 1 ≤ a ≤ 5, y in the list (10) (e.g., we can in fact take a ≤ 4),
and in doing so we arrive at the list (7) of Theorem 4.

5.4. Some attained values of N . Let us discuss which values of the list (7) we
know do arise.

If E1/Q, E2/Q are two everywhere AR elliptic curves, then A := E1 × E2/Q is
an everywhere AR abelian surface, and A(Q)[tors] = E1(Q)[tors] × E2(Q)[tors].
Thus, using Theorem 3, the orders of A(Q)[tors] arising in this way are: 1 −
4, 6, 8, 9, 12 18, 24, 36.

If E/K is an IM elliptic curve over a quadratic field, then A := ResK/Q(E), the Weil
restriction of E fromK to Q, is an IM abelian surface with A(Q)[tors] = E(K)[tors].
To fully implement this observation, we use the complete classification of torsion
subgroups on IM elliptic curves over quadratic fields, due to [MSZ]: one can get all
orders less than or equal to 12 except 11. Thus to the previous list we can add the
orders 5, 7, 10.

The next two results were discovered by A. Ogg more than 30 years ago. Nowadays,
it is straightforward to confirm them using standard software packages.

The abelian surface J1(13)/Q – i.e., the Jacobian of the modular curve X1(13)
– has integral moduli and J1(13)(Q)[tors] ∼= Z/19Z [MT, Theorem, §4]. Thus 19
arises.

The abelian surface J1(16)/Q has integral moduli and J1(16)(Q)[tors] ∼= Z/2×Z/10.
Thus 20 arises.

Remark: It is not hard to see that if E/K is an everywhere AR elliptic curve
defined over a quadratic number field, then ResK/Q E is an everywhere AR abelian
surface. There are several values N of #E(K)[tors] which are permitted by our
bounds to arise for everywhere AR elliptic curves but are known by the work of
[MSZ] not to arise for IM elliptic curves: namely, 14, 16, 18, 24 and 36. Thus
it is conceivable that one could get an everywhere AR abelian surface A/Q with
14 torsion points in this way. Since X1(14) is a fine moduli space of genus one,
the search for an elliptic curve defined over a quadratic field E/K with the desired
properties amounts to a study of all quadratic points on a fixed rational elliptic
curve, a rather daunting prospect.

6. A Higher-dimensional Szpiro Conjecture

As we have already mentioned, Flexor and Oesterlé (following Frey) used their work
on torsion points defined over local fields to show that the size of the torsion sub-
groups of elliptic curves over a fixed number field K is uniformly bounded, assuming
that the Szpiro Conjecture is true. It may be of some interest to note that this
implication has a kind of higher-dimensional analogue: we can show that the uni-
form boundedness of torsion points on g-dimensional Hilbert-Blumenthal abelian
varieties A/K follows from a certain “higher-dimensional Szpiro Conjecture.”

For A/Q an abelian variety, denote by fA/K
its conductor, an ideal of K. We
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define also its pseudo-discriminant DA/K
to be the ideal

∏
v | f v

exp(Φv), where Φv

denotes the component group of the fiber at v of the Néron model. It follows from
Ogg’s Formula [AEC, IV.11.1] that D is the discriminant in the usual sense if E/K

is a semistable elliptic curve. If E/K is any elliptic curve, then D can be viewed as
the discriminant defined by a simplified version of Ogg’s formula in which we have
taken only “the highest order term.” Consider now the following

Conjecture 22. Let K be a number field and g be a positive integer. There exists
a constant β = β(K, g) such that: if A/K is any g-dimensional abelian variety

log(NK/Q(D)) ≤ β log(NK/Q(f)).

Using the boundedness of the conductor exponents and of component groups of
anisotropic elliptic curves E/K , it is easy to see that when g = 1 this is equivalent
to a weak form of the Szpiro Conjecture [FO, Conj. 2].

Now suppose that A/K is a Hilbert-Blumenthal abelian variety, i.e., there exists
a totally real number field M of degree g over Q together with an embedding
M ↪→ EndK(A) ⊗ Q. This condition imposes restrictions on the structure of the
Néron fiber Akv

at v (for any finite place v): indeed, as in the proof of Theorem 1,
since the representation of M on the rational character group X(Akv

)⊗Q ∼= Qµ is
a unital homomorphism of rings, we have either µ = 0 or µ = g. In other words,
the reduction is either atoric or purely toric. In the former case a similar argument,
using the fact that the degree g totally real field M does not act as an algebra of
endomorphisms on any abelian variety of dimension less than g, shows that the
reduction is either purely unipotent or good. Because part c) of the Main Theorem
bounds the torsion subgroup in the purely unipotent case (independently of the
residue characteristic), we may assume that A/K is semistable with purely toric re-
duction at every prime dividing f. The interested reader may now check that, using
Conjecture 22 in place of the Szpiro Conjecture, the argument of [FO] goes through
mutatis mutandis: especially, we have taken the exponent instead of the order of
the component group in our definition of D so that [FO, Prop. 4] remains valid
(for the proof one replaces the Tate curve Gm/〈q〉 with the v-adically uniformized
abelian variety Gg

m/Λ).

Remark: While there are very good reasons to believe in the Szpiro Conjecture
(for instance, its truth in the function field case), we are not at all sure what to
make of our Conjecture 22, which is motivated only by a crude sort of generaliza-
tion of Ogg’s formula. It seems fair to say that even people who believe in the
Szpiro Conjecture don’t expect an easy proof – it implies, among other wondrous
things, the ABC Conjecture. Obviously Conjecture 22 is even harder to prove (and,
what is worse, almost as hard to disprove). Nevertheless it seems to give us some
small reason to believe in the uniform boundedness of torsion points on all Hilbert-
Blumenthal abelian varieties, which is perhaps more than could be said before.
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uniformization, Math. Ann. 306 (1996), 459-486.

[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud. Néron models, Ergebnisse der
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nents of Néron models, Compositio Math. 97 (1995), 29-49.

[ELL] S. Edixhoven, Q. Liu and D. Lorenzini. The p-part of the group of com-
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