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Abstract. We construct certain subgroups of hyperbolic triangle groups which we call
“congruence” subgroups. These groups include the classical congruence subgroups of SL2(Z),
Hecke triangle groups, and 19 families of arithmetic triangle groups associated to Shimura
curves. We determine the field of moduli of the curves associated to these groups and
thereby realize the groups PSL2(Fq) and PGL2(Fq) regularly as Galois groups.
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1. Introduction

Motivation. The rich arithmetic and geometric theory of classical modular curves, quo-
tients of the upper half-plane by subgroups of SL2(Z) defined by congruence conditions, has
fascinated mathematicians since at least the nineteenth century. One can see these curves
as special cases of several distinguished classes of curves. Fricke and Klein [26] investigated
curves obtained as quotients by Fuchsian groups which arise from the unit group of certain
quaternion algebras, now called arithmetic groups. Later, Hecke [33] investigated his triangle
groups, arising from reflections in the sides of a hyperbolic triangle with angles 0, π/2, π/n
for n ≥ 3. Then in the 1960s, amidst a flurry of activity studying the modular curves, Atkin
and Swinnerton-Dyer [1] pioneered the study of noncongruence subgroups of SL2(Z). In
this paper, we consider a further direction: we introduce a class of curves arising from cer-
tain subgroups of hyperbolic triangle groups. These curves share many appealing properties
in common with classical modular curves despite the fact that their uniformizing Fuchsian
groups are in general not arithmetic groups.
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To motivate the definition of this class of curves, we begin with the modular curves. Let p
be prime and let Γ(p) ⊆ PSL2(Z) = Γ(1) be the subgroup of matrices congruent to (plus or
minus) the identity modulo p. Then Γ(p) acts on the completed upper half-planeH∗, and the
quotient X(p) = Γ(p)\H∗ can be given the structure of Riemann surface, a modular curve.
The subgroup G = Γ(1)/Γ(p) ⊆ Aut(X(p)) satisfies G ' PSL2(Fp) and the natural map
j : X(p)→ X(p)/G ' P1

C is a Galois branched cover ramified at the points {0, 1728,∞}.
So we are led to study class of (smooth, projective) curves X over C with the property

that there exists a subgroup G ⊆ Aut(X) with G ' PSL2(Fq) or G ' PGL2(Fq) for a prime
power q such that the map X → X/G ' P1 is a Galois branched cover ramified at exactly
three points.

Bely̆ı [3, 4] proved that a curve X over C can be defined over the algebraic closure Q of
Q if and only if X admits a Bely̆ı map, a nonconstant morphism f : X → P1

C unramified
away from 0, 1,∞. So, on the one hand, three-point branched covers are indeed ubiquitous.
On the other hand, there are only finitely many curves X up to isomorphism of given genus
g ≥ 2 which admit a Galois Bely̆ı map (Remark 3.10). We call a curve which admits
a Galois Bely̆ı map a Galois Bely̆ı curve. Galois Bely̆ı curves are also called quasiplatonic
surfaces [27, 86], owing to their connection with the Platonic solids, or curves with many
automorphisms because they are equivalently characterized as the locus on the moduli space
Mg(C) of curves of genus g at which the function [C] 7→ # Aut(C) attains a strict local
maximum. For example, the Hurwitz curves, those curves X with maximal automorphism
group # Aut(X) = 84(g − 1) for their genus g, are Galois Bely̆ı curves, as are the Fermat
curves xn + yn = zn for n ≥ 3. (Part of the beauty of this subject is that the same object
can be viewed from many different perspectives, and the natural name for an object depends
on this view.)

So Galois Bely̆ı curves with Galois group G = PSL2(Fq) and G = PGL2(Fq) generalize
the classical modular curves and bear further investigation. In this article, we study the
existence of these curves, and we then consider one of the most basic properties about them:
the fields over which they are defined.

Existence. To state our first result concerning existence we use the following notation. For
s ∈ Z≥2, let ζs = exp(2πi/s) and λs = ζs + 1/ζs = 2 cos(2π/s); by convention we let ζ∞ = 1
and λ∞ = 2.

Let a, b, c ∈ Z≥2 ∪ {∞} satisfy a ≤ b ≤ c. Then we have the following extension of fields:

(*)

F (a, b, c) = Q(λ2a, λ2b, λ2c)

E(a, b, c) = Q(λa, λb, λc, λ2aλ2bλ2c)

D(a, b, c) = Q(λa, λb, λc)

Q

We have E(a, b, c) ⊆ F (a, b, c) since λ2
2a = λa + 2 (the half-angle formula), and consequently

this extension has degree at most 4 and exponent at most 2. Accordingly, a prime p of
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E(a, b, c) (by which we mean a nonzero prime ideal in the ring of integers of E(a, b, c)) that
is unramified in F (a, b, c) either splits completely or has inertial degree 2.

The triple (a, b, c) is hyperbolic if

χ(a, b, c) =
1

a
+

1

b
+

1

c
− 1 < 0.

Our first main result is as follows.

Theorem A. Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z≥2. Let p be a prime of
E(a, b, c) with residue field Fp and suppose p - 2abc. Then there exists a G-Galois Bely̆ı map

X(a, b, c; p)→ P1

with ramification indices (a, b, c), where

G =

{
PSL2(Fp), if p splits completely in F (a, b, c);

PGL2(Fp), otherwise.

We have stated Theorem A in a simpler form; for a more general statement, including
the case when p | 2 or when one or more of a, b, c is equal to ∞, see Theorem 9.1. In some
circumstances (depending on a norm residue symbol), one can also take primes dividing abc
(see Remark 5.23).

Theorem A generalizes work of Lang, Lim, and Tan [39] who treat the case of Hecke
triangle groups using an explicit presentation of the group (see also Example 10.4), and
work of Marion [46] who treats the case a, b, c prime. This also complements celebrated work
of Macbeath [42], providing an explicit way to distinguish between projective two-generated
subgroups of PSL2(Fq) by a simple splitting criterion. Theorem A overlaps with work of
Conder, Potočink, and Širáň [17] (they also give several other references to work of this
kind), and more recent work of Broughton [10].

The construction of Galois Bely̆ı maps in Theorem A arises from another equivalent char-
acterization of Galois Bely̆ı curves (of genus ≥ 2) as compact Riemann surfaces of the form
Γ\H, where Γ is a finite index normal subgroup of the hyperbolic triangle group

∆(a, b, c) = 〈δ̄a, δ̄b, δ̄c | δ̄aa = δ̄bb = δ̄cc = δ̄aδ̄bδ̄c = 1〉 ⊂ PSL2(R)

for some a, b, c ∈ Z≥2, where by convention we let δ̄∞∞ = 1. (See Sections 1–2 for more detail.
The bars may seem heavy-handed here, but signs play a delicate and somewhat important
role in the development, so we include this as part of the notation for emphasis.) Phrased
in this way, Theorem A asserts the existence of a normal subgroup

∆(p) = ∆(a, b, c; p) E ∆(a, b, c) = ∆

with quotient ∆/∆(p) = G as above. In a similar way, one obtains curves X0(a, b, c; p) by
considering the quotient of X(a, b, c; p) by the subgroup of upper-triangular matrices—these
curves are analogous to the classical modular curves X0(p) as quotients of X(p).

Arithmeticity. A Fuchsian group is arithmetic if it is commensurable with the group of
units of reduced norm 1 of a maximal order in a quaternion algebra. A deep theorem of
Margulis [45] states that a Fuchsian group is arithmetic if and only if it is of infinite index
in its commensurator. By work of Takeuchi [78], only finitely many of the groups ∆(a, b, c)
are arithmetic: in these cases, the curves X(a, b, c; p) are Shimura curves (arising from full
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congruence subgroups) and canonical models were studied by Shimura [63] and Deligne [20].
Indeed, the curves X(2, 3,∞; p) are the classical modular curves X(p) and the Galois Bely̆ı
map j : X(p)→ P1 is associated to the congruence subgroup Γ(p) ⊆ PSL2(Z). Several other
arithmetic families of Galois Bely̆ı curves have seen more detailed study, most notably the
family X(2, 3, 7; p) of Hurwitz curves. (It is interesting to note that the arithmetic triangle
groups are among the examples given by Shimura [63, Example 3.18]!) Aside from these
finitely many triples, the triangle group ∆ = ∆(a, b, c) is not arithmetic, and our results can
be seen as a generalization in this nonarithmetic context.

However, we still have an embedding inside an arithmetic group Γ, following Takeuchi
[78] and later work of Tretkoff (née Cohen) and Wolfart [14]: our curves are obtained via
pullback

∆(p)\H ↪ //

��

Γ(p)\Hs

��
P1 = ∆\H ↪ // Γ(1)\Hs

from a branched cover of quaternionic Shimura varieties, and this promises further arith-
metic applications. Accordingly, we call the subgroups ∆(a, b, c; p) we construct congruence
subgroups of ∆ in analogy with the classical case of modular curves, since they arise from
certain congruence conditions on matrix entries, and we call the curves X(a, b, c; p) and
their cousins X0(a, b, c; p) triangle modular curves. (In some contexts, the term congruence
is used only for arithmetic groups; we propose the above extension of this terminology to
non-arithmetic groups.) For a fuller discussion of the arithmetic cases of Theorem A, see
Example 10.3.

Field of definition. Our second main result studies fields of definition. The modular curve
X(p), a Riemann surface defined over C, has a model as an algebraic curve defined over Q;
we seek a similar (nice, explicit) result for our class of curves. For a curve X defined over C,
the field of moduli M(X) of X is the fixed field of the group {σ ∈ Aut(C) : Xσ ' X}, where
Xσ is the base change of X by the automorphism σ ∈ Aut(C). A field of definition for X
clearly contains the field of moduli of X, so if X has a minimal field of definition F then F
is necessarily equal to the field of moduli.

We will need two refinements of this notion. First, we define the notion for branched
covers. We say that two Bely̆ı maps f : X → P1 and f ′ : X ′ → P1 are isomorphic (over C or

Q) if there exists an isomorphism h : X
∼−→ X ′ that respects the branched covers, i.e., such

that f = f ′ ◦h. We define the field of moduli M(X, f) of a Bely̆ı map analogously. A Galois
Bely̆ı map can always be defined over its field of moduli (Lemma 4.1) as mere cover.

But we will also want to keep track of the Galois automorphisms of the branched cover.
For a finite group G, a G-Galois Bely̆ı map is a Bely̆ı map f : X → P1 equipped with an
isomorphism i : G

∼−→ Gal(f) between G and the Galois (monodromy) group of f , and an
isomorphism of G-Galois Bely̆ı maps is an isomorphism h of Bely̆ı maps that identifies i with
i′, i.e.,

h(i(g)x) = i′(g)h(x) for all g ∈ G and x ∈ X(C)
4



so the diagram

X

i(g)
��

h // X ′

i′(g)
��

X

f   

h // X ′

f ′~~
P1

commutes. We define the field of moduli M(X, f,G) of a G-Galois Bely̆ı map f accordingly.
For example, we have

M(X(p), j,PSL2(Fp)) = Q(
√
p∗) where p∗ = (−1)(p−1)/2p.

A G-Galois Bely̆ı map f can be defined over its field of moduli M(X, f,G) under the following
condition: if G has trivial center Z(G) = {1} and G = Aut(X) (otherwise, take a further
quotient).

On the one hand, we observe (Remark 4.7) that for any number field K there is a G-Galois
Bely̆ı map f for some finite group G such that the field of moduli of (X, f,G) contains K.
On the other hand, we will show that our curves have quite nice fields of definition. (See
also work of Streit and Wolfart [73] who consider the case G ' Z/pZ o Z/qZ.)

We need one further bit of notation. For a prime p and integers a, b, c ∈ Z≥2, let Dp′(a, b, c)
be the compositum of the fields Q(λs) with s ∈ {a, b, c} prime to p. (For example, if all of
a, b, c are divisible by p, then Dp′(a, b, c) = Q.) Similarly define Fp′(a, b, c).

Theorem B. Let X be a curve of genus g ≥ 2 and let f : X → P1 be a G-Galois Bely̆ı map
with G ' PGL2(Fq) or G ' PSL2(Fq). Let (a, b, c) be the ramification indices of f .

Then the following statements hold.

(a) Let r be the order of Frobp in Gal(Fp′(a, b, c)/Q). Then

q =

{√
pr, if G ' PGL2(Fq);

pr, if G ' PSL2(Fq).

(b) The map f as a mere cover is defined over its field of moduli M(X, f). Moreover,
M(X, f) is an extension of Dp′(a, b, c)

〈Frobp〉 of degree d(X,f) ≤ 2. If a = 2 or q is
even, then d(X,f) = 1.

(c) The map f as a G-Galois Bely̆ı map is defined over its field of moduli M(X, f,G).
Let

Dp′(a, b, c){
√
p∗} =

{
Dp′(a, b, c)(

√
p∗), if p | abc, pr is odd, and G ' PSL2(Fq);

Dp′(a, b, c) otherwise.

Then M(X, f,G) is an extension of Dp′(a, b, c){
√
p∗} of degree d(X,f,G) ≤ 2. If q is

even or p | abc or G ' PGL2(Fq), then d(X,f,G) = 1.

(Not all G-Galois Bely̆ı maps with G ' PGL2(Fq) or G ' PSL2(Fq) arise from the
construction in Theorem A, but Theorem B applies to them all.)
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The various fields of moduli fit into the following diagram.

M(X,G, f)

d(X,f,G)≤2

M(X, f)

d(X,f)≤2

Dp′(a, b, c){
√
p∗} = Q(λa, λb, λc)p′{

√
p∗}

Dp′(a, b, c)
〈Frobp〉 = Q(λa, λb, λc)

〈Frobp〉
p′

As a simple special case of Theorem B, we have the following corollary.

Corollary. Suppose f : X → P1 is a PSL2(Fq)-Galois Bely̆ı map with ramification indices
(2, 3, c) and suppose p - 6c is prime and a primitive root modulo 2c. Then q = pr where
r = φ(2c)/2 and f is defined over Q. Moreover, the monodromy group Gal(f) is defined
over an at most quadratic extension of Q(λp).

To prove Theorem B, we use a variant of the rigidity and rationality results which arise in
the study of the inverse Galois problem [44, 84] and apply them to the groups PSL2(Fq) and
PGL2(Fq). We use the classification of subgroups of PSL2(Fq) generated by two elements
provided by Macbeath [42]. The statements q =

√
pr and q = pr, respectively, can be found

in earlier work of Langer and Rosenberger [40, Satz (4.2)]; our proof follows similar lines.
Theorem B generalizes work of Schmidt and Smith [57, Section 3] who consider the case of
Hecke triangle groups as well as work of Streit [71] and Džambić [21] who considers Hurwitz
groups, where (a, b, c) = (2, 3, 7).

Composite level. The congruence subgroups so defined naturally extend to composite
ideals, and so they form a projective system (Proposition 9.7). For a prime p of E and
e ≥ 1, let P (pe) be the group

P (pe) =

{
PSL2(ZE/pe), if p splits completely in F ;

PGL2(ZE/pe), otherwise

where ZE denotes the ring of integers of E. For an ideal n of ZE, let P (n) =
∏

pe‖n P (pe), and

let P̂ = lim←−n
P (n) be the projective limit of P (n) with respect to the ideals n with n - 6abc.

Theorem C. ∆(a, b, c) is dense in P̂ .

Kucharczyk [38] uses superstrong approximation for thin subgroups of arithmetic groups
to prove a version of Theorem C that shows that the closure of the image of ∆(a, b, c) is

an open subgroup of P̂ , in particular of finite index; our Theorem C is more refined, giving
effective control over the closure of the image.

Applications. The construction and analysis of these curves has several interesting appli-
cations. Combining Theorems A and B, we see that the branched cover X(a, b, c; p) → P1

realizes the group PSL2(Fp) or PGL2(Fp) regularly over the field M(X, f,G), a small exten-
sion of a totally real abelian number field. (See Malle and Matzat [44], Serre [59, Chapters
7–8], and Volklein [84] for more information and groups realized regularly by rigidity and
other methods.)
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Moreover, the branched covers X(a, b, c; p)→ X(a, b, c) have applications in the Diophan-
tine study of generalized Fermat equations. When c = ∞, Darmon [18] has constructed a
family of hypergeometric abelian varieties associated to the triangle group ∆(a, b, c). The
analogous construction when c 6= ∞ we believe will likewise have important arithmetic ap-
plications. (See also work of Tyszkowska [80], who studies the fixed points of a particular
symmetry of PSL2(Fp)-Galois Bely̆ı curves.)

Finally, it is natural to consider applications to the arithmetic theory of elliptic curves.
Every elliptic curve E over Q is uniformized by a modular curve X0(N)→ E, and the theory
of Heegner points govern facets of the arithmetic of E: in particular, it controls the rank of
E(Q) when this rank is at most 1. By analogy, we are led to consider those elliptic curves
over a totally real field that are uniformized by a curve X(a, b, c; p)—there is some evidence
[82] that the images of CM points generate subgroups of rank at least 2.

Organization. The paper is organized as follows. In Sections 2–4, we introduce triangle
groups, Bely̆ı maps, Galois Bely̆ı curves, and fields of moduli. In Section 5, we investigate in
detail a construction of Takeuchi, later explored by Cohen and Wolfart, which realizes the
curves associated to triangle groups as subvarieties of quaternionic Shimura varieties, and
from this modular embedding we define congruence subgroups of triangle groups. We next
introduce in Section 6 the theory of weak rigidity which provides the statement of Galois
descent we will employ. In Section 7, we set up the basic theory of PSL2(Fq), and in Section
8 we recall Macbeath’s theory of two-generated subgroups of SL2(Fq). In Section 9, we put
the pieces together and prove Theorems A, B, and C. We conclude in Section 10 with several
explicit examples.

The authors would like to thank Henri Darmon, Richard Foote, David Harbater, Hi-
laf Hasson, Robert Kucharczyk, Jennifer Paulhus, Jeroen Sijsling, Jürgen Wolfart, and the
anonymous referee for helpful discussions and comments, as well as Noam Elkies for his valu-
able comments and encouragement. The second author was supported by an NSF CAREER
Award (DMS-1151047).

2. Triangle groups

In this section, we review the basic theory of triangle groups. We refer to Magnus [43,
Chapter II] and Ratcliffe [51, §7.2] for further reading.

Let a, b, c ∈ Z≥2 ∪ {∞} satisfy a ≤ b ≤ c. We say that the triple (a, b, c) is spherical,
Euclidean, or hyperbolic according as the quantity

χ(a, b, c) =
1

a
+

1

b
+

1

c
− 1

is positive, zero, or negative. The spherical triples are (2, 3, 3), (2, 3, 4), (2, 3, 5), and (2, 2, c)
with c ∈ Z≥2. The Euclidean triples are (2, 2,∞), (2, 4, 4), (2, 3, 6), and (3, 3, 3). All other
triples are hyperbolic.

We associate to a triple (a, b, c) the extended triangle group ∆ = ∆(a, b, c), the group
generated by elements −1, δa, δb, δc, with −1 central in ∆, subject to the relations (−1)2 = 1
and

(2.1) δaa = δbb = δcc = δaδbδc = −1;
7



by convention we let δ∞∞ = −1. We define the quotient

∆ = ∆(a, b, c) = ∆(a, b, c)/{±1}

and call ∆ a triangle group. We denote by δ̄ the image of δ ∈ ∆(a, b, c) in ∆(a, b, c).

Remark 2.2. Reordering generators permits our assumption that a ≤ b ≤ c without loss of
generality. Indeed, the defining condition δaδbδc = −1 is invariant under cyclic permutations
so ∆(a, b, c) ' ∆(b, c, a) ' ∆(c, a, b), and similarly the map which sends a generator to
its inverse gives an isomorphism ∆(a, b, c) ' ∆(c, b, a). The same is true for the quotients
∆(a, b, c).

The triangle groups ∆(a, b, c) with (a, b, c) earn their name from the following geometric
interpretation. Associated to ∆ is a triangle T with angles π/a, π/b, and π/c on the Riemann
sphere, the Euclidean plane, or the hyperbolic plane according as the triple is spherical,
Euclidean, or hyperbolic, where by convention we let 1/∞ = 0. (The case (a, b, c) = (2, 2,∞)
is admittedly a bit weird; one must understand the term triangle generously in this case.)
The group of isometries generated by reflections τa, τ b, τ c in the three sides of the triangle
T is a discrete group with T itself as a fundamental domain. The subgroup of orientation-
preserving isometries is generated by the elements δ̄a = τ bτ c, δ̄b = τ cτa, and δ̄c = τaτ b and
these elements generate a group isomorphic to ∆(a, b, c). A fundamental domain for ∆(a, b, c)
is obtained by reflecting the triangle T in one of its sides. The sides of this fundamental
domain are identified by the elements δ̄a, δ̄b, and δ̄c, and consequently the quotient space is a
Riemann surface of genus zero. This surface is compact if and only if a, b, c 6=∞ (i.e., c 6=∞
since a ≤ b ≤ c). We analogously classify the groups ∆(a, b, c) as spherical, Euclidean, or
hyperbolic. We make the convention Z/∞Z = Z.

Example 2.3. For all a, b ≥ 2, ∆(a, b,∞) is canonically isomorphic to the free product
Z/aZ ∗ Z/bZ. This group is Euclidean when a = b = 2 and otherwise hyperbolic.

(a) The group ∆(2, 2,∞) = Z/2Z ∗ Z/2Z can be geometrically realized as the group
of isometries of the Euclidean plane generated by reflections through two distinct,
parallel lines. This yields the alternate presentation

∆(2, 2,∞) ' 〈σ, τ | σ2 = 1, στσ−1 = τ−1〉.

The group ∆(2, 2,∞) is sometimes called the infinite dihedral group.
(b) We have ∆(2, 3,∞) ' Z/4Z ∗Z/2Z Z/6Z ' SL2(Z). It follows that ∆(2, 3,∞) =

Z/2Z ∗ Z/3Z ' PSL2(Z).
(c) The group ∆(∞,∞,∞) = Z ∗ Z is free on two generators. We have ∆(∞,∞,∞) '

Ker(PSL2(Z)→ PSL2(Z/2Z)).
(d) For n ∈ Z≥2, the groups ∆(2, n,∞) ' Z/2Z ∗ Z/nZ are called Hecke groups [33].

Example 2.4. The spherical triangle groups are all finite groups: we have ∆(2, 2, c) ' D2c,
the dihedral group on 2c elements, and

∆(2, 3, 3) ' A4, ∆(2, 3, 4) ' S4, ∆(2, 3, 5) ' A5.

We have the exact sequence

(2.5) 1→ [∆,∆]→ ∆→ ∆
ab → 1

8



where [∆,∆] denotes the commutator subgroup. If c 6=∞, then ∆
ab

= ∆/[∆,∆] is isomor-
phic to the quotient of Z/aZ×Z/bZ by the cyclic subgroup generated by (c, c); when c =∞,

we have ∆
ab ' Z/aZ × Z/bZ. Thus, the group ∆ is perfect (i.e. ∆

ab
= {1}) if and only if

a, b, c are relatively prime in pairs. We have [∆,∆] ' Z for (a, b, c) = (2,∞,∞), whereas
for the other Euclidean triples we have [∆,∆] ' Z2 [43, §II.4]. In particular, the Euclidean
triangle groups are infinite and nonabelian, but solvable.

From now on, suppose (a, b, c) is hyperbolic. Then by the previous paragraph we can realize
∆ = ∆(a, b, c) ↪→ PSL2(R) as a Fuchsian group, a discrete subgroup of orientation-preserving
isometries of the upper half-plane H. Let H(∗) denote H together with the cusps of ∆(a, b, c):
this is the number of instances of∞ among a, b, c. We write X(a, b, c) = ∆(a, b, c)\H(∗) ' P1

C
for the quotient space.

We lift this embedding to SL2(R) as follows. Suppose that b <∞: this excludes the cases
(a,∞,∞) and (∞,∞,∞), whose associated groups are commensurable with SL2(Z) and can
be analyzed after making appropriate modifications. Then Takeuchi [78, Proposition 1] has
shown that there exists an embedding

∆(a, b, c) ↪→ SL2(R)

which is unique up to conjugacy in SL2(R). In fact, this embedding can be made explicit as
follows [50]. As in the introduction, for s ∈ Z≥2, let ζs = exp(2πi/s) and

(2.6) λs = ζs +
1

ζs
= 2 cos

(
2π

s

)
and µs = 2 sin

(
2π

s

)
= −i

(
ζs −

1

ζs

)
where by convention ζ∞ = 1, λ∞ = 2, and µ∞ = 0.

Then we have a map

(2.7)

∆(a, b, c) ↪→ SL2(R)

δa 7→
1

2

(
λ2a µ2a

−µ2a λ2a

)
δb 7→

1

2

(
λ2b tµ2b

−µ2b/t λ2b

)
where

t+ 1/t = 2
λ2aλ2b + 2λ2c

µ2aµ2b

.

The embedding (2.7) then also gives rise to an explicit embedding ∆(a, b, c) ↪→ PSL2(R).
A triangle group ∆ = ∆(a, b, c) is maximal (we also say that the triple (a, b, c) is maximal)

if ∆ cannot be properly embedded in any Fuchsian group. By a result of Singerman [62] (see
also Greenberg [30, Theorem 3B]), any Fuchsian group containing ∆(a, b, c) is itself a triangle
group. All inclusion relations between triangle groups can be generated (by concatenation)
from the relations [27, (2)]

(2.8)
∆(2, 7, 7) ≤9 ∆(2, 3, 7) ∆(3, 8, 8) ≤10 ∆(2, 3, 8)
∆(4, 4, 5) ≤6 ∆(2, 4, 5) ∆(3, 3, 7) ≤8 ∆(2, 3, 7)

or one of the families

(2.9)
∆(a, a, a) E3 ∆(3, 3, a) ∆(a, a, c) E2 ∆(2, a, 2c)

∆(2, b, 2b) ≤3 ∆(2, 3, 2b) ∆(3, b, 3b) ≤4 ∆(2, 3, 3b).
9



Here H ≤n G (resp. H En G) means that H is an index n subgroup of G (resp. an index n
normal subgroup of G). Moreover, to avoid tedious proliferation of cases, we have in (2.9)
removed our assumption that a ≤ b ≤ c. It follows from (2.8)–(2.9) that ∆(a, b, c) is maximal
if and only if (a, b, c) is not of the form

(2.10) (a, b, b), (2, b, 2b), or (3, b, 3b)

with again a, b, c ∈ Z≥2 ∪ {∞} not necessarily in increasing order.
A Fuchsian group Γ is arithmetic [6] if there exists a quaternion algebra B over a totally

real field F that is unramified at precisely one real place of F such that Γ is commensurable
with the image of the units of reduced norm 1 in an order O ⊆ B. Takeuchi [78, Theorem 3]
has enumerated the arithmetic triangle groups ∆(a, b, c): there are 85 of them, falling into
19 commensurability classes [79, Table (1)].

3. Galois Bely̆ı maps

In this section, we discuss Bely̆ı maps and Galois Bely̆ı curves and we relate these curves
to those uniformized by subgroups of triangle groups.

A branched cover of curves over a field k is a finite morphism of curves f : X → Y defined
over k. A Bely̆ı map is a branched cover f : X → P1 over C which is unramified away
from {0, 1,∞}. An isomorphism of branched covers between f and f ′ is an isomorphism

h : X
∼−→ X ′ that respects the covers, i.e., such that f = f ′ ◦ h.

Remark 3.1. Let f : X → P1 be a morphism of degree d > 1. By Riemann-Hurwitz, f is
ramified over at least two points of P1, and if f is ramified over exactly two points then
X ' P1. In the latter case, after identifying X with P1 we may adjust the target by a linear
fractional transformation so as to have f(z) = zd.

A branched cover that is a Galois (with Galois group G), i.e. a covering whose correspond-
ing extension of function fields is Galois, is called a Galois branched cover; if such a branched
cover is further equipped with an isomorphism i : G

∼−→ Gal(f) = Aut(X, f) ⊆ Aut(X),
it is called a G-Galois branched cover. Note the distinction between the two! A curve X
that possesses a Galois Bely̆ı map is called a Galois Bely̆ı curve. An isomorphism of G-Galois
branched covers over k is an isomorphism h of branched covers that identifies i with i′, i.e.,

h(i(g)x) = i′(g)h(x) for all g ∈ G and x ∈ X(k)

where k is an algebraic closure of k. (This distinction may seem irrelevant at first, but it
is important if one wants to study properties not just the cover but also the Galois group
of the branched cover.) For a Galois branched cover f : X → P1, the ramification index
of P ∈ X(C) depends only on f(P ), so we record these indices as a triple (a1, . . . , an) of
integers 1 < a1 ≤ · · · ≤ an and say that (a1, . . . , an) is the ramification type of f .

Remark 3.2. If X has genus at least 2 and X → X/G is a G-Galois Bely̆ı map, then the
quotient X → X/Aut(X) is a Aut(X)-Galois Bely̆ı map.

Example 3.3. The map

f : P1 → P1

f(t) =
t2(t+ 3)

4
= 1 +

(t− 1)(t+ 2)2

4
10



is a Bely̆ı map, a branched cover ramified only over 0, 1,∞, with ramification indices (2, 2, 3).
In particular, P1 is a Galois Bely̆ı curve. The Galois closure of f is a Galois Bely̆ı map P1 →
P1 with Galois group S3 corresponding to the simplest spherical triangle group ∆(2, 2, 3): it
is given by

f(t) =
27t2(t− 1)2

4(t2 − t+ 1)3
with f(t)− 1 = −(t− 2)2(2t− 1)2(t+ 1)2

4(t2 − t+ 1)3
.

It becomes an S3-Galois Bely̆ı map when it is equipped with the isomorphism

S3
∼−→ Gal(f) ≤ Aut(P1) ' PGL2(C)

(1 2) 7→ (t 7→ 1− t)↔
(
−1 1
0 1

)
(1 2 3) 7→

(
t 7→ 1

1− t

)
↔
(

0 1
−1 1

)
.

All examples of Galois Bely̆ı maps P1 → P1 arise in this way from the spherical triangle
groups, as in Example 2.4.

Example 3.4. We now consider Galois Bely̆ı maps E → P1 where E is a curve of genus 1
over C. There is no loss in assuming that E has the structure of elliptic curve with neutral
element ∞ ∈ E(C). The elliptic curves with extra automorphisms present candidates for
such maps.

The curve E : y2 = x3−x with j(E) = 1728 has G = Aut(E,∞) cyclic of order 4, and the
quotient x2 : E → E/G ' P1 yields a Galois Bely̆ı map of degree 4 with ramification type
(2, 4, 4) by a direct computation. This map as a G-Galois Bely̆ı map is minimally defined
over Q(

√
−1); the Belyi map itself is defined over Q.

Next we consider the curve with j(E) = 0 with G = Aut(E,∞) cyclic of order 6, from
which we obtain two Galois Bely̆ı maps. The first map is obtained by writing E : y2 = x3−1
and taking the map x3 : E → E/G ' P1, a Galois Bely̆ı map of degree 6 with ramification
type (2, 3, 6). The second is obtained by writing instead E : y2 − y = x3 (isomorphically)
and the unique subgroup H < G of order 3, corresponding to the map y : E → E/H ' P1

with ramification type (3, 3, 3). These maps are minimally defined over Q(
√
−3) as Galois

Bely̆ı maps. Indeed, the inclusions (2.9) imply an inclusion ∆(3, 3, 3) E2 ∆(2, 3, 6), so the
former is the composition of the latter together with the squaring map.

One obtains further Galois Bely̆ı maps by precomposing these with an isogeny E → E.

Lemma 3.5. Up to isomorphism, the only Galois Bely̆ı maps E → P1 with E a genus 1
curve over C are of the form

E
φ−→ E

f−→ P1

where φ is an isogeny and f is one of the three Galois Bely̆ı maps in Example 3.4. In
particular, the only Galois Bely̆ı curves E of genus 1 have j(E) = 0, 1728.

Proof. Let E → P1 be a Galois Bely̆ı map, where without loss of generality we may assume
E : y2 = f(x) is an elliptic curve in Weierstrass form with neutral element ∞. We claim
that j(E) = 0, 1728. We always have AutE = E(C) o Aut(E,∞). If G < AutE is a finite
subgroup, then G′ = G ∩ E(C) E G and G/G′ ⊆ Aut(E,∞), so E ′ = E/G′ is an elliptic
curve and E/G ' E/(G/G′). However, if j(E) 6= 0, 1728, then Aut(E,∞) = {±1}, so either
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G = G′ and E/G is an elliptic curve, or G = ±G′ and the map E → E/G′
x−→ E/G ' P1 is

ramified at four points, the roots of f(x) and ∞. �

In view of Examples 3.3 and 3.4 and Lemma 3.5, from now on we may restrict our attention
to Galois Bely̆ı maps f : X → P1 with X of genus g ≥ 2. These curves can be characterized
in several equivalent ways.

Proposition 3.6 (Wolfart [86, 88]). Let X be a compact Riemann surface of genus g ≥ 2.
Then the following are equivalent.

(i) X is a Galois Bely̆ı curve;
(ii) The map X → X/Aut(X) is a Bely̆ı map;

(iii) There exists a finite index, torsion-free normal subgroup Γ E ∆(a, b, c) with a, b, c ∈
Z≥2 and a complex uniformization Γ\H ∼−→ X; and

(iv) There exists an open neighborhood U of [X] (with respect to the complex analytic
topology) in the moduli space Mg(C) of curves of genus g such that # Aut(X) >
# Aut(Y ) for all [Y ] ∈ U \ {[X]}.

Remark 3.7. Proposition 3.6 implies that Riemann surfaces uniformized by subgroups of
non-cocompact hyerperbolic triangle groups are also uniformized by subgroups of cocompact
hyperbolic triangle groups. More precisely: let a′, b′ ∈ Z≥2 ∪ {∞}, (a′, b′) 6= (2, 2), and let
Γ′ ⊂ ∆(a′, b′,∞) be a finite index subgroup (not necessarily torsionfree). Then Γ′\H(∗) →
∆(a′, b′,∞)\H(∗) is a Galois Bely̆ı map, so by Proposition 3.6 there are a, b, c ∈ Z≥2 and
a finite index, normal torsionfree subgroup Γ ⊂ ∆(a, b, c) such that Γ′\H(∗) ' Γ\H. The
case of PSL2(Fq)-Galois Bely̆ı curves uniformized by subgroups of Hecke triangle groups is
treated in detail by Schmidt and Smith [57, Prop. 4].

By the Riemann-Hurwitz formula, if X is a G-Galois Bely̆ı curve of type (a, b, c), then X
has genus

(3.8) g(X) = 1 +
#G

2

(
1− 1

a
− 1

b
− 1

c

)
= 1− #G

2
χ(a, b, c).

Remark 3.9. The function of #G in (3.8) is maximized when (a, b, c) = (2, 3, 7). Combining
this with Proposition 3.6(iv) we recover the Hurwitz bound

# Aut(X) ≤ 84(g(X)− 1).

Remark 3.10. There are only finitely many Galois Bely̆ı curves of any given genus g. By the
Hurwitz bound (3.9), we can bound #G given g ≥ 2, and for fixed g and #G there are only
finitely many triples (a, b, c) satisfying (3.8). Each ∆(a, b, c) is finitely generated so has only
finitely many subgroups of index #G. From this, one can extract an explicit upper bound;
using a more refined approach, Schlage-Puchta and Wolfart [56, Theorem 1] showed that the
number of isomorphism classes of Galois Bely̆ı curves of genus at most g grows like glog g.

Remark 3.11. Wolfart [88] gives a complete list of all Galois Bely̆ı curves of genus g = 2, 3, 4.
Further examples of Galois Bely̆ı curves can be found in the work of Shabat and Voevodsky
[60]. See Table 10.5 for the determination of all PSL2(Fq)-Galois Bely̆ı curves with genus
g ≤ 24.
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Example 3.12. Let f : X → P1 be a Bely̆ı map and let g : Y → P1 be its Galois closure.
Then g is also a Bely̆ı map and hence Y is a Galois Bely̆ı curve. Note however that the
genus of Y may be much larger than the genus of X!

Condition Proposition 3.6(iii) leads us to consider curves arising from finite index normal
subgroups of the hyperbolic triangle groups ∆(a, b, c). If Γ ⊆ PSL2(R) is a Fuchsian group,
write X(Γ) = Γ \H(∗). If X is a compact Riemann surface of genus g ≥ 2 with uniformizing
subgroup Γ ⊆ PSL2(R), so that X = X(Γ), then Aut(X) = N(Γ)/Γ, where N(Γ) is the
normalizer of Γ in PSL2(R). Moreover, the quotient X → X/Aut(X), obtained from the
map X(Γ) → X(N(Γ)), is a Galois cover with Galois group Aut(X). By the results of
Section 1, if Γ ⊆ ∆(a, b, c) is a finite index normal subgroup then Aut(X(Γ)) is of the form

∆
′
/Γ with an inclusion ∆ ⊆ ∆

′
as in (2.8)–(2.9); if ∆ is maximal, then we have

(3.13) Aut(X(Γ)) ' ∆(a, b, c)/Γ.

4. Fields of moduli

In this section, we briefly review the theory of fields of moduli and fields of definition. See
Coombes and Harbater [16] and Köck [37] for more detail.

The field of moduli M(X) of a curve X over C is the fixed field of the group

{σ ∈ Aut(X) : Xσ ' X}.
In a similar way, we define the fields of moduli M(X, f) of a Bely̆ı map f : X → P1 and
M(X, f,G) of a G-Galois Bely̆ı map.

Owing to a lack of rigidity, not every curve can be defined over its field of moduli. However,
in our situation we have the following lemma.

Lemma 4.1. Let f : X → P1 be a Galois Bely̆ı map. Then f is defined over its field of
moduli M(X, f).

More generally, let X be a Galois Bely̆ı curve with Galois Bely̆ı map f : X → X/Aut(X) '
P1 such that the associated triangle group ∆ is maximal (not of the form (2.10)). Then
M(X, f) = M(X) and X is defined over its field of moduli M(X).

Proof. Dèbes and Emsalem [19, §1] remark that the first statement follows from results of
Coombes and Harbater [16]. The proof was written down by Köck [37, Theorem 2.2].

The subtlety in the second statement is that a Bely̆ı map f is rigidified so that an automor-
phism of f is required to act as the identity on P1. If one allows automorphisms of P1, then
there may be additional descent of f and X, and in particular the quotient X → X/Aut(X)
may be a branched cover of a genus zero curve ramified above at most three points but would
then not be a Bely̆ı map, according to our definition. One always has M(X, g) = M(X)
where g : X → X/Aut(X) = V , by Dèbes and Emsalem [19, Theorem 3.1]: indeed, any
automorphism σ(X) → X with σ ∈ Gal(Q/Q) induces an isomorphism of automorphism
groups and hence of the pair (X, g). (Or, the field of M(X) is the intersection of all fields of
definition of X, but over any field K where X is defined, so is g (since Aut(X) as a scheme
is defined over K), so M(X, g) = M(X).)

So to conclude the second statement of the lemma, we will show that the map g is a Bely̆ı
map according to our definition, and for that it suffices to show that each ramification point
on the target curve V is M(X)-rational (so in particular V 'M(X) P1). To do this, we note
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that since the associated triangle group ∆(a, b, c) is maximal, by (2.10) the three indices
a, b, c are distinct; any automorphism of g preserves ramification indices and thus necessarily
fixes these ramification points, so the base descends with these three points marked and so
in the canonical model of Dèbes and Emsalem they are defined over M(X, g) = M(X). �

Remark 4.2. The subtlety in Lemma 4.1 is noted by Streit and Wolfart [73, Theorem 1,
Remark 1], and they discuss the possible misinterpretation of the proof in Wolfart [89,
Theorem 5] and the subtlety in rigidifying the base curve. Girondo, Torres-Teigell, and
Wolfart [28, Lemma 1, Remark 1, Lemma 2] also give a proof of the second statement and
discuss descent for certain non-maximal triangle groups.

Keeping track of the action of the automorphism group, we also have the following result.

Lemma 4.3. Let f : X → P1 be a G-Galois Bely̆ı map. Suppose that CAut(X)(G) = {1},
i.e., the centralizer of G in Aut(X) is trivial. Then f and the action of Gal(f) ' G can be
defined over its field of moduli M(X, f,G).

Proof. By definition, an automorphism of f as a G-Galois Bely̆ı map is given by h ∈ Aut(X)
such that hi(g)h−1 = i(g) for all g ∈ G, so under the hypothesis of the lemma, f has no
automorphisms. Thus f and Gal(f) can be defined over M(X, f,G) by the criterion of Weil
descent. �

Remark 4.4. Let X be a curve which can be defined over its field of moduli F = M(X).
Then the set of F -isomorphism classes of models for X over F is in bijection with the Galois
cohomology set H1(Gal(F/F ),Aut(X)), where Aut(X) is equipped with the natural action
of the absolute Galois group Gal(F/F ). Similar statements are true more generally for the
other objects considered here, including Bely̆ı maps and G-Galois Bely̆ı maps.

As a consequence of Lemma 4.3, if G ' Aut(X) and G has trivial center Z(G) = {1},
then f as a G-Galois Bely̆ı map can be defined over M(X, f,G). Under this hypothesis, if
K = M(X, f,G), then by definition the group G occurs as a Galois group over K(t), and
in particular applying Hilbert’s irreducibility theorem [59, Chapter 3] we find that G occurs
infinitely often as a Galois group over K.

Example 4.5. Let p be prime and let X(p)/C = Γ(p)\H∗ be the classical modular curve,
parametrizing (generalized) elliptic curves E equipped with a basis of E[p] which is symplec-
tic with respect to the Weil pairing. Then Aut(X(p)) ⊇ G = PSL2(Fp), and the quotient
map j : X → X/G ' P1, corresponding to the inclusion Γ(p) ⊆ PSL2(Z), is ramified over
j = 0, 1728,∞ with indices 2, 3, p, so X(p) is a Galois Bely̆ı curve.

For p ≤ 5, the curve X(p) has genus 0 and thus AutX(p) = PGL2(C). For p ≥ 7, the
curve X(p) has genus at least three (the curve X(7) has genus 3 and is considered in more
detail in the following example), so AutX(p) is a finite group containing PSL2(Fp). In fact
we have AutX(p) = PSL2(Fp), as was shown by Mazur, following Serre [47, p. 255]. Later
we will recover this fact as a special case of a more general result.

The field of moduli of j : X → P1 is Q, and indeed this map (and hence X) admits
a canonical model over Q [36]. This model is not unique, since the set H1(Q,Aut(X)) is
infinite: in fact, every isomorphism class of Galois modules E[p] with E an elliptic curve
gives a different element in this set.

For p > 2, let p∗ = (−1)(p−1)/2 (so Q(
√
p∗) is the unique quadratic subfield of Q(ζp)).

The field of moduli of the PSL2(Fp)-Galois Bely̆ı map j is Q(
√
p∗) when p > 2 and Q when
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p = 2, and in each case the field of moduli is a field of definition [61, pp. 108-109]. Indeed,
this follows from Weil descent when p ≥ 7 and can be seen directly when p = 2, 3, 5 as these
correspond to spherical triples (2, 3, p) (cf. Example 3.3).

Example 4.6. The Klein quartic curve [24]

X3Y + Y 3Z + Z3X = 0

has field of definition equal to its field of moduli, which is Q, and all elements of Aut(X) can
be defined over Q(

√
−7) = Q(

√
7∗). Although the Klein quartic is isomorphic to X(7) over

Q, as remarked by Livné, the Katz-Mazur canonical model of X(7) agrees with the Klein
quartic only over Q(

√
−3). The issue here concerns the fields of definition of the special

points giving rise to the canonical model. We do not go further into this issue here, but for
more on this in the case of genus 1, see work of Sijsling [68].

Remark 4.7. We consider again Remark 3.12. If the field of moduli of a Bely̆ı map f : X → P1

is F then the field of moduli of its Galois closure g : Y → P1 as a Bely̆ı map contains F .
Consequently, let F be a number field and let X be an elliptic curve such that Q(j(X)) = F .
Then X admits a Bely̆ı map defined over F . The Galois closure g : Y → P1 therefore has
field of moduli containing F , and so for any number field F , there exists a G-Galois Bely̆ı
map such that any field of definition of this map contains F . Note that from Lemma 3.5
that outside of a handful of cases, the associated Galois Bely̆ı curve Y has genus g(X) ≥ 2.
This shows that Gal(Q/Q) acts faithfully on the set of isomorphism classes of G-Galois Bely̆ı
curves. However if X → P1 is a G-Galois Bely̆ı map and H ≤ G is a subgroup, then the
field of moduli of X → X/H can be smaller than the M(X, f,G).

Nevertheless, González-Diez and Jaikin-Zapirain [29] have recently shown that Gal(Q/Q)
acts faithfully on the set of Galois Bely̆ı curves.

In view of Remark 4.7, we restrict our attention from the general setup to the special class
of G-Galois Bely̆ı curves X where G = PSL2(Fq) or PGL2(Fq).

5. Congruence subgroups of triangle groups

In this section, we associate a quaternion algebra over a totally real field to a triangle
group following Takeuchi [77]. This idea was also pursued by Cohen and Wolfart [14] with
an eye toward results in transcendence theory, and further elaborated by Cohen, Itzykson,
and Wolfart [12]. Here, we use this embedding to construct congruence subgroups of ∆. We
refer to Vignéras [81] for the facts we will use about quaternion algebras and Katok [35] as
a reference on Fuchsian groups.

Let Γ ⊆ SL2(R) be a subgroup such that Γ = Γ/{±1} ⊆ PSL2(R) has finite coarea, so in
particular is Γ is finitely generated. Let

F = Q(tr Γ) = Q(tr γ)γ∈Γ

be the trace field of Γ. Then F is a finitely generated extension of Q.
Suppose further that F is a number field, so F has finite degree over Q, and let ZF be

its ring of integers. Let F [Γ] be the F -vector space generated by Γ in M2(R), and let ZF [Γ]
denote the ZF -submodule of F [Γ] generated by Γ. By work of Takeuchi [76, Propositions
2–3], the ring F [Γ] is a quaternion algebra over F . If further tr(Γ) ⊆ ZF , then ZF [Γ] is an
order in F [Γ].
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Remark 5.1. Schaller and Wolfart [55] call a Fuchsian group Γ semi-arithmetic if its trace
field F = Q(tr Γ) is a totally real number field and {tr γ2 : γ ∈ Γ} is contained in the ring of
integers of F . They ask if all semi-arithmetic groups are either arithmetic or subgroups of
triangle groups; this conjecture remains open. This is implied by a conjecture of Chudnovsky
and Chudnovsky [11, Section 7]. The Chudnovskys’ conjecture is false if the group is not
cocompact—this is implicit in work of McMullen and made explicit in work of Bouw and
Möller [7, 8]—but may still be true in the compact case. See also work of Ricker [53].

Let (a, b, c) be a hyperbolic triple with 2 ≤ a ≤ b ≤ c ≤ ∞. As in section 2, associ-
ated to the triple (a, b, c) is the triangle group ∆(a, b, c) ⊆ SL2(R) with ∆(a, b, c)/{±1} '
∆(a, b, c) ⊆ PSL2(R). Let F = Q(tr ∆(a, b, c)) be the trace field of ∆(a, b, c). The generating
elements δs ∈ ∆(a, b, c) for s = a, b, c satisfy the quadratic equations

δ2
s − λ2sδs + 1 = 0

in B where λ2s is defined in (2.6).

Lemma 5.2 ([78, Lemma 2]). Let Γ ⊆ SL2(R). If γ1, . . . , γr generate Γ, then Q(tr Γ) is
generated by tr(γi1 · · · γis) for {i1, . . . , is} ⊆ {1, . . . , r}.

By Lemma 5.2, we deduce

F = Q(tr ∆(a, b, c)) = Q(λ2a, λ2b, λ2c).

Taking traces in the equation

δaδb = −δ−1
c = δc − λ2c,

yields

− tr(δ−1
c ) = −λ2c = tr(δaδb) = δaδb + (λ2b − δb)(λ2a − δa).

Also we have

(5.3) δaδb + δbδa = λ2bδa + λ2aδb − λ2c − λ2aλ2b.

Together with the cyclic permutations of these equations, we conclude that the elements
1, δa, δb, δc form a ZF -basis for the order O = ZF [∆] ⊆ B = F [∆] (see also Takeuchi [78,
Proposition 3]).

Lemma 5.4. The reduced discriminant of O is a principal ZF -ideal generated by

β = λ2
2a + λ2

2b + λ2
2c + λ2aλ2bλ2c − 4 = λa + λb + λc + λ2aλ2bλ2c + 2.

Proof. Let d be the discriminant of O. Then we calculate from the definition that

d2 = det


2 λ2a λ2b λ2c

λ2a λ2
2a − 2 −λ2c −λ2b

λ2b −λ2c λ2
2b − 2 −λ2a

λ2c −λ2b −λ2a λ2
2c − 2

ZF = β2ZF .

Alternatively, we compute a generator for d using the scalar triple product and (5.3) as

tr([δa, δb]δc) = tr((δaδb − δbδa)δc) = tr(2δaδb − (λ2bδa + λ2aδb − λ2c − λ2aλ2b)δc)

= −4− λ2b tr(δaδc)− λ2a tr(δbδc) + λ2
2c + λ2aλ2bλ2c = β

since δaδc = −δ−1
b and δbδc = −δ−1

a . �
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Lemma 5.5. If P is a prime of ZF with P - 2abc, then P - β. If further (a, b, c) is not of
the form (mk,m(k + 1),mk(k + 1)) with k,m ∈ Z, then P - β for all P - abc.

Proof. Let P be a prime of F such that P - abc. We have the following identity in the field
Q(ζ2a, ζ2b, ζ2c) = K:

(5.6) β =

(
ζ2bζ2c

ζ2a

+ 1

)(
ζ2aζ2c

ζ2b

+ 1

)(
ζ2aζ2b

ζ2c

+ 1

)(
1

ζ2aζ2bζ2c

+ 1

)
.

Let PK be a prime above P in K and suppose that PK | β. Then PK divides one of the
factors in (5.6).

First, suppose that PK | (ζ2bζ2cζ
−1
2a + 1), i.e., we have ζ2bζ2c ≡ −ζ2a (mod PK). Suppose

that PK - 2abc. Then the map (Z×K)tors → F×PK
is injective. Hence ζ2bζ2c = −ζ2a ∈ K. But

then embedding K ↪→ C by ζs 7→ e2πi/s in the usual way, this equality would then read

(5.7)
1

b
+

1

c
= 1 +

1

a
∈ Q/2Z.

However, we have

0 ≤ 1

b
+

1

c
≤ 1 < 1 +

1

a
< 2

for any a, b, c ∈ Z≥2 ∪ {∞} when a 6= ∞, a contradiction, and when a = ∞ we have
b = c =∞ which again contradicts (5.7).

Now suppose PK | 2 but still PK - abc. Then ker((Z×K)tors → F×P) = {±1}, so instead
we have the equation ζ2bζ2c = ±ζ2a ∈ K. Arguing as above, it is enough to consider the
equation with the +-sign, which is equivalent to

1

b
+

1

c
=

1

a
.

Looking at this equation under a common denominator we find that b | c, say c = kb.
Substituting this back in we find that (k + 1) | b so b = m(k + 1) and hence a = km and
c = mk(k + 1), and in this case we indeed have equality.

The case where PK divides the middle two factors is similar. The case where PK divides
the final factor follows from the impossibility of

0 = 1 +
1

a
+

1

b
+

1

c
∈ Q/2Z

since (a, b, c) is hyperbolic. �

We have by definition an embedding

∆ ↪→ O×1 = {γ ∈ O : nrd(γ) = 1}
(where nrd denotes the reduced norm) and hence an embedding

(5.8) ∆ = ∆/{±1} ↪→ O×1 /{±1}.
In fact, the image of this map arises from a quaternion algebra over a smaller field, as

follows. Let ∆(2) denote the subgroup of ∆ generated by −1 and γ2 for γ ∈ ∆. Then ∆(2)

is a normal subgroup of ∆, and the quotient ∆/∆(2) is an elementary abelian 2-group. We
have an embedding

∆(2)/{±1} ↪→ ∆/{±1} = ∆.
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Recall the exact sequence (2.5):

1→ [∆,∆]→ ∆→ ∆
ab → 1.

Here, ∆
ab

is the quotient of Z/aZ × Z/bZ × Z/cZ by the subgroup (1, 1, 1). We obtain

∆(2) ⊇ [∆,∆] as the kernel of the (further) maximal elementary 2-quotient of ∆
ab

. It follows
that the quotient ∆/∆(2) is generated by the elements δs for s ∈ {a, b, c} such that either
s =∞ or s is even, and

(5.9) ∆/∆(2) '


{0}, if at least two of a, b, c are odd;

Z/2Z, if exactly one of a, b, c is odd;

(Z/2Z)2, if all of a, b, c are even or ∞.
(See also Takeuchi [78, Proposition 5].)

Consequently, ∆(2) is the normal closure of the set {−1, δ2
a, δ

2
b , δ

2
c} in ∆. A modification

of the proof of Lemma 5.2 shows that the trace field of ∆(2) can be computed on these
generators (trace is invariant under conjugation). We have

tr δ2
s = tr(λ2sδs − 1) = λ2

2s − 2 = λs − 2

for s ∈ {a, b, c} and similarly

tr(δ2
aδ

2
b ) = tr((λ2aδa − 1)(λ2bδb − 1)) = λ2aλ2bλ2c − λ2

2b − λ2
2a + 2

and

tr(δ2
aδ

2
b δ

2
c ) = tr((λ2aδa − 1)(λ2bδb − 1)(λ2cδc − 1)) = λ2

2a + λ2
2b + λ2

2c + λ2aλ2bλ2c − 2;

from these we conclude that the trace field of ∆(2) is equal to

(5.10) E = F (a, b, c) = Q(λ2
2a, λ

2
2b, λ

2
2c, λ2aλ2bλ2c) = Q(λa, λb, λc, λ2aλ2bλ2c).

(See also Takeuchi [78, Propositions 4–5].)

Example 5.11. The Hecke triangle groups ∆(2, n,∞) for n ≥ 3 have trace field F = Q(λ2n)
whereas the corresponding groups ∆(2) have trace field E = Q(λn), which is strictly contained
in F if and only if n is even.

Let Λ = ZE[∆(2)] ⊆ A = E[∆(2)] be the order and quaternion algebra associated to ∆(2).
By construction we have

(5.12) ∆(2)/{±1} ↪→ Λ×1 /{±1}.
We then have the following fundamental result.

Proposition 5.13. The image of the natural homomorphism

∆ ↪→ O×1
{±1}

↪→ NB(O)

F×

lies in the subgroup NA(Λ×)/E× via

(5.14)

∆ ↪→ NA(Λ)

E×
↪→ NB(O)

F×

δ̄s 7→ δ2
s + 1, if s 6= 2;

δ̄a 7→ (δ2
b + 1)(δ2

c + 1), if a = 2.
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where s = a, b, c and N denotes the normalizer. The map (5.14) extends the natural embed-
ding (5.12).

Proof of Proposition 5.13. First, suppose a 6= 2 (whence b, c 6= 2, by the assumption that
a ≤ b ≤ c). In B, for each s = a, b, c, we have

(5.15) δ2
s + 1 = λ2sδs;

since s 6= 2, so that λ2s 6= 0, this implies that δ2
s + 1 has order s in A×/E× ⊆ B×/F× and

(δ2
a + 1)(δ2

b + 1)(δ2
c + 1) = λ2aλ2bλ2cδaδbδc = −λ2aλ2bλ2c ∈ E×,

so (5.14) defines a group homomorphism ∆ ↪→ A×/E×. The image lies in the normalizer
NA(Λ) because ∆(2) generates Λ and ∆ normalizes ∆(2). Finally, we have

(δ2
s + 1)2 = λ2

2sδ
2
s ∈ A,

so the map extends the natural embedding of ∆(2)/{±1}.
If a = 2, the same argument applies, with instead

δ̄a 7→ (δ2
b + 1)(δ2

c + 1)

since (δ2
b + 1)(δ2

c + 1) = λ2bλ2c(−δ−1
a ) = λ2bλ2cδa now has order 2 in A×/E

×
, and necessarily

b, c > 2 since the triple is hyperbolic. �

Example 5.16. The triangle group ∆(2, 4, 6) has trace field F = Q(
√

2,
√

3). However, the
group ∆(2, 4, 6)(2) has trace field E = Q and indeed we find an embedding ∆(2, 4, 6) ↪→
NA(Λ)/Q× where Λ is a maximal order in a quaternion algebra A of discriminant 6 over Q.

Corollary 5.17. The following statements hold.

(a) We have Λ⊗ZE
ZF ⊆ O.

(b) If a 6= 2, the quotient O/(Λ⊗ZE
ZF ) is annihilated by λ2aλ2bλ2c.

(c) If a = 2, the quotient O/(Λ⊗ZE
ZF ) is annihilated by λ2bλ2c.

Proof. This follows from (5.15) since a basis for O is given by 1, δa, δb, δc. �

We now define congruence subgroups of triangle groups. Let N be an ideal of ZF such
that N is coprime to abc and either N is coprime to 2 or

(a, b, c) 6= (mk,m(k + 1),mk(k + 1)) with m, k ∈ Z.

Then by Lemma 5.5, we have an isomorphism

(5.18) O ⊗ZF
ZF,N ' M2(ZF,N)

where ZF,N denotes the N-adic completion of the ring ZF : this is the product of the com-
pletions at P for P | N and thus is a finite product of discrete valuation rings. Any two
maximal orders in a split quaternion algebra over a discrete valuation ring R with fraction
field K are conjugate by an element of M2(K) [81, Théorème II.2.3], and it follows easily that
the isomorphism (5.18) is unique up to conjugation by an element of GL2(ZF,N). Alternately
(and perhaps more fundamentally) since the ring ZF,N has trivial Picard group, the result
follows from a generalization of the Noether–Skolem Theorem [54, Corollary 12].

Let

(5.19) O(N) = {γ ∈ O : γ ≡ 1 (mod NO)}.
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The definition of O(N) does not depend on the choice of isomorphism in (5.18). Then O(N)×1
is normal in O×1 and we have an exact sequence

1→ O(N)×1 → O×1 /{±1} → PSL2(ZF/N)→ 1

where surjectivity follows from strong approximation [81, Théorème III.4.3]. Let

∆(N) = ∆ ∩ O(N)×1 .

Then we have

(5.20)
∆

∆(N)
↪→ O

×
1 /{±1}
O(N)×1

' PSL2(ZF/N).

We conclude by considering the image of the embedding (5.20). Let n be the prime of
E = F (a, b, c) below N. Then n is coprime to the discriminant of Λ since the latter di-
vides (λ2aλ2bλ2c)β by Corollary 5.17. Therefore, we may define Λ(n) analogously. Then by
Proposition 5.13, we have an embedding

(5.21) ∆ ↪→ NA(Λ)

E×
↪→ A×

E×
↪→ A×n

E×n
' PGL2(En)

where En denotes the completion of E at n. The image of ∆ in this map lies in PGL2(ZE,n)
by (5.15) since λ2s ∈ Z×E,n for s = a, b, c (since n is coprime to abc). Reducing the image in
(5.21) modulo n, we obtain a map

∆→ PGL2(ZE/n).

This map is compatible with the map ∆→ PSL2(ZF/N) inside PGL2(ZF/N), obtained by
comparing the images in the reduction modulo N of B×/F×, by Proposition 5.13.

We summarize the main result of this section.

Proposition 5.22. Let a, b, c ∈ Z≥2 ∪ {∞}. Let N be an ideal of ZF with N prime to abc
and such that either N is prime to 2 or (a, b, c) 6= (mk,m(k + 1),mk(k + 1)) with m, k ∈ Z.
Let n = ZE ∩N. Then there exists a homomorphism

φ : ∆(a, b, c)→ PSL2(ZF/N)

such that trφ(δ̄s) ≡ ±λ2s (mod N) for s = a, b, c. The image of φ lies in the subgroup

PGL2(ZE/n) ∩ PSL2(ZF/N) ⊆ PGL2(ZF/N).

Remark 5.23. We conclude this section with some remarks extending the primes P of F
(equivalently, primes p of E) for which the construction applies.

First, we note that whenever P - β, the order O is maximal at P.
Second, even for a ramified prime P (or p), we still can consider the natural map to

the completion; however, instead of PGL2(FP) we instead obtain the units of an order in a
division algebra over FP, a prosolvable group. Our interest remains in the groups PSL2 and
PGL2, but this case also bears further investigation: see Takei [75] for some results in the
case where b = c =∞.

Third, we claim that

B '
(
λ2

2s − 4, β

F

)
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for any s ∈ {a, b, c}. Indeed, given the basis 1, δa, δb, δc, we construct an orthogonal basis for
B as

1, 2δa − λ2a, (λ
2
2a − 4)δb + (λ2aλ2b + 2λ2c)δa − (λ2

2aλ2b − λ2aλ2c + 2λ2b)

which gives rise to the presentation B '
(

4− λ2
2a, β

F

)
. The others follow by symmetry. It

follows that a prime P of ZF ramifies in B if and only if we have for the Hilbert symbol
(quadratic norm residue symbol) (λ2

2s − 4, β)P = −1 for (any) s ∈ {a, b, c}. For example, if
(a, b, c) = (2, 3, c) (with c ≥ 7), one can show that the quaternion algebra B is ramified at
no finite place.

A similar argument [79, Proposition 2] shows that

A '
(
λ2

2b(λ
2
2b − 4), λ2

2bλ
2
2cβ

E

)
.

For any prime p of E which is unramified in A, we can repeat the above construction, and
we obtain a homomorphism φ as in (5.22); the image can be analyzed by considering the
isomorphism class of the local order Λp, measured in part by the divisibility of β by p.

6. Weak rigidity

In this section, we investigate some weak forms of rigidity and rationality for Galois covers
of P1. We refer to work of Coombes and Harbater [16], Malle and Matzat [44], Serre [59,
Chapters 7–8], and Volklein [84] for references. Our main result concerns three-point covers,
but we begin by briefly considering more general covers.

Let G be a finite group. An n-tuple for G is a finite sequence g = (g1, . . . , gn) of elements
of G such that g1 · · · gn = 1. In our applications we will take n = 3, so we will not emphasize
the dependence on n, and refer to tuples. A tuple is generating if 〈g1, . . . , gn〉 = G. Let
C = (C1, . . . , Cn) be a finite sequence of conjugacy classes of G. Let Σ(C) be the set of
generating tuples g = (g1, . . . , gn) such that gi ∈ Ci for all i.

The group Inn(G) = G/Z(G) of inner automorphims of G acts on Gn via

x · g = x · (g1, . . . , gn) = gx = (xg1x
−1, . . . , xgnx

−1)

and restricts to an action of Inn(G) on C.
Suppose that G has trivial center, so Inn(G) = G. To avoid trivialities, suppose also that

Σ(C) 6= ∅. Then the action of Inn(G) on Σ(C) has no fixed points: if z ∈ G fixes g, then z
commutes with each gi hence with 〈g1, . . . , gn〉 = G, so z ∈ Z(G) = {1}.

Now suppose that n = 3; we call a 3-tuple a triple. For every generating triple g, we obtain
from the Riemann Existence Theorem [84, Theorem 2.13] a G-Galois branched covering
X(g) → P1 defined over Q with ramification type g over 0, 1,∞ and Galois group G. Two

such covers f : X(g) → P1 and f ′ : X(g′) → P1 are isomorphic as covers if there exists

an isomorphism h : X(g)
∼−→ X(g′) such that f = f ′ ◦ h; such an isomorphism from f to

f ′ corresponds to an element ϕ ∈ Aut(G) such that ϕ(g) = (ϕ(g1), . . . , ϕ(gn)) = g′, and
conversely.

We will have need also of a more rigid notion. A G-Galois branched cover is a branched
cover f : X → P1 equipped with an isomorphism i : G

∼−→ Aut(X, f). Two G-Galois
branched covers (f, i) and (f ′, i′) are isomorphic (as G-Galois branched covers) if and only if
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there is an isomorphism from f to f ′ that maps i to i′; such an isomorphism corresponds to
an element x ∈ G such that

gx = (g′)x

and conversely.
The group Gal(Q/Q) acts on the set of generating tuples for G up to automorphism

(or simply inner automorphism) via its action on the covers. Coming to grips with the
mysteries of this action in general is part of Grothendieck’s program of dessin d’enfants [31]:
to understand Gal(Q/Q) via its faithful action on the fundamental group of P1

Q \ {0, 1,∞}.
There is one part of the action which is understood, coming from the maximal abelian
extension of Q generated by roots of unity.

Let ζs = exp(2πi/s) ∈ C be a primitive sth root of unity for s ∈ Z≥2. The group
Gal(Qab/Q) acts on tuples via the cyclotomic character χ: for σ ∈ Gal(Qab/Q) and a triple

g, we have σ ·g is uniformly conjugate to (g
χ(σ)
1 , . . . , g

χ(σ)
n ) where if gi has order mi then g

χ(σ)
i

is conjugate to gaii , where σ(ζmi
) = ζaimi

. This action becomes an action on conjugacy classes
in purely group theoretic language as follows. Let m be the exponent of G. Then the group
(Z/mZ)× acts on G by s · g = gs for s ∈ (Z/mZ)× and g ∈ G and this induces an action on

conjugacy classes. Pulling back by the canonical isomorphism Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×

defines the action of Gal(Q(ζm)/Q) and hence also Gal(Qab/Q) on the set of triples for G.
Let Hr ⊆ Gal(Q(ζm)/Q) be the kernel of this action:

Hr = {s ∈ (Z/mZ)× : Cs = C for all conjugacy classes C}.

The fixed field F r(G) = Q(ζm)Hr is called the field of rationality of G. The field F r(G) can
also be characterized as the field obtained by adjoining to Q the values of the character table
of G. Let

H(C) = {s ∈ (Z/mZ)× : Cs
i = Ci for all i}

be the stabilizer of C under this action. We define the field of rationality of C to be

F r(C) = Q(ζm)H(C).

Similarly, let

Hwr(C) = {s ∈ (Z/mZ)× : Cs = ϕ(C) for some ϕ ∈ Aut(G)}.

We define the field of weak rationality of C to be Fwr(C) = Q(ζm)Hwr(C). Then

Fwr(C) ⊆ F r(C) ⊆ F r(G).

The group Gal(Q/Fwr(C)) acts on the set of generating tuples g ∈ Σ(C) up to uniform

automorphism, which we denote Σ(C)/Aut(G). For g ∈ Σ(C), the cover f : X = X(g)→ P1

has field of moduli M(X, f) equal to the fixed field of the kernel of this action, a number
field of degree at most dwr = #Σ(C)/Aut(G) over Fwr(C).

Similarly, a G-Galois branched cover f : X → P1 (equipped with its isomorphism i : G
∼−→

Aut(X, f)) has field of moduli M(X, f,G) equal to the fixed field of the stabilizer of the
action of Gal(Q/F r(C)), a number field of degree ≤ dr = #Σ(C)/ Inn(G) over F r(C).
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Therefore, we have the following diagram of fields.

M(X, f,G)

≤dr=#Σ(C)/ Inn(G)M(X, f)

≤dwr=#Σ(C)/Aut(G) F r(C)

Fwr(C)

Q

The simplest case of this setup is as follows. We say that C is rigid if the action of Inn(G)
on Σ(C) is transitive. By the above, if Σ(C) is rigid then this action is simply transitive and
so endows Σ(C) with the structure of a torsor under G = Inn(G). In this case, the diagram
collapses to

M(X, f,G) = F r(C) ⊇M(X, f) = Fwr(C).

More generally, we say that C is weakly rigid if for all g, g′ ∈ Σ(C) there exists ϕ ∈ Aut(G)
such that ϕ(g) = g′. (Coombes and Harbater [16] say inner rigid and outer rigid for rigid
and weakly rigid, respectively.) If C is weakly rigid, and X = X(g) with g ∈ C, then
M(X, f) = Fwr(C) and the group Gal(M(X, f,G)/F r) injects canonically into the outer
automorphism group Out(G) = Aut(G)/ Inn(G).

We summarize the above discussion in the following proposition.

Proposition 6.1. Let G be a group with trivial center. Let g = (g1, . . . , gn) be a generating
tuple for G and let C = (C1, . . . , Cn), where Ci is the conjugacy class of gi. Let P1, . . . , Pn ∈
P1(Q). Then the following statements hold.

(a) There exists a branched covering f : X → P1 with ramification type C = (C1, . . . , Cn)

over the points P1, . . . , Pn and an isomorphism G
∼−→ Aut(X, f), all defined over Q.

(b) The field of moduli M(X, f) of f is a number field of degree at most

dwr = #Σ(C)/Aut(G)

over Fwr(C).
(c) The field of moduli M(X, f,G) of f as a G-Galois branched cover is a number field

of degree at most

dr = #Σ(C)/ Inn(G)

over F r(C).

7. Conjugacy classes, fields of rationality

Let p be a prime number and q = pr a prime power. Let Fq be a field with q elements

and algebraic closure Fq. In this section, we record some basic but crucial facts concerning
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conjugacy classes and automorphisms in the finite matrix groups arising from GL2(Fq); see
Huppert [34, §II.8] for a reference.

First let g ∈ GL2(Fq). By the Jordan canonical form, exactly one of the following holds:

(1) The characteristic polynomial f(g;T ) ∈ Fq[T ] has two repeated roots (in Fq), and
hence g is either a scalar matrix (central in GL2(Fq)) or g is conjugate to a matrix

of the form

(
t 1
0 t

)
with t ∈ F×q ; or

(2) f(g;T ) has distinct roots (in Fq) and the conjugacy class of g is uniquely determined
by f(g;T ), and we say g is semisimple.

Let PGL2(Fq) = GL2(Fq)/F×q and let g be the image of g under the natural reduction map

GL2(Fq) → PGL2(Fq). We have g = 1 iff g is a scalar matrix. If g is conjugate to

(
t 1
0 t

)
,

then g is conjugate to

(
1 1
0 1

)
, and we say that g is unipotent. If f(g;T ) is semisimple, then

in the quotient the conjugacy classes associated to f(g;T ) and f(cg;T ) = c2f(g; c−1T ) for
c ∈ F×q become identified. If f(g;T ) factors over Fq then g is conjugate in PGL2(Fq) to the

image of a matrix

(
1 0
0 x

)
with x ∈ F×q \ {1}, and we say that g is split (semisimple). The

set of split semisimple conjugacy classes in PGL2(Fq) is therefore in bijection with the set

(7.1) {{x, x−1} : x ∈ F×q \ {1}}.

There are (q−3)/2+1 = (q−1)/2 such classes if q is odd, and (q−2)/2 = q/2−1 such classes
if q is even. On the other hand, the conjugacy classes of semisimple elements with irreducible
f(g;T ) are in bijection with the set of monic, irreducible polynomials f(T ) ∈ Fq[T ] of degree
2 up to rescaling x 7→ ax with a ∈ F×q . There are q(q−1)/2 such monic irreducible quadratic

polynomials T 2 − aT + b; for any such polynomial with a 6= 0, there is a unique rescaling
such that a = 1; when q is odd, there is a unique such polynomial with a = 0 up to rescaling.
Therefore, the total number of conjugacy classes is (q(q−1)/2)/(q−1) = q/2 when q is even
and (q(q − 1)/2− (q − 1)/2) /(q− 1) + 1 = (q− 1)/2 when q is odd. Equivalently, the set of
nonsplit semisimple conjugacy classes in PGL2(Fq) is in bijection with the set

(7.2) {{y, yq} : y ∈ (Fq2 \ Fq)/F×q }

by taking roots.
Now let g ∈ SL2(Fq)\ with g 6= ±1. Suppose first that f(g;T ) has a repeated root,

necessarily ±1; then we say that g is unipotent. For u ∈ Fq, let U(u) =

(
1 u
0 1

)
. Using

Jordan canonical form we find that g is conjugate to ±U(u) for some u ∈ F×q . The matrices

U(u) and U(v) are conjugate if and only if uv−1 ∈ F×2
q . Thus, if q is odd there are four

nontrivial conjugacy classes associated to characteristic polynomials with repeated roots,
whereas is q is even there is a single such conjugacy class.

Otherwise the element g is semisimple and so g is conjugate in SL2(Fq) to the matrix(
0 −1
1 tr(g)

)
by rational canonical form, and the trace map provides a bijection between the

set of conjugacy classes of semisimple elements of SL2(Fq) and elements α ∈ Fq with α 6= ±2.
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Finally, we give the corresponding description in PSL2(Fq) = SL2(Fq)/{±1}. When p =
2 we have PSL2(Fq) = SL2(Fq), so assume that p is odd. Then the conjugacy classes
of the matrices U(u) and −U(u) in SL2(Fq) become identified in PSL2(Fq), so there are
precisely two nontrivial unipotent conjugacy classes, each consisting of elements of order
p. If g is a semisimple element of SL2(Fq) of order a, then the order of its image ±g in
PSL2(Fq) is a/gcd(a, 2). We define the trace of an element ±g ∈ PSL2(Fq) to be tr(±g) =
{tr(g),− tr(g)} ⊆ Fq and define the trace field of ±g to be Fp(tr(±g)). The conjugacy
class, and therefore the order, of a semisimple element of PSL2(Fq) is then again uniquely
determined by its trace. (This is particular to PSL2(Fq)—the trace does not determine a
conjugacy class in PGL2(Fq)!)

We now describe outer automorphism groups (see e.g. Suzuki [74]). The p-power Frobenius
map σ, acting on the entries of a matrix by a 7→ ap, gives an outer automorphism of
PSL2(Fq) and PGL2(Fq), and in fact Out(PGL2(Fq)) = 〈σ〉. When p is odd, the map τ
given by conjugation by an element in PGL2(Fq) \ PSL2(Fq) is also an outer automorphism
of PSL2(Fq), and these maps generate Out(PSL2(Fq)):

(7.3) Out(PSL2(Fq)) '

{
〈σ, τ〉, if p is odd;

〈σ〉, if p = 2.

In particular, the order of Out(PSL2(Fq)) is 2r if p is odd and r if p = 2. From the embedding
PGL2(Fq) ↪→ PSL2(Fq2), given explicitly by ±g 7→ ±(det g)−1/2g, we may also view the outer
automorphism τ as conjugation by an element of PSL2(Fq2) \ PSL2(Fq).

We conclude this section by describing the field of rationality (as defined in section 6) for
these conjugacy classes.

Lemma 7.4. Let g ∈ PGL2(Fq) have order m. Then the field of rationality of the conjugacy
class C of g is

F r(C) =

{
Q(λm), if g is semisimple;

Q, if g is unipotent;

and the field of weak rationality of C is

Fwr(C) =

{
Q(λm)〈Frobp〉, if g is semisimple;

Q, if g is unipotent.

Proof. A power of a unipotent conjugacy class is unipotent or trivial so its field of rationality
and weak rationality is Q.

If C is split semisimple, corresponding to {x, x−1} by (7.1) with x ∈ F×q \ {1} then g 7→ gs

for s ∈ (Z/mZ)× corresponds to the map x 7→ xs and it stabilizes the set {x, x−1} (resp. up
to an automorphism of PGL2(Fq)) if and only if s ∈ 〈−1〉 ⊆ (Z/mZ)× (resp. s ∈ 〈−1, p〉).

Next consider the case where C is nonsplit semisimple, corresponding to {y, yq} by (7.2)
with y ∈ (Fq2 \ Fq)/F×q . Then the map g 7→ gs again with s ∈ (Z/mZ)× corresponds to

the map y 7→ ys. We have y ∈ F×q2 ' Z/(q2 − 1)Z, with the image of F×q the subgroup

(q+ 1)Z/(q2− 1)Z, so the set {y, yq} is stable if and only if s ∈ {1, q} = 〈−1〉 (mod m), and
the set is stable up to an automorphism of PGL2(Fq) if and only if s ∈ 〈−1, p〉 ⊂ Z/mZ, so
we have the same result as in the split case. �

For an odd prime p, we abbreviate p∗ = (−1)(p−1)/2p. Recall that q = pr.
25



Lemma 7.5. Let ±g ∈ PSL2(Fq) have order m. Then the field of rationality of the conjugacy
class C of g is

F r(C) =


Q(λm), if g is semisimple;

Q(
√
p∗), if g is unipotent and pr is odd;

Q, otherwise.

The field of weak rationality of C is

Fwr(C) =

{
Q(λm)〈Frobp〉, if g is semisimple;

Q, otherwise,

where Frobp ∈ Gal(Q(λm)/Q) is the Frobenius element associated to the prime p.

Proof. First, suppose ±g = ±U(u) is unipotent with u ∈ F×q . Then for all integers s prime to
p, we have (±g)s = ±U(su). Thus, the subgroup of (Z/pZ)× = F×p stabilizing C is precisely
the set of elements of F×p which are squares in F×q . Thus if p = 2 or r is even, this subgroup
is all of F×p so that the field of rationality of C is Q, whereas if pr is odd this subgroup
is the unique index two subgroup of F×p and the corresponding field of rationality for C in
PSL2(Fq) is Q(

√
p∗).

Next we consider semisimple conjugacy classes. By the trace map, these classes are in
bijection with ±t ∈ ±Fq \ {±2}. The induced action on the set of traces is given by
±t = ±(z + 1/z) 7→ ±(zs + 1/zs) for s ∈ (Z/mZ)× where z is a primitive mth root of unity.
From this description, we see that the stabilizer is 〈−1〉 ⊆ (Z/mZ)×.

A similar analysis yields the field of weak rationality. If C is unipotent then τ identifies
the two unipotent conjugacy classes so the field of weak rationality is always Q. If C is
semisimple then σ identifies C with Cp so the stabilizer of ±t is 〈−1, p〉 ⊆ (Z/mZ)×, the
field fixed further under the Frobenius Frobp. �

8. Subgroups of PSL2(Fq) and PGL2(Fq) and weak rigidity

The general theory developed for triples in section 6 can be further applied to the groups
PSL2(Fq) (and consequently PGL2(Fq)) using work of Macbeath [42], which we recall in this
section. See also Langer and Rosenberger [40], who give an exposition of Macbeath’s work
in our context.

Let q be a prime power. We begin by considering triples g = (g1, g2, g3) with gi ∈ SL2(Fq)
– we remind the reader that the terminology implies g1g2g3 = 1 and does not imply that
〈g1, g2, g3〉 = SL2(Fq) – with an eye to understanding the image of the subgroup generated
by g1, g2, g3 in PSL2(Fq) according to the traces of the corresponding elements. Long periods
of consternation have taught us that the difference between a matrix and a matrix up to
sign plays an important role here, and so we keep this in our notation. Moreover, because
we will be considering other kinds of triples, we refer to g = (g1, g2, g3) as a group triple.

A trace triple is a triple t = (t1, t2, t3) ∈ F3
q. For a trace triple t, let T (t) denote the set of

group triples g such that tr(gi) = ti for i = 1, 2, 3. The group Inn(SL2(Fq)) = PSL2(Fq) acts
on T (t) by conjugation.

Proposition 8.1 (Macbeath [42, Theorem 1]). For all trace triples t, the set T (t) is nonempty.

To a group triple g = (g1, g2, g3) ∈ SL2(Fq)3, we associate the order triple (a, b, c) by letting
a be the order of ±g1 ∈ PSL2(Fq), and similarly b the order of ±g2 and c the order of ±g3.
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Without loss of generality, as in the definition of the triangle group (2.2) we may assume
that an order triple (a, b, c) has a ≤ b ≤ c.

Our goal is to give conditions under which we can be assured that a group triple generates
PSL2(Fq) or PGL2(Fq) and not a smaller group. We do this by placing restrictions on the
associated trace triples, which come in three kinds.

A trace triple t is commutative if there exists g ∈ T (t) such that the group ±〈g1, g2, g3〉 ⊆
PSL2(Fq) is commutative. By a direct calculation, Macbeath proves that a triple t is com-
mutative if and only if the ternary Fq-quadratic form

x2 + y2 + z2 + t1yz + t2xz + t3xy

is singular [42, Corollary 1, p. 21], i.e. if and only if its (half-)discriminant

(8.2) d(t) = d(t1, t2, t3) = t21 + t22 + t23 − t1t2t3 − 4

is zero. If a trace triple t is not commutative, then the order triple (a, b, c) is the same for
any g ∈ T (t): the trace uniquely defines the order of a semisimple or unipotent element, and
if some gi is scalar in g ∈ T (t) then the group it generates is necessarily commutative.

A trace triple t is exceptional if there exists a triple g ∈ T (t) with order triple equal to
(2, 2, c) with c ≥ 2 or one of

(8.3) (2, 3, 3), (3, 3, 3), (3, 4, 4), (2, 3, 4), (2, 5, 5), (5, 5, 5), (3, 3, 5), (3, 5, 5), (2, 3, 5).

Put another way, a trace triple t is exceptional if there exists g ∈ T (t) whose order triple is
the same as that of a triple of elements of SL2(Fq) that generates a finite spherical triangle
group in PSL2(Fq).

Finally, a trace triple t is projective if for all g = (g1, g2, g3) ∈ T (t), the subgroup
±〈g1, g2, g3〉 ⊆ PSL2(Fq) is conjugate to a subgroup of the form PSL2(k) or PGL2(k) for
k ⊆ Fq a subfield.

Remark 8.4. There are no trace triples which are both projective and commutative. A
projective trace triple may be exceptional, but the possibilities can be explicitly described
as follows. A trace triple is exceptional if there is a homomorphism from a finite spherical
group to PSL2(Fq) with order triple as given in (8.3); a trace triple is projective if the image
is conjugate to PSL2(k) or PGL2(k) for k ⊆ Fq a subfield. From the classification of finite
spherical groups, this homomorphism must be one of the following exceptional isomorphisms:

D6 ' GL2(F2), A4 ' PSL2(F3), S4 ' PGL2(F3), or A5 ' PGL2(F4) ' PSL2(F5).

Any trace triple t with Fp(t) = Fp(t1, t2, t3) = Fq that is both exceptional and projective
corresponds to one of these isomorphisms.

We now come to Macbeath’s classification of subgroups of PSL2(Fq) generated by two
elements.

Theorem 8.5 ([42, Theorem 4]). Every trace triple t is exceptional, commutative or projec-
tive.

Example 8.6. We illustrate the above with the case q = 7. There are a total of 73 = 243
trace triples.

First, the trace triples where the order triple is not well-defined are the trace triples

(2, 2, 2), (2,−2,−2), (−2, 2,−2), (−2,−2, 2)
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which are commutative. The role of multiplication by −1 plays an obvious role here, so in
this example, for a trace triple t = (t1, t2, t3) we say that a trace triple agrees with t with an
even number of signs if it is one of

(t1, t2, t3), (t1,−t2,−t3), (−t1, t2,−t3), (−t1,−t2, t3).

Put this way, the trace triples where the order triple is not well-defined are those agreeing
with (2, 2, 2) with an even number of signs. We define odd number of signs analogously. For
each of these four trace triples, there exists a group triple g with order triple (1, 1, 1), (1, 7, 7),
or (7, 7, 7).

The other commutative trace triples are:

(2, 0, 0), with any signs having orders (1, 2, 2)

(2, 1, 1), with even number of signs having orders (1, 3, 3)

(2, 3, 3), with even number of signs having orders (1, 4, 4)

(0, 0, 0), with any signs having orders (2, 2, 2)

(0, 3, 3), with any signs having orders (2, 4, 4)

(1, 1,−1), with odd number of signs having orders (3, 3, 3)

Indeed, these are all values (t1, t2, t3) ∈ F3
q such that

d(t1, t2, t3) = t21 + t22 + t23 − t1t2t3 − 4 = 0.

The three commutative trace triples (0, 0, 0), (0, 3, 3), (1, 1,−1) are also exceptional. The
remaining exceptional triples are:

(0, 0, 1), with any signs having orders (2, 2, 3)

(0, 0, 3), with any signs having orders (2, 2, 4)

(0, 1, 1), with any signs having orders (2, 3, 3)

(0, 1, 3), with any signs having orders (2, 3, 4)

(1, 1, 1), with even number of signs having orders (3, 3, 3)

(1, 3, 3), with any signs having orders (3, 4, 4)
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All other triples are projective:

(0, 1, 2), with any signs having orders (2, 3, 7)

(0, 3, 2), with any signs having orders (2, 4, 7)

(0, 2, 2), with any signs having orders (2, 7, 7)

(1, 1, 3), with any signs having orders (3, 3, 4)

(1, 1, 2), with any signs having orders (3, 3, 7)

(1, 3, 2), with any signs having orders (3, 4, 7)

(1, 2, 2), with any signs having orders (3, 7, 7)

(3, 3, 3), with any signs having orders (4, 4, 4)

(3, 3,−2), with odd number of signs having orders (4, 4, 7)

(3, 2, 2), with any signs having orders (4, 7, 7)

(2, 2,−2), with odd number of signs having orders (7, 7, 7)

We note that the triples (1, 3,−3) with an odd number of signs in fact generate PSL2(F7)—
but the triple is not projective. In particular, we observe that one cannot deduce that a
nonsingular trace triple is projective by looking only at its order triple.

Finally, the issue that this example is supposed to make clear is that changing signs
on a trace triple may change the subgroup of PSL2(Fq) that a corresponding group triple
generates. Indeed, changing an odd number of signs on a group triple does not yield a group
triple! We address the parity of signs in the next lemma.

The role of −1 and the parity of these signs (taking an even or odd number) is a key issue
that will arise and so we address it now.

Lemma 8.7. Let t = (t1, t2, t3) ∈ F3
q be a trace triple.

(a) There are bijections

T (t)↔ T (t1,−t2,−t3)↔ T (−t1, t2,−t3)↔ T (−t1,−t2, t3)

(g1, g2, g3) 7→ (g1,−g2,−g3) 7→ (−g1, g2,−g3) 7→ (−g1,−g2, g3)

which preserve the subgroups generated by each triple. In particular, if t is commu-
tative (resp. exceptional, projective), then so is each of

(t1,−t2,−t3), (−t1, t2,−t3), (−t1,−t2, t3).

(b) Suppose q is odd. If t is commutative, then (−t1, t2, t3) is commutative if and only if
t1t2t3 = 0.

Proof. Part (a) is clear. As for part (b): the trace triple t is commutative if and only if
d(t1, t2, t3) = 0. So (−t1, t2, t3) is also commutative if and only if d(−t1, t2, t3) = 0 if and
only if d(t1, t2, t3)− d(−t1, t2, t3) = 2t1t2t3 = 0, as claimed. �

Let `/k be a separable quadratic extension. We say that t ∈ ` is a squareroot from k
if t = 0 or t =

√
u with u ∈ k× \ k×2. A trace triple t is irregular [42, p. 28] if the field

Fp(t) = Fp(t1, t2, t3) ⊆ Fq has a subfield k ⊆ Fp(t) such that

(i) [Fp(t) : k] = 2 and
(ii) after reordering, we have t1 ∈ k and t2, t3 are squareroots from k.
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Otherwise, t is regular. Of course, if [Fp(t) : Fp] is odd—e.g., if [Fq : Fp] is odd—then t is
necessarily regular.

Proposition 8.8 ([42, Theorem 3]). Let g generate a projective subgroup G = ±〈g1, g2, g3〉 ⊆
PSL2(Fq) and let t be its trace triple.

(a) Suppose t is regular. Then G is conjugate in PSL2(Fq) to PSL2(Fp(t)).
(b) Suppose t is irregular, and let k0 be the unique index 2 subfield of Fp(t). Then G is

conjugate in PSL2(Fq) to either PSL2(Fp(t)) or PGL2(k0).
(c) Suppose k = Fq. Then the number of orbits of Inn(SL2(Fq)) = PSL2(Fq) on T (t) is

2 or 1 according as p is odd or p = 2.
(d) For all g′ ∈ T (t), there exists m ∈ SL2(Fq) such that m−1gm = g′.

We say that a trace triple t is of PSL2-type (resp. of PGL2-type) if t is projective and for
all g ∈ T (t) the group ±〈g1, g2, g3〉 is conjugate to PSL2(k) (resp. PGL2(k0)); by Proposition
8.8(a), every projective triple is either of PSL2-type or of PGL2-type.

We now transfer these results to trace triples in the projective groups PSL2(Fq). The pas-
sage from SL2(Fq) to PSL2(Fq) identifies conjugacy classes whose traces have opposite signs,
so associated to a triple of conjugacy classes C in PSL2(Fq) is a trace triple (±t1,±t2,±t3),
which we abbreviate ±t (remembering that the signs may be taken independently). We call
±t a trace triple up to signs.

Let ±t be a trace triple up to signs. We say ±t is commutative if there exists ±g ∈ T (±t)
such that ±〈g1, g2, g3〉 is commutative. We say ±t is exceptional if there exists a lift of ±t to
a trace triple t such that the associated order triple (a, b, c) is exceptional. Finally, we say
±t is projective if all lifts t of ±t are projective, and partly projective if there exists a lift t of
±t that is projective.

Lemma 8.9. Every trace triple up to signs is exceptional, commutative, or partly projective.

Proof. This follows from Theorem 8.5 and Lemma 8.7. �

To a nonsingular trace triple up to signs ±t, we associate the order triple (a, b, c) as the
order triple associated to any lift t of ±t = (±t1,±t2,±t3); this is well defined because we
took orders of elements in PSL2(Fq) from the very beginning. We assume that a ≤ b ≤ c;
Remark 1.2 explains why this is no loss of generality.

For a triple of conjugacy classes C = (C1, C2, C3) of PSL2(Fq), recall we have defined Σ(C)
to be the set of generating triples g = (g1, g2, g3) such that gi ∈ Ci.

Proposition 8.10. Let C be a triple of conjugacy classes in PSL2(Fq). Let ±t be the
associated trace triple up to signs, let Fq = Fp(±t), and let (a, b, c) the associated order
triple. Suppose that ±t is partly projective and not exceptional, and let G = ±〈g1, g2, g3〉 ⊆
PSL2(Fq).

Then the values #Σ(C)/ Inn(G) and #Σ(C)/Aut(G) are given in the following table:
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p a abc G #Σ(C)/ Inn(G) #Σ(C)/Aut(G)

p = 2 − − − 1 1

p > 2 a = 2
p | abc − 1 1
p - abc PGL2 1 1
p - abc PSL2 2 1

p > 2 a 6= 2
p | abc − ≤ 2 ≤ 2
p - abc PGL2 ≤ 2 ≤ 2
p - abc PSL2 ≤ 4 ≤ 2

Proof. Suppose p = 2. Then PSL2(Fq) = SL2(Fq) and by Proposition 8.8(b) the triple C is
rigid, i.e. we have #Σ(G)/ Inn(G) = #Σ(G)/Aut(G) = 1. This gives the first row of the
table. So from now on we suppose p > 2.

Let t = (t1, t2, t3) ∈ F3
q be a lift of ±t. Let ±g,±g′ ∈ Σ(C); lift them to g, g′ in SL2(Fq)3

such that g1g2g3 = ±1 and g′1g
′
2g
′
3 = ±1 and such that tr(gi) = tr(g′i) = ti.

Case 1: Suppose a = 2. Then t1 = tr(g1) = 0 = − tr(g1), so changing the signs of g1 and
g′1 if necessary, we may assume that g, g′ are triples (that is, g1g2g3 = g′1g

′
2g
′
3 = 1). Then

by Proposition 8.8(c), there exists m ∈ SL2(Fq) such that m conjugates g to g′. Since the
elements of ±g generate G by hypothesis and the elements of ±g′ lie in G, it follows that
conjugation by m induces an automorphism ϕ of G, so ϕ(g) = g′, and C is weakly rigid.
This gives the entries in the last column for p > 2 and a = 2.

Case 1(a): Suppose a = 2 and p | abc. Then at least one conjugacy class is unipotent and
so the two orbits of the set T (t) under Out(PSL2(Fq)) correspond to two different conjugacy
class triples and only one belongs to C. Therefore the triple is in fact rigid.

Case 1(b): Suppose a = 2 and p - abc. First, suppose that G is of PGL2-type. Then
G ' PGL2(F√q) and Out(PGL2(F√q)) = 〈σ〉; and since Fq = Fp(t), the stabilizer of 〈σ〉
acting on t is trivial as in the analysis following (7.3), and hence the orbits must be already
identified by conjugation in PGL2(Fq), so the triple is in fact rigid.

Second, suppose that G is of PSL2-type. Then since Fq = Fp(±t) we have G = PSL2(Fq).
Because p - abc, all conjugacy classes Ci ∈ C are semisimple and so are preserved under
automorphism. From Proposition 8.8(b), we see that there are two orbits of PSL2(Fq) acting
by conjugation on Σ(C) and the element τ ∈ Out(PSL2(Fq)) induced by conjugation by an
element of PGL2(Fq) \ PSL2(Fq) identifies these orbits: they are identifed by some element
of Out(PSL2(Fq)), but since Fq = Fp(t) the stabilizer of 〈σ〉 acting on t is again trivial.

This completes Case 1 and the table for p > 2 and a = 2. Note that in this case, the
choice of the lift t does not figure in the analysis.

Case 2: Suppose a > 2. Now either g′ is already a triple, or changing the sign of g1 we
have g′ is a triple with trace triple t′ = (−t1, t2, t3). By Lemma 8.7, this is without loss of
generality.

Case 2(a): Suppose t′ = t. Then the same analysis as in Case 1 shows that g′ is obtained
from g by an automorphism ϕ of G, and this automorphism can be taken to be inner except
when p - abc and G = PSL2(Fq), in which case up to conjugation there are two triples.

Case 2(b): Suppose t′ 6= t. Then clearly g′ is not obtained from g by an inner automor-

phism. If g′ = ϕ(g) with ϕ an outer automorphism, then after conjugation in SL2(Fq), as in

Case 2(a), we may assume that ϕ = σj is a power of the p-power Frobenius automorphism
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σ, with σj(t1) = −t1 and σj(t2) = t2 and σj(t3) = t3 (with slight abuse of notation). But
again Fq is generated by the trace triple, so the fixed field k of σj contains t2, t3 and Fq is a
quadratic extension of k, generated by t1, and t1 is a squareroot from k.

This concludes Case 2, with the stated inequalities: we have at most twice as many triples
as in Cases 1(a) and 1(b).

We have equality in the first column if and only if t′ is projective: otherwise, t′ is com-
mutative, as in the proof of Proposition 8.10, and all g′ ∈ t′ generate affine or commutative
subgroups of PSL2(Fq) since they are singular [42, Theorem 2], and any such triple does not
belong to Σ(C)—the trace triple up to signs is not exceptional so any group generated by a
corresponding triple is not projective. In the second column, we have equality if and only if
t′ is projective and we are not in the special case described in 2(b). �

9. Proof of Theorems

In this section, we give proofs of the main theorems A, B, and C.
We begin with Theorem A, which follows from the following theorem.

Theorem 9.1. Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z≥2 ∪ {∞}. Let p be a prime
of E(a, b, c) with residue field Fp lying above the rational prime p, and suppose p - abc. If
p | 2, suppose further that (a, b, c) is not of the form (mk,m(k+1),mk(k+1)) with k,m ∈ Z.
Let a] = p if a =∞ and a] = a otherwise, and similarly with b, c.

Then there exists a G-Galois Bely̆ı map

X(a, b, c; p)→ P1

with ramification indices (a], b], c]), where

G =

{
PSL2(Fp), if p splits completely in F (a, b, c);

PGL2(Fp), otherwise.

Proof. Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z≥2 ∪ {∞}. Let p be a prime of the
field

E(a, b, c) = Q(λa, λb, λc, λ2aλ2bλ2c)

and let P be a prime of
F (a, b, c) = Q(λ2a, λ2b, λ2c)

above p above the rational prime p - abc.
Then by Proposition 5.22, we have a homomorphism

φ : ∆(a, b, c)→ PSL2(FP)

with trφ(δ̄s) ≡ ±λ2s (mod P) for s = a, b, c whose image lies in the subgroup PSL2(FP) ∩
PGL2(Fp). We have [FP : Fp] ≤ 2 and

(9.2) PSL2(FP) ∩ PGL2(Fp) =

{
PSL2(Fp), if FP = Fp;

PGL2(Fp), if [FP : Fp] = 2.

Let ∆(a, b, c; p) be the kernel of the homomorphism φ : ∆(a, b, c) → PSL2(FP). The
generators δ̄s of ∆ (for s = a, b, c) give rise to a triple g = (g1, g2, g3), namely g1 = φ(δ̄a),

g2 = φ(δ̄b), g3 = φ(δ̄c), with trace triple up to signs

±t = (±t1,±t2,±t3) ≡ (±λ2a,±λ2b,±λ2c) (mod P).
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The map of complex algebraic curves

f : X = X(a, b, c; p) = ∆(a, b, c; p)\H → ∆(a, b, c)\H ' P1

is a G-Galois Bely̆ı map by construction, where G = ∆(a, b, c)/∆(a, b, c; p). It is our task to
specify G by our understanding of subgroups of PSL2(FP).

First, we dispose of the exceptional triples. Since (a, b, c) is hyperbolic, this leaves the five
triples

(a], b], c]) = (3, 4, 4), (2, 5, 5), (5, 5, 5), (3, 3, 5), (3, 5, 5).

Each of these triples is arithmetic, by work of Takeuchi [78], and the result follows from
well-known properties of Shimura curves—something that could be made quite explicit in
each case, if desired.

Second, we claim that the triple ±t is not commutative. From (8.2), the triple t is
commutative if and only if

β = λ2
2a + λ2

2b + λ2
2c − λ2aλ2bλ2c − 4 = 0

in k. But βZF is the reduced discriminant of the order O arising in Section 5! And as in the
proof of Lemma 5.5, from the factorization

β =

(
ζ2bζ2c

ζ2a

− 1

)(
ζ2aζ2c

ζ2b

− 1

)(
ζ2aζ2b

ζ2c

− 1

)(
1

ζ2aζ2bζ2c

− 1

)
we see that the argument in the case PK | 2 applies to show that β 6≡ 0 (mod P).

Next, we show that orders of g1, g2, g3 are a, b, c. Let s = a, b, c and write g for the
corresponding element. We have trφ(δ̄s) ≡ ±λ2s (mod P). If g = 1, then the image is
commutative, and this possibility was just ruled out. We cannot have g unipotent, as then
its order p is the prime below P, contradicting the hypothesis that p - abc. So we are left with
only the possibility that g is a semisimple element of PSL2(FP): but then then the order is
indeed determined by the trace (see Section 7), and an element with trace λ2s necessarily has
order s. The fact that the orders of the images are a, b, c then implies that the ramification
indices are (a, b, c).

We continue now with the remainder of the proof of the theorem. By Proposition 8.5,
we conclude that the triple g is projective. Then, by Proposition 8.8(a)–(b), we have either
that the image of φ is either equal to PSL2(FP), or that the trace triple is irregular and the
image of φ is equal to PGL2(k), where [FP : k] = 2. In the first case, by (9.2) we must have
FP = Fp and so the result holds. In the second case, if [FP : Fp] = 2 then again by (9.2) the
image is already contained in PGL2(Fp) so we must have k = Fp and again the result holds.

So to conclude, we must rule out the possibility that the trace triple is irregular and that
FP = Fp. Since FP = Fp, we have

Fp(t1, t2, t3) = Fp(t21, t22, t23, t1t2t3).

Let k be the subfield of Fp with [Fp : k] = 2. Then we have

Fp(t2) = Fp(t21, t22, t23) ⊆ k ⊆ Fp(t1, t2, t3) = Fp.

But we have [Fp : Fp(t2)] ≤ 2 so k = Fp(t2). If now the triple t is irregular, then without
loss of generality (in this argument) we may suppose that t1 ∈ k and t2, t3 are either zero or
squareroots of nonsquares in k. But then t1t2t3 ∈ k, so

k = Fp(t2) = Fp(t2, t1t2t3) = Fp(t1, t2, t3),
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a contradiction. �

Corollary 9.3. We have

[∆ : ∆(p)] = [O×1 /{±1} : O1(P)×/{±1}] ·

{
1, if FP = Fp;

2, if [FP : Fp] = 2.

Next, we prove statements (a)–(c) of Theorem B, in two parts. (In the next section, we
will show that the corresponding field extension is unramified away p.) To this end, let X
be a curve of genus g ≥ 2 and let f : X → P1 be a G-Galois Bely̆ı map with G ' PGL2(Fq)
or G ' PSL2(Fq). Let (a, b, c) be the ramification indices of f .

Theorem 9.4. Let r be the order of Frobp in Gal(Fp′(a, b, c)/Q). Then

q =

{√
pr, if G ' PGL2(Fq);

pr, if G ' PSL2(Fq).

Proof. By work in Section 2, there exists a finite index, normal subgroup Γ ⊆ ∆(a, b, c) such
that ∆(a, b, c)/Γ ' G and the map X → P1 is the map Γ\H → ∆(a, b, c)\H. In this way, we
have identified the images in G of the monodromy at the three ramification points with the
elements δ̄a, δ̄b, δ̄c. Thus, by hypothesis, the images of the triple (δ̄aΓ, δ̄bΓ, δ̄cΓ) in G generates
G. This triple lifts to the triple (−δaΓ, δbΓ, δcΓ) in SL2(Fq) with corresponding trace triple

t ≡ (−λ2a, λ2b, λ2c) (mod p)

for p a prime above p in the field Fp′(a, b, c).
If G ' PSL2(Fq), then Proposition 8.8(a) implies that q = #Fp(t) = pr; this is the

residue class field of the prime p above and so r is equal to its residue degree, equal to the
order of the Frobenius Frobp in the field. Put another way, r = logp q is the least common
multiple of the orders of p in (Z/2sZ)×/{±1} for s = a, b, c, which is the order of Frobp in
Gal(Fp′(a, b, c)/Q), as claimed. If instead G ' PGL2(F√q), then r is twice this degree. �

Now we prove statements (b)–(c) of Theorem B concerning fields of moduli.

Theorem 9.5. The map f is defined over its field of moduli M(X, f) and M(X, f) is an
extension of Dp′(a, b, c)

〈Frobp〉 of degree d(X,f) ≤ 2. If a = 2 or q is even, then d(X,f) = 1.
The map f together with its Galois group Gal(f) ' G is defined over its field of moduli

M(X, f,G). Let

Dp′(a, b, c){
√
p∗} =

{
Dp′(a, b, c)(

√
p∗), if p | abc, pr is odd, and G ' PSL2(Fq);

Dp′(a, b, c) otherwise.

Then M(X, f,G) is an extension of Dp′(a, b, c){
√
p∗} of degree d(X,f,G) ≤ 2. If q is even or

p | abc or G ' PGL2(Fq), then d(X,f,G) = 1.

Proof. As in the proof of Theorem 9.1, we may identify the images in G of the monodromy at
the three ramification points with the elements δ̄a, δ̄b, δ̄c ∈ ∆(a, b, c). Let g = (δ̄aΓ, δ̄bΓ, δ̄cΓ)
and let C be the corresponding conjugacy class triple in G.

We refer to the discussion in Section 5, specifically Proposition 6.1, and recall the calcula-
tion of the field of weak rationality in Section 6 (Lemmas 7.4 and 7.5). Then by Proposition
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8.10, we have d(X,f) = #Σ(C)/Aut(G) ≤ 2 and d(X,f,G) = #Σ(C)/ Inn(G) ≤ 4, with the
various cases as listed.

Finally, the map f is defined over its field of moduli by Lemma 4.1. And we would know
that f together with Gal(f) ' G is defined over its field of moduli when the centralizer of
G in AutX is trivial by Lemma 4.3. This holds for any maximal triple (see the discussion
surrounding (2.8)–(2.9)). We conclude in fact that it is therefore true for a nonmaximal
triple, by the following reasoning. We need only concern ourselves with the presence of extra
automorphisms of the G-Galois Bely̆ı map; such an automorphism is given by an element
of the maximal group centralizing G, and in particular it must normalize the non maximal
triangle group. So we reduce to the case where we have a normal inclusion of triangle groups,
and this leaves only the three cases in (2.9) (the third obtained by a concatenation). But
the desired Bely̆ı map is defined over the field obtained from the maximal triple simply
by taking the quotient by the smaller group, and the relevant fields Dp′(a, b, c)

〈Frobp〉) and
Dp′(a, b, c){

√
p∗} are the same in each of these three cases! �

We now prepare for the proof of Theorem C with a discussion of the extension to composite
N. Let N be an ideal of ZF coprime to 6abc. Let n = N ∩ ZE. Then by Proposition 5.22,
we have a homomorphism

(9.6) φN : ∆→ PSL2(ZF/N).

If M | N then φM is obtained by the composition of φN with the natural reduction map
modulo M. Therefore these maps form a projective system and so we obtain in the limit a
map

φ̂ : ∆→
∏

P-6abc

PSL2(ZF,P)

after composing with the Chinese remainder theorem. The map φ̂ is injective because ∆ ↪→
O×1 /{±1} ↪→ PSL2(ZF,P) for any prime P.

For a prime P of ZF with p = P ∩ ZE and an integer e ≥ 1, let P (Pe) ⊆ PSL2(ZF/Pe)
be the group

P (Pe) =

{
PSL2(ZE/pe), if FP = Fp;

PGL2(ZE/pe), if [FP : Fp] = 2.

For an ideal N of ZF let P (N) =
∏

Pe‖N P (Pe), and let P̂ = lim←−N
P (N) be the projective limit

of P (N) with respect to the N for N - 6abc. Then P̂ is a subgroup of
∏

P-6abc PSL2(ZF,P).

Proposition 9.7. The image of φ̂ is dense in P̂ .

We will use the following lemma in the proof.

Lemma 9.8. Let P denote either PSL2 or PGL2. Let H be a closed subgroup of P (ZF,p),
and suppose that H projects surjectively onto P (ZF/p). If charR/p ≥ 5, then H = P (ZF,p).

Proof. Serre [58, Lemmas 3.4.2–3.4.3] proves this when ZF = Z and P = PSL2, but his Lie-
theoretic proof generalizes to an arbitrary number ring ZF . One can deduce the statement for
P = PGL2 from this statement as follows. The preimage of H under the map GL2(ZF,p)→
PGL2(ZF,p) intersected with SL2(ZF,p) maps surjectively to SL2(ZF/p) so H ⊇ PSL2(ZF,p).
But

PGL2(ZF,p)/PSL2(ZF,p) ' Z×F,p/Z
×2
F,p ' (ZF/p)×/(ZF/p)×2
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and so since H maps surjectively to PGL2(ZF/p) we must have H = PGL2(ZF,p).
An alternate proof for both cases runs as follows. One proves the statement by induction;

we have an exact sequence

(9.9) 0→M2(k)→ GL2(R/pe)→ GL2(R/pe−1)→ 1

via the isomorphism
1 +M2(pe−1/pe) 'M2(pe−1/pe) 'M2(k).

The group GL2(R/pe−1) acts by conjugation on M2(k) and factors through GL2(k). Since
char k is odd, M2(k) decomposes into irreducible subspaces under this action as M2(k) =
k ⊕ M2(k)0 where M2(k)0 denotes the subspace of matrices of trace zero. Restricting to
SL2 or PGL2, one then reduces to an exercise showing that the above sequence does not
split (and indeed, it splits for k = F2 for e ≤ 3 and for k = F3 for e = 2 [58, Exercise 1,
p. IV-27]). �

Proof of Proposition 9.7. We show that φN has image P (N). We have shown that this state-
ment is true if N is prime. Using Lemma 9.8 and basic topological considerations, we find
that the image of φN is equal to P (N) when N = Pe is a prime power.

Suppose that M and N are coprime ideals of ZF . The kernel of the map

∆→ ∆

∆(M)
× ∆

∆(N)

is equal to

∆(M) ∩∆(N) = ∆ ∩ (O(M)×1 ∩ O(N)×1 ) = ∆ ∩ O(MN)×1 = ∆(MN).

The cokernel of this map is
∆

∆(M)∆(N)
. We claim that this cokernel is trivial. Since

O is dense in ON = O ⊗ZF
ZF,N it follows that O(M) is dense in ON, so O(M)×1 maps

surjectively modulo N onto O×1 /O(N)×1 ' SL2(ZF/N). Thus O(M)×1O(N)×1 = O×1 , and so
∆(M)∆(N) = ∆. Composing with the map (φM, φN), we obtain a map

∆→ PSL2(ZF/M)× PSL2(ZF/N);

by induction on the number of prime factors, we may suppose that the image of the this
map is equal to P (M)× P (N) ' P (MN), and the result follows. �

Having now defined the curve X(a, b, c;N) = X(N) = ∆(N)\H and identified its Galois
group as a cover of X(1) = ∆\H, to conclude this section we also define certain intermediate
quotients in analogy with the classical modular curves. Recall by (9.6) we have a homomor-
phism φN : ∆ → PSL2(ZF/N) = P ; we let H0 ≤ P be the image in P of subgroup of
upper-triangular matrices in SL2(ZF/N) and similarly H1 ≤ P the image of the subgroup of
upper-trianglar matrices with both diagonal entries equal to 1. Let

∆(N) ≤ ∆1(N) = φ−1
N (H1) ≤ ∆0(N) = φ−1

N (H0) ≤ ∆,

be the preimages of H0 and H1 under φN; then we define

X0(N) = ∆0(N)\H, X1(N) = ∆1(N)\H
and we obtain maps

(9.10) X(N)→ X1(N)→ X0(N)→ X(1).
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Although the definition of these curves depends on a choice of isomorphism φN, any two
such choices are conjugate in G = Aut(X0(N)/X(1)), so the resulting tower (9.10) does not
depend on any choices up to isomorphism. The curves X0(N), X1(N) are defined over any
field of definition of (X(N), G).

10. Examples

In this section, we give many examples of Theorems A and B and show how these theorems
recover some familiar families of curves.

Our notation X(a, b, c; p) becomes awkward in the consideration of specific cases: given
a, b, c ∈ Z≥2 and a prime number p - 2abc, we need to choose a prime ideal p of E(a, b, c)
lying over p. By Theorem B, the curve X(a, b, c; p) only depends upon the choice of p lying
over p up to Galois conjugacy, and there is in general no canonical choice of p. Therefore in
what follows we will write X(a, b, c; p) for X(a, b, c; p) for some unspecified p | p.

Example 10.1. We take (a, b, c) = (2, 3,∞) as SL2(Z) ' ∆(2, 3,∞). For N ∈ Z≥1, our
construction from triangle groups gives exactly the congruence subgroup ∆(2, 3,∞;N) =
Γ(N) of matrices congruent to the identity modulo N , and we find the modular curve
X(2, 3,∞;N) = X(N) = Γ(N)\H∗ of level N , where H∗ = H ∪ P1(Q) is the completed
upper half-plane. Suppose N = p is prime. The cover X(p) → X(1) is a G = PSL2(Fp)-
cover with ramification indices (2, 3, p); this verifies the statement of Theorem B, since F =
F (a, b, c) = Q(λ4, λ6, λ∞) = Q = E. The statement of Theorem A says that M(X(p)) = Q
since a = 2. As discussed in Example 4.5, in fact we have M(X(p), G) = Q(

√
p∗).

Example 10.2. We take (a, b, c) = (2, 3, p) with p ≥ 7 prime. We want to consider the case
where q is a power of p; for this, we will need the slight extension of Theorem B given in
Remark 5.23. We have F = F (λ4, λ6, λ2p) = F (λ2p) = E; the discriminant

β = λ2
4 + λ2

6 + λ2
2p + λ4λ6λ2p − 4 = λ2

2p − 3 = λp − 1

is a unit in ZE. Therefore we can consider X(2, 3, p; p) where p(p−1)/2 = (p), which gives a
PSL2(Fp)-cover X(2, 3, p; p)→ X(2, 3, p) ' P1.

We verify Theorem A: we have Q(λ4, λ6, λ2p)p′ = Q so r = 1. Since a = 2 and p | abc, we
have dX = d(X,G) = 1; consequently, M(X) = Q and M(X,G) = Q(

√
p∗).

The proof in this situation comes down to the following. There are two unipotent conjugacy
classes which are in the same Galois orbit (taking an odd power moves from quadratic
residues to nonresidues) and so the field of rationality of such a conjugacy class is the
quadratic subfield Q(

√
p∗) ⊆ Q(ζp), where p∗ = (−1)(p−1)/2p. Since the other two conjugacy

classes representing elements of orders 2 and 3 are Q-rational, the field of rationality of C
is F (C) = Q(

√
p∗). As above, the outer automorphism τ interchanges the two unipotent

conjugacy classes, so Fwr(C) = Q.
In fact, the classical modular cover j : X(p)→ X(1) is also a PSL2(Fp)-Galois Bely̆ı map,

with ramification points 0, 1728,∞. It follows that X(2, 3, p; p) ' X(p) over Q.
We could equally well consider the covers X = X(2, 3, p; 2) → X(2, 3, p), which for the

same reasons can be defined over Q and gives rise to SL2(F2r) = PSL2(F2r) = PSL2(F2r)
covers where r is the order of 2 in (Z/pZ)×/{±1}; from Theorem A, we have M(X,G) =
Q(λp).
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Example 10.3. Finitely many families of curves X(a, b, c; p) correspond to Shimura curves,
where the group ∆(a, b, c) is arithmetic. The arithmetic triples were classified by Takeuchi in
a sequence of papers [76, 77, 78, 79]: there are 85 triples (a, b, c) and 26 maximal triples which
fall into 19 commensurability classes. As Takeuchi explains (in the notation of Section 5),
the triple (a, b, c) gives rise to arithmetic groups if and only if the quaternion algebra A over
E is split at exactly one real place of E, and the triangle group ∆(a, b, c) is commensurable
with the unit group of a maximal order in A.

This covers as a special case the previous example of the modular curves, which include
the maximal triples (2, 3,∞), (2, 4,∞), (2, 6,∞) and the nonmaximal triples

(3, 3,∞), (3,∞,∞), (4, 4,∞), (6, 6,∞), (∞,∞,∞).

So in this example, we restrict to the case a, b, c ∈ Z.
The minimal field of definition of these curves was studied by Elkies [25, §5.3] and later

by the second author [83, Proposition 5.1.2]. Each base field E is Galois over Q, and it
turns out that at least one of the triangle groups in each commensurability class has distinct
indices a, b, c: therefore, by identifying the corresponding elliptic points with 0, 1,∞, any
Galois-invariant construction (such as taking Galois invariant level) yields a curve which is
fixed by Gal(E/Q), providing extra descent in some cases.

This argument can be made directly using the language of canonical models of Shimura
curves, which has the advantage that it applies in other circumstances as well (see e.g.
Hallouin [32, Proposition 1]). Let B be a quaternion algebra over a totally real field F which
is split at a unique real place and let O be a maximal order in B. Associated to this data

is a Shimura curve X(C) = B×+\H × B̂×/Ô× which has a model X over the reflex field
F [ = F . Suppose F has strict class number 1, so X(C) is irreducible (otherwise consider a
component over the strict class field of F ). Suppose further that F is Galois over Q. Then
for any σ ∈ Gal(F/Q), the conjugate curve Xσ is given by

Xσ(C) = (Bσ)×+\H × (B̂σ)×/Ôσ)×.

Now if Bσ 'Q B, which means precisely that the discriminant of B is invariant under σ,

and there exists an analytic isomorphism X(C) = Γ(1)\H ∼−→ Γ(1)σ\H = Xσ(C), then
this yields exactly the descent data needed to descend X to Q. In the case of triangle
groups, the quotients Xσ(C) have fundamental domain given by the union of two hyperbolic
triangles with angles π/a, π/b, π/c, and any two hyperbolic triangles with the same angles
are congruent; hence the curves descend. This argument works with the maximal order
replaced by any order O which is defined by Galois invariant means, e.g. the order O(N) for
N ≥ 1.

Many of these triples will occur in specific examples below.

Example 10.4. Consider the case of Hecke triangle groups treated by Lang, Lim, and Tan
[39], the groups with ∆(a, b, c) = ∆(2, b,∞). We make the additional assumption that b is
odd. Then we have

F (4, 2b,∞) = Q(λ4, λ2b, λ∞) = Q(λ2b) = Q(λq) = E(2, b,∞)

since b is odd. Then for all primes p of Q(λq) we have FP = Fp in the notation of Section 5,
so ∆/∆(p) ' PSL2(Fp). Note that when q 6= p we have that [Fp : Fp] is indeed equal to the
smallest positive integer r such that pr ≡ ±1 (mod q), or equivalently the order of Frobp in
Gal(Q(λq)/Q).
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Lang, Lim, and Tan [39, Main Theorem, part (iii)] obtain a group of PGL2-type in the case
that r is even and [Fp(t) : Fp(t2)] = 2, where t ≡ λq (mod p). But this latter equality cannot
hold: the map ζq 7→ ζ2

q is a Galois automorphism of Q(ζq) and restricts to the automorphism

λq 7→ λ2
q − 2. It follows in fact that Fp(t) = Fp(t2).

To give further examples, we list all G-Galois Bely̆ı curves with a, b, c 6= ∞ with genus
g ≤ 24 with G = PSL2(Fq) or G = PGL2(Fq). The formula for the genus (Remark 3.10)
gives a bound for a, b, c and #G in terms of g (in fact, for arbitrary groups G). From the
bound # PSL2(Fq) ≤ 84(g− 1) ≤ 1932 we obtain q ≤ 16; and for each group G we find only
finitely many triples of possible orders (a, b, c). We then enumerate the triples in Magma
[9]; the curves of genus g ≤ 24 are listed in Table 10.5. We list also if the triple (a, b, c)
is arithmetic (after Takeuchi) and the genus g0 of the subcover X0(a, b, c; p) whose Galois
closure is X(a, b, c; p), as defined at the end of Section 9; we also give the corresponding
fields F (a, b, c) ⊇ E(a, b, c), defined in (*).

We now discuss many of these curves in turn, highlighting those curves with interesting
features. We note first that all curves but the last two (of genus 24) are arithmetic. Our
computations are performed in Magma [9]. We are grateful to Elkies for allowing us to
record several computations and other remarks in these examples.

Genus 3, (2, 3, 7), PSL2(F7). This curve is the beloved Klein quartic, the projective plane
curve given by the equation x3y+ y3z + z3x = 0. For a detailed discussion of this curve and
its arithmetic, see Elkies [24]. The map f : X0(2, 3, 7; 7) ' P1 → X(2, 3, 7) = P1 is given by
the rational function

(t4 + 14t3 + 63t2 + 70t− 7)2

1728t
=

(t2 + 5t+ 1)3(t2 + 13t+ 49)

1728t
+ 1.

This verifies in Theorem A that the curve is defined over Q (since a = 2) and its automor-
phism group is defined over Q(

√
−7).

Genus 3, (3, 4, 4), PGL2(F3). The triple (3, 4, 4) is exceptional, and so has been excluded
from our analysis. But since PGL2(F3) ' S4 is the full group, it is worth identifying this
cover. The quaternion algebra A associated to the triple (3, 4, 4) is defined over E =
Q(λ3, λ4, λ6λ

2
8) = Q and has discriminant 6. The group ∆(3, 4, 4) is not maximal: it is

contained in ∆(2, 4, 6) with index 2. The curve X(2, 4, 6) is associated to the arithmetic
group N(Λ)/Q× for Λ ⊆ A a maximal order, and the quotient X(3, 4, 4) → X(2, 4, 6) is
obtained as the quotient by an Atkin-Lehner involution; the Shimura curve associated to
a maximal order has signature (0; 2, 2, 3, 3). See work of Baba and Granath [2] as well as
Elkies [25, §3.1] for a detailed discussion of these triangle groups and their relationships.

Theorem B does not apply nor does Remark 5.23 since 3 is ramified in this quaternion
algebra. Consequently, the algebra A⊗Q Q3 is a division algebra and Λ⊗Z Z3 is the unique
maximal order. There is a unique two-sided prime ideal P ⊂ Λ with nrd(P ) = 3. The
quotient Λ/P is isomorphic to F9 = F3(i), and Λ/P 2 = Λ/3Λ is isomorphic to the algebra
over F3 generated by i, j subject to i2 = −1, j2 = 0, and ji = −ij. We have an exact
sequence

1→ (1 + P )/(1 + 3Λ)→ (Λ/3Λ)×/{±1} → (Λ/P )×/{±1} → 1

which as finite groups is

1→ Z/3Z⊕ Z/3Z→ (Λ/3Λ)×/{±1} → Z/4Z→ 1.
39



g (a, b, c) G arithmetic? g0 F (a, b, c) E(a, b, c) Dp′(a, b, c)
〈Frobp〉

3 (2, 3, 7) PSL2(F7) T 0 Q(λ7) Q(λ7) Q
3 (3, 4, 4) PGL2(F3) T 1 Q(

√
2) Q Q

4 (2, 4, 5) PGL2(F5) T 0 Q(
√

2,
√

5) Q(
√

5) Q
4 (2, 5, 5) PGL2(F4) T 1 Q(

√
5) Q(

√
5) Q

4 (2, 5, 5) PSL2(F5) T 0 Q(
√

5) Q(
√

5) Q
5 (3, 3, 5) PGL2(F4) T 0 Q(

√
5) Q(

√
5) Q

5 (3, 3, 5) PSL2(F5) T 1 Q(
√

5) Q(
√

5) Q
6 (2, 4, 6) PGL2(F5) T 0 Q(

√
2,
√

3) Q Q
7 (2, 3, 7) PGL2(F8) T 0 Q(λ7) Q(λ7) Q
8 (2, 3, 8) PGL2(F7) T 0 Q(λ16) Q(

√
2) Q

8 (3, 3, 4) PSL2(F7) T 0 Q(
√

2) Q(
√

2) Q(
√

2)

9 (2, 5, 6) PGL2(F5) T 1 Q(
√

3,
√

5) Q(
√

5) Q
9 (3, 5, 5) PGL2(F4) T 1 Q(

√
5) Q(

√
5) Q

9 (3, 5, 5) PSL2(F5) T 1 Q(
√

5) Q(
√

5) Q
10 (2, 4, 5) PSL2(F9) T 0 Q(

√
2,
√

5) Q(
√

5) Q
10 (2, 4, 7) PSL2(F7) T 1 Q(λ7,

√
2) Q(λ7) Q

11 (2, 6, 6) PGL2(F5) T 1 Q(
√

3) Q Q
11 (3, 4, 4) PGL2(F5) T 0 Q(

√
2) Q Q

13 (5, 5, 5) PGL2(F4) T 2 Q(
√

5) Q(
√

5) Q
13 (5, 5, 5) PSL2(F5) T 1 Q(

√
5) Q(

√
5) Q

14 (2, 3, 7) PSL2(F13) T 0 Q(λ7) Q(λ7) Q(λ7)
15 (2, 3, 9) PGL2(F8) T 1 Q(λ9) Q(λ9) Q
15 (2, 4, 6) PGL2(F7) T 0 Q(

√
2,
√

3) Q Q
15 (3, 4, 4) PSL2(F7) T 1 Q(

√
2) Q Q

16 (2, 3, 8) PGL2(F9) T 0 Q(λ16) Q(
√

2) Q
16 (3, 3, 4) PSL2(F9) T 0 Q(

√
2) Q(

√
2) Q

16 (3, 4, 6) PGL2(F5) T 1 Q(
√

2,
√

3) Q(
√

6) Q
17 (3, 3, 7) PSL2(F7) T 0 Q(λ7) Q(λ7) Q
19 (2, 7, 7) PSL2(F7) T 0 Q(λ7) Q(λ7) Q
19 (2, 5, 5) PSL2(F9) T 1 Q(

√
5) Q(

√
5) Q

19 (4, 4, 5) PGL2(F5) T 0 Q(
√

2,
√

5) Q(
√

5) Q
21 (3, 6, 6) PGL2(F5) T 2 Q(

√
3) Q Q

22 (2, 4, 8) PGL2(F7) T 1 Q(λ16) Q(
√

2) Q(
√

2)

22 (4, 4, 4) PSL2(F7) T 2 Q(
√

2) Q(
√

2) Q
24 (3, 4, 7) PSL2(F7) F 1 Q(λ7,

√
2) Q(λ7,

√
2) Q

24 (4, 5, 6) PGL2(F5) F 1 Q(
√

2,
√

3,
√

5) Q(
√

30) Q
Table 10.5: PSL2(Fq)-Galois Bely̆ı curves of genus g ≤ 24
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There is a dicyclic group of order 12, a subgroup of (Λ/3Λ)×/{±1} that maps surjectively
onto Z/4Z with kernel Z/3Z; this gives a cover X(3, 4, 4; 3) → X(Λ) of degree 12. There
is an Atkin-Lehner involution (normalizing Λ) whose quotient then yields the cover f :
X(3, 4, 4; 3)→ X(3, 4, 4) with Galois group PGL2(F3).

The conjugacy classes of elements of orders 3 and 4 in S4 are unique, and one can check by
hand that the corresponding triple is rigid, so the curve X(3, 4, 4; 3) (with its automorphism
group) is defined over Q.

Wolfart [87, §6.3] identifies X(3, 4, 4; 3) as the hyperelliptic curve

y2 = x8 − 14x4 + 1 = (x4 − 4x2 + 1)(x4 + 4x2 + 1)

with automorphism group S4 × C2. The roots of the polynomial in x are the vertices of a
cube in the Riemann sphere. The genus 1 curve X0(3, 4, 4; 3) is a degree 4 cover of X(3, 4, 4)
and corresponds to the fixed field under a subgroup S3 ⊆ S4: it is the elliptic curve with
minimal model

y2 = x3 + x2 + 16x+ 180

of conductor 48 and the map X0(3, 4, 4; 3)→ X(3, 4, 4) is the map

φ(x, y) = 56 + x2 − 4y

with divisor 4(4, 18) − 4∞ and the divisor of φ − 108 is 3(−2,−12) + (22, 108) − 4∞. Via
φ(x, y) = t, this cover gives rise to the family of S4-extensions

(x2 + 56− t)2− 16(x3 +x2 + 16x+ 180) = x4− 16x3 + (96− 2t)x2− 256x+ (t2− 112t+ 256).

This shows that for exceptional (or commutative) triples there may be normal subgroups
of ∆(a, b, c) with quotient isomorphic to PSL2(Fq) or PGL2(Fq) which are not obtained by
the construction of Theorem A. In general, covers obtained by considering suborders of
index supported at primes dividing the discriminant of the quaternion algebra will give only
solvable extensions.

Genus 4, (2, 4, 5), PGL2(F5); (2, 5, 5), PGL2(F4) = PSL2(F5). The triangle group ∆(2, 4, 5)
is maximal, associated to a quaternion algebra defined over Q(

√
5) ramified at the prime (2)

(obtained as the full Atkin-Lehner quotient), and this group contains ∆(2, 5, 5) as a subgroup
of index 2. We have an exceptional isomorphism PGL2(F4) = PSL2(F4) ' PSL2(F5), so this
curve arises from the congruence subgroup with p = (

√
5). The triple (2, 5, 5) is exceptional,

but the spherical triangle group that it generates is the full group (PSL2(F5) ' A5; note
PGL2(F5) ' S5).

The curve is the Bring curve (see Wolfart [87, §6.4] and also Edge [22]), defined by the
equations

x0 + x1 + ...+ x4 = x2
0 + x2

1 + ...+ x2
4 = x3

0 + x3
1 + ...+ x3

4 = 0

in P4.
The significance in Theorem B about the splitting behavior of primes is illustrated here.

We have F5(2, 4, 5) = Q(
√

2) and F5(2, 5, 5) = Q, whereas the trace field of the square
subgroup is E5(2, 4, 5) = Q = E5(2, 5, 5) = E; the prime 5 is inert in Q(

√
2), so in the former

case we obtain a PGL2(F5)-extension and in the latter we obtain a PSL2(F5)-extension.
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Genus 5, (3, 3, 5), PGL2(F4) ' PSL2(F5). The triple (3, 3, 5) is exceptional but again gener-
ates the full group. However, the quaternion algebra A is defined over Q(

√
5) and is ramified

at (
√

5), and ∆(3, 3, 5) corresponds to the group of units of reduced norm 1 in a maximal
order. (The Atkin-Lehner quotient is uniformized by the triangle group ∆(2, 3, 10)—the
composite gives a G-Galois Bely̆ı map, but G 6' PGL2(F5), since there is no element of order
10 in this group!)

The conjugacy class of order 3 is unique and there are two of order 5; we check directly
that this cover is rigid, even though it is exceptional. Therefore the curve X = X(3, 3, 5; 5)
is defined over Q and its automorphism group is defined over Q(

√
5).

The cover X0(3, 3, 5; 4) has genus 0, and is given by

t3(6t2 − 15t+ 10)− 1 = (t− 1)3(6t2 + 3t+ 1).

Genus 6, (2, 4, 6), PGL2(F5). As in the (3, 4, 4; 3) case above, the curve X(2, 4, 6) is the
full (Z/2Z× Z/2Z)-Atkin-Lehner quotient of the curve corresponding to the discriminant 6
quaternion algebra over Q. The curve X = X(2, 4, 6; 5) is rather exotic, in that it does not
arise from a congruence subgroup in the usual sense: the usual (Shimura curve) congruence
subgroup of level 5 gives a PSL2(F5)-cover of genus 11 mapping to a conic X(1) defined by
x2 + 3y2 + z2 = 0 and its quotients by Atkin-Lehner involutions give PGL2(F5)-covers, as
below. In particular, the curveX(1) does not occur intermediate toX(2, 4, 6; 5)→ X(2, 4, 6).

Here in Theorem B we have F (2, 4, 6) = Q(
√

2,
√

3) and E(2, 4, 6) = Q; the prime 5 has
inertial degree 2 in this extension, hence we get PGL2(F5). In Theorem A we have a = 2
and G ' PGL2(F5) so dX = d(X,G) = 1, hence M(X) = M(X,G) = Q.

The map X0(2, 4, 6; 5)→ X(2, 4, 6) is computed by Elkies [25]:

(540t6 + 324t5 + 135t4 + 1)− 1 = 27t4(20t2 + 12t+ 5).

And as Elkies observes, by the invariant theory of PGL2(F5), there are invariants of degree
12, 20, and 30, and a relation of degree 60, so the cover can be written invariantly as

y2 = F 5
12/F

2
30

and this gives the quotient.

Genus 7, (2, 3, 7), PGL2(F8)(= SL2(F8)). The curveX = X(2, 3, 7; 2) is the Fricke-Macbeath
curve [41] of genus 7, the second smallest genus for a Hurwitz curve: i.e., a curve uniformized
by a subgroup of the Hurwitz group ∆(2, 3, 7) (and therefore having maximal automorphism
group for its genus). The curve X has field of moduli equal to Q and the minimal field
of definition of (X,G) is Q(λ7). Berry and Tretkoff [5] show that the Jacobian J of X is
isogenous to E7, where E is a non-CM elliptic curve with rational j-invariant. (See also
Wolfart [87, §6.5] and Wohlfahrt [85].)

Genus 8, (2, 3, 8), PGL2(F7) and (3, 3, 4), PSL2(F7). The curve X0(2, 3, 8; 7) has genus 0,
and the triangle group ∆(2, 3, 8) arises from the quaternion algebra over Q(

√
2) ramified at

the prime above 2: the map is

φ(t) = t8 +
1

7
(−4
√

2− 16)t7 + (−4
√

2 + 6)t6 + 6
√

2t5 +
1

2
(−36

√
2 + 39)t4

+ (3
√

2− 12)t3 +
1

2
(−46

√
2 + 79)t2 +

1

2
(9
√

2− 8)t+
1

16
(−248

√
2 + 313)
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which factors as

φ(t) =

(
t2 +

1

2
(−2
√

2 + 1)

)3(
t2 +

1

7
(−4
√

2− 16)t+
1

2
(−2
√

2 + 9)

)
and

φ(t)− 1

27
(4
√

2 + 5) =

(
t2 +

1

7
(3
√

2 + 12)t+
1

14
(−8
√

2 + 31)

)
·
(
t3 +

1

2
(−
√

2− 4)t2 +
1

2
(−2
√

2 + 7)t+
1

4

√
2

)2

.

We have ∆(3, 3, 4) ⊆ ∆(2, 3, 8) with index 2 and given by the quotient of the Atkin-Lehner
involution, so this gives us also a PSL2(F7)-subcover.

Since a = 2 we have dX = 1 and so M(X) = Q(λ8)〈Frob7〉 = Q(
√

2), in agreement. We
only know d(X,G) ≤ 2, so this is the first example of a curve where the automorphism group

may be defined over a quadratic extension of Q(
√

2).

Genus 14, (2, 3, 7), PSL2(F13). The curve X(2, 3, 7; 13) is a Hurwitz curve. Some progress
has been made in writing down equations for this curve: see work by Moreno-Mej́ıa [49]
(and work in progress by Streit; methods of Streit [72] apply in general). The curve can be
defined over Q(λ7) and its automorphism group can be defined over an at most quadratic
extension of Q(λ7) ramified only at 13.

Genus 15, (2, 3, 9), PGL2(F8)(= SL2(F8)). Elkies [23, §2] computed an equation for the
genus 1 curve X0(2, 3, 9; 2), which happens to be an elliptic curve: it is the curve 162b3:

y2 + xy + y = x3 − x2 − 95x− 697.

Genus 16, (3, 4, 6), PGL2(F5). By Theorem A, the field M(X) it is a degree dX ≤ 2 extension
of Q(λ3, λ4, λ6)〈Frob5〉 = Q. But since G ' PGL2(F5), we have d(X,G) = 1 so M(X,G) =
M(X).

This example is interesting because the quaternion algebra A is defined over E = Q(
√

6)
and ramified at the prime (

√
6+2) over 2. The field E has narrow class number 2 though class

number 1—the extension Q(
√
−2,
√
−3) over Q(

√
6) is ramified only at∞. This implies that

the Shimura curve is in fact a disjoint union of two curves with an action of this strict class
group. The group ∆(3, 4, 6) is obtained by an Atkin-Lehner quotient, and since the prime
above 2 represents the nontrivial class in the strict class group, the involution interchanges
these two curves; consequently, the quotient is something that will be defined canonically
over E = Q(

√
6) .

The genus 1 curve X0 = X0(3, 4, 6; 5) can be computed as follows. The ramification data
above the designated points 0, 1,∞ is 32, 4112, 61. We take the point above ∞ to be the
origin of the group law on X0 and take the point (0, 1) to be the ramification point of order
4. The curve X0 is then described by an equation

y2 = x3 + λ2x
2 + λ1x+ 1 = f(x)

and the map φ(x, y) = a0 + a1x+ a2x
2 + a3x

3 + (b0 + b1x)y = a(x) + b(x)y is of degree 6. By
ramification, we must have

Nφ(x, y) = a(x)2 − b(x)2f(x) = a2
3x

4(x2 + c1x+ c0)
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and

N(φ(x, y)− 1) = (a(x)− 1)2 − b(x)2f(x) = a2
3(x2 + d1x+ d0)3

for some values c0, c1, d0, d1. We solve the corresponding system of equations for the values
a0, . . . , λ2 and find a unique solution defined over E = Q(

√
6): after simplifying, the elliptic

curve X has minimal model

X0 : y2 + (
√

6 + 1)xy = x3 + (−8
√

6 + 23)x+ (−2
√

6 + 7)

with j-invariant

j(X0) =
−21355471243

√
6 + 55502166112

2559
∈ Q(

√
6) \Q,

showing that M(X) = M(X,G) = Q(
√

6), and

φ(x, y) = (186
√

6 + 351)x3 + (9504
√

6 + 21564)x2 + (25350
√

6 + 58725)x+ 11280
√

6 + 26730

+ ((1611
√

6 + 4401)x+ (7602
√

6 + 18882))y

with ramification at 0, 50000,∞.

Genus 24, (4, 5, 6), PGL2(F5). Finally we arrive at the first of two nonarithmetic curves.
Elkies has computed another interesting subcover of genus 1, namely, the curve E corre-

sponding to the permutation representation of PGL2(F5) as S5: it is the curve

y2 + (17 + 2
√

6)xy + 36(7− 3
√

6)y = x3 − 36(1 +
√

6)x2

and the Bely̆ı function is

φ(x, y) = xy + (−9 + 6
√

6)x2 + (117− 48
√

6)y

with a pole of degree 5 at infinity, a zero at P = (0, 0) of degree 4, and taking the value
2833(−5 + 2

√
6) with multiplicity 3 at −6P = (12(

√
6 − 1),−144) and multiplicity 2 at

9P = (12(9− 4
√

6), 48(27− 10
√

6)).
This was computed as follows. The ramification type is 4 1, 5, 3 2. Put the point of

ramification index 5 as the origin of the group law and the 4 point above 0; let P and
P ′ = −4P be the preimages with multiplicities 4, 1. The preimages of multiplicity 3 and
2 are 2Q and −3Q for some point Q. But the divisor of dφ/ω, where ω is a holomorphic
differential, is 3P + 2(2Q) + (−3Q)− 6∞ hence Q = −3P , so these preimages are −6P and
9P .

We take E : y2 + a1xy + a3y = x3 + a2x
2 so that P is at (0, 0) with a horizontal tangent;

we scale so a2 = a3 and let a1 = a + 1 and a2 = a3 = b. Then φ = axy − bx2 + by. The
condition that f − f(−6P ) vanishes to order at least 2 at −6P and vanish at 9P leaves a
factor a2 − 216a+ 48 giving (a, b) = (108 + 44

√
6,−(6084 + 2484

√
6)).

Genus 24, (3, 4, 7), PSL2(F7). We have F = F (3, 4, 7) = Q(λ6, λ8, λ14) = Q(
√

2, λ7) and
E = E(3, 4, 7) = Q(λ3, λ4, λ7, λ6λ8λ14) = Q(

√
2, λ7) = F , and F7(3, 4, 7) = Q.

The curve X(3, 4, 7; 7), according to Theorem A, is defined over an at-most quadratic
extension M(X) of Q; the curve with its automorphism group is defined over M(X)(

√
−7).

We find that the curve X0(3, 4, 7; 7) has genus one and is defined over Q(
√

2):

E : y2 + (
√

6 + 1)xy + (
√

6 + 1)y = x3 + (−14ν + 3)x+ (−78ν + 128)
44



with j-invariant

j(E) = −14000471420
√

6 + 19227826689

233475

and good reduction away from 2, 3, 7. The specialization φ = −1 gives a Galois extension of
Q(
√

2,
√
−7) with Galois group PSL2(F7). This gives reason to believe that M(X) = Q(

√
2)

and M(X,G) = Q(
√

2,
√
−7).

Another genus 1 quotient of X(3, 4, 7; 7) was computed by Elkies by “turning a p-adic
crank” (explained in detail in the final example). This curve is defined only over Q(

√
2,
√
−7),

and already the j-invariant of the curve

−28505956008
√

2
√
−7 + 39863931701

√
−7 + 120291604664

√
2 + 15630829689

107495424

generates this field. The subgroup H ≤ PSL2(F7) that gives rise to this curve is not stable
under σ :

√
−7 7→ −

√
−7; however, this elliptic curve is 2-isogenous to its Galois conjugate

by σ, and so defines a Q(
√

2)-curve, giving further evidence for this hypothesis.

We conclude with an example which extends beyond our table but illustrates an important
point.

Example 10.6. Consider the triple (3, 5, 6) and the prime 11. We obtain from Theorem B a
PSL2(F11)-cover, and this is the curve with smallest genus in the list of all PSL2-covers such
that a 6= 2 and p - abc. This is the extreme case of Theorem A, where no hypothesis allows
us to reduce dX or d(X,G) or deduce something about M(X) from M(X,G).

We compute that

F11(3, 5, 6)〈Frob11〉 = Q(λ3, λ5, λ6)〈Frob11〉 = Q(λ5) = Q(
√

5)

and so M(X) is a degree at most 2 extension of Q(λ5) quadratic over

E(3, 5, 6) = Q(λ3, λ5, λ6, λ6λ10λ12) = Q(
√

3,
√

5).

The curve X0(3, 5, 6; 11) has genus 2, and so offers additional computational difficulties.
We instead compute the curve E which arises from the quotient by the subgroup A5 ⊆
PSL2(F11). This subcover E → P1 is of genus 1 and has degree 11 = # PSL2(F11)/#A5.

An equation for this curve was computed by Sijsling and the second author [69]: we find

a single Galois orbit of curves defined over the field Q(
√

5,
√

3,
√
b) where

b = 4
√

3 +
1

2
(11 +

√
5);

with N(b) = 112; alternately, it is given by extending by a root β of the equation

T 2 − 1 +
√

5

2
T − (

√
3 + 1) = 0.
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The elliptic curve has minimal model:

y2 + ((1/2(13
√

5 + 33)
√

3 + 1/2(25
√

5 + 65))β + (1/2(15
√

5 + 37)
√

3 + (12
√

5 + 30)))xy

+ (((8
√

5 + 15)
√

3 + 1/2(31
√

5 + 59))β + (1/2(13
√

5 + 47)
√

3 + 1/2(21
√

5 + 77)))y

= x3 + ((1/2(5
√

5 + 7)
√

3 + 1/2(11
√

5 + 19))β + (1/2(3
√

5 + 17)
√

3 + (2
√

5 + 15)))x2

+ ((1/2(20828483
√

5 + 46584927)
√

3 + 1/2(36075985
√

5 + 80687449))β

+ (1/2(21480319
√

5 + 48017585)
√

3 + 1/2(37205009
√

5 + 83168909)))x

+ (((43904530993
√

5 + 98173054995)
√

3 + 1/2(152089756713
√

5 + 340081438345))β

+ ((45275857298
√

5 + 101240533364)
√

3 + (78420085205
√

5 + 175353747591)))

The j-invariant of this curve generates the field Q(
√

5,
√

3,
√
β). So this gives strong

evidence for our Theorem A, and shows that it is “best possible” in that one may indeed
obtain a nontrivial extension in one of the unknown quadratic extensions which arise from
the failure of (weak) rigidity.

Remark 10.7. Elkies has suggested that further examples could be obtained by considering
triangle covers which are arithmetic, but not congruence.
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[19] Dèbes and Emsalem, On fields of moduli of curves, J. Algebra 211 (1999), no. 1, 42–56.
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[38] Robert Kucharcyzk, Modular embeddings and rigidity for Fuchsian groups, Acta Arith. 169 (2015),

no. 1, 77–100.
[39] Mong-Lung Lang, Chong-Hai Lim, and Ser-Peow Tan, Principal congruence subgroups of the Hecke

groups, J. Number Theory 85 (2000) 220–230.
[40] Ulrich Langer and Gerhard Rosenberger, Erzeugende endlicher projektiver linearer Gruppen, Results

Math. 15 (1989), no. 1–2, 119–148.
[41] A.M. Macbeath, On a curve of genus 7, Proc. London Math. Soc. (3) 15 (1965), 527–542.
[42] A.M. Macbeath, Generators of the linear fractional groups, Number Theory (Proc. Sympos. Pure

Math., Vol. XII, Houston, Tex., 1967), Amer. Math. Soc., Providence, 14–32.

47



[43] Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, vol. 61,
Academic Press, New York, 1974.

[44] Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 1999.

[45] G. Margulis, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991.
[46] Claude Marion, Triangle groups and PSL2(q), J. Group Theory 12 (2009) 689–708.
[47] Barry Mazur, Open problems regarding rational points on curves and varieties, Galois representations

in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254,
Cambridge Univ. Press, Cambridge, 1998, 239–265.

[48] J.S. Milne, Introduction to Shimura Varieties, Clay Mathematic Proceedings, vol. 4, 2005.
[49] Israel Moreno-Mej́ıa, The quadrics through the Hurwitz curves of genus 14, London Math. Soc. 81

(2010), 374–388.
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