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Abstract. Fix a non-negative integer g and a positive integer I dividing
2g − 2. For any Henselian, discretely valued field K whose residue field is
perfect and admits a degree I cyclic extension, we construct a curve C/K of
genus g and index I. This is obtained via a systematic analysis of local points

on arithmetic surfaces with semistable reduction. Applications are discussed
to the corresponding problem over number fields.

Remark: This paper has been published as On the indices of curves over local fields.
Manuscripta Math. 124 (2007), no. 4, 411-426. More recently, D.J. Lorenzini
pointed out to me an error: in Section 2.1, paragraph 4, it was claimed that the
unique minimal field of definition li of a component Ci of a semistable curve C/k was
necessarily Galois over k. This is manifestly false: any finite extension can appear
as an li, and therefore the uniqueness of this extension is up to Galois conjugacy
only. (Consider, for instance, the zero-dimensional case afforded by the polynomial
t3 − 2 over Q.)

As far as I can see, this erroneous claim is not used anywhere in the remainder
of the paper. Especially, for the main Diophantine applications the Galois action
on the components is, by construction, split over an unramified cyclic extension.
The more general case is contemplated only in the proof of the Index Specialization
Theorem (Theorem 9). Again, I believe that the claimed Galoisness of li/k is used
neither explicitly or implicitly in the proof. In any case it is not a major worry,
since more recently a vast generalization of Theorem 9 has been proven by Gabber,
Liu and Lorenzini.

Notation and conventions

Throughout this paper K shall denote a field and k a perfect field. We denote by
k an algebraic closure of k and set gk = Gal(k/k), the absolute Galois group of k.
From §2 onwards, K will be Henselian for a discrete valuation v, with valuation
ring R and residue field k.

By a variety (resp. a curve) over a field denoted K we will mean a finite-type
K-scheme which is smooth, projective and geometrically integral (resp. of dimen-
sion one). By a variety (resp. a curve) over a perfect field denoted k we will mean
a finite-type k-scheme which is geometrically integral (resp. of dimension one) but
possibly incomplete or singular. If V is a variety defined over K and L/K is a field
extension, we say that L splits V if V (L) ̸= ∅.
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1. Introduction

Given a variety V defined over a field K, one would like to determine whether
V has a K-rational point, and if it does not, to say something about S(V ), the set
of finite field extensions L/K for which V acquires an L-rational point. This is a
very difficult problem: e.g., it is believed by many (but unproved) that there is no
algorithm for the task of deciding whether a variety V/Q has a Q-rational point.

In order to quantify the second part of the question, we introduce the index I(V )
of a variety V/K : it is the greatest common divisor of all degrees of closed points on
V . Equivalently, I(V ) is the least positive degree of a K-rational zero-cycle on V .
For a curve C/K , the index is equal to the least positive degree of a line bundle on

C/K . If C has genus g, then the canonical bundle Ω1
C/K has degree equal to 2g− 2

and I(C) | 2g − 2.1

To know I(V ) is much less than to know S(V ): we need not know any partic-
ular splitting field L/K, nor even the least possible degree of a splitting field (a
quantity called the m-invariant m(V ) in [3]). E.g. every variety over a finite field
has I(V ) = 1 (cf. Lemma 11); nevertheless computing S(V ) is still a nontrivial task.

It is natural to ask:

Question 1. Fix a field K. For which pairs (g, I) ∈ N × Z+ does there exist a
curve C/K with I(C) = I?

As above, the existence of the canonical divisor implies that a necessary condition
is I | 2g − 2. This condition is, of course, not sufficient: e.g., we have I(C) = 1
for all curves when K is finite or PAC,2 whereas if K is R (or is real-closed, or
pseudo-real closed) we have I(C) | 2.

In contemporary arithmetic geometry, the fields of most interest are those which
are infinite and finitely generated (“IFG”).

Conjecture 2. Let K be an IFG field. Then for any g and I with I | 2g− 2, there
exists a curve C/K of genus g with I(C) = I.

Remark 1.1: It is easy to see that Conjecture 2 holds for g = 0.

Remark 1.2: The main result of [2] is that Conjecture 2 holds for g = 1 when
K is a number field. Indeed, in genus one it is tempting to make a much stronger
conjecture: see [5, Conjecture 1].

Let us now present evidence for Conjecture 2 for curves of higher genus (g ≥ 2).
The following result uses the author’s work on the genus one case together with
some simple covering considerations (essentially those suggested to the author by
Bjorn Poonen in 2003) to attain a solution for “small indices.”

Theorem 3. Let K be a number field, g ∈ N and k ∈ Z+ with k | g − 1. Then
there exists a curve Y/K of genus g and index I = g−1

k .

1Note that this holds – vacuously – even when g = 1.
2A field K is Pseudo Algebraically Closed if every variety V/K has a rational point. This

includes separably closed fields, but there are many others: see [8].



ON THE INDICES OF CURVES OVER LOCAL FIELDS (2011 VERSION) 3

Proof. Since K has characteristic different from 2, it is especially easy to see that
there exist (hyperelliptic) curves over K of all genera with K-rational (Weierstrass)
points; we may therefore assume that I > 1. By Remark 1.2 there exists a curve
X/K of genus one and index I. By [4, Prop. 13], there exist linearly equivalent
K-rational divisors D1 and D2 on C, both effective of degree kI, such that the
support of D1 − D2 has cardinality 2kI. Let f ∈ K(X) be a rational function
with divisor D1 −D2, and let φ : Y → X be the branched covering corresponding
to the extension of function fields K(X)(

√
f)/K(X). By the Riemann-Hurwitz

formula, Y has genus g = kI + 1. We have I(Y ) ≤ I(X) (a special case of Lemma
10, below). Conversely, any point P in the support of D1 has degree I and is a

ramification point for φ, so its unique preimage P̃ ∈ Y (K) has degree I. Thus we
have I(Y ) = m(Y ) = I. �
We shall present a technique for constructing curves C over local fields with very
detailed information on the set S(C) of finite degree splitting fields. In some cases
– e.g., if k is finite – our information is complete. Here is our main result:

Main Theorem. Let K be discretely valued Henselian, with perfect residue field
k. Assume that there is a cyclic, degree I, unramified extension KI/K. For g ∈ N
such that I | 2g − 2, there exists a curve C/K with the following properties:
a) If L ⊃ KI , then L splits C.
b) If L splits C and L does not contain KI , then: g ̸= 1, I is even, 2 | e(L/K) and
L ⊃ KI/2, the unique subextension of KI/K of degree I

2 .
c) Suppose that Br(l)[2] = 0 for all finite extensions l/k. Then the converse of b)
holds: if g ̸= 1, I is even, 2 | e(L/K) and L ⊃ KI/2, then L splits C.

Remark 1.3: It follows from parts a) and b) that the curve C/K has index I. So all
possible indices I | 2g−2 arise for curves of genus g provided that there exist cyclic
unramified extensions of all degrees. In particular this holds when the residue field
is finitely generated, when we may construct KI by adjoining suitable roots of unity.

Remark 1.4: Some hypothesis on the existence of unramified extensions is nec-
essary, since if k is algebraically closed, then I(C) | g − 1 [1, Remark 1.8]. On
the other hand, one could ask for a classification of all possible indices under the
milder assumption that K admits an unramified quadratic extension, e.g. in the
case K = R((T )). This seems interesting, but we shall not pursue it here.

Corollary 4. Let K be an infinite, finitely generated field. For any g ∈ N, there
exists a finite extension L/K and a genus g curve C/L with I(C) = 2g − 2.

Proof. K admits a discrete valuation v with finitely generated residue field k, so by
Remark 1.3 we may apply our Main Theorem to the Henselization Kv of K. We
thus get a curve C of genus g and index I defined over Kv, which is an algebraic
extension of K; it is evidently defined over some finite extension L of K. �
Remark 1.5: Only a few days after the results of this paper were first obtained, I
received a copy of the 2006 Berkeley thesis of S.I. Sharif [15], which contains closely
related results.

Theorem 5. (Sharif, [15])
a) Let K be a locally compact discretely valued field of characteristic different from
2. Then for any (g, I) ∈ N×Z+ with I | 2g − 2, there exists a curve C/K of genus
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g and index I.
b) For any g ∈ N and I ∈ Z+ such that 4 ̸ | | I | 2g − 2, there exists a number field
K = K(g, I) and a curve C/K of genus g and index I.

By Remark 1.3, part a) of Theorem 5 is a special case of our Main Theorem,
whereas part b) is similar in spirit to Theorem 3 and Corollary 4 but not directly
comparable to either one. On the other hand, Sharif’s results go further than those
presented here in that he also considers the possible values of the period P (the
least positive degree of a K-rational divisor class), and – comparing with the re-
strictions on period and index obtained by Lichtenbaum – his constructions give
the complete list of possible values of (g, P, I) for curves over locally compact fields
of characteristic different from 2.

The strategy of Sharif’s proof – construction of degree two covers of curves of
genus one and two via p-adic theta functions – is quite different from ours.

The proof of the Main Theorem proceeds in three steps. The first step is to invoke
a fundamental result in deformation theory: given a semistable curve C/k defined
over the residue field, there is a regular arithmetic surface over the valuation ring
with smooth generic fiber and special fiber isomorphic to C/k.

Next we attempt to compute the set S(C) of finite splitting fields solely in terms
of the special fiber C/k. If we assume an additional geometric “Hypothesis (A)” as
well as the algebraic “Hypothesis (B)” that for all finite extensions l/k, every genus
zero curve over l has an l-rational point, then we can in fact give such a descrip-
tion: Theorem 8a). The information lost in not assuming (B) leads exactly to the
necessary but generally not sufficient condition of part b) of the Main Theorem.
However, without assuming either (A) or (B) one can still compute the index I(C)
in terms the special fiber. Indeed, the notion of index can be extended to certain
singular schemes in such a way that the index does not change upon passage from
the generic fiber to the special fiber of a semistable arithmetic surface, an Index
Specialization Theorem (Theorem 9). This should be compared with earlier work
that computes the index of an arbitrary curve over a local field with finite residue
field in terms of the special fiber of its minimal regular model [7], [1], [13, §9.2].

Combining the first two steps, it suffices to construct semistable curves over k
with prescribed dual graph and Galois action. A theorem of Pál asserts that there
are essentially no restrictions on realizing a finite graph as the dual graph of a
semistable curve, compatibly with the Galois action. Thus the problem is reduced
to constructing connected finite graphs of prescribed Euler chacteristic and endowed
with an automorphism of order I with certain fixed-point properties. As it turns
out, this problem is solved by a well-known family of graphs, the Möbius ladders.

In §2 we present background information on semistable arithmetic surfaces and
then embark on a systematic attempt to recover S(C) or at least I(C) from the
special fiber, proving Theorems 8 and 9. Fair warning: we wrestle with this prob-
lem more extensively than is necessary to prove the Main Theorem. (The reader
who is looking for the quickest possible route to the Main Theorem, especially in
the case of finite residue field, may skip §2.3 and §2.5, which are of a more technical
nature than the rest of the paper.) In §3 we flesh out the above sketch and then
solve the graph-theoretical problem, completing the proof of the Main Theorem.
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In §4 we discuss possible generalizations of Theorem 6.

2. Local points on semistable arithmetic surfaces

The following notation will be in force for the remainder of the paper: K is a
Henselian discretely valued field with valuation ring R and perfect residue field k.
Moreover C is a curve over K with semistable reduction – that is, C may be realized
as the generic fiber of an arithmetic surface C/R whose special fiber is a semistable
curve C/k.

As this terminology is widely used but not completely standardized, we give
careful definitions – ones which are most convenient for our purposes – in §2.1 and
§2.2. But let us now disclose the key point. On the one hand, our Diophantine
application requires us (via Hensel’s Lemma) to work with regular arithmetic sur-
faces. Nevertheless we must also consider non-regular arithmetic surfaces, because
a regular arithmetic surface with semistable, but singular, special fiber becomes
non-regular upon making a ramified base change. A regular model can then be
obtained by repeatedly blowing up, a process which is very well understood in the
geometric setting (i.e., when k = k) but which in the general case carries some
unexpected (to the author, at least) subtleties, as discussed in §2.2 and §2.3.

The recent work [11] is an excellent reference for the background material of the
next two subsections, notwithstanding some minor variations in terminology.

2.1. Semistable curves.

Definition: A semistable curve is a one-dimensional projective k-scheme which is
geometrically connected, geometrically reduced and whose only singularities are
ordinary double points.

Remark 2.1.1: Being a semistable curve is a geometric notion: if C is a k-scheme
and l/k is any field exension, then C is a semistable curve iff C/l is a semistable
curve over l.

Consider the decomposition C/k =
∑N

i=1 Ci of C/k into nonempty, irreducible closed

subsets, which we call the components of C.

There is a natural gk-action on the set of components. A component Ci is de-
fined over a finite field extension l/k if gl = Gal(l/l) fixes Ci. There is a minimal
such field extension – unique up to Galois conjugacy – which we denote by li. Let
di = [li : k], and put

Co
i := (Ci)/li ∩ Cns,

i.e., the locus of points on the ith component which are not nodal points on C.

Let l/k be a finite extension and q ∈ C(l) be a nodal point. Consider the preimage

π−1(q) of q under the normalization map C̃ → C. We say that q is l-split if π−1(q)
consists of two l-rational points. Otherwise π−1(q) consists of a pair of points con-
jugate over a quadratic extension m/l, and in this case we say q is nonsplit and
m/l is the splitting field.
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It will be convenient to introduce the (so-called) dual graph G = G(C/k), an undi-
rected, connected, finite graph whose vertices are the components of C, and where
vertices Ci and Ci are linked by Ci · Cj edges. The natural action of the Galois
group gk on components and on singular geometric points gives rise to an action of
gk on G by graph-theoretical automorphisms.

Example 2.1.2: Let k a field of characteristic different from 2. The equation
x2 + y2 = 0 defines a semistable curve C in P2. If −1 is a square in k, then C
is rationally isomorphic to two copies of the projective line intersecting at a single
k-rational point. Otherwise this same description holds over k(

√
−1), but over k

the two components are permuted by the Galois group of k(
√
−1)/k, and the in-

tersection point (0, 0, 1) is singular, defined over k, and is the only k-rational point
on C. In each case the dual graph has two vertices connected by a single edge. In
the first case the Galois action on the dual graph is trivial; in the second case it
interchanges the two vertices and “flips” the unique edge.

Generalizing this example, we say what it means for an edge E in the dual graph
of C to be a stable inversion. If E runs between distinct vertices corresponding
to components Ci ̸= Cj , then by definition this means that the pair {Ci, Cj} is
gk-stable but there exists σ ∈ gk such that σ(Ci) = Cj . If E is a loop correspond-
ing to a nodal point on a single component Ci, then E is a stable inversion if Ci is
gk-stable and the corresponding nodal point is a nonsplit k-rational singular point.3

2.2. Arithmetic surfaces. An arithmetic surface C/R is an R-scheme which is
flat, projective, excellent, normal, integral, of relative dimension one, and whose
generic fiber is a(n as ever smooth, projective, geometrically integral) curve over
K. We call an arithmetic surface semistable if its special fiber is a semistable curve.4

The structure of the special fiber of a regular arithmetic surface with generic fiber
C/K is closely related to the existence of rational points on C.

Proposition 6. (Hensel’s Lemma) For a regular arithmetic surface C/R, the fol-
lowing are equivalent:
a) C(K) ̸= ∅.
b) C/k has a nonsingular k-rational point.

Proof. E.g., [10, Lemma 1.1]. �

Now let C be an arithmetic surface over R, and let L/K be a finite field extension,
with valuation ring S. Then C ⊗R S is an arithmetic surface over S whose generic
fiber is C/L. However, C ⊗R S is not necessarily regular, even if C is regular. By
dévissage, it suffices to consider the unramified and totally ramified cases.

Suppose first that L/K is unramified. Then C ⊗R S is regular iff C is regu-
lar. Combining with Hensel’s Lemma, we conclude that C has a rational point in
an unramified extension L/K iff the special fiber C/k has a nonsingular l-rational
point, where l/k is the corresponding residual extension.

3The two cases can be consolidated by thinking about the Galois action on tangent directions
at the nodal point.

4It would be more pedantically correct to say that it has semistable reduction, but the elision
is quite common: c.f. “semistable elliptic curve.”



ON THE INDICES OF CURVES OVER LOCAL FIELDS (2011 VERSION) 7

Now consider the effect of making a totally ramified base extension L/K of de-
gree e > 1. Then C ⊗R S is regular iff C is smooth over R. The sufficiency is clear,
so conversely suppose that there is a singular point q ∈ C(k). Then the completed
local ring of q in C ⊗R Runr is isomorphic to Runr[[x, y]]/((xy− πℓ(q))), where Runr

is the valuation ring of the maximal unramified extension of K, π is a uniformizing
element for R, and the positive integer ℓ(q) is a local invariant of the singularity, its
length. This local ring is regular iff ℓ(q) ≤ 1. Evidently the effect of basechanging
from Runr to the totally ramified extension Sunr on this complete local ring is to
multiply its length by e.

To obtain from C ⊗R S a regular model of the generic fiber C/L, it suffices to
perform ℓ(q)− 1 blowups on each singular point q, introducing a chain of ℓ(q)− 1
rational curves. Note that the effect on the dual graph is just that of (possibly
non-uniform) “barycentric” subdivision: on each edge E(q) we introduce ℓ(q) − 1
additional vertices.

This, however, is merely a geometric description: to work over R and S rather
than Runr and Sunr requires some further care. First, rather than thinking of per-
forming the blowup on singular points of the geometric fiber, we blow up the closed
point q (which may be identified with the gk-orbit of a given geometric singular
point); this determines a k-model for the geometric special fiber. The Galois action
on the “exceptional vertices” of the dual graph – i.e., those coming from the excep-
tional components – is the one induced by subdivision. The only slight subtlety is
that if an automorphism σ ∈ gk inverts an edge E(q) (by switching its initial and
terminal vertices), then σ carries the ith exceptional component to the (ℓ(q)− i)th
exceptional component. In particular, an exceptional component is gk-stable iff
either both components at the extremities of the chain are gk-stable, or if it is the

( ℓ(q)2 )th component in a chain corresponding to an edge E(q) of even length ℓ(q)
which is stably inverted by Galois.

Remark 2.2.1: Similarly, if a component Ci has an l-rational nonsplit self-intersection
point q, then an automorphism σ ∈ gl inducing the nontrivial automorphism on
the Galois group of the splitting field m/l will interchange the ith and (ℓ(q)− i)th
exceptional components on a blowup.

Finally, if we have, as above, a Galois-stable exceptional component E on the
special fiber of our regular model of C/L, then E defines a smooth, projective genus
0 curve over k. We would like to know whether E is k-rationally isomorphic to the
projective line. Recalling that a genus 0 curve other than P1 defines a nontrivial
element in Br(k)[2], we certainly have E ∼=k P1 if Br(k)[2] = 0. This also holds if
the singular point q is k-split, for then each of the components Ci and Cj whose
intersection is q is gk-stable, and it follows that all the intersection points of the
exceptional components lying over q are k-rational (and a genus 0 curve with a
k-rational point is isomorphic to the projective line).

In general, a gk-stable exceptional component need not be k-isomorphic to the
projective line, a phenomenon which is responsible for the somewhat complicated
statement of the Main Theorem. We study this further in the next section.
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2.3. The case of genus 0. Let C/K be a curve of genus 0. Let us assume for now
that K does not have characteristic 2, so that C has a defining equation of the form

C : aX2 + bY 2 = cZ2

with a, b, c ∈ K×, and after rescaling, reordering and adjusting coefficients by
squares, we may assume that a, b, c ∈ R and a, b ∈ R×. Then the equation defines
a regular arithmetic surface overR. There are three possibilities for the special fiber:

(i) If c ∈ R×, then the special fiber defines a smooth conic over k. In this case, C
is split by an extension L/K iff it is split by the maximal unramified extension L′/K.

(ii) If c ∈ R \ R×, then the special fiber has equation X2 + b
aY

2 = 0, so has
two geometric components C1, C2, each smooth of genus 0, and intersecting at a
k-rational point.

(iia) If −b
a ∈ k×2, the singularity is split, the gk-action on the components is trivial,

and C1
∼= C2

∼= P1 so that by Hensel’s Lemma C has K-rational points.

(iib) If −b
a is not a square in k then the singularity is nonsplit and Cns(k) =

C(K) = ∅. Suppose L/K is a totally ramified extension, of degree e. From the
previous discussion L can only split C if e is even, in which case a regular model
C ′

/S is obtained by blowing up the singular point e−1 times and the middle excep-

tional component is stable under Gal(k(
√

−b
a )/k) and hence gives a smooth conic

curve E/k which is determined up to isomorphism by its class, say [E]L, in Br(k)[2].

We can identify this class in terms of Galois cohomology, as follows: recall from
[14, Theorem 2, § XII.3] the short exact sequence

(1) 0 → Br(k)
ι→ Br(K)

r→ Hom(gk,Q/Z) → 0.

Moreover, by [14, Exercise 2, § XII.3] this exact sequence is functorial in K: in the
case of a totally ramified extension L/K of degree e we get a map from the short
exact sequence to

0 → Br(k)
ι→ Br(L)

r→ Hom(gk,Q/Z) → 0,

in which the induced endomorphism on Br(k) is the identity and that on Hom(gk,Q/Z)
is multiplication by e. Therefore, given any element η of Br(K)[2] and a totally
ramified extension L/K of even degree e, the restriction η|L of η to Br(L) lies in
Br(k). Our genus zero curve C/K gives rise to a class [C] ∈ Br(K)[2], and we have:

Proposition 7. For any totally ramified extension L/K of even degree,

[C]|L = [E]L.

Proof. As noted above, the restriction of [C] to L is unramified, so is the image
under ι of the Brauer class of a conic E′ defined over k. We wish to show that
E ∼= E′, and for this it suffices to show that a (possibly transcendental) field
extension l/k splits E iff l splits E′: indeed, if this holds we may take successively
l = k(E) and l = k(E′) and apply Witt’s theorem: Br(k(E)/k) = {1, [E]} [17].
But this fact follows almost tautologically from the setup: we may extend S to a
Henselian discrete valuation ring Sl with quotient field Ll, residue field l, and such
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that a uniformizer for S remains a uniformizer for Sl. Then C ′ ⊗S Sl is a regular
arithmetic surface, and we have that

E(l) ̸= ∅ ⇐⇒ C(Ll) ̸= ∅ ⇐⇒ E′(l) ̸= ∅.

�

Example 2.3.1: Suppose Br(k)[2] = 0, e.g. k is finite, PAC, or of characteristic 2
(recall that k is assumed perfect). Let C/K be a genus zero curve without rational
points. Then we are necessarily in Case (iib). Moreover, there exists a unique
unramified quadratic splitting field L/K for C (the splitting field of the singular
point) and a totally ramified extension splits C iff it has even degree. This can be
seen either from our geometric considerations or by using the functorial properties
of (1); note that the latter is also valid when char(K) = 2.

Example 2.3.2: Consider the regular arithmetic surface over R[[t]] with equation

C : X2 + Y 2 = tZ2,

whose special fiber (t = 0) is the semistable curve of Example 2.1.1, nonsplit since
−1 is not a square in R×. The curve C is split by R((

√
t)) but not by R((

√
−t)).

This means that blowing up the singular point on C⊗R[[t]]R[[
√
−t]] yields an excep-

tional component which is not R-isomorphic to the projective line. Moreover, using
(1), Br(R((t)) ∼= Z/2Z×Z/2Z and the other two nontrivial elements are represented
by the conjugate conic X2 + Y 2 = −tZ2 (Case (iib) again) and the isotrivial conic
X2 + Y 2 = −Z2 (Case (i)). Since X2 + Y 2 = ±tZ2 have the same special fiber, we
see that the k-rational structure of an exceptional divisor obtained by blowing up
a nonsplit singular point depends upon the arithmetic surface and not only on its
special fiber. Moreover, in this case there is no genus 0 curve without K-rational
points that is split by every ramified quadratic extension.

It would be interesting to explore this phenomenon in higher genus and to see
to what extent it is controlled by the existence of maps from C/K to a conic curve.

2.4. A computation of S(C). Next we shall show that for a certain subclass of
semistable arithmetic surfaces C/R we can give a complete and concrete description
of the set S(C) of splitting fields of the generic fiber in terms of data of the special
fiber. Consider the following additional hypotheses:

(A) For every finite extension l/k, every component Ci which is defined over l
has an l-rational point which is not a nodal point of C.

(B) Br(l)[2] = 0 for every finite extension l/k.

Theorem 8. Let C/R be a regular, semistable arithmetic surface.
a) Assume hypotheses (A) and (B). Then a finite extension L/K splits C if and
only if at least one of the following occurs:
Case 1: The residual extension l/k contains li for some i, or:
Case 2: l/k does not contain any li, the ramification index e(L/K) is even, and
gl = Gal(l/l) stabilizes a pair of intersecting components.
b) If we assume only hypothesis (A), then the conclusion of part a) holds, except that
the conditions of Case 2 are necessary, but not generally sufficient, for C(L) ̸= ∅.
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Proof. Let L′/K be the maximal unramified subextension of L/K. By Hensel’s
Lemma, C(L′) ̸= ∅ iff C has a nonsingular l-rational point. This can only happen
if there exists a gl-stable component Ci – i.e., if l ⊃ li for some i – and (A) ensures
that this necessary condition is also sufficient.

It remains to decide when C(L′) = ∅ but C(L) ̸= ∅. From the discussion in §2.2
this happens iff e(L/L′) is even, gl acts on the dual graph by a stable inversion
of distinct components (since if a component Ci had an l-rational self-intersection
point, by (A) it would also have an l-rational point which is nonsingular on the
special fiber) and the middle exceptional component E is k-rationally isomorphic
to the projective line. Since (B) ensures that E ∼=k P1, this completes the proof. �
Notice that even without (B) we know the degree of any possible splitting field, so
in particular we can compute the index of C. In fact we can perform the index
computation even without (A), which brings us to the next result.

2.5. The index specialization theorem. For a reduced, finite-type scheme S/k,
define its nonsingular index Ins(S) to be the least positive degree of a k-rational
zero cycle on the nonsingular locus Sns. Put Ii := Ins((Ci)/li).

Theorem 9. Let C/R be a regular arithmetic surface with generic fiber C/K and
semistable special fiber C/k. Then

I(C/K) = Ins(C/k) = gcd
i
(di · Ii).

A conjectural strengthening of this theorem will be made in §4.

Lemma 10. If V/k is a finite-type reduced scheme and l/k is a finite field extension,
then Ins(V/k) | [l : k] · Ins(V/l).

Proof. Let Dl be an l-rational zero-cycle on V ns of degree I(V/l); its trace from l
down to k is a k-rational zero-cycle of degree [l : k] · I(V/l). �
Lemma 11. Let V and W be reduced, finite-type nonsingular k-schemes. If there
exists a k-morphism φ : V ns → W ns, then Ins(W ) | Ins(V ).

Proof. Degree N zero-cycles on V ns are mapped to degree N zero-cycles on W ns.
�

Lemma 12. Let W be a complete, geometrically integral k-variety assumed to
admit a resolution of singularities. Then for any nonempty Zariski open-subset U
of W , we have Ins(U) = Ins(W ).

Proof. If k ∼= Fq is finite, then much more is true: for all finite-type geometrically
integral schemes W/Fq

Ins(W ) = 1. This holds, e.g., because the Weil bounds for
curves over finite fields imply that any infinite algebraic extension of a finite field
is PAC [8, Cor. 11.2.4] and thus W has points rational both over an extension of
the form Fq2a and over an extension of the form F

q3b
.

When k is infinite, let π : W̃ → W be a resolution of singularities ofW , V = Wns

be the nonsingular locus, and let U ⊂ V be a nonempty Zariski-open subset. Also
put Ṽ = π−1(V ) and Ũ = π−1(U); by definition of resolution of singularities, π

restricted to Ṽ (resp. to Ũ) induces an isomorphism onto V (resp. onto U). So let

Z be a k-rational zero cycle on W which is supported on V , and Z̃ its preimage on
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Ṽ . The point of this construction is that we have reduced to a fact about Chow
groups of complete, nonsingular varieties, on which rationally equivalent zero-cycles
have the same degree. Applying a known moving lemma [6, §3, Complément], we

can find a rationally equivalent zero-cycle Z̃ ′ supported on Ũ , and then Z ′ := π(Z̃ ′)
is a divisor on W , supported on U , with deg(Z ′) = deg(Z). �

Corollary 13. Let C/k be a geometrically reduced (but possibly incomplete and/or
singular) curve. Then the nonsingular index Ins(C) is unchanged by the removal
of finitely many closed points.

Proof. Let C0 be the complement in C of a finite set of closed points. Embed C in
some projective space and let C be its projective closure. As is well-known, in the
one-dimensional case normalization provides a resolution of singularities of C. So
Lemma 12 applied to C shows

Ins(C0) = Ins(C) = Ins(C).

�

We are now ready to prove Theorem 9.

Proof. Step 1: We will show that Ins(C/k) = gcdi diIi. By applying Corollary 13
to (Ci)/li we get

(2) Ii = Ins((Ci)/li) = Ins(C0
i ) = I(C0

i ).

Next we claim that for any i, 1 ≤ i ≤ N , we have:

Ins(C/k) = I(Cns
/k) | diI(C

ns
/li

) | di · I(C0
i ) = di · Ii.

Indeed, we get the first divisibility by applying Lemma 10 to Cns and li/k, the
second divisibility by applying Lemma 11 to C0

i → (Cns)/li , and the equality by
(2). Hence

Ins(C/k) | gcd diIi.

For the converse, Ins(C/k) is the gcd of all degrees of field extensions l/k such that
C has a smooth l-rational point P . Thus l must be a field of definition for the
component on which P lies – i.e., li ⊂ l, and then clearly Ii | [l : li].

Step 2: It follows from Hensel’s Lemma that I(C/K) | Ins(C/k). More precisely, the
fields l for which C acquires a smooth l-rational point correspond to the unramified
splitting fields. For the converse, let L/K be any splitting field of C; we will show
that Ins(C/k) | [L : K].

Let L′/K be the maximal unramified subextension of L/K; denote the residual
extension by l/k. If L′ = L there is nothing to show. So we may assume that
[L : L′] = e(L/K) > 1, and that there is an l-rational nodal point q on C.

Consider first the case in which q is the intersection of distinct components Ci,
Cj . Since q is l-rational, S = {Ci, Cj} is gl-stable. If the singularity is split –
i.e., each of Ci, Cj are gl-stable – then q is a nonsingular l-rational point on the
geometrically integral curve Ci, so Ins((Ci)/l) = 1. By (2), Ins(C/l) = 1, so by
Lemma 10

Ins(C/k) | [l : k] = [L′ : K] | [L : K].
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Otherwise we are in the nonsplit case, in which the gl-action on S cuts out a
quadratic extension m/l, and as usual, to get a Gal(m/l)-stable exceptional com-
ponent we need 2 | e(L/K) = [L : L′]. Moreover, q is an m-rational nonsingular
point on the geometrically integral curve Ci. Taking M/K to be the corresponding
unramified extension and again applying Lemma 10, we get

Ins(C/k) | [m : k] = 2 · [L′ : K] | [L : K].

The case in which q is a self-intersection point on Ci is similar. Suppose first that
the singularity is split: then the preimages are l-rational on the normalization C̃i,
so that Ins(Ci) = 1 and we deduce Ins(C/k) | [L′ : K] as above. Finally, if the
singularity is nonsplit, then by Remark 2.2.1 we once again need 2 | [L : L′] to get
a Gal(m/l)-stable exceptional component, and then we get Ins(C/k) | [L : K]. �

3. Proof of the Main Theorem

We will construct semistable arithmetic surfaces satisfying (A) of §2.4, so that –
modulo complications arising from failure of exceptional components to have points
rational on the ground field if (B) is not assumed – the set of splitting fields is
entirely determined by the Galois action on the dual graph. In fact, we will place
ourselves in a situation in which we need only construct the dual graph and not the
arithmetic surface itself. This is done via the following two results:

Theorem 14. For any semistable curve C/k, there is a regular arithmetic surface
whose special fiber is isomorphic to C and whose generic fiber is a curve over K.

Proof. This is a standard result in deformation theory. A relatively accessible
reference is [16, 4.4]. �

Thus it suffices to construct suitable semistable curves over the residue field k.
We will in fact construct totally degenerate semistable curves, namely with each
component of geometric genus 0. For this:

Lemma 15. Let G be any connected graph in which each vertex has degree at most
3. Let G be a finite group acting on G by automorphisms. Given a field k, a Galois
extension l/k and an isomorphism from gl/k to G, there is a totally degenerate
semistable curve C/k whose dual graph is isomorphic to G, under an isomorphism
which identifies the Galois action on G with the action of G.

Proof. This is shown in [12] under the hypothesis that k is infinite but without
the hypothesis that the vertex degrees of G are at most 3. The infinitude of k is
used precisely to ensure that the intersection points of the graph can be taken to
be k-rational points of P1

/k. Since #P1(k) ≥ 3 for all k, the argument goes through

verbatim with the hypothesis of degree at most 3. �

Recall that the arithmetic genus of a totally degenerate semistable curve Ck (which
is the genus of any generically smooth lift C/K in the usual sense) is just 1−χ(G),
where χ is the Euler characteristic of the dual graph in the usual topological sense,
computable as the number of vertices minus the number of edges.

The curves constructed by Lemma 15 satisfy hypothesis (A) unless the residue
field k is F2. More precisely, what we need is that for each finite extension l/k,
every component which is defined over l has at most #l singular points. Since
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our graphs have degree at most 3, the only problematic case is when k = F2 and
I = 1 (because if I > 1, we only want points over an extension with larger residue
field). But this is a trivial case: it is enough, for instance, to find a nonsingular
curve C/F2

, of genus g, and with C(F2) ̸= ∅. Or, staying with the same graph-
theoretical strategy, we need only to find, for all g ≥ 0, a connected graph with
Euler characteristic 1− g, in which each vertex has degree at most 3, and at least
one vertex has degree at most 2. Of course such graphs exist: for g = 0 take the
graph with one vertex and no edges (the dual graph of P1), and for g ≥ 1 we can
build such a graph out of g “coathangers” (the graph with vertex set {0, 1, 2, 3}
and 0 ∼ 1, 0 ∼ 2, 0 ∼ 3, 2 ∼ 3). Henceforth we will assume that I > 1.

Let G be a group and S ⊂ G such that S = S−1, 1 ̸∈ S, and ⟨S⟩ = G. We
define the Cayley graph Cay(G,S), a simple (no loops, no multiple edges) undi-
rected graph whose vertex set is G itself, and with

g ∼ g′ ⇐⇒ ∃s ∈ S | gs = g′.

Note the following (almost tautological) properties of Cay(G,S): (i) it is connected;
each vertex has degree #S; (ii) it admits a left G-action which is free on vertices,
and free on edges unless S contains an element of order 2.
(iii) If G is finite,

χ(Cay(G,S)) = #G

(
1− #S

2

)
.

(iv) If ρ : H ↪→ G is an embedding, then H acts on Cay(G,S), freely on vertices
and freely on edges unless ρ(H) ∩ S contains an element of order 2.

Now let GI = ⟨σ | σI = 1⟩, and identify GI with gKI/K = gkI/k.

When g = 0 and I = 2, we can take G = Cay(G2, {σ}), the unique connected
graph with two vertices and one edge: χ = 1. Since the generator has order 2,
the unoriented edge gets stabilized, so by Theorem 8 we get the “Case 2” splitting
behavior indicated in the theorem.

When g = 1 and I > 2, we take G = Cay(GI , {σ, σ−1}), the I-cycle: χ = 0.
Here G acts freely on the edges, so – cf. Remark 2.1 – we get the “Case 1” splitting
behavior indicated in the theorem.

When g = 1 and I = 2 we can take G to be the 2-cycle, and let GI act by “180
degree rotation”, i.e., by swapping both vertices and both edges: χ = 0, Case 1.
This graph is nonsimple and a fortiori not a Cayley graph according to our setup.
If we insist on seeing a Cayley graph construction, fix N > 1 and let ρ : G2 ↪→ G2N

be the embedding σ 7→ σN .

When g > 1 and I = 2g − 2, take G = Cay(GI , {σ, σ−1, σg−1}). Or, in plainer
terms, start with the 2g − 2 cycle and connect each pair of antipodal points by an
edge: these “spokes” do not ruin the obvious G2g−2 action by rotations.

This second description is graph-theoretically correct (which is, of course, all
that matters for us) but geometrically wrong: the graph does not really live in the
Euclidean plane because the spokes would have to meet at the center of the circle,
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adding an unwanted (and GI -fixed) vertex. Indeed, when g = 4 the graph is pre-
cisely the complete bipartite graph K3,3, and for larger g the graph contains K3,3

as a topological subgraph, so these graphs are not embeddable in the Euclidean
plane!5 So here is a “better” geometric description: take a rectangle of length
g and height 1, subdivide the top and bottom sides into g − 1 equal parts, and
draw in the g + 1 equidistant vertical lines linking each vertex on the top to its
corresponding bottom vertex. The resulting graph has 2g vertices and g+2(g− 1)
edges. Now identify the right and left sides of the rectangle with a half-twist, get-
ting a graph embedded isometrically into the Möbius band with 2g−2 vertices and
g+2(g− 1)− 1 = 3g− 3 edges with a natural action of the cyclic group GI by unit
length horizontal rotations. In any case we have χ = 1 − g, and GI acts freely on
vertices but not on edges, Case 2.

When g > 1 and 1 < I | 2g − 2, take the above graph and the embedding

ρ : GI ↪→ G2g−2, σ 7→ σ
2g−2

I . If I is odd, we are in Case 1; if I is even, Case 2.

4. Further remarks on Index Specialization

Consider first the case of a curve C/K admitting an R-model such that the reduced
subscheme of the special fiber is semistable: such an arithmetic surface C/R is
called an SNC model of its generic fiber C/K . It is known that every curve admits
a regular SNC model. In this case, writing ei for the multiplicity of Ci, the following
simultaneous generalization of Theorem 9 and [7], [1] should hold:

(3) I(C/K) = gcd
i
(di · ei · Ii).

However, unlike the case of semistable reduction, it can happen even in the pres-
ence of (B) that there are two field extensions L1, L2 of K, with the same maximal
unramified subextension and equal ramification indices e(L1/K) = e(L2/K), and
such that L1 splits C but L2 does not. So the determination of all splitting fields
in the SNC case is fundamentally more complicated.

One may also consider the higher-dimensional context. One has the notion of a
d-dimensional semistable scheme S/k: a reduced, finite-type k-scheme such that
S/k =

∪
i Si, where each Si is connected, nonsingular, of dimension d, and whose

singularities are analytically isomorphic to transversely intersecting hyperplanes.
Suppose that Si is minimally defined over li and put di = [li : k]. Let ei be the
multiplicity of Si and Ii be the nonsingular index of (Sred

i )/li . Then define

I ′(S/k) = gcd
i
(di · ei · Ii).

If V/K is a (still smooth, projective, geometrically integral) variety over a Henselian
discrete valuation field K, a regular SNC-model for V is a regular, flat R-scheme
with generic fiber isomorphic to V and such that the reduced subscheme of the
special fiber is semistable. It is apparently an open problem whether every variety
V/K admits a regular SNC-model.

Conjecture 16. Let V/K be a variety admitting a regular SNC-model, with special
fiber V/k. Then I(V/K) = I ′(V/k).

5A real algebraic geometer might be tempted to point out that the graph naturally lives in the
blowup of RP2 at a single point.
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Added in revision, 5/2007: D. Lorenzini and Q. Liu have proved (3). Moreover,
I am told they can prove Conjecture 16, at least conditionally on an extension of
work of M. Levine – Torsion zero-cycles on singular varieties, Amer. J. Math. 107
(1985), no. 3, 737-757 – to the case of nonalgebraically closed k.
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