
A NOTE ON RINGS OF FINITE RANK

PETE L. CLARK

Abstract. The rank rk(R) of a ring R is the supremum of minimal cardinalities of generating

sets of I as I ranges over ideals of R. Matsuda and Matson showed that every n ∈ Z+ occurs
as the rank of some ring R. Motivated by the result of Cohen and Gilmer that a ring of finite

rank has Krull dimension 0 or 1, we give four different constructions of rings of rank n (for all

n ∈ Z+). Two constructions use one-dimensional domains. Our third construction uses Artinian
rings (dimension zero), and our last construction uses polynomial rings over local Artinian rings

(dimension one, irreducible, not a domain).

1. Introduction

For a module M over a ring1 R, let µ(M) be the minimal cardinality of a set of generators of M
as an R-module, and let µ∗(M) be the supremum of µ(N) as N ranges over all R-submodules of
M . We say M has finite rank if µ∗(M) < ℵ0. This implies that M is a Noetherian R-module.
We define the rank rk(R) as µ∗(R). Thus for n ∈ N, rk(R) = n means that every ideal of R can
be generated by n elements and some ideal of R cannot be generated by fewer than n elements.

1.1. Motivation and Main Results.

This note is directly motivated by the following result.

Theorem 1.1.
a) (Matsuda [Ma84]) For all N ∈ Z+, there is a domain RN with rank(RN ) = N .

b) (Matson [Ma09]) One may take for RN a subring of the ring of integers of Q(2
1
N ).

Here we will explore the class of rings of finite rank with an eye to constructing further families
with all possible finite ranks. We begin in §2 with the case of domains. We review the pioneering
work of Cohen and use it to deduce a local-global principle for domains of finite rank: Theorem
2.6. In §3 we show that given any PID A with fraction field F ) A and any field extension K/F
of degree N ∈ Z≥2, there is a nonmaximal A-order in K of rank N , generalizing Theorem 1.1. We
also construct, for any 2 ≤ n ≤ N , a Z-order in a degree N number field with rank n. In §4 we
consider the case of rings which are not domains. We give a general discussion of Artinian rings
(which always have finite rank) and show that there are Artinian rings of rank n for any n ∈ Z+.
Finally we determine when a polynomial ring has finite rank, show that for any local Artinian ring
r, the rank of r[t] is bounded above by the length of r, and show that we have equality when r is
moreover principal, so that e.g. for all n ∈ Z+, Z/2nZ[t] has rank n.

1.2. Preliminaries on Change of Rings.

Remark 1.2. Let ι : R → S be a ring map. For an R-module M , let ι∗(M) be the S-module
M ⊗ S. Then µ(ι∗(M)) ≤ µ(M). If every ideal of S is ι∗(I) for some I, we get rk(S) ≤ rk(R).
This holds when ι is a quotient or a localization map.

1Here all rings are commutative and with multiplicative identity.
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For an R-module M and a prime ideal p of R, we put Mp = M⊗Rp and µp(M) = µ(Mp). Remark
1.2 gives µp(M) ≤ µ(M). By way of a converse, we have:

Theorem 1.3. (Forster-Swan [Fo64] [Sw67])
Let M be a finitely generated module over the Noetherian ring R. Then

µ(M) ≤ sup
p∈SpecR

(µp(M) + dimR/p) .

1.3. Acknowledgments.

Thanks to K. Conrad, P. Pollack and L.D. Watson for useful conversations.

2. Domains of Finite Rank

I.S. Cohen initiated the study of ranks of domains. We recall some of his results.

Theorem 2.1. (Cohen [Co50]) If R is a domain of finite rank, then dimR ≤ 1.

For R Noetherian and p ∈ SpecR, let k(p) be the fraction field of R/p; put

zp(R) = dimk(p) pRp/p
2Rp.

Then zp(R) ≥ dimRp; p is regular if equality holds, otherwise singular. Put

z(R) = sup
p∈MaxSpecR

zp(R).

Suppose R is a one-dimensional Noetherian domain. Then by Krull-Akizuki [CA, Thm. 18.7] the
normalization R is Dedekind and SpecR → SpecR is surjective and finite-to-one. The following
well known result dispenses with the normal case.

Proposition 2.2. We have rk(R) ≤ 2, with equality iff R is not principal.

Proof. By Forster-Swan, a non-principal Dedekind domain has rank 2. Or: let I be an ideal of R,
let 0 6= x ∈ I, and factor (x) as pa1

1 · · · par
r . Then R/(x) ∼=

∏r
i=1R/p

ai
i
∼=
∏r

i=1Rpi/(piRpi)
ai is

principal, so I = 〈x, y〉 for some y ∈ I. �

Henceforth we suppose R is not normal. Let

c = (R : R) = {x ∈ K | xR ⊂ R}
be the conductor of R: it is the largest ideal of R which is also an ideal of R. If p is regular then
pR is also prime and Rp

∼→ RpR. We say R is nearly Dedekind if c 6= 0; equivalently, if R is a
finitely generated R-module. In a nearly Dedekind domain, the singular primes are characterized
as: the primes p such that p+ c ( R; the radicals of the ideals in a primary decomposition of c; or
the primes of R lying under primes of R which divide c. They are finite in number.

Theorem 2.3. (Cohen [Co50]) A nearly Dedekind domain has finite rank.

Let (R,m) be a one-dimensional local Noetherian domain. Then the sequence {dimR/m mi/mi+1}∞i=1

is eventually constant [Sa78, p. 40]; its eventual value is the multiplicity e(R) of R. If R
is a one-dimensional Noetherian domain and q ∈ MaxSpecR, then we put eq(R) = e(Rq) and
e(R) = supp∈MaxSpecR ep(R).

Example 2.4. (Sally [Sa78, p. 5]) For a field k, put R = k[[t3, t4]]. Then R is a one-dimensional
Noetherian local domain with maximal ideal p = 〈t3, t4〉 and R/p = k. Moreover we have pi =
〈t3i, t3i+1, t3i+2〉 = t3ik[[t]] for all i ≥ 2, so

µ(p) = dimk p/p
2 = 2; ∀i ≥ 2, µ(pi) = dimk p

i/pi+1 = 3.

Thus z(R) = 2 < 3 = e(R).
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Proposition 2.5. Let R be a one-dimensional local Noetherian domain. Then rk(R) = e(R).

Proof. Nakayama’s Lemma gives e(R) ≤ rk(R). SinceR is Cohen-Macaulay, the inequality rk(R) ≤
e(R) follows from [Sa78, Thm. 3.1]. �

The conclusion of Proposition 2.5 need not hold if R is not assumed to be local. Indeed, if R is
a nonprincipal Dedekind domain, then rk(R) = 2 by Proposition 2.2, while e(R) = 1 since R is
locally principal. However, this is the only problem case, as is shown by the following result.

Theorem 2.6. Let R be a one-dimensional, non-normal Noetherian domain. Then

rk(R) = e(R) = sup
p∈MaxSpecR

rk(Rp).

Proof. By Proposition 2.5, for all p ∈ MaxSpecR we have ep(R) = rk(Rp) and thus

e(R) = sup
p∈MaxSpecR

rk(Rp).

By Remark 1.2 we have

sup
p∈MaxSpecR

rk(Rp) ≤ rk(R).

Since R is not normal, there is some p ∈ MaxSpecR such that Rp is not principal, and thus by
Proposition 2.5 we have

e(R) ≥ ep(R) = rk(Rp) ≥ 2.

Let I be an ideal of R. Applying Forster-Swan and Proposition 2.5, we get

µ(I) ≤ max

(
sup

p∈MaxSpecR
µ(IRp), 2

)
≤ max

(
sup

p∈MaxSpecR
ep(R), 2

)
≤ e(R),

so rk(R) ≤ e(R). �

Remark 2.7. In Theorem 2.6 one can have rk(R) = ℵ0 [Co50, pp. 38-40].

3. Nonmaximal Orders

3.1. A First Example.

One knows examples of local nearly Dedekind domains R with multiplicity e(R) any given n ∈ Z+:
e.g. [Wa73]. The following is perhaps the most familiar.

Example 3.1. For a field k and n ∈ Z+, let

Rn = k[[tn, tn+1, . . . , t2n−1]] = k[[tn]] + tnk[[t]] = k + tnk[[t]].

Then Rn is local nearly Dedekind with maximal ideal m = 〈tn, . . . , t2n−1〉 = tnk[[t]]] and Rn/m = k.
For i ∈ Z+ we have mi = 〈tin, . . . , t(i+1)n−1〉 = tink[[t]], so

rk(Rn) = e(Rn) = lim
i→∞

dimRn/m mi/mi+1 = lim
i→∞

n = n = z(Rn).
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3.2. Nonmaximal Orders I: Maximal Rank.

Let A be a PID with fraction field F , and let K/F be a field extension of degree N ∈ Z≥2.
An A-order in K is an A-subalgebra R of K which is finitely generated as an A-module and such
that F ⊗A R = K. We say R is an A-order of degree N. The structure theory of modules over
a PID implies R ∼=A AN .

Let R be an A-order in K. Then its normalization R is the integral closure of A in K. By
Krull-Akizuki, R is a Dedekind domain. If R is finitely generated as an A-module then it is an R-
order in K, the unique maximal order. It can happen that R is not a finitely generated A-module,
but R is finitely generated if K/F is separable or A is finitely generated over a field.

Remark 3.2. Let A be a PID, not a field, with fraction field F , and let K/F be a field extension
of degree N ∈ Z≥2. If the integral closure S of A in K is not finitely generated as an A-module,
then K admits no normal A-order. But it always admits some A-order: start with an F -basis of
K, scale to get an F -basis α1, . . . , αN of elements integral over A, and take S = A[α1, . . . , αN ].

Proposition 3.3. Let N ∈ Z≥2, let A be a PID, and let R be a non-normal A-order of degree N .
If there is p ∈ MaxSpecR such that zp(R) = N , then rk(R) = N .

Proof. Because R is free of rank N as a module over the PID A, every ideal of I of R is a free
R-module of rank at most N and thus µ(I) ≤ N , so rk(R) ≤ N . On the other hand rk(R) ≥
ep(R) ≥ zp(R) = N . �

We say an A-order in K has maximal rank if rk(R) = N = [K : F ].

Theorem 3.4. Let A be a PID with fraction field F ) A, and let K/F be a field extension of
degree N ∈ Z≥2. Then there is an A-order R in K of maximal rank.

Proof. By Remark 3.2, there is an A-order S in K. Let x be a nonzero, nonunit in A, so x =
εpa1

1 · · · par
r where r ∈ Z+, ε ∈ A×, p1, . . . , pr are nonassociate prime elements and a1, . . . , ar ∈ Z+.

Put
R = R(S, x) = A+ xS.

We claim: (i) R is an A-order; (ii) for 1 ≤ i ≤ r there is a unique pi ∈ SpecR with pi ∩A = (pi);
and (iii) zpi

(R) = N for all i. Assuming the claim, Proposition 3.3 gives rk(R) = N . We show the
claim:

(i) Certainly R is a subring of K. If α1 = 1, α2, . . . , αN is an A-basis for S,2 then 1, xα2, . . . , xαN

is an A-basis for R. So R is an A-order in K.
(ii) Fix 1 ≤ i ≤ r and define pi = piA + xS. Then pi is an ideal of R and R/pi ∼= A/(pi) is a

field, so pi is a prime ideal of R containing pi. Let q be a prime ideal of R such that q ∩A = (pi).
Then since pi | x we have

p2i = (piA+ xS)2 = p2iA+ pixS + x2S = p2iA+ pixS ⊂ piR ⊂ q.

Since q is prime we get q ⊃ pi and thus (since dimR = 1) q = pi.
(iii) Since pi, xα2, . . . , xαN is an A-basis for pi and p2i , pixα2, . . . , pixαN is an A-basis for p2i , we

have pi/p
2
i
∼=A (A/(pi))

N . Thus for all 1 ≤ i ≤ r we have

zpi
(R) = dimR/pi

pi/p
2
i = dimA/(pi)(A/(pi))

N = N. �

Remark 3.5. a) If R is a PID with fraction field F ) R, then F admits a degree N field extension

for all N ∈ Z≥2: for (p) ∈ MaxSpecR, we can take K = F (p
1
N ). b) The R = A+xS construction

is modelled on [Co, Thm. 3.15].

2We are permitted to take α1 = 1 by “Hermite’s Lemma” [CA, Prop. 6.14].
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Example 3.6. Let k be a field. For n ∈ Z≥2 put A = k[[tn]], so F = k((tn)), and let K = k((t)).
Let S = k[[t]], the maximal A-order in K. Then R(S, tn) = k[[tn]] + tnk[[t]] is the ring Rn of
Example 3.1.

Example 3.7. For n ∈ Z≥2 put A = Z, K = Q(2
1
n ), S = Z[2

1
n ] and x = 2. Then R = R(S, x) =

Z[2
n+1
n , 2

n+2
n , . . . , 2

2n−1
n ] has rank n, and it is the order in K that Matson used to prove Theorem

1.1b).

3.3. Nonmaximal Orders II: Pullbacks and Locally Maximal Orders.

Let A be a DVR with fraction field F and residue field k. Let l/k be a separable field exten-
sion of degree d ∈ Z≥2, let K/F be the corresponding degree d unramified (hence separable) field
extension, and let S be the integral closure of A in K, so S is a DVR with maximal ideal m (say)
and S/m = l. Let q : S → l be the quotient map, and put R = q−1(k). By [AM92, pp. 35-36] and
the Eakin-Nagata Theorem [CA, Cor. 8.31], R is local nearly Dedekind with normalization S and
an A-order in K. In loc. cit., Anderson and Mott show m = q−1(0) = m and R/m = k. Finally,
m/m2 = m/m2 is a one-dimensional l-vector space hence a d-dimensional k = R/m-vector space,
so Proposition 3.3 applies: we have rk(R) = d.

Theorem 3.8. For r ∈ Z+, prime numbers p1, . . . , pr and n1, . . . , nr ∈ Z≥2 with maxi ni = n,
there is a degree N number field K and a Z-order R in K with exactly r singular primes p1, . . . , pr,
such that epi

(R) = ni for all i. Thus rk(R) = n.

Proof. Step 1: The construction of K and R is essentially given in [CGP15, §3.2-3.3]; the only
difference is that in that construction one inverts all the regular primes to get a semilocal domain.
So we will content ourselves with a sketch. For 1 ≤ i ≤ r, let Qp

ni
i

be the unramified extension of

Qpi
of degree ni. By weak approximation / Krasner’s Lemma there is a number field K of degree

N and primes P1, . . . ,Pr such that KPi
∼= Qp

ni
i

for all i. The local degree [KPi : Qpi ] = ni is

assumed (only) to be at most N ; when ni < N this is handled by having other primes of ZK lying
over pi. We have

ZK/P1 · · · Pr
∼=

r∏
i=1

ZK/Pi
∼=

r∏
i=1

Fp
ni
i
.

Let q : ZK →
∏r

i=1 Fp
ni
i

be the corresponding quotient map. Then we take

R = q−1(

r∏
i=1

Fpi
).

For 1 ≤ i ≤ r, let pi = Pi ∩R and let qi : (ZK)Pi → (ZK)Pi/Pi(ZK)Pi
∼= Fp

ni
i

. Then (as is shown

in detail in loc. cit.; see also [CGP15, Thm. 2.6]) for all i, the ring Rpi
is the pullback q−1i (Fpi

),
and thus is local nearly Dedekind with zpi

(R) = z(Rpi
) = [Fp

ni
i

: Fpi
] = ni.

Step 2: We have – e.g. using CRT as above – that p1, . . . , pr are the only singular primes of R, so

z(R) = max
1≤i≤r

ni = n.

For 1 ≤ i ≤ r, let R̂pi denote the pi-adic completion of Rpi . Because there is a unique prime of R

lying over pi (“analytically irreducible”), R̂pi
is itself a one-dimensional local Noetherian domain,

with fraction field Kpi , and moreover we have e(Rpi) = e(R̂pi) and z(R̂pi) = z(Rpi) = ni. But R̂pi

is a Zpi-order in Kpi of degree ni, so Proposition 3.3 applies to give

rk(Rpi
) = e(Rpi

) = e(R̂pi
) = rk(R̂pi

) = z(R̂pi
) = z(Rpi

) = zpi
(R)
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and thus
rk(R) = max

1≤i≤r
rk(Rpi) = max

1≤i≤r
zpi(R) = max

1≤i≤r
ni = n. �

Remark 3.9. a) There is an analogue of Theorem 3.8 with Z replaced by Fq[t].
b) One would like to take n = 1 in Theorem 3.8! Unfortunately at present we cannot prove that
there are infinitely many number fields with class number one: this is perhaps the most (in)famous
open problem in algebraic number theory.

4. More Rings of Finite Rank

4.1. A Trichotomy.

Theorem 4.1. a) Let R = R1 × · · · ×Rn be a finite direct product of rings. Then

rk(R) = max
i

rk(Ri).

b) (Gilmer) For a Noetherian ring R, the following are equivalent:
(i) R has finite rank.
(ii) For all minimal primes p ∈ SpecR, the ring R/p has finite rank.
c) (Cohen-Gilmer) A ring of finite rank has dimension zero or one.

Proof. a) Every ideal in R1 × · · · × Rn is of the form I1 × · · · × In for ideals Ii of Ri. b) This is
[Gi72, Thm. 2]. c) Apply Theorem 2.1 and part b). �

So if R is a ring with rk(R) ∈ Z+, exactly one of the following holds:
• R is Noetherian of dimension zero, i.e., Artinian;
• R is a Noetherian domain of dimension one;
• R is Noetherian of dimension one and not a domain.

We treated domains in §3, and we will discuss Artinian rings in §4.2. This leaves us with rings
which are one-dimensional Noetherian and not domains. One can show that there are such rings of
all ranks quite cheaply: if R is a domain of rank n ∈ Z+ then Theorem 4.1a) gives rk(R×R) = n.
The more interesting case is when the localization of R at some minimal prime is not a domain,
so in particular when R has a unique minimal prime, which is nonzero. A good example is a
polynomial ring over a local Artinian ring. In §4.3 we study the ranks of polynomial rings.

4.2. Artinian Rings.

Let r be an Artinian ring. We denote by `(r) the length of r as an r-module, which is finite.
We denote by n(r) the nilpotency index of r: the least n ∈ Z+ such that if x ∈ r is nilpotent
then xn = 0.

Proposition 4.2. Let r be an Artinian ring.
a) We have rk(r) ≤ `(r).
b) If `(r) ≥ 2 (i.e., if r is nonzero and not a field), then rk(r) ≤ `(r)− 1.

Proof. The result is clear when r is the zero ring or is a field, so assume `(r) ≥ 2. If r is principal
then rk(r) = 1 ≤ `(r)− 1. If r is not principal, then there is an ideal I with 2 ≤ µ(I) ≤ `(I), and
such an ideal is necessarily proper, so `(r) ≥ `(I) + 1. �

The following result shows that the bound of Proposition 4.2b) is sharp.

Corollary 4.3. Let n ∈ Z≥2. Then:
a) For any field k, there is an Artinian k-algebra of rank n and length n+ 1.
b) There is a finite ring R of rank n and length n+ 1.
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Proof. LetR be a non-normal domain of finite rank n with a maximal ideal p such that dimR/p p/p
2 =

n. Then R/p2 is Artinian, of rank n and length n+ 1. Taking R as in Example 3.6 gives part a),
and taking R as in Example 3.7 gives part b). �

4.3. Polynomial Rings of Finite Rank.

Next we explore polynomial rings of finite rank. For any nonzero ring r, a polynomial ring over r
in at least two indeterminates has Krull dimension at least 2 and thus has infinite rank. So we are
reduced to the case of r[t].

Theorem 4.4. For a ring r, the following are equivalent:
(i) The polynomial ring r[t] has finite rank.
(ii) The ring r is Artinian.

Proof. (i) =⇒ (ii): Suppose r[t] has finite rank. Then r[t] is Noetherian, hence so is r. Thus
dim r[t] = 1 + dim r. By Theorem 4.1c) we have dim r = 0, so r is Artinian.
(ii) =⇒ (i): If r is Artinian, there are local Artinian rings r1, . . . , rr such that r ∼= r1×· · ·×rr, and
then r[t] ∼= r1[t]× · · · × rr[t]. So Theorem 4.1a) reduces us to showing: a polynomial ring r[t] over
a local Artinian ring (r,m) has finite rank. The ring r[t] is Noetherian, with unique minimal prime
mr[t]. Since r[t]/mr[t] = (R/m)[t] is a PID, the ring r[t] has finite rank by Theorem 4.1b). �

Theorem 4.5. Let r be an Artinian local ring of length `, and let R = r[t]. Then

rkR ≤ `.

Proof. Let p be the unique prime ideal of r, let k = r/p. Then P = p[t] is the unique minimal
prime of R. By Theorem 4.4, R has finite rank. The main input was Theorem 4.1b), and we will
get the upper bound rkR ≤ ` by following Gilmer’s proof. For 1 ≤ i ≤ `, let

Ri = R/Pi = r[t]/pir[t] = r/pi[t].

We will show inductively that rkRi is at most the length `(r/pi) of r/pi.
Base Case (i = 1): The ring R1 = r/p[t] = k[t] is a PID, thus rkR1 = 1 = `(k).
Inductive Step: Suppose 1 ≤ i < ` and rkRi ≤ `(r/pi). Consider the exact sequence of R-modules

0→ Pi/Pi+1 → R/Pi+1 → R/Pi → 0.

For any surjective homomorphism of rings R → S, the rank µ∗(S) as an R-module is equal to its
rank rkS as a ring. Thus our inductive hypothesis gives µ∗(R/Pi) ≤ `(r/pi). Moreover the rank
of Pi/Pi+1 as an R-module is its rank as an R/P = k[t]-module. By [Gi72, Prop. 2] we have

µ∗(Pi/Pi+1) ≤ rk(k[t])µR(Pi/Pi+1) = µr(p
i/pi+1) = `(pi/pi+1).

By [Gi72, Prop. 1] we have

rkRi+1 = µ∗(R/Pi+1) ≤ µ∗(Pi/Pi+1) + µ∗(R/Pi) ≤ `(pi/pi+1) + `(r/pi) = `(r/pi+1),

completing the induction. Since the nilpotency index of r is at most `, we have

rkR = rk r[t] = rk r/p`[t] = rkR` ≤ `(r/p`) = `(r) = `. �

Since an Artinian ring is a finite product of local Artinian rings, Theorem 4.5 implies: for any
Artinian ring r, the rank of r[t] is bounded above by the maximum length of the local Artinian
factors of r.

Corollary 4.6. Let r be a nonzero principal Artinian ring, which we may decompose as r =
∏r

i=1 ri,
with each ri a local Artinian principal ring. For 1 ≤ i ≤ r, let ni be the length of ri (which coincides
with its nilpotency index), and let n = max1≤i≤r ni. Then rk r[t] = n.
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Proof. We easily reduce to the case in which r is local with maximal ideal p = (π). Theorem
4.5 gives rk r[t] ≤ n. Let m = 〈π, t〉, so m is a maximal ideal of r[t] and R/m = r/πr = k, say.
We claim that the ideal mn−1 = 〈πn−1, πn−2t, . . . , πtn−2, tn−1〉 requires n generators. Indeed, for
a1, . . . , an ∈ k, we have that a1π

n−1 + a2π
n−2t + . . . + ant

n−1 cannot be expressed as an r-linear
combination of terms πitj with i + j ≥ n unless a1 = . . . = an = 0, so dimk m

n−1/mn = n and
µ(mn−1) = n. �

Remark 4.7. a) Corollary 4.6 implies: if A is a PID, π ∈ R a prime element and n ∈ Z+, then
rkA/πnA[t] = n. In fact this is equivalent: every local principal Artinian ring is a quotient of a PID
[Hu68, Cor. 11]. P. Pollack has shown me a thoroughly elementary proof that rkA/πnA[t] ≤ n.
b) In particular, for a prime number p and n ∈ Z+ we have

rkZ/pnZ[t] = n.

The case p = n = 2 appears in Matson’s thesis [Ma08, p. 44, Example 1.3.15]. Her proof uses that
Z/4Z has a unique nonzero zero-divisor. The only other ring with this property is Z/2Z[t]/(t2), so
this argument is rather specialized. Matson’s result was our motivation for finding Theorem 4.5.

5. Work of Matsuda

After this paper was first written we learned of relevant of R. Matsuda [Ma77] [Ma79], [Ma84]. We
end with a brief discussion of its pertinence to the current work.

5.1. Matsuda’s work on polynomial rings.

A ring R has the n-generator property if for all ideals I of R, if µ(I) < ℵ0 then µ(I) ≤ n.
Thus a ring with the n-generator property has rank at most n iff it is Noetherian. In [Ma77]
and [Ma84], Matsuda studied these properties in polynomial rings. Our Theorem 4.4 follows from
[Ma84, Thm. 15]. The other results of §4 are complementary to Matsuda’s work rather than
overlapping. For instance:

Theorem 5.1. (Matsuda [Ma84, Prop. 18]) Suppose r is a ring that is not a field.3 If r[t] has the
n-generator property, then r has the (n− 1)-generator property.

It follows that if r is Artinian and not a field, then rk(r) ≤ rk(r[t]) − 1. Corollary 4.6 shows that
the gap between the rank of r and r[t] can be arbitrarily large.

5.2. Matsuda’s work on semigroup rings.

A numerical semigroup is a nonempty subset of the positive integers Z+ that is closed un-
der addition. A numerical semigroup S is primitive if there are elements n1, . . . , nk ∈ S such
that gcd(n1, . . . , nk) = 1. For any numerical semigroup S, let d be the greatest common divisor

of the elements of S. Then S := {nd | n ∈ S} is a primitive numerical semigroup and S
·d→ S is a

semigroup isomorphism. A famous result of Frobenius (see e.g. [RA]) asserts that for a primitive
numerical semigroup S, the set Z+ \ S is finite, and thus there is a unique element c ∈ S, the
conductor of S, such that c ∈ S, c− 1 /∈ S and for all n ∈ Z+, we have c + n ∈ S.

Let S be a primitive numerical semigroup with least element n1, and put S1 = nZ+. If n1 = 1
then S = S1. Otherwise S1 is not primitive and thus cannot equal S, and we take n2 to be the
least element of S \ S1. We continue in this manner: if the semigroup Sk generated by n1, . . . , nk

is not all of S, let nk+1 be the least element of S \ Sk. Every element of S lies in some Sk, and
there is some k0 ∈ Z+ such that gcd(n1, . . . , nk0

) = 1, so Frobenius’s theorem implies that S \ Sk0

3The hypothesis that r not be a field does not explicitly appear in Matsuda’s work, but it must be intended.
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is finite. Thus S = Sk for some k, and then {n1, . . . , nk} is the unique minimal generating set.
For a field k and a numerical semigroup S, the semigroup ring k[S] is the subring of k[t]

consisting of polynomials
∑

s∈S∪{0} ast
s – i.e., the monomial exponents must lie in S ∪ {0}.

Theorem 5.2. (Matsuda [Ma79, Prop. 5.6]) Let k be a field, and let S be a primitive numerical
semigroup with least element n1. Then rk(k[S]) = n1.

For n1 ∈ Z+, there are infinitely many primitive numerical semigroups with least element n1: e.g.
n2 can be prescribed to be any integer greater than n1 and not divisible by it. Thus we attribute
Theorem 1.1a) to Matsuda.

Perhaps the simplest example is Sn1
:= {n ∈ Z | n ≥ n1}. The minimal generating set of

Sn1 is {n1, n1 + 1, . . . , 2n1 − 1}, so k[Sn1 ] = k[tn1 , . . . , t2n1−1]. (The completion of k[Sn1 ] at the
maximal ideal 〈tn1 , . . . , t2n1−1〉 is the ring Rn1 of Examples 3.1 and 3.6, and one can easily deduce
that rkRn1

= n1 from rk k[Sn1
] = n1.) This suggests a connection between Theorem 5.2 and the

nonmaximal orders of §3.2. Indeed we can get a quick proof of Theorem 5.2 using these ideas:

The ring k[t] is a free k[tn1 ]-module of dimension n1. The ring k[tn1 ] ∼= k[t] is a PID, so it
follows by the usual PID structure theory that k[S] is a free k[tn1 ]-module of rank r ≤ n1. Thus
any ideal I of k[S] has rank at most r ≤ n1 as a k[tn1 ]-module. It follows that rk(k[S]) ≤ n1.

Let c be the conductor of S, and let J be the ideal 〈tc, tc+1, . . . , tc+n1−1〉 of k[S]. We claim that
rk(J) ≥ n1, which will complete the proof of Theorem 5.2. Let m be the ideal 〈tn | n ∈ S〉 of k[S].
It is enough to show that dimk J/mJ ≥ n1, which amounts to showing: for α1, . . . , αn1

∈ k,

α1t
c + α2t

c+1 + . . .+ αn1
tc+n1−1 ∈ mJ =⇒ α1 = . . . = αn1

= 0.

But every element of mJ \ {0} has degree at least c + n1, so this is clear.
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