
RECIPROCITY BY RESULTANT IN k[t]

PETE L. CLARK AND PAUL POLLACK

Abstract. Let k be a perfect field with procyclic absolute Galois group and containing a
primitive n-th root of unity. We define a degree n power residue symbol

󰀃
a
b

󰀄
n
in the ring k[t],

show that it is equal to “the character of the resultant Res(b, a)” and deduce a reciprocity
law. We are motivated by commonalities between the classical case k = Fq and the novel
but very simple case k = R.

1. Quadratic reciprocity in a PID

In this paper we explore quadratic and higher reciprocity laws in the ring k[t] of polynomi-
als over a suitable class of fields k.

Here is a simple setup for pursuing abstract algebraic generalizations of quadratic reciprocity:
let R be a PID. We say that a, b ∈ R are coprime if a and b are nonzero and the ideal (a, b)
generated by a and b is all of R. For coprime a, p ∈ R such that (p) is a prime ideal, we
define the Legendre symbol

󰀃
a
p

󰀄
to be the integer 1 if a is a square in the field R/(p) and

the integer −1 otherwise. For coprime a, b ∈ R, let b = up1 · · · pr for a unit u ∈ R× and prime
elements p1, . . . , pr ∈ R. We define the Jacobi symbol

󰀕
a

b

󰀖
:=

r󰁜

i=1

󰀕
a

pi

󰀖
.

The value of
󰀃
a
b

󰀄
does not change if b is replaced with another generator of (b), but this value

does in general depend on the chosen generator a of (a).

We begin with the following two classical results.

Theorem 1 (Quadratic Reciprocity in Z).
a) (Gauss [Ga01]) Let p and q be distinct odd prime numbers. Then

󰀕
p

q

󰀖
= (−1)

p−1
2

q−1
2

󰀕
q

p

󰀖
.

b) (Jacobi [Ja37]) Let a and b be coprime odd positive integers. Then
󰀕
a

b

󰀖
= (−1)

a−1
2

b−1
2

󰀕
b

a

󰀖
.

Theorem 2 (Quadratic Reciprocity in Fq[t]).
Let q be an odd prime power, and let a, b ∈ Fq[t] be coprime monic polynomials. Then

(1)

󰀕
a

b

󰀖
= (−1)

q−1
2

deg a deg b

󰀕
b

a

󰀖
.

1
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Dedekind stated Theorem 2, when q is prime, in [De57] but did not prove it: he felt that
Gauss’s fifth proof of Theorem 1 carried over with little change (“the deductions [. . . ] are so
similar to the ones in the cited treatise of Gauss that no one can escape finding the complete
proof.”) The first published proof is due to Kühne [Kü02].

2. A low-hanging quadratic reciprocity law

We now give a further simple, but motivational, quadratic reciprocity law.

Theorem 3 (Quadratic Reciprocity in R[t]).
Let a, b ∈ R[t] be coprime monic polynomials. Then

(2)

󰀕
a

b

󰀖
= (−1)deg a deg b

󰀕
b

a

󰀖
.

Proof. For A ∈ R× we put

sgn(A) :=

󰀫
1 if A > 0,

−1 if A < 0.

Step 1: We will show that for all monic irreducible p ∈ k[t] and a, b ∈ k[t] such that (ab, p) = 1
we have

󰀃
ab
p

󰀄
=

󰀃
a
p

󰀄󰀃
b
p

󰀄
. From this it follows that the symbol

󰀃
a
b

󰀄
is bimultiplicative – i.e., for

all nonzero a1, a2, b ∈ k[t] with (a1a2, b) = k[t] we have
󰀕
a1a2
b

󰀖
=

󰀕
a1
b

󰀖󰀕
a2
b

󰀖
and

󰀕
b

a1a2

󰀖
=

󰀕
b

a1

󰀖󰀕
b

a2

󰀖
.

The monic irreducible polynomials in R[t] are t − A for A ∈ R and irreducible quadratics.
Evaluation at A gives an isomorphism R[t]/(t−A) ∼−→ R. For a ∈ R[t] with a(A) ∕= 0 we have

󰀕
a

t−A

󰀖
= sgn(a(A))

and it follows that for a, b ∈ R[t] with a(A)b(A) ∕= 0 we have
󰀕

ab

t−A

󰀖
= sgn(a(A)b(A)) = sgn(a(A)) sgn(b(A)) =

󰀕
a

t−A

󰀖󰀕
b

t−A

󰀖
.

In R[t]/(Q) ∼= C every element is a square, so for all a ∈ R[t] with (a,Q) = R[t] we have󰀃
a
Q

󰀄
= 1, and thus certainly for a, b ∈ R[t] with (ab,Q) = R[t] we have

󰀕
ab

Q

󰀖
=

󰀕
a

Q

󰀖󰀕
b

Q

󰀖
.

Step 2: Since both sides of (2) are multiplicative in a and b, we reduce to the case in which a
and b are moreover irreducible. If a = Q1 and b = Q2 are both quadratic then

󰀕
Q1

Q2

󰀖
= 1 = (−1)degQ1 degQ2

󰀕
Q2

Q1

󰀖
.

If Q ∈ R[t] be monic irreducible quadratic, then Q(R) ⊂ R>0, so for all A ∈ R we have
󰀕

Q

t−A

󰀖
= sgn(Q(A)) = 1 = (−1)deg(t−A) degQ

󰀕
t−A

Q

󰀖
.

Finally, if a = t−A and b = t−B for A ∕= B ∈ R then
󰀕
a(t)

b(t)

󰀖󰀕
b(t)

a(t)

󰀖
= sgn(B −A) sgn(A−B) = −1 = (−1)deg a deg b. □
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Theorem 2 looks strikingly similar to Theorem 3. The only difference is that the (−1)
q−1
2 over

Fq is replaced by −1 over R. This can be understood as follows: we have

[F×
q : F×2

q ] = 2 = [R× : R×2],

and thus in either field k we have a unique nontrivial quadratic character – i.e., a unique
nontrivial group homomorphism χ : k× → {±1}. Namely:

χ : F×
q → {±1}, a 󰀁→ a

q−1
2 , χ : R× → {±1}, a 󰀁→ sgn(a).

Thus if k is either Fq or R, then for coprime monic polynomials a, b ∈ k[t] we have
󰀕
a

b

󰀖
= χ(−1)deg a deg b

󰀕
b

a

󰀖
.

3. Reciprocity by resultant

Here is another way to look at the proof of Theorem 3: for coprime monic a, b ∈ R[t], let ã
(resp. b̃) be the “split part” of a (resp. b) – i.e., the largest monic divisor of a that has only
real roots. Then the above considerations show

󰀕
a

b

󰀖
=

󰀕
ã

b̃

󰀖
.

If we write out

ã = (t− α1) · · · (t− αr), b̃ = (t− β1) · · · (t− βs),

then using the bimultiplicativity of Jacobi symbols established above, we get

󰀕
ã

b̃

󰀖
=

󰁜

1≤i≤r, 1≤j≤s

󰀕
t− αi

t− βj

󰀖
= sgn

󰀳

󰁃
󰁜

1≤i≤r, 1≤j≤s

(βj − αi)

󰀴

󰁄 = sgnRes(b̃, ã),

where Res(b̃, ã) ∈ R[t] is the resultant of the polynomials b̃ and ã. We recommend [B, §IV.6]
for a treatment of resultants of univariate polynomials over an arbitrary commutative ring.

This motivates us to examine the connection between Jacobi symbols and resultants for all
coprime monic a, b ∈ R[t]. Let α,β ∈ C \ R be such that α /∈ {β,β} and let A ∈ R. Then

sgnRes((t− α)(t− α), t−A)) = sgn
󰀓
(α−A)(α−A)

󰀔
= 1 =

󰀕
t−A

(t− α)(t− α)

󰀖
,

sgnRes(t−A, (t− α)(t− α)) = sgn
󰀓
(A− α)(A− α)

󰀔
= 1 =

󰀕
(t− α)(t− α)

t−A

󰀖
,

and

sgn(Res((t− α)(t− α), (t− β)(t− β))) = sgn((α− β)(α− β)(α− β)(α− β))

= 1 =

󰀕
(t− β)(t− β)

(t− α)(t− α)

󰀖
.

Because Res(a, b) is also bimultiplicative, this establishes the following:

Theorem 4. Let a, b ∈ R[t] be coprime monic polynomials. Then

(3)

󰀕
a

b

󰀖
= χ(Res(b, a)) = sgnRes(b, a).
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For any field k and monic a, b ∈ k[t], we have the (obvious!) primordial reciprocity law

(4) Res(b, a) = (−1)deg a deg bRes(a, b).

We observe that (3) and (4) immediately imply (2).

It is natural to ask: does the analogous identity hold in Fq[t]? Indeed it does:

Theorem 5. Let a, b ∈ Fq[t] be coprime monic polynomials. Then

(5)

󰀕
a

b

󰀖
= χ(Res(b, a)) = Res(b, a)

q−1
2 .

We observe that (5) and (4) immediately imply (1). Ore gave a proof of Theorem 2 centered
around (5) in 1934 [Or34]. Several years earlier, Schmidt had proved Theorem 2 by an
equivalent approach [Sc27], but without drawing attention to the fact that the expressions
appearing in his proof could be described as resultants. (Both authors treat not only quadratic
reciprocity, but the higher reciprocity law described below in Theorem 6.) We believe that
Ore’s decision to make Theorem 5 explicit was a wise one; indeed, one of the main points of this
note to is demonstrate that (5) is a harbinger of a more general phenomenon. Contemporary
expositions (e.g. [R, Ch. 3], [T, §1.4]) seem to follow Schmidt rather than Ore, so that
Theorem 5 is no longer well known. The present authors learned of Theorem 5 from a more
recent paper of Hsu [Hs03], who seems to have independently rediscovered it.

When we say a field k “contains the n-th roots of unity,” we mean that the group of n-th
roots of unity in k has order n. This implies that the characteristic of k does not divide n.

And now the plot thickens: already in 1902, Kühne gave a higher reciprocity law in Fq[t].
For this, let n ∈ Z+ be such that n | q − 1: equivalently, Fq contains the n-th roots of unity.
Let µn ⊂ F×

q be the subgroup of n-th roots of unity. Then [F×
q : F×n

q ] = n, and the map

χn : F×
q → µn, a 󰀁→ a

q−1
n

induces an isomorphism F×
q /F×n

q
∼→ µn. Now for coprime a, p ∈ Fq[t] with p irreducible, we

define the n-th power residue symbol
󰀕
a

p

󰀖

n

:= a
qdeg p−1

n .

This extends by bimultiplicativity to a symbol
󰀃
a
b

󰀄
n
defined for all coprime a, b ∈ Fq[t] \ {0}.

Then we have the following result:

Theorem 6. Let q be a prime power, and let n | q − 1 be a positive integer. Let a, b ∈ Fq[t]
be coprime monic polynomials. Then:

a) (Ore)
󰀃
a
b

󰀄
n
= χn(Res(b, a)).

b) (Kühne)
󰀃
a
b

󰀄
n
= χn(−1)deg a deg b

󰀃
b
a

󰀄
n
= (−1)

q−1
n

deg a deg b
󰀃
b
a

󰀄
n
.

Again we observe that via the primordial law (4), Theorem 6a) implies Theorem 6b).

4. Statement of the Main Theorem

This brings us to a more precise goal: to generalize this “reciprocity by resultant” to k[t] for
other fields k. Let us begin with the n = 2 case, in which we want a character χ2 : k

× → {±1}
such that for all coprime monic a, b ∈ k[t] we have

(6)

󰀕
a

b

󰀖
= χ2(Res(b, a)).
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If this holds, then since χ2(Res(b, a)) is bimultiplicative, the Jacobi symbol
󰀃
a
b

󰀄
must be

bimultiplicative as well. The following result shows that this places severe restrictions on k.

Lemma 7. For a nonzero prime element p in a PID R, the following are equivalent:

(i) The map a ∈ (R/p)× 󰀁→
󰀃
a
p

󰀄
∈ {±1} is a group homomorphism.

(ii) The field l := R/(p) has at most two square classes: [l× : l×2] ≤ 2.

Proof. Let x, y ∈ l×. The homomorphism property of (i) fails iff there are nonsquares x, y ∈ l×

such that xy is also not a square iff the group l×/l×2 has more than two elements. □

Applying Lemma 7 with R = k[t], we find that if (6) holds, then every monogenic finite exten-
sion of k has at most two square classes. Henceforth we shall assume k is perfect, so using the
Primitive Element Theorem [L, Thm. V.4.6] the above condition becomes that every finite
extension of k has at most two square classes. More generally, if a perfect field k contains the
n-th roots of unity µn for some n ∈ Z+, and if by an n-th power residue symbol

󰀃
a
b

󰀄
n
we mean

a map to µn such that when b is irreducible we have
󰀃
a
b

󰀄
n
= 1 iff a is an n-th power in k[t]/(b),

then if there is a character χn : k
× → µn such that

󰀃
a
b

󰀄
n
= χn(Res(b, a)), the symbol

󰀃
a
b

󰀄
n
is

bimultiplicative, and it follows for every finite extension l/k, the group l×/l×n is cyclic, so
k/l has at most one cyclic degree n subextension.

These considerations lead us to the following class of fields. A perfect procyclic field
is a pair (k, F ) where k is a perfect field and F is a topological generator of gk := Aut(k/k):

that is, gk = 〈F 〉. A perfect field k with algebraic closure k admits a topological generator
iff every finite subextension l of k/k is cyclic Galois iff for all d ∈ Z+ there is at most one
degree d subextension of k/k. If k is perfect procyclic and l/k is a degree d subextension of
k/k, then we endow l with the structure of a perfect procyclic field by taking the topological
generator F d of gl.

Example 8.

a) For any prime power q, (Fq, F : x 󰀁→ xq) is a perfect procyclic field, with gFq
∼= Ẑ.

b) A field k is real-closed if it can be ordered and k(
√
−1) is algebraically closed. Then

gk = {1, F} has order 2 and (k, F ) is a perfect procyclic field.
c) Let C be an algebraically closed field of characteristic 0, and let k = C((X)) be the

Laurent series field over C. The Puiseux series field
󰁖

d∈Z+ C((X
1
d )) is an algebraic

closure of k. Choose for each d ∈ Z+ a primitive dth root of unity ζd ∈ C such that for
all m,n ∈ Z+ we have ζmmn = ζn. Let F ∈ gk be the unique element such that for all

d ∈ Z+, we have F (X
1
d ) = ζdX

1
d . Then (k, F ) is a perfect procyclic field with gk ∼= Ẑ

– a quasi-finite field. Quasi-finite fields appear in a generalization of local class field
theory due to Moriya, Schilling, Whaples, Serre and Sekiguchi [S, Ch. XIII].

d) If (k, F ) is perfect procyclic and l/k is any subextension of k/k, then l can be given
the structure of a perfect procyclic field: if every finite extension of k is cyclic Galois,
then the same holds for l [L, Cor. VI.1.11].

e) The perfect fields with procyclic absolute Galois group form an elementary class. That
is, there is a theory T in the first order language of fields whose models are precisely the
perfect fields with procyclic absolute Galois group. Thus an ultraproduct of such fields
can be given the structure of a perfect procyclic field. (A good reference for such things
is [FJ]. For a self-contained introduction to model theory and ultraproducts from the
field-theoretic perspective, see Chapter 7. That perfect fields with procyclic absolute
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Galois group form an elementary class follows from the proof of and Remark 20.4.5d).
That elementary classes are closed under ultraproducts follows from Proposition 7.7.1,
a result of 󰀀Los.)

f) (Artin-Quigley [Qu62]) Let K/k be a a field extension with K algebraically closed.
Let α ∈ K \ k, and let l be a maximal subextension of K/k such that α /∈ l. Such
fields exist by Zorn’s Lemma. Then K is an algebraic closure of l and [l(α) : l] = p is
a prime number. Moreover:

• Either l is perfect or k has characteristic p.
• If l is perfect, then gl = Aut(K/l) is isomorphic either to Z/2Z or to Zp. In
particular, l can be given the structure of a perfect procyclic field.

• If l is not perfect, then K/l is purely inseparable, and for all n ∈ Z+ there is a
unique subextension ln of K/k with [ln : l] = pn. Thus K =

󰁖
n ln.

• If α is transcendental over k, then for all prime numbers p there is a subextension
l of K/k that is maximal with respect to the exclusion of α with [l(α) : l] = p.
When p is the characteristic of k, the field l can moreover be chosen to be perfect
and can also be chosen to be imperfect. It follows that there are imperfect fields
having within their algebraic closure at most one degree n field extension for all
n ∈ Z+.

Let n ∈ Z+, let (k, F ) be a perfect procyclic field that contains the n-th roots of unity, and
let µn ⊂ k× be the group of n-th roots of unity in k. We define a homomorphism

χk,n : k
× → µn

as follows: for α ∈ k×, let α1/n be any n-th root of α in k, and put

χk,n(α) :=
F (α1/n)

α1/n
.

This does not depend on the choice of α1/n. Then χk,n induces an injective homomorphism

χn : k
×/k×n ↩→ µn.

Moreover, χk,n is obtained by composing the Kummer isomorphism k×/k×n ∼−→ Hom(gk, µn)
with the homomorphism Hom(gK , µn) → µn obtained by evaluating at the topological gener-
ator F . It follows that if mn is the gcd of n and the supernatural order of gk – in other words,
the largest divisor d of n such that gk has a finite quotient of order d – then k×n = k×mn and

χk,n : k
×/k×n = k×/k×mn ∼−→ µmn ⊂ µn.

Let a, p ∈ k[t] be coprime polynomials with p irreducible of degree d. Let ld/k be the unique
degree d subextension of k̄/k, so that (ld, F

d) is perfect procyclic. Let ι : k[t]/(p) ∼−→ ld be a
k-algebra isomorphism. Then we define the n-th power residue symbol

󰀕
a

p

󰀖

n

:= χld,n(ι(a mod p)).

We claim that this symbol does not depend upon the choice of ι. Indeed, the k-algebra
isomorphisms from k[t]/(p) to ld are the maps F i ◦ ι for some 0 ≤ i < d. For α ∈ k[t]/(p), let

ι(α)
1
n be an n-th root of ι(α). Then F i(ι(α)1/n) is an n-th root of F i(ι(α)), so

χld,n(F
i(ι(α))) =

F d(F i(ι(α)1/n))

F i(ι(α)1/n)
= F i

󰀣
F d(ι(α)1/n)

ι(α)1/n

󰀤
=

F d(ι(α)1/n)

ι(α)1/n
= χld,n(ι(α))
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since F (ι(α)1/n)

ι(α)1/n
∈ µn ⊂ k, establishing the claim. This permits us to identify k[t]/(p) with ld

and
󰀃 ·
p

󰀄
n
with χld,n. For a, b ∈ k[t] coprime monic polynomials, write b = up1 · · · pr as above

and put
󰀃
a
b

󰀄
n
:=

󰁔r
i=1

󰀃
a
pi

󰀄
n
. The bimultiplicativity of

󰀃
a
b

󰀄
n
is immediate from the definition.

At last we can state the main result of this note.

Theorem 9. Let n ∈ Z+, and let k be a perfect procyclic field that contains the n-th roots of
unity. Let a, b ∈ k[t] be coprime polynomials. Then:

a) If b is monic, we have

(7)

󰀕
a

b

󰀖

n

= χk,n(Res(b, a)).

b) If a and b are monic, we have

(8)

󰀕
a

b

󰀖

n

= χk,n(−1)deg a deg b
󰀕
b

a

󰀖

n

.

Once again we observe that via (4), Theorem 9a) implies Theorem 9b).

Theorem 9 recovers all the reciprocity results in k[t] discussed above and via Example 8
gives new ones. Here is one application:

Corollary 10. Let k be a perfect procyclic field containing the n-th roots of unity for all
n ∈ Z+ – e.g. k = C((X)). Let a, b ∈ k[t] be coprime monic polynomials. Then:

a) We have
󰀃
a
b

󰀄
n
=

󰀃
b
a

󰀄
n
.

b) If a and b are moreover irreducible, then a is an n-th power modulo b iff b is an n-th
power modulo a.

Proof. For all n ∈ Z+, the hypothesis implies that −1 is an n-th power, so χk,n(−1) = 1. □

5. Proof of the Main Theorem

Once again it is enough to show (7), for then the primordial reciprocity law (4) gives (8).

For a commutative ring k and a k-algebra l that is finite-dimensional and free as a k-module,
letNl/k : l → k be the norm map: that is, for x ∈ l, Nl/k(x) is the determinant of x• ∈ Endk(l).

Thus Nl/k : l
× → k× is a group homomorphism.

Lemma 11. Let k be a commutative ring, let a, b ∈ k[t] \ {0} with b monic. Then

(9) N
k[t]/(b)

󰀑
k
(a mod b) = Res(b, a).

Proof. See [B, Prop. 7, pp. IV.77]. For our application, it suffices to have (9) when b is
irreducible over k and k[t]/(b) is Galois over k. In that case the following argument suffices:
We may view ℓ as k(β), where β := t mod b. Using βj for the Galois conjugates of β, we have
b(t) =

󰁔
j(t− βj). Factoring a(t) = a0

󰁔
i(t− αi) in a suitable extension of ℓ, we find that

N
k[t]/(b)

󰀑
k
(a mod b) = Nℓ/k(a(β)) =

󰁜

j

a(βj) = adeg b0

󰁜

i,j

(βj − αi) = Res(b, a). □
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Let (k, F ) be a perfect procyclic field containing the n-th roots of unity µn. Because both sides
of (7) are multiplicative in b, it suffices to treat the case in which b = p is monic irreducible, say
of degree d. As justified above, we identify k[t]/(p) with ld ⊂ k and

󰀃 ·
p

󰀄
n
with χld,n : l

×
d → µn.

Then by Lemma 11 it suffices to show that

χld,n = χk,n ◦Nld/k.

So let α ∈ l×d . Then we have

Nld/k(α) =

d−1󰁜

i=0

F i(α).

Since
󰁔d−1

i=0 F i(α1/n) is an n-th root of
󰁔d−1

i=0 F i(α), we have

χn,k(Nld/k(α)) =
F (Nld/k(α)

1/n)

Nld/k(α)
1/n

=
F (

󰁔d−1
i=0 F i(α1/n))

󰁔d−1
i=0 F i(α1/n)

=
F d(α1/n)

α1/n
= χn,ℓd(α).

6. Comments and complements

6.1. Procyclic absolute Galois groups. In order to better understand the scope of Theo-
rem 9 we give the following classification of absolute Galois groups of perfect procyclic fields.

Proposition 12.

a) Let k be a field with procyclic absolute Galois group gk. Then exactly one of the
following holds:
(i) k is separably closed. Equivalently, gk is the trivial group.
(ii) k is real-closed. Equivalently, gK has order 2.
(iii) There is a nonempty set S of prime numbers such that as topological groups, we

have gk ∼=
󰁔

ℓ∈S Zℓ.
b) Conversely, if G is the trivial group, the group of order 2 or

󰁔
ℓ∈S Zℓ for some

nonempty set of prime numbers S, then there is a perfect field k with absolute Galois
group gk ∼= G.

Proof. Let G be a procyclic group. Then we have G =
󰁔

ℓGℓ, where the product extends
over the prime numbers and each Gℓ is isomorphic to a quotient of Zℓ – i.e., isomorphic either
to Zℓ itself or to Z/ℓaZ for some a ∈ Z+ [W, Prop. 2.4.3 and Exercise 1.15]. Thus if G is
torsionfree, then there is a subset S of the prime numbers such that G ∼=

󰁔
ℓ∈S Zℓ. Each of

these groups occurs up to isomorphism as a closed subgroup of the absolute Galois group of
Fp, so occurs as the absolute Galois group of an algebraic extension of Fp.

Now let k be a (not necessarily perfect) field, with absolute Galois group gk = Aut(ksep/k) =
Aut(k/k). Let σ ∈ gk be a nontrivial element of finite order. By a theorem of Artin-Schreier

[Cl-FT, Thm. 15.24], the automorphism σ has order 2 and k
〈σ〉

is real-closed. Moreover, by
[E, Prop. 19.4.3], 〈σ〉 is self-normalizing in gk, which is impossible if gk is commutative of
order greater than 2. □

6.2. Supplementary Laws. When R = Z, Fq[t] or R[t], to compute all Legendre symbols
one needs some supplements to the quadratic reciprocity law:

Proposition 13.

a) For all odd b ∈ Z+, we have
󰀃−1

b

󰀄
= (−1)

b−1
2 .

b) For all odd b ∈ Z+, we have
󰀃
2
b

󰀄
= (−1)

b2−1
8 .
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c) For q an odd prime power, u ∈ F×
q and b ∈ Fq[t] \ {0}, we have

󰀃
u
b

󰀄
= u

q−1
2

deg b.

d) Let A ∈ R×, and let b ∈ R[t] \ {0}. Then we have
󰀃
A
b

󰀄
= sgn(A)deg b.

In all cases, after checking that both sides of the claimed identity are multiplicative in b, we
reduce to the case in which b = p is a prime element. Then part a) is a consequence of the

“Euler relation”
󰀃
a
p

󰀄
= a

p−1
2 : this is just the explicit form of the quadratic character χ2 : F×

q →
{±1}. Similar remarks apply to part c) upon observing that qdeg b−1

2 = q−1
2 (1+q+· · ·+qdeg b−1)

and that u is fixed by the qth power map. For part d) one reduces to the cases b = t − a or
b = Q irreducible quadratic, which are immediate.

Thus the only part with any depth is part b) – which has no analogue in the k[t] case. In
fact it follows from Theorem 1 and Proposition 13a): for odd n ≥ 3, we have
󰀕
2

n

󰀖
=

󰀕
−1

n

󰀖󰀕
n− 2

n

󰀖
=

󰀕
−1

n

󰀖󰀕
n

n− 2

󰀖
= (−1)

n−1
2

󰀕
2

n− 2

󰀖
= . . .

= (−1)
n−1
2 (−1)

n−3
2 · · · (−1)1

󰀕
2

1

󰀖
= (−1)1+...+n−1

2 = (−1)
n2−1

8 .

Proposition 13c) combines with Theorem 2 to give a reciprocity statement for
󰀃
a
b

󰀄
n
for all

coprime a, b ∈ Fq[t] and n | q − 1: see e.g. [R, Thm. 3.5].
In our generalized setting, the notion of a supplementary law becomes tautologous. Indeed,

if k is a perfect procyclic field containing the n-th roots of unity, then for u ∈ k× and irreducible
p ∈ k[t] of degree d, we have

󰀃
u
p

󰀄
= χld,n(u) – by definition!

6.3. The case k = R. Several years ago the first author found Theorem 3 while exploring rep-
resentation theorems for binary quadratic forms over Fq[t] and R[t]. For instance, Proposition
13c) applies to prove a result of Leahey [Le67] and Gerstein [Ge04, p. 133, Prop.]:

Proposition 14. Let q be an odd prime power, and let D ∈ F×
q be such that −D /∈ F×2

q . For
c ∈ Fq[t] \ {0}, the following are equivalent:

(i) There are x, y ∈ Fq[t] such that x2 +Dy2 = c.
(ii) For every monic irreducible p ∈ Fq[t] of odd degree, there is r ≥ 0 such that p2r | c

and p2r+1 ∤ c.

Similarly Proposition 13d) applies to prove the following well-known analogue of Fermat’s
Two Squares Theorem in R[t]:

Proposition 15. Let c ∈ R[t]. Then there are x, y ∈ R[t] such that x2+y2 = c iff c(R) ⊂ R≥0.

Concerning precedents of Theorem 3 in the literature, we found (only) the following ones:

• In [Kn66a] and [Kn66b], J.T. Knight develops some foundations of a theory of qua-
dratic forms over R[t]. In [Kn66a, Prop. 2.7] he gives the analogue in R(t) of Hilbert’s
reciprocity law for quaternion algebras. He then writes “This is a much weaker result
than the classical analogue, and is not worth deducing the trivial law of quadratic
reciprocity from.” However, on the first page of [Kn66b], Knight writes: “We can
also develop a theory of quadratic residues in R[t], defining the generalised Legendre
symbol

󰀋
α
β

󰀌
to be 1 or −1 according as x2 ≡ α (mod β) has or has not a root [. . . ] we

invite the reader to verify: Lemma 1.2. Suppose (α,β) = 1; then
󰀋
α
β

󰀌
= 1 iff ∀ξ ∈ R,

β(ξ) = 0 =⇒ α(ξ) > 0.” When β is irreducible, Knight’s symbol
󰀋
α
β

󰀌
coincides with

the Legendre symbol, but in general it does not correspond to the Jacobi symbol. This
symbol does not appear elsewhere in [Kn66b].
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• In an unpublished preprint of T.J. Ford from circa 1995 [Fo95], Theorem 3 appears
in the case in which a and b are irreducible (from which the general case follows by
bimultiplicativity). Ford deduces it from a reciprocity law in the Brauer group of
R(t). On the one hand, this is an amusingly erudite proof of such a simple result,
and this informed our decision to include a straightforward, elementary proof. On
the other hand, Ford’s approach is quite interesting. It may be possible to prove
our Theorem 9 via similar Brauer group considerations. (For starters: If k is perfect
procyclic and not real-closed, then the Brauer group of k((t)) is canonically isomorphic
to Hom(gK ,Q/Z), which is a subgroup of Q/Z. If k is real-closed then the Brauer
group of k((t)) is isomorphic to (Z/2Z)2.)

6.4. Reciprocity by resultant over Z. We conclude with a brief discussion of proofs of
quadratic reciprocity in Z that go via the primordial reciprocity law. Here we relied on
Lemmermeyer’s invaluable compendium [Le] to locate relevant references.

In 1876, Kronecker [Kr76] showed that for all odd coprime positive integers a, b, the Jacobi
symbol

󰀃
a
b

󰀄
satisfies

(10)

󰀕
a

b

󰀖
= sgn

󰀣
󰁜

0<u<a/2
0<v<b/2

󰀓u
a
− v

b

󰀔󰀤
.

The right-hand side of (10) can be interpreted as the sign of a resultant: Let f be any
real-valued, strictly decreasing function on [0, 1/2]. For each odd positive integer m, put

Ψm(x) :=
󰁜

0<w<m/2

󰀓
x− f

󰀓w

m

󰀔󰀔
,

so that Ψm(x) ∈ R[x] is monic of degree m−1
2 . Since u

a −
v
b has the same sign as f

󰀃
v
b

󰀄
−f

󰀃
u
a

󰀄
,

eq. (10) implies that

(11)

󰀕
a

b

󰀖
= sgnRes(Ψb,Ψa).

Theorem 1b) follows immediately via the primordial reciprocity law.
Introducing resultants in this way appears somewhat perverse: the identity (10) on its own

immediately implies the reciprocity law! But for certain f , one can prove (11) independently
of (10), and thus derive a fresh proof of Theorem 1. Pocklington [Po44], explicitly motivated
by (10), proves (11) directly for (distinct, odd) primes a, b, and f(x) = 2 cos(2πx). Theorem
1a) follows immediately. See [ACL13] for a different proof of (11) for prime a, b, with the
same f(x). Taking instead f(x) = 2 cos(2πx)− 2 = −4 sin2(πx), Hambleton and Scharashkin
prove (11) for primes a, b in [HS10]. Already in 1900, Fischer [Fi00] had shown that

󰀃
a
b

󰀄
=

sgnRes(Φa,Φb) for all odd coprime positive a, b, where now f(x) = 4 sin2(πx). This last f(x)
is increasing on [0, 1/2] rather than decreasing, which explains why the roles of a and b are
reversed vis-à-vis (11); of course this does not affect the deduction of the reciprocity law.
We remark that for all of these (closely related) choices of f , each of the polynomials Ψm(x)
belong to Z[x], and all of the resultants that appear come out as ±1, so that in fact it is not
necessary to apply the sgn function.
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