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Abstract. We show that for all ε > 0, there is a constant C(ε) > 0 such that for
all elliptic curves E defined over a number field F with j(E) ∈ Q we have

#E(F )[tors] ≤ C(ε)[F : Q]5/2+ε.

We pursue further bounds on the size of the torsion subgroup of an elliptic curve
over a number field E/F that are polynomial in [F : Q] under restrictions on j(E).
We give an unconditional result for j(E) lying in a fixed quadratic field that is not
imaginary of class number one as well as two further results, one conditional on
GRH and one conditional on the strong boundedness of isogenies of prime degree for
non-CM elliptic curves.

Notation

Let P be the set of prime numbers. For a commutative group G, we denote the
subgroup of elements of order dividing n by G[n] and the torsion subgroup – i.e., the
subgroup of elements of finite order – by G[tors]. For s ⊂ P, we let G[s∞] denote
the subgroup of G[tors] of elements with order divisible only by primes in s. If for a
commutative group G we have G = G[n] for some n ∈ Z+ – as is the case if G is finite
– then the least such n is the exponent expG of G.

For a field F , let F be an algebraic closure. We denote by gF = Aut(F/F ) the
absolute Galois group of F . For n ∈ Z+ and a field F of characteristic 0, let F (µn) be
the field obtained by adjoining to F the nth roots of unity, and let F cyc =

⋃
n F (µn).

Let χ` : gF → Z×` be the `-adic cyclotomic character, and put

F `-cyc := F
Kerχ` =

⋃
n∈Z+

F (µ`n).

1. Introduction

1.1. Known bounds on the torsion subgroup

For an elliptic curve E defined over a number field F , the torsion subgroup E(F )[tors]
is finite. Moreover, by Merel’s strong1 uniform boundedness theorem [Me96], as we
range over all degree d number fields F and all elliptic curves E/F , we have

T (d) = sup #E(F )[tors] <∞.

Merel’s work gives an explicit upper bound on T (d), which was improved by Oesterlé
(unpublished, but see [De16]) and Parent [Pa99]. These lie more than an exponential

Date: May 12, 2017.
1Here and throughout this paper we use the term “strong” to mean a bound that is uniform across

elliptic curves defined over number fields of any fixed degree.
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away from the best known lower bound, due to Breuer [Br10]:

inf
d

T (d)

d log log d
> 0.

Various authors have conjectured that Breuer’s lower bound is esentially sharp.

Conjecture 1.1. We have T (d) = O(d log log d).

The following weaker conjecture is more widely believed.

Conjecture 1.2. T (d) is polynomially bounded: there is B > 1 such that

T (d) = O(dB).

Even Conjecture 1.2 seems to lie out of current reach. Since the work of Merel, Osterlé
and Parent, progress on understanding the asymptotic behavior of T (d) has come
(only) by restricting the class of elliptic curves under consideration. For instance
if we restrict to the case in which E has complex multiplication (CM) – and write
TCM(d) in place of T (d) when this restriction is made – breakthrough work of Silverberg
[Si88, Si92] gave the asymptotically correct upper bound on the exponent, and recent
work by the present authors [CP15, CP17] shows

lim sup
d

TCM(d)

d log log d
=
eγπ√

3
.

If we instead restrict to the class of elliptic curves with integral moduli – i.e., with
j-invariant lying in the ring Z of algebraic integers – and write TIM(d) in place of T (d),
then Hindry-Silverman showed [HS99]

TIM(d) = O(d log d).

1.2. In pursuit of polynomial bounds

In this paper we will pursue polynomial bounds on the size of the torsion subgroup in
a different kind of restricted regime. We begin by stating the following result, which
conveys the flavor with a minimum of technical hypotheses.

Theorem 1.3. Let ε > 0. Then there is C = C(ε) such that: for all degree d number
fields F and all elliptic curves E/F arising via base extension from an elliptic curve
(E0)/Q, we have

(1.1) expE(F )[tors] ≤ Cd3/2+ε.

Now we make some comments:

• Of course we can assume that E does not have CM.
• For any elliptic curve E over a number field F , we have

(1.2) #E(F )[tors] | (expE(F )[tors])2.

Thus, Theorem 1.3 implies a bound of Oε(d
3+ε) on the size of the torsion

subgroup itself. Later we will give an improvement of this bound.
• An easy quadratic twisting argument allows us to establish the bound (1.1) as

we range over all elliptic curves E/F with j(E) ∈ Q. This serves to motivate
the type of further result we would like to prove.

Let d0 ∈ Z+. For a positive integer d that is divisible by d0, let Td0(d) be the supremum
of #E(F )[tors] as E ranges over all elliptic curves defined over a degree d number field
F such that [Q(j(E)) : Q] = d0.
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Conjecture 1.4. For each d0 ∈ Z+, there are B = B(d0) and C = C(d0) such that

Td0(d) ≤ CdB.
Theorem 1.3 gives the case d0 = 1 of Conjecture 1.4. At present we cannot prove
Conjecture 1.4 unconditionally for any d0 ≥ 2, but we can make some progress in this
direction, as shown by the following results.

Theorem 1.5. Let F0 be a quadratic number field that is not imaginary quadratic of
class number one. (Thus, the discriminant of F0 is not one of −3,−4,−7,−8,−11,
−19,−43,−67,−163.) Then for all ε > 0, there is C = C(ε, F0) such that if F is a
degree d number field and E/F is an elliptic curve with j(E) ∈ F0, we have

expE(F )[tors] ≤ Cd3/2+ε and #E(F )[tors] ≤ Cd5/2+ε.

Theorem 1.6. Assume the Generalized Riemann Hypothesis (GRH).2 Let F0 be a
number field that does not contain the Hilbert class field of any imaginary quadratic
field. Then for all ε > 0, there is C = C(ε, F0) such that if F is a degree d number
field and E/F is an elliptic curve with j(E) ∈ F0, we have

expE(F )[tors] ≤ Cd3/2+ε and #E(F )[tors] ≤ Cd5/2+ε.

For d0 ∈ Z+, we introduce a hypothesis SI(d0) defined as follows.

SI(d0) : There is prime `0 = `0(d0) such that for all primes ` > `0, the modular
curve X0(`) has no noncuspidal non-CM points of degree d0.

Theorem 1.7. If SI(d0) holds, then for all ε > 0, there is C = C(ε, d0) with

Td0(d) ≤ Cd
5
2

+ε.

Remark 1.8. This paper is cognate to another work [CMP17], written in parallel, giving
“typical bounds” on #E(F )[tors] for an elliptic curve E/F , under the same hypotheses
as Theorems 1.5, 1.6 and 1.7.

1.3. Strategy of the proofs

In [Ar08], Arai showed that for each fixed prime ` and number field F , as we range
over all non-CM elliptic curves E/F there is a uniform upper bound on the index of
the image of the `-adic Galois representation. In §2 we prove the strong form of this
theorem by showing that the conclusion still holds as we range over all non-CM elliptic
curves defined over all number fields of any fixed degree (Theorem 2.3).

A uniform upper bound on the index of the adelic Galois representation as we range
over all non-CM elliptic curves defined over number fields of fixed degree d0 would be –
to say the least! – desirable. It implies SI(d0) but is so much stronger that the d0 = 1
case was raised as an open problem in [Se72], has guided most subsequent work in
the field, and remains open. Our approach to the `-adic version exploits the finiteness
properties that GL2(Z`) enjoys by virtue of being an `-adic analytic group – finiteness

properties that GL2(Ẑ) certainly does not possess.
From Theorem 2.3 we deduce Theorem 2.8: for each finite set of primes s, the

quantity expE(F )[s∞] is bounded by a polynomial in [F : Q(j(E))]. Thus in order to
bound expE(F )[tors] it suffices to bound expE(F )[`∞] for all sufficiently large primes.

The next ingredient is the following striking recent result.

2Throughout, we use GRH to mean the Riemann Hypothesis for all Dedekind zeta functions.
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Theorem 1.9 (Lozano-Robledo). Let ` > 2 be a prime. Let F0 be a number field,
l a prime ideal of ZF0 lying over `, and e(l/`) the ramification index. Let E/F0

be a

non-CM elliptic curve, and let a ∈ Z+ be such that E admits no F0-rational cyclic
isogeny of degree `a. Let n ≥ a, and let P ∈ E(F0) have order `n. Then there is an
integer 1 ≤ c ≤ 12e(l/`) and a prime L of F0(P ) lying over l such that the ramification

index e(L/l) is divisible by either ϕ(`n)
gcd(ϕ(`n),c`a−1)

or by `n−a+1.

Proof. This is a simplified form of [LR15, Thm. 2.1]. �

To apply Theorem 1.9 to get uniform bounds on expE(F )[tors], we need finiteness
results for rational `-isogenies. Thus Hypothesis SI(d0) intervenes naturally.

Corollary 1.10. Let d0 ∈ Z+, and assume hypothesis SI(d0). There is a prime `0 =
`0(d0) such that: for all number fields F0/Q of degree d0 and all primes ` > `0, if l
is a prime ideal of ZF0 lying over ` and E/F0

is a non-CM elliptic curve, then for all

n ∈ Z+, if P ∈ E(F0) is a point of order `n, then there is 1 ≤ c ≤ 12d0 and a prime

L of F0(P ) lying over l such that e(L/l) is divisible by either ϕ(`n)
gcd(ϕ(`n),c) or by `n.

Proof. This follows from Theorem 1.9 and the bound e(l/l) ≤ d0. �

To proceed without assuming SI(d0) we need to restrict to weaker statements that are
known or conditionally known. We make use of the following prior results.

Theorem 1.11 (Mazur [Ma78]). The hypothesis SI(1) holds with `0(1) = 37.

Theorems 1.7 and 1.11 imply Theorem 1.3.

Theorem 1.12 (Momose [Mo95]). Let F0 be a quadratic field that is not imaginary
quadratic of class number 1. There is a prime number `0 = `0(F0) such that for all
primes ` > `0, no elliptic curve E/F0

admits an F0-rational isogeny of degree `.

Theorem 1.13 (Larson-Vaintrob [LV14, Cor. 6.5]). Let F0 be a number field that does
not contain the Hilbert class field of any imaginary quadratic field. If the Generalized
Riemann Hypothesis (GRH) holds, then the set of prime numbers ` such that some
elliptic curve E/F0

admits an F0-rational `-isogeny is finite.

Corollary 1.14. Let F0 be a number field that does not contain the Hilbert class field
of any imaginary quadratic field. If [F0 : Q] ≥ 3, assume GRH. Then there is a prime
`0 = `0(F0) such that: for all primes ` > `0, if l is a prime ideal of ZF0 lying over `,
and E/F0

is an elliptic curve, then for all n ∈ Z+, if P ∈ E(F0) is a point of order `n,
then there is an integer 1 ≤ c ≤ 12e(l/l) and a prime L of F0(P ) lying over l such that

e(L/l) is divisible by either ϕ(`n)
gcd(ϕ(`n),c) or by `n.

Proof. Combine Theorems 1.9, 1.12 and 1.13. �

In §3.2 we use Corollaries 1.10 and 1.14 to get the polynomial bounds on expE(F )[tors]
of Theorems 1.5, 1.6 and 1.7. Via (1.2) this immediately gives a polynomial bound on
#E(F )[tors]. However in §3.3 we improve this bound using an analysis of cyclotomic
characters, completing the proofs of Theorems 1.3, 1.5, 1.6 and 1.7.
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2. Bounded index results for the `-adic Galois representation

2.1. Statement of the strong Arai theorem

Let F be a number field, and let E/F be a non-CM elliptic curve. Let

ρ̂ : gF → AutTE ∼= GL2(Ẑ)

denote the adelic Galois representation of E/F , and for a prime `, let

ρ`∞ : gF → AutT`E ∼= GL2(Z`)

denote the `-adic Galois representation of E/F . Then det ρ`∞ = χ` and F `-cyc =

F
Kerχ` , so

(2.1) ρ`∞(gF `-cyc) = ρ`∞(gF ) ∩ SL2(Z`).

By a result of Serre [Se72], the image ρ̂(gF ) is open in GL2(Ẑ) – equivalently, has finite
index. Thus for each prime ` the `-adic image ρ`∞(gF ) has finite index in GL2(Z`) and
ρ`∞ is surjective for all but finitely many primes `. As mentioned above, a uniform
adelic open image theorem is the ultima Thule of this field, but Arai has proved a
uniform `-adic open image theorem.

Theorem 2.1 (Arai [Ar08]). Let F be a number field, and let ` be a prime. There
is I ∈ Z+ such that for every non-CM elliptic curve E/F , the image ρ`∞(gF ) of the
`-adic Galois representation has index at most I in GL2(Z`).

Remark 2.2. Arai states Theorem 2.1 slightly differently. For n ∈ Z+, put

U (n) := Ker(GL2(Z`)→ GL2(Z/`nZ)).

Then each U (n) is an open subgroup of GL2(Z`), and each open subgroup Γ of GL2(Z`)
contains U (n) for all sufficiently large n. The least such n is called the level of Γ. Then
Arai proves: for a number field F and a prime `, there is n = n(F, `) such that for
every non-CM elliptic curve E/F , the level of ρ`∞(gF ) is at most n.

The statement in terms of the level immediately implies the statement in terms of
the index. The reverse implication holds because (cf. Lemma 2.5a)) the intersection
of all open subgroups of GL2(Z`) of index at most I is an open subgroup of GL2(Z`).

The main goal of this section is to prove the following strong form of Arai’s theorem.

Theorem 2.3. Fix a prime number ` and a positive integer d.

a) As we range over all non-CM elliptic curves E/F defined over number fields
of degree d, there is an absolute bound on the index of the image of the `-adic
Galois representation ρ`∞(gF ) in GL2(Z`).

b) Moreover, for all but finitely many j-invariants we have

[GL2(Z`) : ρ`∞(gF )] ≤ 3200d2

7
.

Remark 2.4.

a) Theorem 2.3a) is a quick consequence of results of Cadoret and Tamagawa
[CT12, CT13]. Namely, we apply [CT13, Thm. 1.1] with k = Q to the family
of elliptic curves E → X := P1 \ {0, 1728,∞} given by

Ej : y2 + xy − x3 +
36

j − 1728
x+

1

j − 1728
= 0
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of [CT12, §5.1.3] – this family is geometrically Lie perfect by [CT12, Thm.
5.1]. The conclusion is that, for each d ∈ Z+, for each fixed prime ` and
positive integer d, there is B(`, d) ∈ Z+ such that for all but finitely many
closed points j ∈ X of degree at most d, the index of the image of `-adic
Galois representation on (Ej)/Q(j) in GL2(Z`) is at most B(`, d). By Serre’s
open image theorem the result extends to all non-CM j-invariants of degree at

most d with some absolute bound, say B̃(`, d). For any non-CM elliptic curve
E defined over a degree d number field F , there is an elliptic curve Ej in the
above family and a number field K ⊃ F (j(E)) with [K : Q] ≤ 2d such that
(Ej)/K ∼= E/K . The index of the image of the `-adic Galois representation of
E/F in GL2(Z`) is no larger than the index of the `-adic Galois representation

of E/K in GL2(Z`) and thus no larger than 2d · B̃(`, d).
b) Rouse outlined a proof of Theorem 2.3a) on MathOverflow [R-MO]. His meth-

ods would yield a version of Theorem 2.3b).
c) Theorem 2.3a) is sufficient for our applications. Nevertheless we want to include

a proof of Theorem 2.3b). First, it seems interesting that in a natural case3 of
[CT13, Thm. 1.1] we can get a bound that is – after omitting a finite set of
j-invariants that depends on ` and d – explicit and independent of `. Second,
the proof of [CT13, Thm. 1.1] takes about 25 pages, whereas the outline of
[R-MO] is 13 lines. Our argument is about 2.5 pages; readers may appreciate
having a proof of this intermediate length. Finally, in [CT13, Thm. 1.2],
Cadoret-Tamagawa state a result of Frey [Fr94] but omit Frey’s assumption
that X(k) 6= ∅. This is easily remedied by using a variant on Frey’s result
from [Cl09], and our argument shows how to do this.

2.2. Group theoretic preliminaries

Lemma 2.5. Let ` be a prime, and let G be an infinite `-adic analytic group.

a) G is topologically finitely generated. A subgroup of G is open iff it has finite
index. For all I ∈ Z+, there are only finitely many index I subgroups of G.

b) Every open subgroup of G has at least one and finitely many maximal proper
open subgroups.

c) Let F be a set of open subgroups of G such that F contains all but finitely
many open subgroups of G. Then every element of F is contained in a maximal
element, and F has finitely many maximal elements.

d) For I ∈ Z+, the family FI of open subgroups H ⊂ G with [G : H] > I satisfies
the hypotheses of part c) and thus has at least one and finitely many maximal
elements.

Proof. a) Lazard has shown that an `-adic analytic group is topologically finitely gen-
erated and that a subgroup of G is open iff it has finite index [La65]. Moreover, every
topologically finitely generated profinite group has only finitely many open subgroups
of any given finite index [FJ, Lemma 16.10.2].4

b) Every nontrivial profinite group has a proper open subgroup, and any such group
is contained in a maximal proper subgroup. And every open subgroup U of G is again

3In [CT12], the authors identify Arai’s work as a motivation for their own.
4Each finite index subgroup of a topologically finitely generated profinite group is open [NS07].
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an `-adic analytic group, so by [S-LMW, pp. 148–149] the Frattini subgroup Φ(U) is
open and thus U has only finitely many maximal proper open subgroups.

c) We may assume G /∈ F . Since G is infinite and profinite, F 6= ∅. As for any group,
the set of finite index subgroups of G, partially ordered under inclusion, satisfies the
ascending chain condition, hence so does F and every element of F is contained in a
maximal element. To show that there are only finitely many maximal elements of F
it suffices to find a finite subset S ⊂ F such that for every K ∈ F there is H ∈ S such
that K ⊆ H, for then the maximal elements of F are the maximal elements of S.

Let S be the set of elements H ∈ F such that H is a maximal proper open subgroup
of an open subgroup P of G such that P /∈ F . By assumption the set of such subgroups
P is finite, so S is finite by part b). Because G /∈ G, for K ∈ F , the set of subgroups
Q with K ( Q ⊆ G and Q /∈ F is finite and nonempty; choose a minimal element Q.
The set of subgroups H with K ⊆ H ( Q is finite and nonempty; choose a maximal

element H. Then K ⊂ H and H ∈ S. d) This is immediate from part a). �

Remark 2.6. It follows from [S-LMW, pp. 148] that the necessary and sufficient con-
dition on a profinite group G for all of the conclusions of Lemma 2.5 to hold for G is
that the Frattini subgroup Φ(G) of G be open.

Lemma 2.7. Let F be a degree d number field, and let E/F be an elliptic curve. Let `
be a prime number. Let G = ρ`∞(gF ) be the image of the `-adic Galois representation
on E and let H = G ∩ SL2(Z`). Then we have

(2.2) [GL2(Z`) : G] ≤ d[SL2(Z`) : H].

Proof. Step 1: Let G be a group, let N be a normal subgroup of G, and let q : G→ G/N
be the quotient map. Then we have

(2.3) [G : H] ≤ [N : H ∩N ][G/N : q(H)].

Indeed, let X ⊂ G have cardinality larger than [N : H ∩N ][G/N : q(H)]. By the Pi-
geonhole Principle, there is Y ⊂ X of cardinality larger than [N : H ∩N ] = [HN : H]
such that for all y1, y2 ∈ Y , we have q(y2y

−1
1 ) ∈ q(H), so y2y

−1
1 ∈ q−1(q(H)) = HN .

So there are y1 6= y2 such that y1H = y2H.

Step 2: The `-adic cyclotomic character χ` : gQ → Ẑ×` is surjective, so for any degree d

number field F and elliptic curve E/F , we have [Z×` : det ρ`∞(gF )] | d. Applying (2.3)
with G = GL2(Z`), N = SL2(Z`), H = G and using (2.1), we get (2.2). �

2.3. Proof of Theorem 2.3

Step 1: Put I :=
⌊
1600d2/7

⌋
. Let F be a number field, let E/F be a non-CM elliptic

curve, and let G = ρ`∞(gF ) be the image of the `-adic Galois representation on E/F .
Some quadratic twist E′ of E has −1 ∈ G. Put G′ := ρ`∞(gF ). Then [GL2(Z`) :
G] ≤ 2[GL2(Z`) : G′], so it suffices to work with E′. We may also assume that
[GL2(Z`) : G′] > I. Applying Lemma 2.5 with G = GL2(Z`) we get that G′ is
contained in one of finitely many open subgroups Γ ⊂ GL2(Z`) with [GL2(Z`) : Γ] > I.
So it suffices to bound [GL2(Z`) : G′] while assuming that G′ ⊂ Γ for a fixed Γ.

Step 2: Let Γ ⊂ GL2(Z`) be an open subgroup with

(2.4) [GL2(Z`) : Γ] > I.
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Put

SΓ := Γ ∩ SL2(Z`).

Then Γ := Γ ∩ SL2(Z) is a congruence subgroup of SL2(Z). Let PΓ be the image
of Γ in PSL2(Z), and put DΓ := [PSL2(Z) : PΓ]. Since −1 ∈ G′ ⊂ Γ, we have
[PSL2(Z) : PΓ] = [SL2(Z) : SΓ]. Using (2.2) we get

DΓ ≥
[GL2(Z`) : Γ]

d
.

Step 3: Let Q(Γ) be the finite subextension of Q`-cyc/Q corresponding to the open
subgroup det Γ ⊂ Z×` . Then there is a modular curve XΓ that is defined and geomet-
rically integral over Q(Γ), and such that the base extension of XΓ to C is the compact
Riemann surface Γ\H. If for an elliptic curve E/F we have G = ρ`∞(gF ) ⊂ 〈Γ,−1〉,
then Q(Γ) ⊂ F , and there is an induced point on XΓ(F ) and thus a closed point on
XΓ of degree dividing d. Let dΓ be the gonality of the curve XΓ – the least positive
degree of a map XΓ → P1 defined over Q(Γ) – and let dΓ be the gonality of (XΓ)/C, so

dΓ ≤ dΓ.

We claim that XΓ has only finitely many closed points of degree dividing d. Indeed, if
not then by [Cl09, Thm. 5] we have

dΓ ≤ 2d.

On the other hand, by a theorem of Abramovich [Ab96, Thm. 0.1], we have

dΓ ≥
7

800
DΓ.

Putting these results together, we get the upper bound

[GL2(Z`) : Γ] ≤ 1600

7
d2,

and thus

[GL2(Z`) : Γ] ≤ I,
contradicting (2.4). Thus the set of j-invariants of non-CM elliptic curves over degree
d number fields such that the index of the image of the `-adic Galois representation
exceeds 3200

7 d2 is finite. (Here we have multiplied by 2 to get back from G′ to G.) Let

the exceptional j-invariants be j1, . . . , jM ∈ Q. For 1 ≤ i ≤M , choose an elliptic curve
E/Q(ji) with j-invariant ji, and let Ii be the index of the image of the `-adic Galois
representation (by Serre’s open image theorem, each Ii is finite). Now let E/F be a
non-CM elliptic curve defined over a degree d number field F such that the index of
the image of the `-adic Galois representation exceeds 3200

7 d2. Then j(E) = j(Ei) for

some i. There is a number field K ⊃ F such that E/K ∼= (Ei)/K and [K : Q] ≤ 2d2,
and thus the index of the image of the `-adic Galois representation of E/F is at most

2d2Ii. So for any non-CM elliptic curve over any degree d number field for which the
image of the `-adic Galois representation is contained in Γ, the index of the image of
the `-adic Galois representation is at most

max

(
3200

7
d2, max

1≤i≤M
2d2Ii

)
.
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2.4. A consequence

Theorem 2.8. Let d0 ∈ Z+, and let s ⊂ P be finite. There is C = C(d0, s) ∈ Z+ such
that if E/F is a non-CM elliptic curve with [Q(j(E)) : Q] = d0, then

expE(F )[s∞] ≤ C[F : Q(j(E))]
1
2 .

Proof. We consider non-CM elliptic curves E defined over number fields F such that
F0 := Q(j(E)) is a number field of degree d0. In case F = F0, as we range over all
E/F0

, by Theorem 2.3 the index of the image of the `-adic Galois representation is
uniformly bounded. Thus there is v` ∈ N such that for all such E/F0

, we have

ord`[GL2(Z`) : ρE,`∞(gF0)] ≤ v`.
With this notation, we will show that we may take

C =

(
2
∏
`∈s

`2+v`

) 1
2

.

Now let E/F be as above, and suppose E(F ) has a point of order

N =
∏
`∈s

`a` .

Let s′ = {` ∈ s | a` > 0}. We also suppose, temporarily, that E arises by base
extension from an elliptic curve defined over F0. Let ` ∈ s′. Since E(F ) has a point of
order `a` , this forces the image of the `-adic Galois representation to lie in a subgroup
conjugate to

Γ1(`a`) :=

[
1 + `a`Z` Z`
`a`Z` Z×`

]
.

Since [GL2(Z`) : Γ1(`a`)] = `2a`−2(`2 − 1), we get

`2a`−2(`2 − 1) | [GL2(Z`) : ρE,`∞(gF )] | [F : F0][GL2(Z`) : ρE,`∞(gF0)]

and thus

`2a`−2−v` | [F : F0].

(Here and below, we write a | b for rational numbers a, b whenever b = aq for some
q ∈ Z.) Compiling these divisibilities across all ` ∈ s′, we get

N2∏
`∈s′ `

2+v`
| [F : F0]

and thus

N ≤

(∏
`∈s′

`2+v`

) 1
2

[F : F0]
1
2 ≤

(∏
`∈s

`2+v`

) 1
2

[F : F0]
1
2 .

Now suppose that E/F does not necessarily arise by base extension from an elliptic
curve over F0. Nevertheless there is an elliptic curve (E0)/F0

and and a quadratic ex-
tension F ′/F such that E/F ′ ∼= (E0)/F ′ . Since expE(F )[s∞] | expE(F ′)[s∞], applying
the previously addressed special case with F ′ in place of F gives

N ≤

(∏
`∈s

`2+v`

) 1
2

[F ′ : F0]
1
2 =

(
2
∏
`∈s

`2+v`

) 1
2

[F : F0]
1
2 . �
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Remark 2.9. Theorem 2.8 is sharp up to the value of the constant. Indeed, for a non-
CM elliptic curve E defined over a number field F0 and any prime `, since there are
(`2 − 1)`2n−2 points of order `n on E(F ), there is a field extension Fn/F0 of degree at
most (`2 − 1)`2n−2 < `2n such that E(Fn) has a point of order `n.

3. The proofs of Theorems 1.5, 1.6 and 1.7

3.1. An easy lemma

Lemma 3.1. Let F be a complete discretely valued field, with residue characteristic
p ≥ 0. Let ` 6= p be a prime number, and let E/F be an elliptic curve over F with
semistable reduction. Then e(F (E[`])/F ) | `.

Proof. Case 1: Suppose E/F has good reduction. Then by the Néron-Ogg-Shafarevich
criterion, since ` 6= p the extension F (E[`])/F is unramified: e(F (E[`])/F ) = 1.

Case 2: Suppose E/F has multiplicative reduction. Then there is an unramified qua-
dratic extension F ′/F such that E/F ′ admits an analytic uniformization, or in other

words is a Tate curve in the sense of [Si94, §5.3]: E/F ′ ∼= Gm/〈qZ〉. It follows that

F ′(E[`]) = F ′(µ`, q
1
` ). Put F ′′ = F ′(µ`). Since F ′/F is unramified and ` 6= p, the

extension F ′′(q
1
` )/F ′′ is Galois and

e(F (E[`])/F ) = e(F ′′(q
1
` )/F ′′) | [F ′′(q

1
` ) : F ′′].

By Kummer theory, we have

[F ′′(q
1
` ) : F ′′] =

{
1 if q is an `th power in F ′′,

` otherwise.
�

3.2. Bounding the exponent

For the sake of a uniform presentation, we begin by fixing some notation. In the case
of Theorems 1.5 and 1.6, we let F0 be as in the theorem statement, put d0 = [F0 : Q],
and define `0 as in Corollary 1.14. In the case of Theorem 1.7, we let F0 be any number
field of the given degree d0, and we define `0 as in Corollary 1.10.

Let E be a non-CM elliptic curve over over a degree d number field F having
j(E) ∈ F0. (For CM curves, any of [Si92], [HS99], [CP15, CP17] yield stronger results.)
It suffices to show that there is a constant C with

expE(F )[tors] ≤ Cd3/2+ε,

where C is a function of `0, d0, and ε. Note that since `0 is determined by F0 in the
case of Theorems 1.5 and 1.6, the constant C depends on F0 and ε in those theorems.
Since `0 is determined by d0 in the case of Theorem 1.7, the constant C depends only
on d0 and ε in that situation.

Step 0: We first reduce to a special case. Suppose that there is a C ′ > 0 with the
property that for all elliptic curves E/F obtained by base extension from an elliptic
curve (E0)/F0

, we have

expE(F )[tors] ≤ C ′[F : Q]3/2+ε.

Now let E/F be an elliptic curve with j(E) ∈ F0. Then there is an elliptic curve
(E0)/F0

with j(E) = j(E0) and a quadratic extension F ′/F such that E/F ′ ∼= (E0)/F ′ .
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Let d = [F : Q] and d′ = [F ′ : Q]. Then

expE(F )[tors] | expE(F ′)[tors] ≤ C ′ · d′3/2+ε ≤ (C ′ · 23/2+ε) · d3/2+ε.

So we may choose C = C ′ · 23/2+ε. If C ′ depends only on `0, d0, and ε, then so does C.

Step 1: Now suppose that E is obtained by base change from an elliptic curve defined
over F0, which for notational simplicity we continue to denote by E. Write

E(F )[tors] =
∏
`∈P

E(F )[`∞]

and, for ` ∈ P,

E(F )[`∞] ∼= Z/`a`Z× Z/`b`Z
for integers a`, b` satisfying 0 ≤ a` ≤ b`. We will partition {` ∈ P | b` ≥ 1} into two
classes S1 and S2, get bounds on expE(F )[S∞1 ] and expE(F )[S∞2 ], and multiply them
to get a bound on expE(F )[tors].

Step 2: Put S1 = {` ∈ P | ` ≤ `0}. By Theorem 2.8, we have

expE(F )[S∞1 ] ≤ C1(d0, `0)[F : F0]
1
2 ≤ C1(d0, `0)d1/2.

Step 3: Let

S2 = {` ∈ P | ` > `0 and b` ≥ 1}.
List the elements of S2 in decreasing order:

`1 > `2 > · · · > `k.

Suppose that ` ∈ S2 and P ∈ E(F ) is a point of order `b` . By Corollaries 1.10 and
1.14, for each prime l of F0 lying above `, there is a positive integer c ≤ 12d0 and a
prime L of F0(P ) lying above l with e(L/l) divisible by either ϕ(`b`)/ gcd(ϕ(`b`), c) or
`b` . Thus, e(L/`) is divisible by either ϕ(`b`)/ gcd(ϕ(`b`), (12d0)!) or by `b` .

For simplicity, from now on we write the exponent on `i as bi rather than b`i . Let

P1, . . . , Pk be F -rational torsion points of orders `b11 , . . . , `
bk
k . Choose D1, . . . , Dk with

Di ∈ {ϕ(`bii )/ gcd(ϕ(`bii ), (12d0)!), `bii }

and such that the field F0(Pi) has a prime Li above `i with e(Li/`i) divisible by Di.

We introduce the sequence of fields K−1 = F0, K0 = F0(E[12]), K1 = K0(P1),
K2 = K1(P2), . . . , Kk = Kk−1(Pk). By a result of Raynaud, E/K0

has everywhere
semistable reduction; see e.g. [SZ95, Thm. 3.5]. Since Kk ⊂ F (E[12]), we have

(3.1)

k∏
i=0

[Ki : Ki−1] = [Kk : F0] ≤ [F (E[12]) : Q] = [F (E[12]) : F ] · d ≤ 4608d.

(We used here that # GL2(Z/12Z) = 4608.) Moreover,

(3.2) [K1 : K0][K0 : K−1] = [K1 : F0] ≥ [F0(P1) : F0] =
1

d0
[F0(P1) : Q] ≥ D1

d0
.
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Now let us look at [Ki : Ki−1] where i ≥ 2. For notational simplicity, let ` = `i. Since
Ki ⊃ F0(Pi), we know there is a prime L of Ki above ` for which e(L/`) is divisible
by Di. Define prime ideals Lj of ZKj , for j = −1, 0, 1, . . . , i, by

Lj = Kj ∩ L.
Thus, Li = L, and

Di | e(L/`) = e(L−1/`)e(L0/L−1)

i∏
j=1

e(Lj/Lj−1).

Since e(L−1/`) ≤ d0 and e(L0/L−1) | [F0(E[12]) : F0] | 4608, it follows that

(3.3) Di | d0! · 4608 ·
i∏

j=1

e(Lj/Lj−1).

Suppose that 1 ≤ j < i. We have

Kj = Kj−1(Pj) ⊂ Kj−1(E[`
bj
j ]).

Hence, e(Lj/Lj−1) divides the ramification index of Lj−1 in Kj−1(E[`
bj
j ]). Note that

Lj−1 lies above the rational prime ` = `i, which is distinct from `j (since j < i). By
Lemma 3.1, the ramification index of Lj−1 in Kj−1(E[`j ]) divides `j . Moreover,

[Kj−1(E[`
bj
j ]) : Kj−1(E[`j ])]

is a power of `j . (The image of the representation on the `
bj
j -torsion lands in the kernel

of the natural map GL2(Z/`bjj Z)→ GL2(Z/`jZ), an `j-group.) Thus, the ramification

index of Lj−1 in Kj−1(E[`
bj
j ]) is a power of `j . So e(Lj/Lj−1) is also a power of `j .

The definition of Di and the ordering of the primes `1, . . . , `k imples that Di is co-
prime to `1, . . . , `i−1. Since e(Lj/Lj−1) is a power of `j for j < i, (3.3) implies that

Di | d0! · 4608 · e(L/Li−1), whence e(L/Li−1) ≥ Di

4608 · d0!
.

Therefore,

[Ki : Ki−1] ≥ e(Li/Li−1) ≥ Di

4608 · d0!
(for 2 ≤ i ≤ k).

From the definition of Di, it is easy to see that every

Di ≥
`bii

2 · (12d0)!
.

Combining these estimates with (3.1) and (3.2), we find that

4608d ≥
k∏
i=0

[Ki : Ki−1] = [K0 : K−1][K1 : K0]
∏

2≤i≤k
[Ki : Ki−1](3.4)

≥ D1

d0
·
∏

2≤i≤k

Di

4608 · d0!
≥

k∏
i=1

`bii
9216 · (12d0)!2

.

Put
Z0 = 9216 · (12d0)!2.
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Let Z > Z0 be a constant (depending on d0 and ε) to be specified momentarily. If

`bii > Z, then the ith factor in the last displayed product on i is at least Z
Z0

. Hence,

there can be at most log(4608d)/ log (Z/Z0) such values of i. There are at most π(Z)

values of i with `bii ≤ Z, where π(·) is the usual prime-counting function. So

k ≤ π(Z) +
log(4608d)

log(Z/Z0)
.

We may now deduce from (3.4) that

k∏
i=1

`bii ≤ Z
k
0 · 4608d ≤ Zπ(Z)

0 · 46081+log(Z)/ log(Z/Z0) · d1+log(Z0)/ log(Z/Z0).

We fix Z large enough, in terms of d0 and ε, to make log(Z0)/ log(Z/Z0) < ε; then

expE(F )[S∞2 ] =
k∏
i=1

`bii ≤ C2(d0, ε)d
1+ε.

Step 4: Putting the contribution from S1 and S2 together,

expE(F )[tors] ≤ C1(d0, `0)d1/2 · C2(d0, ε)d
1+ε ≤ C(d0, `0, ε)d

3/2+ε,

as desired.

3.3. From the exponent to the order

Let F be a set, each element of which is an elliptic curve defined over a number field
E/F , and such that for some B > 0 and all E/F ∈ F we have

expE(F )[tors] = O([F : Q]B).

(The implied constant is allowed to depend on F , but not on the choice of E/F ∈ F .)
Let b = expE(F )[tors]. Then there is a positive integer a dividing b such that

E(F )[tors] ∼= Z/aZ⊕ Z/bZ.
Since E has full a-torsion over F , the field F contains Q(µa), so that [F : Q] ≥ ϕ(a).
It follows (cf. [HW08, Thms. 327, 328]) that for all ε > 0, we have

a = Oε([F : Q]1+ε).

So
#E(F )[tors] = ab = Oε([F : Q]B+1+ε),

the implied constant depending on ε (and F) but not on the choice E/F ∈ F .

Applying this with B = 3
2 gives a bound Oε([F : Q]

5
2

+ε) on the size of the torsion
subgroup, completing the proofs of Theorems 1.5, 1.6 and 1.7.
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