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Abstract. We present seven theorems on the structure of prime order torsion

points on CM elliptic curves defined over number fields. The first three results

refine bounds of Silverberg and Prasad-Yogananda by taking into account the
class number of the CM order and the splitting of the prime in the CM field. In

many cases we can show that our refined bounds are optimal or asymptotically

optimal. We also derive asymptotic upper and lower bounds on the least degree
of a CM-point on X1(N). Upon comparison to bounds for the least degree for

which there exist infinitely many rational points on X1(N), we deduce that,
for sufficiently large N , X1(N) will have a rational CM point of degree smaller

than the degrees of at least all but finitely many non-CM points.

1. Introduction

1.1. Notation.

For d ∈ Z+, we define the following quantities:

T (d): the supremum of the orders of the groups E(K)[tors] as K ranges over
all number fields of degree d and E ranges over all elliptic curves defined over K.

N(d): the supremum of all orders of K-rational torsion points P ∈ E(K), with
K and E varying as above. (Equivalently, the supremum of all exponents of groups
E(K)[tors]).

P (d): the supremum of all prime orders of K-rational torsion points P ∈ E(K),
with K and E varying as above.

We shall have occasion to consider analogues T•(d), N•(d), P•(d) of the above
quantities, which are defined by restricting to some subset of elliptic curves E/K .
Specifically we will be interested in the set of all elliptic curves with integral mod-
ulus j(E) and also the set of all elliptic curves with complex multiplication.

1.2. Background on torsion.

Since the torsion subgroup of an elliptic curve over a number field is a finite abelian
group with at most two generators, we have

(1) P (d) ≤ N(d) ≤ T (d) ≤ N(d)2.
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The uniform boundedness theorem of L. Merel [Mer96] asserts T (d) < ∞ for
all d ∈ Z+. The finiteness of P (d) and N(d) follows immediately.

Merel’s proof gives an explicit upper bound on T (d), which was then improved
by work of Merel, Oesterlé and Parent. For instance, Parent showed [Par99] that if
a power pa of a prime p > 3 divides the order of the torsion subgroup of an elliptic
curve over a degree d number field, then

pa ≤ 65(3d − 1)(2d)6.

However, it is a “folk conjecture” that there exists a constant α such that T (d) =
O(dα). In other words, it is believed that Merel’s bounds are a full exponential
away from the truth. In fact, we record here a more precise conjecture:

Conjecture 1.
There is a C2 > 0 such that T (d) ≤ C2d log log d for all d ∈ Z+.

Conjecture 1 is very close to being the most ambitious conceivable one: we shall
show (Theorem 6) that there is a positive constant C1 and a strictly increasing
sequence {dn}∞n=1 of positive integers such that N(dn) > C1dn

√
log log dn for all n.

The only values of d for which any of T (d), N(d), P (d) are known are:

T (1) = 16, N(1) = 12, P (1) = 7 ([Maz77]).

T (2) = 24, N(2) = 18, P (2) = 13 ([Kam86], [Kam92], [KM88]).

P (3) = 13 ([Par03]).

While this article was in revision, M. Stoll announced that he, together with S.
Kamienny and W. Stein, have computed that P (4) = 17, but the proof has not
yet appeared in finished form. Maarten Derickx is currently completing a master’s
thesis computing P (5) and getting certain (new) bounds on P (6) and P (7). This
exciting recent work has pushed the boundary of what is known, but computation
of P (n) for moderately large n – let alone for all n at once – seems well out of
current reach. So it seems natural to find some more tractable sub-problem and
examine the extent to which it is representative of the general case.

One approach is to concentrate on the case of elliptic curves with algebraic inte-
gral j-invariant (henceforth integral modulus). In this case we write TIM(d), NIM(d),
PIM(d) for the order, exponent and largest prime dividing the order of an elliptic
curve E with integral modulus defined over any number field of degree d. For such
curves the uniform boundedness is much easier to prove. Moreover, in the inte-
gral modulus case the computation of all torsion subgroups over Q was done by
G. Frey in 1977 [Fre77]. Analogous computations in higher degree are significantly
more difficult and have been the subject of several papers of H. Zimmer and his
collaborators: the 1976 paper [Zim76] lays foundations by giving a generalization of
the Lutz-Nagell restrictions on torsion points to arbitrary number fields; the 1989
paper [MSZ89] enumerates the torsion subgroups of elliptic curves with integral
modulus over quadratic fields (d = 2); special kinds of cubic fields (d = 3) were
considered in 1990 [FSWZ90] and the case of a general cubic field was completed
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in 1997 [PWZ97]. Only a very restricted class of quartic fields has ever been con-
sidered in the case of integral modulus, so already the case d = 4 seems to be out
of reach.

However, Hindry and Silverman have shown [HS99] that

(2) ∀d ∈ Z+, TIM(d) ≤ 1977408d log d,

(3) ∀d ≥ 25, TIM(d) ≤ 498240d log d.

Another approach is to search for all finite groups G which arise as the torsion
subgroup of infinitely many elliptic curves defined over (varying) number fields
of degree d. In this case the computations in degree up to d = 4 have been
done by Jeon, Kim, Park and Schweizer [JKS04], [JK06], [JKP06], and reason-
ably good asymptotic bounds can be obtained by applying theorems of Faltings
and Abramovich. This work is described in more detail below.

In this paper we shall usually restrict to elliptic curves with complex multiplication.
This is a very special subclass of the class of integral moduli curves, comprising for
each degree d only finitely many j-invariants (but infinitely many nonisomorphic
twists for a given j-invariant). Accordingly, we are able to derive more precise
results than in the general case. We also take up the task of relating the special
case of CM points to the general case.

1.3. Prior results.

Let F be a field of characteristic 0 and E/F an elliptic curve. We say that E has
complex multiplication (henceforth CM) if the ring EndE of endomorphisms
of E defined over an algebraic closure F of F is strictly larger than Z. In this case,
End0(E) := End(E) ⊗Z Q is an imaginary quadratic field Q(

√
D) and End(E) is

an order in End0(E).
As alluded to above, we write TCM(d), NCM(d), PCM(d) for, respectively, the

largest order, exponent and prime dividing the order of any CM elliptic curve de-
fined over any number field of degree d.

The j-invariant of a CM elliptic curve is an algebraic integer [Sil94, Thm. II.6.1],
so that by (2), (3) we have #E(F )[tors] = O(d log d). If we restrict to the order of a
single torsion point – i.e., to NCM(d) rather than TCM(d) – we can do qualitatively
better: one knows that NCM(d) = o(d log d). More precisely:

Theorem. (Silverberg [Sbg88] [Sbg92], Prasad-Yogananda [PY01]) Let F be a
number field of degree d, and let E/F be an elliptic curve with complex multipli-

cation by an order O in the imaginary quadratic field K. Let w = w(O) = #O×
(so w = 2, 4 or 6) and let e be the exponent of E(F )[tors]. Then:
a) ϕ(e) ≤ wd (ϕ is Euler’s totient function).
b) If F ⊇ K, then ϕ(e) ≤ wd

2 .
c) If F does not contain K, then ϕ(#E(F )[tors]) ≤ wd.

Applying the theorem necessitates separate consideration of three cases:

Case 1: O = Z[ 1+
√
−3

2 ], of discriminant −3 and w(O) = 6. We get

(4) ϕ(e) ≤ 6d.
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Case 2: O = Z[
√
−1], of discriminant −4 and w(O) = 4. We get

(5) ϕ(e) ≤ 4d.

Case 3: For every other order, w(O) = 2. We get

(6) ϕ(e) ≤ 2d.

Let us call (4), (5) and (6) the SPY bounds.

Recall the classical result ϕ(N) � N
log logN (e.g., [HW, Thm. 328]). From this

and the SPY bounds we deduce that there exists a positive constant C such that

(7) NCM(d) ≤ Cd log log d.

This improves upon what one gets by applying (2):

NCM(d) ≤ NIM(d) ≤ TIM(d) ≤ 1977408d log d.

Theorem 6 below asserts NCM(d) 6= o(d
√

log log d), so that our understanding of
the true lower order of magnitude of NCM(d) is rather good. On the other hand, it
is vexing that we cannot get any improvement on

TCM(d) ≤ TIM(d) = O(d log d)

by applying the methods of SPY, or indeed by any other means that we know.

1.4. Computational results.

We briefly report on some calculations done by the University of Georgia Num-
ber Theory VIGRE Research Group, which has implemented an algorithm (c.f.
[Cla04]) to do the following: given a positive integer d, compute the complete list
of isomorphism classes of finite abelian groups which arise as the full torsion sub-
group of some CM elliptic curve with defined over any number field of degree d.

This algorithm requires knowledge of the CM j-invariants (more precisely, their
minimal polynomials) of degree d′ strictly dividing d, so in full generality requires
an enumeration of the set of imaginary quadratic fields with any given class num-
ber, i.e., an effective solution of the Gauss class number problem. Work of
M. Watkins [Wat04] gives a solution to this problem up to class number 100, so
the data from ibid. enable us, in theory, to run the algorithm for all degrees up
to d = 201. In fact this is more class number data than we have been able to
use: one of the steps in our algorithm is the computation of an explicit polynomial
PN (x, y) = 0 which (birationally) defines the modular curve X1(N), a computation
which became prohibitively expensive for us around N = 79. For further informa-
tion on the computation of equations for X1(N), the reader is encouraged to see
A. Sutherland’s tables [S12].

The complete list of possible torsion subgroups of CM elliptic curves defined over
any degree d number field has been computed by our VIGRE research group for
1 ≤ d ≤ 13, as will be described elsewhere. The case of d = 1 is a 1974 result of
L. Olson [Ols74]. For d = 2 and 3 the results are subsumed by the calculations of
[MSZ89], [PWZ97]. To the best of our knowledge the cases 4 ≤ d ≤ 13 had not
been computed before.

Upon restriction from TCM(d) to PCM(d), the above problem can be rephrased
as follows: for a fixed d, find all prime numbers N such that the modular curve
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X1(N) has a CM point of degree d. It is natural to consider also the following
“converse problem”: for fixed prime N , find the smallest degree of a CM point on
X1(N). Our algorithm works equally well on this converse problem, and we present
the solution, for all N ≤ 79, in the following table:1

TABLE 1

N d D
2 1 -3, -4,-7, -8, -12, -16, -28
3 1 -3, -12, -27
5 2 -4
7 2 -3
11 5 -11
13 4 -3
17 8 -4
19 6 -3
23 22 -7, -11, -19, -28, -43, -67
29 14 -4
31 10 -3
37 12 -3
41 20 -4
43 14 -3
47 46 -11, -19, -43, -67, -163
53 26 -4
59 58 -8, -11, -43, -67
61 20 -3
67 22 -3
71 70 -7, -11, -28, -67, -163
73 24 -3
79 26 -3

Looking through the data one observes that much, but not all, of the time, the SPY
bounds are not sharp, so it is natural to ask for refinements. In the next section we
shall present several such results. Theorem 2 refines the SPY bounds, by including
a factor of the class number h(D) as well as giving a much larger lower bound in
case (DN ) = −1. Theorem 3 gives conditions under which one gets an extra factor
of 2 in the SPY-type bounds. Moreover, for N sufficiently large compared to D,
the bounds of Theorem 3 are optimal.

1.5. Theoretical results I: Optimal bounds on prime order torsion points.

Theorem 1.
a) For every prime N ≡ 1 (mod 3), there exists an elliptic curve E over a number
field K of degree N−1

3 , with j(E) = 0, and with a K-rational N -torsion point.
b) There exists an absolute constant N0 such that for all primes N ≥ N0:
(i) if X1(N) has a CM point of degree d, then d ≥ N−1

3 ;

1Some preliminary calculations were done by the first author. The calculations were rechecked

and completed by Steve Lane, who also pointed out – several times – an error in the preliminary
calculations at N = 11, which turned out to be very interesting and significant.
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(ii) if X1(N) has a CM point of degree d < N−1
2 then N ≡ 1 (mod 3), d = N−1

3
and j(E) = 0.
(iii) If N ≡ −1 (mod 3) and X1(N) has a CM point of degree d < N − 1, then
N ≡ 1 (mod 4), d = N−1

2 and j(E) = 1728.

Remark 1.1: The data suggests that it may be possible to take N0 = 5.

Theorem 2. Let OK be the maximal order in K = Q(
√
D), F a number field, and

E/F an elliptic curve with OK multiplication. Let w(K) = #O×K . Suppose that
E(F )[tors] contains an element of odd prime order N .
a) (DN ) = 1, then

(N − 1) · 2h(K)

w(K)
| [KF : Q].

b) If (DN ) = −1, then

(N2 − 1) · 2h(K)

w(K)
| [KF : Q].

Theorem 3. Let O be an order in the field K = Q(
√
D), w(O) = #(O×) and

h(O) = # Pic(O) the class number of O. Then:
a) For every odd prime N which splits in K, there exists an O-CM elliptic curve

defined over a number field of degree 2(N−1)· h(O)
w(O) with a rational N -torsion point.

b) There is an N0 = N0(D) such that for N ≥ N0, the least degree of an O(D)-CM

point on X1(N) is at least 2(N−1)· h(O)
w(O) if N splits in K and at least

(
N2 − 1

) h(O)
w(O)

otherwise.

Remark 1.2: Taking O to be the quadratic order of discriminant −3 in Theorem
3a), we recover Theorem 1a). As we shall see, the other parts of Theorem 1 are
quick consequences of Theorem 3 together with the SPY-bounds, but it seemed
worthwhile to call attention to the extremal behavior coming from the quadratic
orders with nontrivial units.

1.6. Theoretical results II: CM points of small degree on X1(N).

Throughout this section N denotes a prime number different from 2 and 3.

Define dCM(N) to be the least degree of a CM point on X1(N).

Theorem 1 shows that the smallest (resp. second smallest) possible degree of a
CM point on X1(N) is N−1

3 (resp. N−1
2 ), and shows that this degree can be at-

tained iff N ≡ 1 (mod 3) (resp. N ≡ 1 (mod 4)). In particular, as N ranges over
all primes N which are not 11 (mod 12), the least degree of a CM point on X1(N)
is linear in N . Notice that the excluded set of primes N ≡ 11 (mod 12) has den-
sity 1

4 in the set of all primes. By Theorem 2, the problem of bounding the upper
order of dCM(N) as N ranges over prime numbers, comes down to finding, for a

given prime N , an imaginary quadratic field Q(
√
D) such that (DN ) = −1 and with

class number h(D) as small as possible. By applying what is known about these
elementary – but difficult! – analytic problems, we arrive at the following result.

Theorem 4. Put c = 1
4e
− 1

2 : “Burgess’s constant”.
a) For any ε > 0, there exists Cε such that for any prime N , the curve X1(N) has
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a CM point of degree less than CεN
1+c/2+ε = CεN

1.078...+ε.
b) Assuming the Generalized Riemann Hypothesis (GRH), the least degree of a CM
point on X1(N) is O(N logN log logN).

However, dCM(N) is not bounded by a linear function of N .

Theorem 5. For any C > 0, there is a positive density set P of prime numbers
such that for all N ∈ P, the least degree of a CM point on X1(N) exceeds CN .

Theorem 6. a) There exists C > 0 such that for any F/Q with [F : Q] = d and
any CM elliptic curve E/F , one has exp(E(F )[tors]) ≤ Cd log log d.
b) There exists a sequence Fn of number fields, of degree dn = [Fn : Q] tending to
infinity, and CM elliptic curves En/Fn such that

exp(En(Fn)[tors])� dn
√

log log dn.

We have already seen that part a) is a consequence of the SPY bounds; we repeat it
here for the sake of parallelism. Neither is part b) very difficult: all in all Theorems
4 and 5 seem to lie significantly deeper.

1.7. Theoretical results III: small degree points on Y1(N): comparison
with non-CM case.

The overarching problem is to understand all points of degree d on the family
of modular curves Y1(N). Merel’s theorem asserts that for fixed d the set of all
such points on all curves Y1(N) is finite, so it is natural to enumerate this list.
Conversely, one can fix N and ask for the least degree of a noncuspidal point on
X1(N). In the previous section we presented results giving rather tight estimates
on the least degree of a noncuspidal CM point. Therefore the key issue is: how
many non-CM points are there of small degree?

The next result gives a precise sense in which d ≈ N2 is the threshold between
small degree and large degree:

Theorem 7. Let N > 3 be a prime number. Then:
a) The set of points of X1(N) of degree less than d 7

3200 (N2−1)e is finite. Assuming

Selberg’s eigenvalue conjecture the bound can be improved to d 1
384 (N2 − 1)e.

b) The set of points of X1(N) of degree at most N2−12N+11
12 is infinite.

Remark 1.3: The proof of part a) uses deep theorems of Faltings, Frey and Abramovich,
but the deduction itself is now routine. Essentially the same result appears as
[JKS04, Cor. 1.4], the only difference being that we get a sharper bound by restric-
ing to prime N . Part b) is much more elementary. Nevertheless, it is in the spirit
of this paper to pursue quantitative rather than just qualitative results, and in this
regard the fact that we can compute the “threshold” value of d sharply to within
a factor of 32 seems interesting. For instance, it raises the question of whether the
truth lies closer to 1

384N
2 or to 1

12N
2.

Remark 1.4: Selberg’s eigenvalue conjecture states that for a modular curve Y (Γ) :=
Γ\H associated to a congruence subgroup Γ ⊂ PSL2(Z), the least positive eigen-
value λ1 of the hyperbolic Laplacian on Y (Γ) satisfies λ1 ≥ 1

4 . Selberg himself

showed λ1 ≥ 3
16 ; in 1994, Luo, Rudnick and Sarnak showed λ1 ≥ 21

100 ; this the
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bound we use in our unconditional estimate. As of this writing, the best known
estimate on λ1 is due to Kim and Sarnark: λ1 ≥ 975

4096 > 0.238. Thus the im-
provement in the upper bound of part a) gained by assuming Selberg’s conjecture
is small compared to the discrepancy between the upper bound of part a) and the
lower bound of part b).

Application: For N = 127 the least degree of a rational CM point is 42, whereas
– assuming Selberg’s eigenvalue conjecture – the bound of Theorem 7a) gives that
there are only finitely many points (if any, of course!) on Y1(127) of any smaller
degree. For all larger N ≡ 1 (mod 3), the set of points whose degree is less than or
equal to the minimal degree of a CM point is finite.

On the other hand, Theorem 7b) guarantees that there are infinitely many points
of degree less than the smallest CM point for N ≤ 13. When N = 17 the bound
ensures infinitely many points of degree at most 8, and the table above shows that
the least degree of a rational CM point is 8. But in fact there exists a degree 4
map from X1(17) to the projective line, so that there are infinitely many rational
points of degree at most 4. This suggests that there is room for improvement in
the bound of Theorem 7b).

Finally we note that it is possible to show that if N > 911, there are only finitely
many points of degree less than the least degree of a CM point on X1(N). This
result may be found in Appendix A.
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2. Background on elliptic curves and complex multiplication

2.1. Some facts about elliptic curves with complex multiplication. Let E
be an elliptic curve over any field K. The neutral point for the group law will
be denoted by O. A K-rational endomorphism of E is a morphism of K-varieties



TORSION POINTS ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION 9

ϕ : E → E such that ϕ(O) = O. Then ϕ induces an endomorphism (i.e., self-
homomorphism) on the group E(L) of L-rational points, for any field extension L
of K. By definition, the endomorphism ring of E is the set of all K-rational endo-
morphisms of E, endowed with the structure of a ring under pointwise addition and
composition. As for any ring, there is a natural homomorphism ι : Z→ End(E), in
which the image of n is the multiplication by n map on E, traditionally denoted [n].

In all cases ϕ is an injection and End(E), as an abelian group, is a free Z-module
of rank 1, 2 or 4 [Sil86, §III.9]. When End(E) has rank 4, the endomorphism
ring is noncommutative, an order in a definite rational quaternion algebra. Such
an elliptic curve is said to be supersingular; supersingular elliptic curves over K
exist iff K has positive characteristic. So if K has characteristic 0, we have either
End(E) = Z, or End(E) ∼= Z2 as a free abelian group; in the latter case End(E) is
isomorphic to an order O of an imaginary quadratic field Q(

√
−n), and “thus” we

say that E has complex multiplication. More precisely, we say E has O-CM if
End(E) ∼= O. Since the ring O has exactly one nontrivial automorphism – complex
conjugation – if End(E) ∼= O, there are two such isomorphisms.

Let D0 be a fundamental imaginary quadratic discriminant, i.e., the discrim-
inant of the full ring of integers of some imaginary quadratic field. More concretely,
D0 is a negative integer which is either (i) congruent to 1 (mod 4) and squarefree,
or (ii) congruent to 0 (mod 4) and such that D0

4 is squarefree. Put

τD0
=
D0 +

√
D0

2
.

Every imaginary quadratic order O in Q(
√
D0) is of the form Z[fτD0

] for a uniquely
determined f ∈ Z+, the conductor of O. Thus an order is determined by its fun-
damental discriminant D0 – the discriminant of the full ring of integers of O ⊗ Q
– and f . On the other hand, an order is also determined by its discriminant
D = f2D0. This means that for any imaginary quadratic discriminant D – i.e.,
an integer D with D < 0 and D ≡ 0, 1 (mod 4) – there exists a unique (up to
isomorphism) imaginary quadratic order O(D) of discriminant D.

For any integral domain R, one may consider its Picard group Pic(R), of rank
one locally free R-modules under tensor product. Otherwise put, Pic(R) is the
quotient of the group of invertible fractional R-ideals by the subgroup of principal
R-ideals. The class number h(R) is the cardinality of Pic(R). For an arbitrary
domain R, the class number may well be infinite, but it is finite when R is an order
in any algebraic number field, so in particular when R = R(n, d) is an imaginary
quadratic order. When R is a Dedekind domain all nonzero fractional ideals are
invertible, and Pic(R) = Cl(R) is the usual ideal class group.

We abbreviate h(O(D)) to h(D), and if K = Q(D0) is an imaginary quadratic
field, then the class number of K, denoted h(K), means the class number of the
maximal order OK of K.

Until further notice we fix an imaginary quadratic order O(D), of discriminant
D, and with quotient field K = Q(

√
D0).
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Fact 1. a) There exists at least one complex elliptic curve with O-CM.
b) Let E, E′ be any two complex elliptic curves with O(D)-CM. The j-invariants
j(E) and j(E′) are Galois conjugate algebraic integers. In other words, j(E) is a
root of some monic polynomial with Z-coefficients, and if P (t) is the minimal such
polynomial, P (j′(E)) = 0 also.
c) Thus there is a unique irreducible, monic polynomial HD(t) ∈ Z[t] whose roots are
the j-invariants of the various non-isomorphic O(D)-CM complex elliptic curves.
We write jD for a root of this polynomial.
d) The degree of HD(t) is the class number h(O) = h(D) of the order O, so when
O is the full ring of integers of its quotient field K, deg(HD(t)) = h(K), the class
number of K.
e) Let FD := Q[t]/HD(t). Then FD can be embedded in the real numbers, so in par-
ticular is linearly disjoint from the imaginary quadratic field K. Let KD denote the
compositum of FD and K. Then KD/K is abelian, with Galois group canonically
isomorphic to Pic(O). Moreover, KD/Q is Galois and the exact sequence

1→ Gal(KD/K)→ Gal(KD/Q)→ Gal(K/Q)→ 1

splits, i.e., Gal(KD/Q) is up to isomorphism the semidirect product of Pic(O) with
the cyclic group Z2 of order 2, where the map Z2 → Aut(Pic(O)) takes the nontrivial
element of Z2 to inversion: x 7→ x−1.

References for this fact include: Cox [Cox89] and Silverman II [Sil94].

It follows from Fact 1 that one can define an O(D)-CM elliptic curve over a number
field F iff F ⊃ FD. In particular, one can define an O(D)-CM elliptic curve over
Q iff h(D) = 1, which by the Heegner-Baker-Stark theorem is known to occur for
exactly 13 values of D:

D = −3,−4,−7,−8,−11,−12,−16,−27,−28,−19,−43,−67,−163.

Let E : y2 = x3 +Ax+B be a complex elliptic curve in Weierstrass form. We define
a Weber function h on E, as:

h(x, y) = x if AB 6= 0,
h(x, y) = x2 if B = 0,
h(x, y) = x3 if A = 0.

The point of the Weber function is to make explicit the quotient map E →
E/Aut(E) ∼= P1. See [Sil94, Ch. II] for more details.

If E is defined over some subfield K of C, let K(E[N ]) be the field extension
of K obtained by adjoining the coordinates of all the N -torsion points on E.

Theorem 8 (Weber). Let D be an imaginary quadratic discriminant, K = Q(
√
D),

and E/C an OK-CM elliptic curve. For any positive integer N , the field Q(
√
D, j(E), h(E[N ]))

is the N -ray class field of K.

Proof. See e.g., [Sil94, Thm. II.5.6]. �

Corollary 9. Let K = Q(
√
D0) be an imaginary quadratic field, and let E/F (D0)

be an elliptic curve with OK-CM. Let N be an odd prime and D = N2D0. Then

[KD(h(E[N ])) : KD] =
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[Q(
√
D0, j(E), h(E[N ])) : Q(

√
D0, j(E))] =

Å
N − 1

w(K)

ãÅ
N −

Å
D0

N

ãã
.

Proof. We deduce the corollary from the theorem using the description of the N -ray
class field K(N) of K provided by class field theory. Namely, consider the N -ring
class field L(N), a subextension of K(N)/K. Recalling D = N2 ·D0, we have

Gal(L(N)/K) ∼= Pic(O(D)),

whereas
Gal(K(N)/L(N)) ∼= (Z/NZ)×/±1.

Recall the relative class number formula [Cox89, Thm. 7.24]

h(N2D0)

h(D0)
=
N −

(
D0

N

)
[O×K : O×]

,

Thus
[Q(
√
D0, j(E), h(E[N ]) : Q(

√
D0, j(E))] = [K(N) : K(1)]

=
[K(N) : K]

[K(1) : K]
=
h(N2D0)(N − 1)

2h(D0)
=
N − 1

w(K)
·
Å
N −

Å
D0

N

ãã
.

�

2.2. The Galois representation. Let F be a field of characteristic 0, E/F an

elliptic curve, and N a positive integer. Let σ ∈ GalF = Aut(F/F ). Let E[N ] be
the set of N -torsion points on E over F ; the action of GalF is seen to be Z/NZ-
linear, so E[N ] may naturally be viewed as a Z/NZ[GalF ]-module. Recall that,
as a Z/NZ-module, E[N ] ∼= Z/NZ × Z/NZ [Sil86]. It is notationally convenient
to choose such an isomorphism – i.e., to choose an ordered Z/NZ-basis {e1, e2} of
E[N ]. The Z/NZ[GalF ]-module structure is then given by a homomorphism

ρN : GalF → GL2(Z/NZ),

called the mod N Galois representation associated to E. Let M = F (E[N ]) be
the field extension obtained by adjoining to F the x and y coordinates of all the
N -torsion points. Then the kernel of ρN is nothing else than Gal(F/M) = GalM ,
so ρN factors through to give an embedding

ρN : Gal(M/F ) ↪→ GL2(Z/NZ).

There is “a piece” of ρN which is well understood in all cases. Namely, composing
with the determinant map det : GL2(Z/NZ)→ (Z/NZ)×, we get a homomorphism

det(ρN ) : Gal(M/F )→ (Z/NZ)×.

This homomorphism evidently cuts out an abelian extension of F , so can be viewed
as a character of the group Gal(M/F ). More precisely:

Theorem 10. We have det(ρN ) = χN , where χN is the mod N cyclotomic
character, defined as follows:

χN : GalF → Gal(F (ζN )/F )→ (Z/NZ)×,

where α ∈ GalF 7→ α ∈ Gal(F (ζN )/F ), an automorphism which is determined by
its effect on a primitive N th root of unity:

ζN 7→ α(ζN ) = ζ
χN (α)
N ,

for a uniquely determined element χN (α) ∈ Z/NZ×.
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Proof. See [Sil86, Ch. III]. �

Corollary 11. We have det(ρN (GalF )) = 1 iff F contains the N th roots of unity.

Theorem 12 (Serre’s Open Image Theorem, non-CM Case [S72]). Let E be an
elliptic curve defined over a number field F , and suppose that E does not have
complex multiplication.
a) For all sufficiently large prime numbers `, ρ` : GalF → GL2(Z/`Z) is surjective.
b) There exists a fixed number B such that for all N ∈ Z+,

# coker(ρN ) :=
#GL2(Z/NZ)

#ρN (GalF )
≤ B.

2.3. Galois representation in the CM case.

Our interest here is in the fact that this result fails in the presence of CM.

We assume that N is an odd prime.

Suppose first that E/F is a O(D)-CM elliptic curve and that F contains the CM

field K = Q(
√
D), so that the action of O(D) is defined and rational over F . Then,

in additional to its Z/NZ[GalF ]-module structure, E[N ] also has the structure of
an O(D)-module. Morever, the F -rationality of the endomorphisms means pre-
cisely that for all σ ∈ GalF and ϕ ∈ O(D), we have σϕ = ϕσ, i.e., the two actions
commute with each other.2 In fact, since N = 0 in E[N ], E[N ] is naturally a
O(D)⊗ Z/NZ = O(D)/NO(D)-module.

Lemma 13. ([Pari89, Lemma 1]) The N -torsion group E[N ] is free of rank 1 as
a (right) O(D)⊗ Z/NZ-module, i.e., isomorphic to O(D)⊗ Z/NZ itself.

In particular, the natural Z/NZ-linear action of O(D)⊗Z/NZ on E[N ] is faithful,
so we have an embedding of Z/NZ-algebras

ι : O(D)⊗ Z/NZ ↪→ End(E[N ]) ∼= M2(Z/NZ).

Let us denote the image of ι by CN . Now, for any σ ∈ GalF , the matrix ρN (σ) gives
an invertible O(D) ⊗ Z/NZ-linear map of E[N ]. Since the O(D) ⊗ Z/NZ-linear
endomorphisms of the free one-dimensional module E[N ] are precisely multiplica-
tion by an element of O(D) ⊗ Z/NZ and the invertible ones are elements of the
unit group of this ring, we conclude

ρN (GalF ) ⊂ C×N .
This shows that the CM case is much different, because the Galois extension
F (E[N ])/F is in this case abelian and has size at most #C×N , or approximately
N2, whereas Serre’s theorem asserts that in the non-CM case ρN (GalF ) has, for
sufficiently large prime N , size # GL2(Z/NZ) = (N2 − 1)(N2 −N) ∼ N4.

To give more precise results, we must consider separately whether N splits, stays
inert or ramifies in O(D).

Case 1 (split case): (DN ) = 1. Then one sees (e.g., by direct computation) that

2This can be expressed more concisely as the fact that E[N ] is a (Z/NZ[GalF ],O(D))-bimodule,
but we find no particular advantage to using this terminology here.
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CN , as an FN -algebra, is isomorphic to FN ⊕ FN ; therefore the unit group C×N is
isomorphic to (Z/NZ)×⊕ (Z/NZ)×. Thus there are precisely two one-dimensional
subspaces V1, V2 of E[N ] which are simultaneous eigenspaces for CN . By taking
generators e1 of V1 and e2 of V2 as basis, we get

CN ∼=
ßï

a 0
0 b

ò
| a, b ∈ FN

™
.

The same considerations show that there is, up to conjugacy, a unique subalgebra
of M2(FN ) isomorphic to FN ⊕ FN ; such an algebra is called a split Cartan sub-
algebra and its unit group a split Cartan subgroup.

Case 2 (inert case): (DN ) = −1. Then one sees that CN ∼= FN2 , a finite field

of order N2, so that C×N is cyclic of order N2 − 1. Again ones sees that FN2 is
unique up to conjugacy as a subalgebra of M2(FN ) (e.g., the result is a special case
of the Skolem-Noether theorem on simple subalgebras of central simple algebras;
or just do a direct computation). Such an algebra is called a nonsplit Cartan
subalgebra and the unit group is called a nonsplit Cartan subgroup.

Case 3 (ramified case): N divides D. Then CN ∼= FN [t]/(t2), i.e., is generated
over the center (the scalar matrices) by a single nilpotent matrix g. Since the
eigenvalues of g are FN -rational, we can put g in Jordan canonical form, and this
gives a choice of basis such that

CN ∼=
ßï

a b
0 a

ò
| a, b ∈ FN

™
.

Again CN is unique up to conjugacy; for lack of a better name, we shall call it a
pseudo-Cartan subalgebra. Evidently C×N

∼= ZN−1 ⊕ ZN ∼= ZN2−N .

We now introduce a third operator on E[N ]. By Fact 1 above, we can choose
an embedding of KD into C which carries Q(jD) into the real numbers. Then
complex conjugation c induces a Z/NZ-linear automorphism of E[N ].

Lemma 14. Let N ∈ Z+ be odd. The characteristic polynomial of complex conju-
gation acting on the Z/NZ-module E[N ] is t2 − 1.

Proof. Clearly c satisfies the polynomial t2 − 1, so we must show c 6= ±1. If c = 1
then c acts trivially on each N -torsion point and we would have dimZ/NZE[N ](R) =
2. If c = −1 then (since N is odd), c acts nontrivially on each N -torsion point,
and we would have dimZ/NZE[N ](R) = 0. But in fact dimZ/NZE[N ](R) = 1:

the one-dimensional compact real Lie group E(R) is isomorphic either to S1 (if a
Weierstrass cubic has one real root) or to S1 × Z/2Z (if all 2-torsion points (if a
Weierstrass cubic has three real roots), and either way E[N ](R) ∼= Z/NZ. �

Lemma 15. Let D be an imaginary quadratic discriminant, K = Q(
√
D) be an

imaginary quadratic field, F a number field, and E/F a K-CM elliptic curve. Sup-
pose that N is an odd prime which does not ramify in K. Then:
a) We have F (E[N ]) ⊃ Q(

√
D).

b) For any O(D)-CM elliptic curve E/Q(jD), we have Q(jD, E[N ]) ⊃ Q(
√
D).

Proof. Let K = Q(
√
D) be an imaginary quadratic field, let F be a number field,

and let E/F be a K-CM elliptic curve. Let ρ∞N : GalF → Aut(TNE) be the N -adic
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Galois representation on E/FD, and let GN be its image. By [S66, Thm. 5], GN is

commutative iff Q(
√
D) ⊂ F . If Q(

√
D) ⊂ F then part a) holds trivially, so assume

otherwise and hence that GN is not commutative but has an index 2 commutative
subgroup H, namely the image of ρN∞ restricted to F (

√
D). Thus when we adjoin

to F the coordinates of all N -power torsion points, we get Q(
√
D). However, the

Galois group F (E[N∞])/F (E[N ])) is a pro-N -group so contains no elements of

order 2. Therefore we must have gained the quadratic extension F (
√
N)/F by

adjoining the N -torsion, establishing part a). Part b) follows immediately. �

There is also a natural nontrivial action of complex conjugation on O(D), and the
homomorphism ι : O(D)→ End(E[N ]) is c-equivariant: ι ◦ c = c ◦ ι. This, together
with the nontriviality of the c-action on O(D), is equivalent to the fact that conju-
gation by c stabilizes CN and induces a nontrivial involution on it.

In the split case we find that, with respect to the chosen basis e1, e2 of CN -

eigenspaces, c is equal to either permutation matrix

ï
0 1
1 0

ò
or its negative. Either

way, the effect of conjugation by c is

ï
a 0
0 b

ò
7→
ï
b 0
0 a

ò
. Explicit computation

shows that the Cartan subgroup C×N has index 2 in its normalizer N(C×N ).

In the inert case, conjugation by c stablizes CN ∼= FN2 and induces the unique
nontrivial Galois automorphism, the Frobenius map: FrobN : x 7→ xN . The ele-
ments of N(C×N ) \ C×N correspond to FrobN -semilinear automorphisms of the 1-
dimensional FN2 -vector space V = E[N ], i.e., maps σ : V → V such that for
v, w ∈ V , σ(vw) = FrobN (v)σ(w). Such a map is uniquely specified by σ(1),
so that #N(C×N ) \ C×N = N2 − 1, i.e., [N(C×N ) : C×N ] = 2.

In the ramified case, complex conjugation induces a nontrivial involution of the
(non-semisimple) FN -algebra CN ∼= FN [t]/(t2). The automorphism group Aut(CN/FN )
is isomorphic to ZN−1 so has a unique element of order 2, t 7→ −t. Therefore con-

jugation by c has the effect

ï
a b
0 a

ò
7→
ï
a −b
0 a

ò
. Note that this case is different

from the previous two in that the normalizer of C×N is the entire Borel subgroup

{
ï
a b
0 c

ò
| a, b, c ∈ FN , ac 6= 0}.

Given all this, one readily deduces the following result:

Theorem 16. Let F be a number field, and E/F an elliptic curve with O(D)-
CM. Let M = F (E[N ]) be the field extension of F obtained by adjoining x and y
coordinates of all the N -torsion points of E.
a) The CM field K = Q(

√
D) is contained in M , so we get a short exact sequence

(8) 1→ Gal(M/KF )→ Gal(M/F )→ Gal(KF/F )→ 1.

b) Under the natural embedding ρN : Gal(M/F ) ↪→ GL2(FN ), the subgroup Gal(M/KF )
embeds in the unit group C×N .
c) The sequence (8) splits, with a splitting given by a choice of an involution
c ∈ N(C×) \ C×.
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This result gives upper bounds on the the degree [F (E[N ]) : F ] which improve
upon the obvious bound of # GL2(FN ):

Corollary 17. a) If (DN ) = 1, then [F (E[N ]) : F ] | 2(N − 1)2.

b) If (DN ) = −1, then [F (E[N ]) : F ] | 2(N2 − 1).

c) If (DN ) = 0, then [F (E[N ]) : F ] | 2(N2 −N).

Proof. Using the exact sequence (8) we see that

# Gal(M/F ) = # Gal(M/KF ) ·# Gal(K/F ) | #(CN )× · 2.

And we know that C×N has order (N−1)2, (N2−1) or N2−N according to whether
N splits, is inert, or is ramified in O(D). �

The slogan is that the image of the Galois representation ρN should be “as large as
possible”, up to a factor which is uniformly bounded as N varies. But in the CM
case GL2(FN ) is impossibly large. The correct answer is again due to Serre:

Theorem 18. (Open Image Theorem, CM case [S72, §4.5]) Let F be a number
field and E/F be an O-CM elliptic curve. For all sufficiently large primes N :

• ρN (GalF )) = N(CN ), if K = Q(
√
D) is not contained in F ,

• ρN (GalF ) = C×N , if K ⊂ F .

Since Theorem 18 only holds for sufficiently large primes N , the case of N | D
can be completely ignored. Nevertheless Theorem 18 tells us to “expect” that the
N -torsion fields will be as large as possible. In the next section we use elementary
group theory to deduce consequences for the least degree of an N -torsion point.

2.4. Orbits under C×N and applications.

We maintain the notation of the previous section: E/F is an elliptic curve with

O(D)-CM, N is an odd prime number, CN = ι(O ⊗ Z/NZ) ⊂ End(E[N ]), C×N is

the unit group of CN , and N(C×N ) is its normalizer.

Lemma 19. a) The orbits of C×N on E[N ] \ {0} are as follows:

(i) If (DN ) = 1, the two one-dimensional eigenspaces for CN give two orbits of size

N − 1; all the remaining points lie in a single orbit of size (N − 1)2.
(ii) If (DN ) = −1, E[N ] \ {0} forms a single C×N -orbit.

(iii) If (DN ) = 0, the unique one-dimensional eigenspace for CN gives an orbit of

size N − 1; the remaining points form a single orbit of size N2 −N .
b) If (DN ) = 1, the two orbits of size N − 1 for C×N form a single orbit for N(C×N ).

Proof. This is a pleasant elementary computation that we leave to the reader. �

In the statement of the following result we employ the following convention: if p
and q are nonzero rational numbers, we say p | q if q

p ∈ Z.

Corollary 20. Let E/F be an O(D)-CM elliptic curve defined over a number field
F . Suppose that the image ρN (GalKF ) of the mod N Galois representation has
index I in C×N . Let P ∈ E(C) be any point of exact order N , and let F (P ) be the
extension of F obtained by adjoining the coordinates of P .
(i) If (DN ) = 1 and

√
D ∈ F , then 1

I (N − 1) | [F (P ) : F ]

(ii) If (DN ) = 1 and
√
D is not in F , then 2

I (N − 1) | [F (P ) : F ].
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(iii) If (DN ) = −1, then 1
I (N2 − 1) | [F (P ) : F ].

(iv) If (DN ) = 0, then 1
I (N − 1) | [F (P ) : F ].

Proof. Consider the tower of field extensions F ⊂ F (P ) ⊂ F (E[N ]). Then F (E[N ])/F (P )
is Galois, with Galois group canonically isomorphic to ρN (GalF ) ∩ G(P ), where
G(P ) ⊂ GL2(FN ) is the stabilizer of the point P . By the orbit-stabilizer theorem,
[F (P ) : F ] is equal to the orbit of P under the action of GalF .

In case (i) we have
√
D ∈ F , so that the image of Galois lies in the split Cartan

subgroup C×N
∼= F×N ⊕ F×N . By Lemma 19 the full C×N -orbits have sizes N − 1 and

(N − 1)2. Since we are assuming that [C×N : ρN (GalF )] | I, it follows that every

ρN (GalF )-orbit has size a multiple of N−1
I . Case (ii) is similar except in this case

replace the gcd of all sizes of C×N orbits with the gcd of all sizes of N(C×N )-orbits,
which according to Lemma 19 is 2(N − 1). Parts (iii) and (iv) are similar, except

here it does not matter whether
√
D lies in the ground field F : in case (iii) this

is because the orbit size for C×N is already as large as possible; in case (iv) this is

because the minimal C×N -orbit is stable under complex conjugation. �

3. Proof of Theorem 1

a) Theorem 1a) is precisely the D = −3 case of Theorem 3a). Indeed, for D = −3,
w(D) = 6, and an odd prime splits completely in Q(

√
−3) iff N ≡ 1 (mod 3).

b) Suppose we have an O(D)-CM point on X1(N) of degree D.
Case 1 (D = −3): By Theorem 3, if N is greater than or equal to some absolute

constant N1, we have d ≥ N−1
3 if N ≡ 1 (mod 3) and d ≥ N2−1

6 if N ≡ −1
(mod 3).
Case 2 (D = −4): We have w(−4) = 4, and then Theorem 3 says that for N greater
than or equal to another absolute constant N2, we have d ≥ N−1

2 if N ≡ 1 (mod 4)

and d ≥ N2−1
4 if N ≡ −1 (mod 4).

Case 3 (D < −4): We have w(D) = 2, and then by the Theorem of Silverberg
and Prasad-Yogananda, d ≥ N−1

2 . Altogether we see that if N ≥ max(5, N1, N2)

then d ≥ N−1
3 in all cases, equality can be met iff N ≡ 1 (mod 3) (necessarily for

an O(−3)-CM elliptic curve of j-invariant 0). Moreover, the next smallest possible
degree is N−1

2 , for an O(−4)-CM elliptic curve of j-invariant 1728, a bound which
can be attained iff N ≡ 1 (mod 4). In all other cases, the degree is at least N − 1.
This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let N be an odd prime number; let D be a fundamental imaginary quadratic dis-
criminant, K = Q(

√
D) be an imaginary quadratic field; and let E/F be an OK-CM

elliptic curve. Suppose that there exists a point P ∈ E(F ) of order N .

Split case: (DN ) = 1. We may assume K ⊂ F and show 2h(K)(N−1)
w(K) = [K(1):Q](N−1)

w(K) |
[F : Q], or equivalently, N−1

w(K) | [F : K(1)]. Using Lemma 19, let Q ∈ E(C) be a

point of order N lying in a one-dimensional eigenspace having Galois orbit of size
dividing N − 1 and linearly independent from P , so [F (Q) : F ] | N − 1 and thus
[F (Q) : K(1)] | (N − 1)[F : K(1)]. Since F (Q) contains P and Q, it contains
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h(E[N ]), and thus

(N − 1)2

w(K)
= [K(1)h(E[N ]) : K(1)] | [F (Q) : K(1)] | (N − 1)[F : K(1)],

so indeed N−1
w(K) | [F : K(1)].

Inert case: (DN ) = −1. We may assumeK ⊂ F and show 2h(K)(N2−1)
w(K) = [K(1):Q](N−1)

w(K) |
[F : Q], or equivalently, N2−1

w(K) | [F : K(1)].

In this case, by Corollary 20(iii), as soon as there is one N -torsion point we have
I = N2 − 1 and the Galois action is trivial. By Corollary 9, we get

N2 − 1

w(K)
= [K(1)h(E[N ]) : K(1)] | [F : K(1)].

5. Proof of Theorem 3

5.1. A technical lemma.

Let w be a positive even integer, and let ζ = ζw = e2πi/w be a primitive wth
root of unity. Let G = 〈σ | σw = 1〉 be a cyclic group of order w. Let M be an
abelian group endowed with the following additional structures:

• a Z-linear action of G, and
• A ring homomorphism Z[ζ]→ End(M).

We require first that ζ
w
2 · x = −x for all x ∈ M . We also require that these

two actions commute with each other: for all x ∈M , ζσx = σζx.

For i ∈ Z/wZ, we define Mi = {x ∈M | σx = ζix}, and

M =
⊕

i∈ Z/wZ

Mi.

Consider the Z-module homomorphism Φ: M → M given (xi) 7→
∑
i xi. Let

Φ̃ = Φ⊗Z Z[ 1
w ] : M′ = M⊗ Z[ 1

w ]→M ′ = M ⊗ Z[ 1
w ].

Lemma 21. Both ker(Φ) and coker(Φ) are w-torsion Z-modules. It follows that:

a) The map Φ̃ is an isomorphism of Z[ 1
w ]-modules.

b) We have dimQ(M⊗Q) = dimQ(M ⊗Q), and for any prime p not dividing w, Φ
induces an isomorphism from the p-primary torsion subgroup M[p∞] of M to the
p-primary torsion subgroup M [p∞] of M .

Proof. It is enough to show that the kernel and cokernel of Φ are w-torsion; for if
so, tensoring the short exact sequences

0→ ker(Φ)→M
Φ→ Φ(M)→ 0

and

0→M/ ker(Φ)
Φ→M → coker(Φ)→ 0

of Z-modules with the flat Z-module Z[ 1
w ] shows that Φ̃ is an isomorphism.
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Step 1: We show ker(Φ) = ker(Φ)[w]. Let P = (P0, . . . , Pw−1) be an element
of ker Φ, so that

P0 + · · ·+ Pw−1 = 0.

Applying σ, we obtain

P0 + ζP1 + · · ·+ ζw−1Pw−1 = 0.

Applying σ w − 2 more times, we arrive at the matrix equation AP = 0, where

A =

á
1 1 . . . 1
1 ζ . . . ζw−1

...
...

. . .
...

1 ζw−1 . . . ζ(w−1)(w−1)

ë
.

It is therefore also a solution to A2P = 0, where

A2 =


w 0 . . . . . . 0
0 0 . . . 0 w
...

... . .
.

w 0
... 0 . .

.
. .

. ...
0 w 0 . . . 0

 .

Thus wP0 = wPw−1 = · · · = wP1 = 0, i.e., wP = 0.

Step 2: We show coker(Φ) = coker(Φ)[w]. Let P ∈M . Define a w × w matrix

B =

á
P σ(P ) σ2(P ) . . . σw−1(P )
P ζ−1σ(P ) ζ−2σ2(P ) . . . ζ−(w−1)σw−1(P )
...

...
... . . .

...
P ζ−(w−1)σ(P ) ζ−2(w−1)σ2(P ) . . . ζ−(w−1)(w−1)σw−1(P )

ë
.

Notice that the sum of all the entries of B is wP : indeed, this is the sum of the
entries in the first column, and since for any j 6= 0 (mod w) we have

∑w−1
i=1 ζ−ji = 0,

each of the other columns sums to 0. Now for 1 ≤ i ≤ w, put

Pi−1 =
w−1∑
k=0

ζ−kiσk(P ).

Then

σ(Pi−1) =
w−1∑
k=0

ζ−kiσk+1(P ) = ζi
w−1∑
k=0

ζ−(k+1)iσk+1(P ) = ζiPi−1,

so Pi−1 ∈Mi. Therefore

wP = Φ((P0, . . . , Pw−1)) ∈ Φ(M).

�
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5.2. Application to the proof of Theorem 3.

Now let O be an imaginary quadratic order of discriminant D, K = Q(
√
D), and

let N > w = w(O) be a prime which splits in K. Let KD = K(jD), and let E/KD

be an O-CM elliptic curve. By the work of §2.3, we know that there exists an ex-
tension KD(P )/KD, which is cyclic of degree dividing N−1, such that over KD(P )
E has a point P of exact order N . Let us first assume that [KD(P ) : KD] = N − 1;
afterwards we will discuss how to modify the argument to deal with the case in
which the degree strictly divides N − 1.

Our assumptions imply that N ≡ 1 (mod w). Therefore, by Galois theory, there
exists a unique subextension KD ⊂ L ⊂ KD(P ) with G = Gal(KD(P )/L) cyclic of
order w. Now we are in the setup of the previous section: take M = E(KD(P ));
the G-action is the restriction of the natural Gal(M/KD)-action on E(KD(P )),
the Z[ζ]-action coming from the fact that O = End(E) contains the wth roots of
unity, and the compatibility of these two actions is a consequence of the rationality
of the endomorphisms over KD (hence also over L). Since E(KD(P )) contains a
point whose order is a prime N not divisible by w, by Lemma 21 there exists some
i ∈ Z/wZ such that Mi contains an element of order N .

Using the theory of twisting in the Galois cohomology of elliptic curves, we may
interpret Mi as the group of L-rational points on a KD(P )/L-twisted form of the
elliptic curve E. Specifically, the set of such twisted forms are parameterized by

H1(Gal(KD(P )/L),Aut(E)) = Hom(G,Z/wZ) ∼= Z/wZ,

the last isomorphism being given by

(ϕ : G→ Z/wZ) 7→ ζiϕ = ϕ(σ).

Corresponding to ζi = ζiϕ ∈ Z/wZ we build a twisted Gal(KD(P )/L)-action on
E(KD(P )):

σ ·i x := ζ−iσx.

This is exactly the relation defining Mi. In other words, the abstract decomposition
of the Z[ 1

w ]-module M′ ∼→M ′ corresponds to a decomposition of the Mordell-Weil
group – up to w-torsion – of E(KD(P )) into a direct sum of the Mordell-Weil groups
of the w different twists of E/L via the cyclic extension KD(P )/L and the automor-
phism group of E. (When w = 2, this result – decomposition of the Mordell-Weil
group under a quadratic extension – is very well known.) Thus we have produced

an O-CM elliptic curve over a field of degree 2(N−1)
w(O) with a rational N -torsion point,

giving the statement of Theorem 3a).
It remains to deal with the case in which d = [KD(P ) : K] strictly divides N−1.

If w | d, we can run through the above argument verbatim, getting in fact an O-CM
elliptic curve with a rational N -torsion point over a field of degree 2d

w , which is a
priori stronger than what we are trying to prove. This necessarily is the case if
w = 2. If w = 4 and d is a multiple of 2 but not a multiple of 4, we run through the
above argument using quadratic twists instead of quartic twists. If w = 6 and d is
a multiple of 2 but not of 6, then we run through the above using quadratic twists
instead of sextic twists. One sees easily that we get exactly the same bounds. This
completes the proof of Theorem 3a).

Proof of Theorem 3b): Suppose first that N is an odd prime with (DN ) = 1. Let



20 PETE L. CLARK, BRIAN COOK, AND JAMES STANKEWICZ

FD = Q(j(E)) = Q(jD) be the number field generated by the j-invariant of the qua-
dratic order O(D), and let E/FD

be any O(D)-CM elliptic curve. Serre’s Theorem
18 says that there exists N0 = N0(D) such that if N ≥ N0, the image ρN (GalFD

)
in GL2(FN ) will be N(C×N ), the normalizer of a split Cartan subgroup, and then
Corollary 20 applies to show that the least degree [FD(P ) : FD] is a multiple of
2(N − 1).

Now suppose that we have any number field F , E′/F an O(D)-CM elliptic curve

with an F -rational point of prime order N ≥ N0. The theory of twisting – to-
gether with the Kummer isomorphism H1(GalF , µd) ∼= F×/F×d – implies first
that F ⊃ FD, and second that there exists an extension L of F , of degree w(O)
such that E/L ∼= E′/L. Therefore, since E′ has an F -rational torsion point of order

N , E has an L-rational torsion point of order N , so

2(N − 1) | [FD : Q] | [L : FD][FD : Q] = [L : Q] = [L : F ][F : Q] = w(O)[F : Q],

and hence
2(N − 1)

w(O)
| [F : Q].

The argument in the case (DN ) = −1 is quite similar: then there exists N0 such that

N ≥ N0 implies that, for our fixed E/FD
as above we have [FD(P ) : FD] = N2 − 1

(note that this is the order of the stabilizer of P in all of GL2(FN ), hence the
largest possible order, so there is no further contribution coming from the action of
complex conjugation) and arguing as before we get

N2 − 1

w(O)
| [F : Q].

Since we are taking N to be sufficiently large compared to D, we do not have to
worry about the ramified case.

6. Proof of Theorem 4

For a negative quadratic discriminant D, write dD(N) for the least degree of an
O(D)-CM point on X1(N), and dCM(N) for the least degree of a CM point on
X1(N), so dCM(N) = minD dD(N).

We will need the following two estimates:

Lemma 22. Suppose D is a negative integer and N a prime, with (DN ) = 1. Then

there exists a CM point on X1(N) of degree dividing 2(N − 1)h(Q(
√
D)).

Proof. this is an immediate consequence of the theory of Galois representations on
CM elliptic curves as recalled in §2.3. �

Lemma 23. As D tends to −∞ through quadratic discriminants, the class number
h(D) of the imaginary order of discriminant D is O(

√
|D| log |D|).

Proof. Combine Dirichlet’s class number formula (e.g. [D, p. 49])

h(D) =
w(K)

√
|D|

2π
L(1, χD)

with the estimate (e.g. [Hu, Ch. 2]) |L(1, χD)| ≤ log(
√
|D|) + 1. �
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Proof of Theorem 4: If N ≡ 1 (mod 4), by Theorem 3 we have dCM(N) ≤ N−1
2 .

This is stronger than the bounds we are claiming for arbitrary N , so we may assume
that N ≡ −1 (mod 4).

For such N , let D be a negative quadratic discriminant not divisible by N . Then

1 =

Å
D

N

ã
⇐⇒

Å |D|
N

ã
= −1,

so we are interested in the least positive integer M which is first, a quadratic non-
residue modulo N and second, is congruent to 0 or −1 modulo 4, so that −M is an
imaginary quadratic discriminant.

In fact this latter condition is nothing to worry about: let M be the least posi-
tive quadratic nonresidue modulo N . Then certainly M is squarefree, so M is not
0 (mod 4). If M ≡ −1 (mod 4), then D = −M is the discriminant of Q(

√
−M).

If M ≡ 1, 2 (mod 4), then it is not −M but −4M which is the discriminant of
Q(
√
−M). But if M is a quadratic nonresidue modulo the odd prime N , so is 4M ,

and if we know that M = O(f(N)) for some function f , then of course the same
holds for 4M .

Remark 6.1: The order of the least quadratic nonresidue modulo N is a famous
classical problem. The trivial bound – taking into account only that there are in
all N−1

2 quadratic nonresidues – is N
2 , but a bit of thought and experimentation

suggests that M should be considerably smaller than this. Long ago Vinogradov
conjectured that M = Oε(N

ε), i.e., that M grows more slowly than any power of N ,
but we are still far away from an unconditional proof of this. In 1952 N.C. Ankeny
showed that, conditionally on GRH, M = O((logN)2) [Ank52]. In his review of
this paper [Erd52], P. Erdős remarks that it is known that M is not O(logN), so
that Ankeny’s bound seems to get admirably close to the truth. Vinogradov himself
was able to show unconditionally that M = o(N); for more than fifty years, the
best unconditional bound has been due to D.A. Burgess: M = Oε(N

c+ε), where

c = e−1/2

4 = 0.15 . . . is “Burgess’s constant” [Bur57].

So, for an odd prime N , let L(N) be the least quadratic nonresidue modulo N ,
and put D = −L(N) if M ≡ −1 (mod 4) and D = −4L(N) otherwise. Applying
Lemma 22 and then Lemma 23, we get

dCM(N) = O(Nh(D)) = O(N
»
|D| log |D|).

Substituting in the unconditional Burgess bound for D, we get

dCM(N) = Oε(N
1+c/2+ε/2 log(N c+ε)).

Since this holds for all ε > 0, we get

dCM(N) = Oε(N
1+c/2+ε).

Applying instead Ankeny’s bound, we get, conditionally on GRH,

dCM(N) = O(N
»

(logN)2 log(logN)2 = O(N logN log logN).

7. Proof of Theorem 5

Although not necessary from a logical point of view, we believe it will make for
easier reading if we discuss first the special case in which the endomorphism ring is
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the maximal order and second the (less) special case in which the conductor of the
order is prime to N before discussing the general case.

Case 1: Fundamental discriminants. Suppose that there exists some posi-
tive number C such that for every odd prime N , there exists a point on X1(N)
with CM by the full ring of integers of some imaginary quadratic field, and of de-
gree at most CN . We will derive a contradiction.

Put H := 6C + 1. Recall that the set of negative quadratic fundamental dis-
criminants D such that h(D) ≤ H is finite [Deu33], [Hei34], [Sie35]. Let us write
out this set as {D1, . . . , Dn}.

Let P1 be the set of primes which are 1 (mod 4) and divide Dk for some
1 ≤ k ≤ n. Put R = #P1. Similarly, let P3 be the set of primes which are 3
(mod 4) and divide some Dk. Put S = #P3.

Lemma 24. The set PH of odd primes N such that (DN ) = −1 for all D with

h(D) ≤ H is infinite; indeed it has density at least ( 1
2 )R+S+2.

Proof. Let N be any prime number satisfying:
(i) N ≡ 7 (mod 8);
(ii) (Np ) = 1 for all p ∈ P1.

(iii) (Nq ) = −1 for all q ∈ P3.

By the Cebotarev density theorem, the set of such primes N has density ( 1
2 )R+S+2.

We claim that all such primes lie in PH . Indeed, we may write

Dk = (−1) · 2a+2bp1 · · · prq1 · · · qs = (−1)s+12a+2b
r∏
i=1

pi

s∏
j=1

(−qj),

where a, b ∈ {0, 1}, pi ∈ P1 and qj ∈ P3. ThenÅ
Dk

N

ã
=

Å−1

N

ãs+1 Å 2

N

ãa+2b r∏
i=1

( pi
N

) s∏
j=1

(−qj
N

)
=

(−1)s+1 · 1 ·
r∏
i=1

Å
N

pi

ã
·
s∏
j=1

Å
N

qj

ã
= (−1)s+1(−1)s = −1.

�

Now let N > H be a prime in PH , and let D be a fundamental negative quadratic

discriminant. If (DN ) = −1, then by Theorem 2 we have dD(N) ≥ N2−1
6 , which for

sufficiently large N , is greater than CN . Otherwise (DN ) 6= −1, and since we are

taking N large we may assume (DN = 1. Therefore, by Theorem 2 we have

dD(N) ≥ h(D)

6
(N − 1) >

H

6
(N − 1) > CN,

since N > H.

Case 2: Orders of conductor prime to N . Suppose that O(D) is an order of
conductor f in the imaginary quadratic field K = Q(

√
D0); let F be a number field

and E/F be a O-CM elliptic curve.
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Proposition 25. There exists an F -rational isogeny ι : E → E′, where E′/F is an

elliptic curve with OK-CM. Moreover ι is cyclic of degree f .

This is “well known”, but lacking a convenient reference we shall sketch the proof.
Over the complex numbers we may view E as C/O, and then the map is just the
natural map C/O → C/OK . The rationality of the map over F follows easily from
the fact that O is the unique subring of OK of index f .

The isogeny ι induces a homomorphism of Mordell-Weil groups ι(F ) : E(F ) →
E′(F ). According to the Proposition, the kernel of ι(F ) is f -torsion. Moreover,
using the existence of a dual isogeny ι∨ : E′ → E such that ι∨ ◦ ι = [f ], ι ◦ ι∨ = [f ],
one sees that also the cokernel of ι(F ) is f -torsion. In particular, if N is an odd
prime with (N, f) = 1, then

ι(F ) : E(F )[N ]
∼→ E′(F )[N ].

In particular, if E has an F -rational torsion point of order N , so does E′. From
this it follows that – still for N prime to f – the least degree of an O(f2D0)-CM
point on X1(N) is at least as large as that of an O(D0)-CM point on X1(N). That
is, we have succeeded in reducing Case 2 to Case 1.

Case 3: General Case. Finally suppose we have D = f2D0 with N | f , and
consider an O(D)-CM elliptic curve E defined over a number field F , with an
F -rational N -torsion point. To simplify the analysis, we assume F contains the
CM-field K (this extra factor of 2 will not effect the asymptotic analysis).

The above geometric description of the isogeny ι shows that dimFN
ker(ι)∩E[N ] =

1, i.e., there exists P0 ∈ E[N ](C) such that 〈P0〉 = ker(ι) ∩ E[N ]. Consider first
any F -rational N -torsion point P which is not in 〈P0〉. Then ι(P ) is an F -rational
point on the O(D0)-CM elliptic curve, i.e., we immediately reduce to Case 1. So
we may assume that the point P0 is F -rational and derive lower bounds on [F : K].

As in §2.3, Case 3, the mod N Galois representation ρN : GalF → GL2(Z/NZ)
is contained in a “pseudo-Cartan subgroup”; taking an ordered basis with P0 as
the first vector, we have

ρ(GalF ) ⊂ C×N ∼= {
ï
a b
0 a

ò
a ∈ F×N , b ∈ FN}.

So our assumption that P0 is F -rational means precisely that

ρ(GalF ) ⊂ {
ï

1 b
0 1

ò
b ∈ FN}.

Thus det(ρ(GalF )) = 1, so by Corollary 11 we deduce F ⊃ K(ζN ). Now K(ζN )
and the ring class field K(j(E)) are extensions of K of degrees at least N−1

2 and
N−1

3 respectively. Moreover, Fact 1e) implies that, loosely speaking, these two
extensions are close to being disjoint over K, so that K(ζN , j(E)) has degree at
least a universal constant times (N − 1)2.

Let us now see this in more detail: let E′′ be an elliptic curve with O(N2D0)-
CM, i.e., with the same CM field but conductor N instead of its multiple f . By
class field theory K(j(E)) ⊂ K(j(E′′)). But K(j(E′′)), being the ring class field
of conductor N , is contained in the N -ray class field K(N), whereas explicit class
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field theory shows Gal(K(N)/K) is a finite abelian group with either 1 or two
generators. Therefore the degree of the maximal exponent 2 abelian subextension
of K(j(E))/K is at most 4. Combining all estimates, we get

[F : K] ≥ [K(j(E), ζN ) : K] ≥ (N − 1)2

24
.

This is obviously not O(N), so the proof is complete.

8. Proof of Theorem 6

Here, briefly, is the idea: Start with E/Q of j-invariant 0. Enumerate the odd
primes pn which are 1 mod 3 (hence split in Q(

√
−3)). Let Kn be the least field

over which E acquires a point of order Nn := p1 · · · pn. The degree of this field is
at most

2
n∏
i=1

(pi − 1) = 2ϕ(Nn),

and it is known that Nn

ϕ(Nn) � log logNn.

We now begin the proof. Let K = Q(
√
−3), and E/K an O(−3)-CM elliptic curve

(e.g., y2 = x3 + 1). Let p1 < p2 < . . . be the primes congruent to 1 (mod 3), i.e.,
the primes which split in K. It follows from the material reviewed in §2.3 that
for each i there is a point Pi on E of order i, such that [K(Pi) : K] | (pi − 1).
Thus, for any positive integer n, the field Ln := K({Pi}ni=1) has a point of order
Nn = p1 · · · pn (namely P1 + . . .+ Pn) and

dn := [Ln : K] ≤ 2
n∏
i=1

(pi − 1) = 2ϕ(Nn).

Then
|E(Ln)[tors]|

dn
≥ Nn

2ϕ(Nn)
,

and to complete the proof it is sufficient to establish the following

Claim: There exists C > 0 such that for all sufficiently large n,

Nn
2ϕ(Nn)

≥ C
»

log(log(dn)).

The proof of the claim rests on an asymptotic formula due to Mertens, namely∏
p≤x

1

1− p−1
∼ e−γ log(x),

where the product is taken over all primes less than or equal to x, and γ is Euler’s
constant [BD04, Cor. 6.19]. From the Prime Number Theorem for Arithmetic
Progressions [BD04, Thm. 9.12], it follows that∏

p≤x,p≡1(3)

1

(1− p−1)
∼ e−γ/2

»
log(x).
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Let us now write

Nn
ϕ(Nn)

=
n∏
i=1

pi
pi − 1

=
∏

p≤x(n),p≡1(3)

1

1− p−1
.

Then we have
Nn

ϕ(Nn)
∼ e−γ/2

»
log(x(n)).

Again applying the Prime Number Theorem for Arithmetic Progressions, it follows
that log(x(n)) ∼ log(n), and also that

log(Nn) =
n∑
i=1

log(pi) ∼ 2
n∑
i=1

i log(i) ∼ 2 log n
n∑
i=1

i = n(n+ 1) log(n).

This implies that log(log(Nn)) ∼ log(n) ∼ log(x(n)). Thus

Nn
ϕ(Nn)

∼ e−γ/2
»

log(log(Nn)) ≥ e−γ/2
»

log(log(ϕ(Nn))) ≥ e−γ/2
»

log(log(dn/2)),

which is sufficient to give the result.

Remark 8.1: The reader may be wondering whether we could have done better
by applying Theorem 1, which says that we can get an O(−3)-CM point of degree
pi−1

3 . However, the factor of 6 that we gained in the proof of this result was via
our ability to make a single cyclic twist to get more torsion. However we cannot
independently make cyclic twists for each prime pi. Thus we could improve dn
to ϕ(p1···pn)

3 but not to 2
3nϕ(p1 · · · pn). In fact Serre’s Theorem (Theorem 18) im-

plies that among constructions working with a fixed elliptic curve, or even a fixed
j-invariant, our lower bound is asymptotically optimal.

9. Proof of Theorem 7

Theorem 26 (Abramovich, [Abr96]). Let Γ ⊂ PSL2(Z) be a congruence subgroup,
and XΓ = Γ\H the corresponding modular curve. The gonality of XΓ is at least

7
800 [PSL2(Z) : Γ].

Remark 9.1: This result uses results of differential geometry and spectral theory,
including an upper bound on the leading nontrivial eigenvalue for the Laplacian on
the Riemannian manifold XΓ: Abramovich’s theorem uses the bound λ1 ≤ 21

100 , due

to Luo, Rudnick and Sarnak. Selberg has conjectured that λ1 ≤ 1
4 , which would

allow replacement of 7
800 by 1

96 .

Theorem 27 (Faltings, Frey [Fre94]). Let X be a curve defined over a number
field K with at least one K-rational point. If, for any positive integer d, X/K has

infinitely many points of degree d, then 1
2 GonK(X) ≤ d.

Remark 9.2: The hypothesis is satisfied for all classical modular curves XΓ uni-
formized by congruence subgroups of PSL2(Z) since such curves always have a
cusp rational over their “reflex field” K (K = Q for the curves X1(N)).

When N is prime, the index of Γ1(N) in PSL2(Z) is N2−1
2 . Thus we get

GonC(X1(N)) ≥ 7

1600
(N2 − 1)
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unconditionally, and

GonC(X1(N)) ≥ 1

192
(N2 − 1)

conditionally on Selberg’s eigenvalue conjecture.

Therefore we get

1

2
GonQ(X1(N)) ≥ 1

2
GonC(X1(N)) ≥ 7

3200
(N2 − 1),

so if d ≤ [ 7
3200 (N2 − 1)] − 1 there are only finitely many points of degree d. Thus

in the statement of Theorem 3 we can take for C1 any constant less than 7
3200 , and

if Selberg’s eigenvalue conjecture holds, we can take any constant less than 1
384 .

For part b) we need two facts. First, for a curve X of genus g ≥ 2 over any field
K, one can get a degree 2g−2 map to the projective line by taking an element f of
the complete linear system associated to the canonical bundle Ω1

X/K , and therefore

GonK(X) ≤ 2g(X) − 2. Second, for N ≥ 5 prime, we have 2g(X1(N)) − 2 =
N2−12N+11

12 : see [Mi89, §4.2].

Appendix A. The least degree of a CM point and finiteness of
low-degree points on X1(N) (by Alex Rice)

The object of this appendix is to prove the following result.

Theorem 28. For N > 911, {P ∈ X1(N)(Q) : deg(P ) < dCM (N)} is finite.

For a negative integer D, let h(D) = h(Q(
√
D)). For an odd prime N , let L(N)

denote the least positive quadratic non-residue modulo N .

By Theorem 7(a), it suffices to show that dCM (N) <
⌈

7
3200

(
N2 − 1

)⌉
. By Theorem

1, if N ≡ 1 mod 3 then dCM (N) ≤ N−1
3 and if N ≡ 1 mod 4 then dCM (N) ≤ N−1

2 .
We now need only an upper bound on dCM (N) when N ≡ 11 mod 12; note that

since N ≡ −1 (mod 4),
Ä
|D|
N

ä
= −

(
D
N

)
. By Lemma 22, if

Ä
|D|
N

ä
= −1 then

dCM (N) ≤ 2(N − 1)h(D), and thus by definition of L(N) we have

(9) dCM (N) ≤ 2(N − 1)h(−L(N)).

Step 1: We reduce to a finite computation using upper bounds on L(N) and h(D).
Recall that the “world-record” asymptotic upper bound on L(N) is Burgess’s bound

L(N) = Oε(N
c+ε),

but it has proven to be difficult to determine an appropriate absolute constant for
any fixed ε. It turns out to be easier to use a more elementary estimate given by a
sharpened version of the Polya-Vinogradov inequality [Tao11, §2.5], which yields

(10) L(N) ≤
√
N log(N).

Recall Dirichlet’s class number formula for an imaginary quadratic field with dis-
criminant D < −4 [N, Cor. VII.5.11]:

(11) h(D) =

√
|D|
π

ress=1ζQ(
√
D),

where ζQ(
√
D) is the Dedekind zeta function. By [Lou01, Thm. 1],
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(12) ress=1ζk ≤
e log |D|

2
.

Since the discriminant of Q(
√
−L(N)) is either −L(N) or −4L(N), we have

(13) dCM (N) ≤ 2e

π
N

5
4

»
log(N)

Å
log(N)

2
+ log log(N) + log(4)

ã
.

The right hand side is less than
⌈

7
3200

(
N2 − 1

)⌉
when (e.g.) N > 106.

Step 2: We will find a bound N0 such that for all primes N > N0 with N ≡ 11

(mod 12), there is a negative integer D with
Ä
|D|
N

ä
= 1 and 2(N − 1)h(D) <⌈

7
3200

(
N2 − 1

)⌉
. Since h(D) ≥ 1, we certainly need to take N0 large enough so

that N > N0 implies 2(N − 1) <
⌈

7
3200

(
N2 − 1

)⌉
. This inequality holds for all

primes N ≥ 919 but not for N = 911, so we will need N0 ≥ 911.

Step 3: We implemented in SAGE [S+09] an algorithm which, for each prime
N ≤ 106 , N ≡ 11 mod 12, computes L(N) and h(−L(N)), and then compares
2(N −1)h(−L(N)) to

⌈
7

3200

(
N2 − 1

)⌉
. If the former is not smaller than the latter,

N is appended to a list of “bad” primes. By Step 2, the primes that are at most
911 are all “bad”, and there are 12 additional “bad” primes N < 106:

(14) 983, 1103, 1151, 1223, 1319, 1367, 1487, 1559, 1583, 1607, 1823, 2999.

Step 4: The primes of (14) all satisfy 2(N − 1) <
⌈

7
3200

(
N2 − 1

)⌉
, so by Lemma

22, it suffices to find a negative integer D with
Ä
|D|
N

ä
= −1 and h(D) = 1. Such

a D does exist for each of these “bad” primes, and thus we may take N0 = 911.3

Below is a table that shows, for each of these 12 primes, L(N), h(−L(N)), and a

D with h(D) = 1 and
Ä
|D|
N

ä
= −1.

N L(N) h(−L(N)) |D|
983 5 2 11
1103 5 2 7
1151 13 2 19
1223 5 2 19
1319 13 2 163
1367 5 2 7
1487 5 2 19
1559 17 4 19
1583 5 2 7
1607 5 2 7
1823 5 2 43
2999 17 4 19

3Since there are nine imaginary quadratic fields of class number one, the chance that |D| is a

quadratic nonresidue for at least one class number one field is 1− 2−9 = 511
512

. Since we only had

12 bad primes to check, this outcome was not especially fortuitious.
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[MSZ89] H. Miller, H. Ströher and H. Zimmer, Torsion groups of elliptic curves with integral

j-invariant over quadratic fields. J. Reine Angew. Math. 397 (1989), 100-161.

[Mi89] T. Miyake, Modular forms. Translated from the Japanese by Yoshitaka Maeda.
Springer-Verlag, Berlin, 1989.



TORSION POINTS ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION 29

[N] J. Neukirch, Algebraic Number Theory. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], 322. Springer-Verlag,

Berlin, 1999.

[Ols74] L. Olson, Points of finite order on elliptic curves with complex multiplication.
Manuscripta math. 14 (1974), 195-205.

[Par99] P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de

nombres. J. Reine Angew. Math. 506 (1999), 85–116.
[Par03] P. Parent, No 17-torsion on elliptic curves over cubic number fields . J. Théor. Nom-
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