
AN “ANTI-HASSE PRINCIPLE” FOR PRIME TWISTS

PETE L. CLARK

Abstract. Given an algebraic curve C/Q having points everywhere locally
and endowed with a suitable involution, we show that there exists a positive
density family of prime quadratic twists of C violating the Hasse principle.
The result applies in particular to wN -Atkin-Lehner twists of most modular
curves X0(N) and to wp-Atkin-Lehner twists of certain Shimura curves XD+.

1. Introduction

1.1. Some motivation. Let C/Q be a (nonsingular, projective, geometrically inte-
gral) algebraic curve. We say C violates the Hasse principle if for all places p ≤ ∞,
C(Qp) 6= ∅, but C(Q) = ∅. It is of interest to construct families of such curves in a
systematic way, and also to discover naturally occurring families. Although one has
various results showing that there are “many” curves violating the Hasse principle
– e.g, infinitely many for every genus g ≥ 1 [CM] – to the best of my knowledge the
literature contains no “natural” infinite1 family of curves C/Q provably violating
the Hasse principle, i.e., an infinite sequence of curves of prior arithmetic-geometric
interest and not just constructed for this purpose.2 Our primary goal in this note
is to exhibit such a “natural” infinite family.

1.2. Statements of the main results.
Let N be a squarefree positive integer, p ≡ 1 (mod 4) a prime with p 6= N , and
let C(N, p)/Q be the quadratic twist of X0(N) by the Atkin-Lehner involution wN

and the quadratic extension Q(
√

p)/Q. (Precisely what this means will be reviewed
shortly.) These curves are moduli spaces of elliptic Q-curves (e.g. [Ell]): roughly
speaking, C(N, p)(Q) parameterizes elliptic curves defined over Q(

√
p) which are

cyclically N -isogenous to their Galois conjugates.

Theorem 1. For 131 < N 6= 163 a squarefree integer, the set of primes p ≡ 1
(mod 4) such that C(N, p) violates the Hasse principle over Q has positive density.

Upon examining the proof of Theorem 1, it swiftly became clear that the properties
of X0(N) and wN needed for the argument could be axiomatized to yield a general
criterion for prime quadratic twists violating the Hasse principle. This generaliza-
tion costs nothing extra – indeed, it seems if anything to clarify matters – and it
shall turn out to have (at least) one other interesting application.

The axiomatic version goes as follows: let C/Q be a curve and ι : C → C be a
Q-rational involution. Let Q(

√
d)/Q be a quadratic extension, with nontrivial au-

tomorphism σd. Then there is a curve Cd = T (C, ι,Q(
√

d)/Q) called the quadratic

1For an interesting finite family constructed by a systematic method, see [RSY].
2The situation is different if one allows the possibility of a variable base extension: see [Cl2].
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twist of C by ι and Q(
√

d)/Q (or just by d). The curve Cd is isomorphic to C over
Q(
√

d) but not, in general, over Q: σd acts on Cd(Q(
√

d)) by P 7→ ι(σd(P )). Its
existence follows from the principle of Galois descent: the Q/Q-twisted forms of C
with respect to the automorphism group generated by ι are parameterized by

H1(Q/Q, 〈σ〉) = Hom(Gal(Q/Q),±1) ∼= Q×/Q×2.

Theorem 2. Let C/Q be an algebraic curve. Suppose there is a Q-rational involu-
tion ι on C such that:
(i) {P ∈ C(Q) | ι(P ) = P} = ∅.
(ii) There exists P0 ∈ C(Q) such that ι(P0) = P0.
(iii) For all ` ≤ ∞, C(Q`) 6= ∅, i.e., C has points everywhere locally.
(iv) The quotient C/ι has finitely many Q-rational points.
Then the set of primes p ≡ 1 (mod 4) for which the twist Cp = T (C, ι,Q(

√
p)/Q)

violates the Hasse principle has positive density.

Remark 1.1: Each of the assumptions (i) and (ii) is necessary for the conclusion
to hold: if (i) fails then every quadratic twist Cd has Q-points; whereas if (ii) fails
then the set of squarefree d for which Cd has points everywhere locally is finite
[Sko, Prop. 5.3.2]. One must assume at least (iii′): C/Q`

has quadratic points for
all ` ≤ ∞ (or, in the terminology of [Cl2], that mloc(C) ≤ 2). It is probably not
the case that (iii′) is in general sufficient for the existence of twists Cd (prime or
otherwise) violating the Hasse principle, but it might be interesting to try to modify
the argument so as to apply to some particular curves satisfying (iii′), e.g. certain
Shimura curves XD

0 (N). Finally, some additional hypothesis, like (iv), is needed to
ensure that C is not the projective line!

Remark 1.2: A pair (C, ι) can satisfy the hypotheses of Theorem 2 only if C/ι
has genus at least one and C has genus at least two. Indeed, since C has points
everywhere locally, so does C/ι, so if it had genus zero it would – by the Hasse
principle – be isomorphic to P1 and have infinitely many Q-points. But C/ι would
have genus zero if C had genus zero (clearly) or genus one (since ι has fixed points).

Remark 1.3: From the proof one can deduce an explicit lower bound on the den-
sity of the set P = P(C, ι) of primes such that Cp violates the Hasse principle in
terms of the genera of C and C/ι. However, it does not give us an effective way to
find any elements of P unless we can find all the Q-points on C/ι. In the case of
X+

0 (N) = X0(N)/wN , this is a notoriously difficult open problem, c.f. §3.3.

One may ask why in (iii) we do not just assume that C has a Q-point: other-
wise our curve already violates the Hasse principle, and twisting it to get further
violations seems less interesting. The advantage of stating the result the way we
have is that it applies even if we don’t know whether or not C has Q-rational points.
This distinction is illustrated in the following additional application of Theorem 2.

Let D = p1 · · · p2r be a nontrivial squarefree product of an even number of primes,
and consider the Shimura curve XD

/Q (e.g. [Cl0, Chapter 0]). Unfortunately (iii)
does not hold – e.g. XD(R) = ∅ [Og2] – so Theorem 2 does not apply. On the other
hand, the full Atkin-Lehner group W consists of 22r commuting involutions wd, one
for each 1 ≤ d | D. It turns out that XD+ := XD/wD has points everywhere locally
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[Cl0, Main Theorem 2]. Since W is commutative of order at least 4, for a prime
q | D, wq induces a well-defined, nontrivial involution on XD+, which we continue
to denote by wq. Let Cp(D, wq) be the twist of XD+ by wq and Q(

√
p)/Q.

Theorem 3. There exists an integer D0 with the following property: for pairwise
distinct primes q > 163, p2, . . . , p2r such that:
(a) ( q

pi
) 6= 1 for all i; and

(b) D := q · p2 · · · p2r > D0,
the set of primes p for which Cp(D, wq) violates the Hasse principle over Q has
positive density.

Although this family is perhaps less “natural” than that of Theorem 1 – the modu-
lar interpretation of Cp(D, wq) is rather abstruse – it is interesting for other reasons,
as we explain at the end.

The proofs are given in §2. In §3 we discuss certain complements, in particular
a generalization of Theorem 2 to twists by automorphisms of prime degree p on
curves defined over a number field containing the pth roots of unity.

1.3. Connections with the Inverse Galois Problem for PSL2(Fp). Our mo-
tivation for considering Atkin-Lehner twists of X0(N) by primes p in particular
comes from work of K.-y. Shih, who showed that if (N

p ) = −1, then there is a
covering of curves Y → C(N, p), Galois over Q with group PSL2(Fp) [Shi, Thm.
8]. There is thus an ulterior motive for studying the locus C(N, p)(Q): each such
point P yields by specialization a homomorphism ρP : Gal(Q/Q) → PSL2(Fp). So
if ρP is surjective for some P , we get a realization of PSL2(Fp) as a Galois group
over Q (an open problem, in general).

If we have such a surjective specialization, let us say that “Shih’s strategy suc-
ceeds” for these values of N and p. Remarkably – more than 30 years after [Shi] –
Shih’s strategy remains the state of the art: with the single exception of a theorem
of Malle [Mal] dealing with the case ( 5

p ) = −1 – every realization of PSL2(Fp) as
a Galois group over Q is an instance of the success of Shih’s strategy.

Shih himself gave a complete analysis of the cases where C(N, p) has genus zero.
Following up on a suggestion of Serre, some of the genus one cases were analyzed
in [Cl1]. This paper closes with three questions about rational points on C(N, p),
the last being whether there are examples in which points exist eveywhere locally
but not globally. An early draft of this paper billed Theorem 1 as an answer to
this question, but it is not, really, since the primes constructed in the proof all
satisfy (N

p ) = 1. So there is now an Appendix to this paper in which the topic of
local and global points on C(N, p) under the hypothesis (N

p ) = −1 is revisited. We
make some further remarks on the genus one cases, and, especially, we modify the
argument of Theorem 2 to give many Hasse principle violations when (N

p ) = −1,
showing that there are purely global obstructions to the success of Shih’s method.

2. Proofs

Proof of Theorem 2: For a squarefree d 6= 1, there are natural set maps

αd : Cd(Q) ↪→ C(Q(
√

d))

and
βd : C(Q(

√
d)) → (C/ι)(Q(

√
d)).



4 PETE L. CLARK

Put
Sd = (βd ◦ αd)(Cd(Q)).

Then Sd ⊂ (C/ι)(Q). Moreover, (C/ι)(Q) =
⋃

d Sd ∪ ι(C(Q)), and for d 6= d′,
P ∈ Sd ∩ Sd′ implies that P ∈ C(Q(

√
d)) ∩ C(Q(

√
d′)) = C(Q). But Sd ∩ C(Q)

consists of Q-rational ι-fixed points, which we have assumed in (i) do not exist, so
that for d 6= d′, Sd ∩ Sd′ = ∅. By (iv), (C/ι)(Q) is finite, and we conclude that the
set of d for which Sd 6= ∅ is finite. In particular, for all sufficiently large primes p,
the prime twists Cp have no Q-rational points.

Thus it shall suffice to construct a set of primes p ≡ 1 (mod 4) of positive density
such that Cp has Q`-rational points for all ` ≤ ∞. A key observation is that if p is
a square in Q`, then since Q` contains Q(

√
p), Cp(Q`) = C(Q`), which is nonempty

by (iii). In particular, since p > 0, Cp(R) 6= ∅ for all p.
Let M1 be a positive integer such that for ` > M1, C extends to a smooth

relative curve C/Z`
. If ` > M1 is prime to p, then we claim that Cp also extends

smoothly over Z`. Indeed, the extension Q`(
√

p)/Q` is unramified (note that we use
p ≡ 1 (mod 4) here), and after this base change Cp becomes isomorphic to C. As
above, (iii) and (iv) imply that C (hence also Cp) has positive genus, so C admits a
minimal regular Z`-model. But it is known that formation of the minimal regular
model commutes with unramified base change, so the minimal model of C/Z`

must
already have been smooth.

Let g be the genus of C; notice that it is also the genus of Cp for all p. By
the Weil bounds for curves over finite fields, there exists a number M2 such that if
` > M2, every nonsingular curve C/F`

of genus g has an F`-rational point. Thus, if
` > M = max{M1,M2} and is different from p, then Cp admits a regular Z` model
whose special fiber has a smooth F`-rational point; by Hensel’s Lemma this implies
that Cp(Q`) 6= ∅.

It remains to choose p to take care of the primes ` ≤ M and ` = p. In the
former case we may just assume that p ≡ 1 (mod 8) and that p is a quadratic
residue modulo every odd ` ≤ M , so that by the above observation we get that
Cp(Q`) = C(Q`) 6= ∅. Finally, to get that Cp(Qp) 6= ∅, we use (ii) the existence of
a geometric ι-fixed point P0. If we choose p to split completely in Q(P0), then P0

is a Qp-rational fixed point of ι, so is an element of C(Qp)∩Cp(Qp). In all we have
required p to split completely in a finite collection of number fields, so all primes
splitting completely in the compositum will do. Cebotarev’s theorem implies that
this set of primes has positive density.

Proof of Theorem 1: We just check that the hypotheses of Theorem 2 apply with
C = X0(N) and ι = wN . It is well-known that there are always wN -fixed points –
so (i) holds – and that

min {[Q(P ) : Q] | P ∈ X0(N)(Q), wN (P ) = P} = h(Q(
√
−N)),

the class number of Q(
√−N) (e.g. [Og1, Prop. 3]). (We use here that N is square-

free.) Thus (ii) holds unless h(−N) = 1, i.e., unless N = 1, 2, 3, 7, 11, 19, 43, 67
or 163. Using the genus formula for X+

0 (N) (and the standard upper bound on the
class numbers of imaginary quadratic fields), it is straightforward to compute the
complete list of N for which X+

0 (N) has genus at most one. We shall not give this
list here, but the largest such N is 131 (compare with e.g. [Bar]), verifying (iii).
Finally, the rationality of the cusps gives X0(N)(Q) 6= ∅ for all N , hence (iv) holds.
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Proof of Theorem 3: Again we will verify the hypotheses of Theorem 2, now with
C = XD+ and ι the image of wq. The congruence conditions in the statement of
theorem ensure that wq has fixed points on XD (e.g. [Og2] or [Cl0, Prop. 48]); a
fortiori its image on XD+ has fixed points, so (i) holds. The field of definition Q(P )
of any wq-fixed point P contains the Hilbert class field of Q(

√−q), so if q > 163,
[Q(P ) : Q] > 2. The degree of the field of definition of the image of P on the
involutory quotient XD+ is at least 1

2 [Q(P ) : Q], so there are no Q-rational ι-fixed
points on XD+.3 Thus (ii) holds.

For (iv), it is enough to know that the genus of XD/〈wD, wq〉 is at least 2 for
all sufficiently large D. But a routine calculation using the formulae for the genus
of XD and the number of fixed points of the wd’s shows that even the genus of the
full Atkin-Lehner quotient XD/W approaches ∞ with D (e.g. [Cl0, Corollary 50]).

As already mentioned, that (iii) holds for all squarefree D was shown in my
(unpublished) Harvard thesis [Cl0, Main Theorem 2]. In the meantime, Rotger,
Skorobogatov and Yafaev have proved a more general result [RSY, Theorem 3.1].
Both proofs use a result of Ogg for ` = ∞; a trace formula for (`,D) = 1; and the
Cerednik-Drinfeld uniformization for ` | D; i.e., they are similar enough so that
there seems to be no need to reproduce the details of my argument here.

3. Complements

3.1. Variants of Theorem 2.
Theorem 2 extends immediately to the case of (C, ι) defined over an arbitrary num-
ber field K, still twisting by the quadratic (for all but finitely many p) extensions
K(
√

p)/K. Of course, these need not be “prime” quadratic twists with respect to
K, but this can be remedied.

Indeed, there is an analogue of Theorem 2 for a curve C over a number field
K ⊃ Q(µp) endowed with a K-rational automorphism ϕ of prime order p. Kummer
theory gives:

K×/K×p = H1(K, 〈ϕ〉).
By Galois descent, an element x ∈ K× gives rise to a twist Cx = T (C,ϕ, K(x

1
p )/K).

Theorem 4. Let K ⊃ Q(µp) be a number field, and let C/K be an algebraic curve.
Suppose there is a K-rational automorphism ϕ : C → C of prime order p such that:
(i) {P ∈ C(K) | ϕ(P ) = P} = ∅.
(ii) There exists P0 ∈ C(K) such that ϕ(P0) = P0.
(iii) C has points everywhere locally.
(iv) The quotient C/ϕ has finitely many K-rational points.
Then there exists a modulus m of K such that the prime ideals p of oK which are
generated by an element π ≡ 1 (mod m) such that Cπ violates the Hasse principle
over K have positive density.

Here m is chosen so that π ≡ 1 (mod m) implies that π is totally positive and a
perfect p-th power in the completion of K at any prime p lying over p; e.g., when
K = Q we take m = 8 · ∞. The remainder of the proof is left to the reader.

3Note here the analogy between X0(N) and XD+, rather than XD.
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3.2. Rational points on Atkin-Lehner quotients of Shimura curves. Let us
end by calling attention to the sequence of curves XD+: for me it is the example par
excellence of a naturally occurring family of curves with points everywhere locally.
In fact work of Jordan, Rotger and others shows that the modular interpretation
of XD+ is in many respects more natural than that of XD. Recall the “folk conjec-
ture” that for sufficiently large squarefree N , X+

0 (N)(Q) consists only of cusps and
CM points. As alluded to above, this is an extremely difficult conjecture, since the
favorable case for determining the Q-points on C/Q is when Jac(C) has a Q-factor
of rank less than its dimension. But analysis of the sign in the functional equations
shows – assuming the conjecture of Birch and Swinnerton-Dyer (henceforth BSD)
– that this never happens for X+

0 (N).
By work of Jacquet-Langlands and Faltings, the same holds for XD+, so that

the study of XD+(Q) is again very difficult. The XD+ version of the above folk
conjecture is that for sufficiently large D, XD+(Q) consists only of CM points.
But the CM points are well understood, and one can see in particular that the set
of D such that XD+ has a Q-rational CM point has density zero.4 Thus either
(I) the curves XD+ violate the Hasse principle for a density one set of squarefree
integers D; (II) there is some (as yet unknown) specific phenomenon which puts
many Q-rational points on Atkin-Lehner quotients of Shimura curves; or (III) our
conventional wisdom about Q-points on algebraic curves – i.e., that they are “typ-
ically” relatively sparse unless there is some good reason – is completely wrong.
Each of three options is fascinating in its own way, but which is true?!?

It seems to me that Theorems 2 and 3 provide some evidence against (III). But
the curves XD+ are hardly “randomly chosen”: the conjectured nonexistence of
non-CM Q-rational points implies the nonexistence of certain kinds of GL2-type
abelian surfaces A/Q and (a fortiori, assuming Serre’s conjecture) certain kinds of
modular forms. Our current understanding of these associated objects is so limited
that we certainly cannot dismiss the possibility of (II).

Appendix: Atkin-Lehner Twists With (N
p ) = −1

This is essentially an addendum to [Cl1]. Although some of the results of loc. cit.
will be revisited here with a slightly different emphasis, for more complete accounts
the reader should consult [Cl1] as well as [Shi] and [Ser].

We will suppose throughout that N > 1 is a squarefree integer and p is an
odd prime such that (N

p ) = −1; by [Shi, Thm. 8] there is then a Q-rational
PSL2(Fp)-Galois cover Y → C(N, p).5 We would like to know for which values
of N and p there exists a point P ∈ C(N, p)(Q) whose associated homomorphism
ρP : Gal(Q/Q) → PSL2(Fp) is surjective. In particular we would like to know
whether C(N, p)(Q) 6= ∅, and especially whether there are any non-CM points
(since the specialization homomorphism at a CM point will have abelian image

4This uses the zero density of the set of integers with a bounded number of prime divisors;
among discriminants D = p1p2, the probability of rational CM point is (1− (1− 1

4
)9) ≈ .925.

5In the body of the text we defined C(N, p) only for p ≡ 1 (mod 4); indeed the proof of
Theorem 2 required p ≡ 1 (mod 8). But Shih’s theorem holds for p ≡ −1 (mod 4) if we define

C(N, p) as the twist of X0(N) by wN and −p – i.e., in general as the twist by wN and p∗ = p
p−1
2 .
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upon restriction to the corresponding imaginary quadratic field, it will not be sur-
jective for any odd p). Intuitively, one might expect ρP to be surjective for “most”
non-CM points. Indeed, work of Hilbert, Faltings and Serre shows that whenever
C(N, p)(Q) is infinite, there are infinitely many irreducible specializations.

The cases in which C(N, p) has genus zero (N = 2, 3, 5, 7, 10, 13) are deci-
sively treated in [Shi], [Ser] and [Cl1]: in particular, when N = 2, 3 or 7 (class
number 1!), Shih’s strategy succeeds for all p (with (N

p ) = −1). The genus one
cases are N = 11, 14, 15, 17, 19, 21; for N = 11 and 19 (class number 1!) we will
say only that Shih’s strategy works when p ≡ 1 (mod 4) conditionally on BSD and
refer the reader to [Cl1] for more details. To deal with some of the other cases, the
following result was used [Cl1, Theorem 11].6

Theorem 5. For prime N , C(N, p)(QN ) = ∅ ⇐⇒ N ≡ 1 (mod 4).

This shows the failure of Shih’s method when N = 17 (and also N = 5, 13; a similar
argument shows that C(10, p)(Q5) 6= ∅ iff ( 5

p ) = 1). The other cases (N = 14, 15,
21) were not analyzed in [Cl1] since they could not lead to any new Galois groups
(nor even to the recovery of Malle’s result).

Note the remarkable fact that in every case above, we either had an obvious Q-
rational point or a local obstruction at a prime ` | N ; in particular there were no
violations of the Hasse principle.

Here we want to point out that the cases N = 14 and N = 21 nevertheless give rise
to some interesting Diophantine problems. The analysis of local points on C(14, p)
and C(21, p) is complete except at the prime p: interestingly, computations suggest
that there are points everywhere locally iff there are points at every place except p,
which leads me to believe that there is a criterion for the emptiness of C(N, p)(Qp)
which is equally simple as that of Q` for ` |N and “quaternionically linked to it.”
When (for instance) N = 14 and p ≡ 17 (mod 56), computations suggest that there
are always points everywhere locally. Despite the fact that there are no “obvious”
Q-rational points here, for the first 101 such primes in this congruence class we
do in fact get an elliptic curve, necessarily of odd analytic rank, so this gives 101
cases of the success of Shih’s strategy. It would be surprising if this phenomenon
persisted for all p in this congruence class. However, our lack of counterexamples is
the “Selmer dual” of a phenomenon encountered in [Cl1]: let J(14, p) be the Jaco-
bian of C(14, p), i.e., the quadratic twist of X0(14) by p∗ in the usual sense. Since
J0(14)[2] ∼= X0(14)[2] ∼= Z/2Z, and twists by primes p ≡ 1 (mod 4) have odd ana-
lytic rank, then (assuming BSD) the curve C(14, p) can only represent a nontrivial
element of X(Q, J(14, p))[2] if the 2-Selmer rank of J(14, p) is at least 3 (and in fact
at least 4 because the contribution of X[2] to the 2-Selmer rank will be even). Now
recall that in [Cl1] we were unable to find prime twists of X0(11) or X0(19) of rank
at least 3! It would be very interesting to have some conjectural asymptotics on the
variation of 2-Selmer ranks in families of prime twists that would give us a hint as to
how far we ought to look before being surprised by the lack of examples in each case.

6Let us note, as we did in [Cl1], that the implication ⇐= of Theorem 5 is a special case of a
theorem of Gonzalez [Que, Thm 6.2].
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I am not aware of a single example of the success of Shih’s strategy when C(N, p)
has genus at least two. These would necessarily come from exceptional Q-rational
points on X+

0 (N) with the additional condition that the quadratic field of the
preimage is Q(

√
p∗) for some prime p with (N

p ) = −1 (for the associated ρP must
be surjective, but this seems to be the least of our worries).7 Note that the “folk
conjecture” of §3.2 predicts that Shih’s strategy succeeds for only finitely many
pairs (N, p) with g(C(N, p)) ≥ 2, so in particular that we will not be able to obtain
all PSL2(Fp)’s as a Galois group over Q by this method.

We shall now show that there are plenty of curves C(N, p) with p ≡ 1 (mod 4),
(N

p ) = −1 violating the Hasse principle. Assume for simplicity that N is prime.
Assume also that N > 163, so that C(N, p)(Q) = ∅ for all but finitely many primes
p. We will try to run through the argument of Theorem 2 except with the con-
gruence condition (N

p ) = −1, i.e., p is inert in Q(
√

N). There are however two
issues to be addressed: the first is that C(N, p) need not have QN -rational points;
indeed by Theorem 5 we know that it will iff N ≡ −1 (mod 4), so let us assume
this condition on N . It is then indeed the case that for all but finitely many p
satisfying the modified conditions, Cp violates the Hasse principle. However, there
is a second issue: since one of our conditions on p is not a splitting condition, it is
not a priori clear that our conditions on p are consistent, i.e., correspond to some
nonvoid Cebotarev set.

Let us now carefully check the consistency. To be precise, we are imposing the
following conditions on p: (a) p splits completely in K1 := Q(ζ8) – i.e., p ≡ 1
(mod 8); (b) p is inert in Q(

√
N); (c) p splits in sufficiently many quadratic fields

Q(
√

`∗) for ` odd and different from p and N (namely, such that for the remaining
primes `, C(N, p) has smooth reduction modulo ` and an F`-rational point on its
special fiber); and (d) p splits completely in Q(P0), where P0 is a wN -fixed point
corresponding to the maximal order of Q(

√−N) (and not the one of conductor 2).
Let K2 be the compositum of Q(

√
`∗) for the finite set of odd primes ` considered

above, and let K3 := Q(P0,
√−N), the Hilbert class field of Q(

√−N). The fields
Ki for 1 ≤ i ≤ 3 are each Galois over Q and are mutually linearly disjoint, since
their sets of ramified finite primes are pairwise disjoint. Put K = K1 · K2 · K3,
so that Gal(K/Q) =

∏3
i=1 Gal(Ki/Q). In G3 there is a unique conjugacy class

C consisting of elements σ with nontrivial restriction to Q(
√−N). So, by Ceb-

otarev, the primes p which are unramified in K and with corresponding Frobenius
automorphism lying in the conjugacy class (1, 1, C) have positive density. We have
shown:

Theorem 6. Suppose N > 163 is prime and congruent to −1 (mod 4). The set
of primes p ≡ 1 (mod 4), (N

p ) = −1 such that C(N, p) violates the Hasse principle
over Q has positive density.

Thus we get an affirmative answer to the question asked at the end of [Cl1]: there
are “truly global” obtructions to the success of Shih’s method.

7I have not, however, had the opportunity to read through all of the rapidly growing literature
on Q-curves in search of such examples. It would be very useful if there existed an online database
containing all known exceptional rational points on X+

0 (N).
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Postscript: Recent (and recently remembered) correspondences with Nick Rogers
and Noam Elkies suggest that the computationally observed phenomenon of 2-
Selmer rank at most 2 in prime twist families of the elliptic curves X0(N) for
N = 11, 19 (in [Cl1]) and N = 14 (here) may have a relatively simple explanation
– and in particular, may persist for all primes in the given congruence classes –
by means of a complete 2-descent. This suggests the possibility – quite surprising
when compared to Theorem 1 – that when X0(N) has genus one there are no prime
wN -quadratic twists which violate the Hasse principle.
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