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Abstract. Let E/K be an elliptic curve defined over a number field, and
let p be a prime number such that E(K) has full p-torsion. We show that
the order of the p-part of the Shafarevich-Tate group of E/L is unbounded
as L varies over degree p extensions of K. The proof uses O’Neil’s period-
index obstruction. We deduce the result from the fact that, under the same
hypotheses, there exist infinitely many elements of the Weil-Châtelet group of
E/K of period p and index p2.

1. Introduction

The aim of this paper is to prove the following results (notation is explained at the
end of this section):

Theorem 1. Let p be a prime number, E/K an elliptic curve over a number field
with full p-torsion defined over K, and r a positive integer. Then there are infinitely
many degree p field extensions L/K such that

dimFp X(E/L)[p] ≥ r.

Recall that for any elliptic curve over a field K of characteristic different from
p, all p-torsion points become rational over an extension field of degree dividing
#GL2(Fp) = (p2 − 1)(p2 − p). Moreover, if E/K admits complex multiplication,
all p-torsion points become rational over an extension of degree dividing 2(p2 − 1)
or 2(p− 1)2. This immediately gives the following corollary.

Corollary 2. If E/K is an elliptic curve over a number field, p a prime and r a
positive integer, there exist infinitely many field extensions L/K of degree at most
p5 such that dimFp X(E/L)[p] ≥ r. Moreover, for infinitely many E/K – namely

those admitting complex multiplication over K – the same result holds for infinitely
many field extensions of degree at most 2p3.

In Section 2 we deduce Theorem 1 as a consequence of the following result, which
is of independent interest.

Theorem 3. Let p be a prime, and E/K an elliptic curve over a number field
with full p-torsion defined over K. Then there exists an infinite subgroup G of
H1(K,E)[p] such that every nonzero element of G has index p2 (i.e., p2 divides the
degree of any splitting field extension).

The proof of Theorem 3 makes essential use of the period-index obstruction map of
Catherine O’Neil, which is the subject of Section 3. There is some play in relating
two possible definitions, after which we discuss two results concerning this map.
The first, Theorem 5, gives a necessary and sufficient condition for the period to
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equal the index. The second, Theorem 6, is a computation of the period-index
obstruction in the case of full level structure, a result which appears in [12] but
requires correction.

The proof of Theorem 3 is given in Section 4.

Finally, in Section 5 we discuss some issues raised by the proofs and the possi-
bility of certain generalizations.

Acknowledgements: It is a pleasure to acknowledge helpful conversations with
Catherine O’Neil and William Stein, in the course of which many of the ideas of
this paper emerged. A motivation for the particular form of the results presented
here was the recent preprint [7], which proves – by completely different methods –
a result similar to our Corollary 2 but involving simultaneous variation of E and
L/Q among fields of degree O(p4). Many thanks to the referee for an array of
useful suggestions and one invaluable remark. We also thank J.-L. Colliot-Thélène
for suggesting various improvements in the exposition.

Notation and terminology: For a field K, we denote by K a fixed separable closure
of K and by gK = Gal(K/K) the absolute Galois group of K. If n is a positive
integer and G is an abelian group (resp. G/K is a commutative K-group scheme)
then G[n] denotes the subgroup (resp. K-subgroup scheme) defined as the kernel
of [n], the multiplication by n map. We shall always choose G/K and n such that
G[n] is an étale group scheme, which we identify with the gK-module G[n](K). For
any gK-module M and non-negative integer i, Hi(K,M) := Hi(gK ,M), the ith
Galois cohomology group. We denote by Br(K) = H2(K,Gm) the Brauer group of
K.

Unless explicit mention is made to the contrary, varieties V/K are assumed to
be smooth, projective and geometrically irreducible. We denote by K(V ) the field
of rational functions on V/K. For a scheme X , Pic(X) = H1(X,Gm) is the usual
Picard group, while for a variety V/K, Pic(V ) is the sheafification of the fppf
presheaf S/K 7→ Pic(V/S) (see [1, §8.1] for a nice discussion). Especially, if L/K
is any separable algebraic field extension, Pic(V )(L) = Pic(V/K)gL .

If M is any gK-module and η ∈ Hi(K,M) for i > 0, then the period of η is just
its order as an element of Hi(K,M) (a torsion group). If L/K is a finite separable
field extension such that η|L = 0, we say that L/K is a splitting field for η. The
(separable) index of η is the greatest common divisor of all degrees of separable
splitting fields L/K for η. In general, the period divides the index and the two
quantities have the same prime divisors ([8, Prop. 5] in the case of Weil-Châtelet
groups, [6, Prop. 9] for the general case, which is not any harder). If η is an element
of the Weil-Châtelet group H1(K,E) of an elliptic curve E/K, then the index is
attained, i.e., the greatest common divisor of all degrees of separable splitting fields
is itself the degree of a separable splitting field [8, p. 670]. Moreover, modifying the
definition of the index by allowing not necessarily separable splitting fields would
not result in a lower value for any principal homogeneous space of an elliptic curve
[9, Theorem 4].



THE PERIOD-INDEX PROBLEM IN WC-GROUPS I: ELLIPTIC CURVES 3

2. Theorem 3 implies Theorem 1

Let us first recall important results of Cassels and Lichtenbaum, both of the form
“period equals index.” Let K be a field, E/K an elliptic curve, and η ∈ H1(K,E)
a class of exact order n. Then η is split by a degree n field extension if i) K is a
number field and η ∈ X(E/K) is a locally trivial class [2, (IV): Theorem 1.2], or ii)
K is a finite extension of Qp [9, Theorem 3]. One immediately verifies the analogue
of Lichtenbaum’s theorem for principal homogeneous spaces of elliptic curves over
complete Archimedean fields: since the period and the index of an element of the
Weil-Châtelet group have the same prime divisors, and since any Galois cohomol-
ogy class η ∈ Hi(R,M) with i > 0 is killed by restriction to C hence has index at
most 2, the version over R is almost trivial. Truly trivial, but still perhaps worth
mentioning, is the fact that period equals index (equals one!) for any principal
homogeneous space of an elliptic curve E/C. In fact Lichtenbaum’s theorem con-
tinues to hold for locally compact fields of positive characteristic [10].

Now let S ⊂ H1(K,E)[p] be an infinite subgroup such that every nonzero ele-
ment of S has index p2. For each nonzero ηi ∈ S, there is a finite set Σi of
places v of K such that ηi remains nonzero in the completion Kv; note that Σi is
nonempty by Cassels’ theorem. Moreover, by Lichtenbaum’s theorem, every class
in H1(Kv, E)[p] can be split by a degree p extension Lw/Kv. For any given ηi, we
can find a degree p global extension Li/K such that ηi|Li is zero everywhere locally,
i.e., represents an element of X(E/Li)[p]. Indeed, to deal with the finite places we
combine the standard (weak) approximation theorem for valuations with the fact
that any polynomial P ∈ K[x] whose coefficients are sufficiently v-adically close
to an irreducible polynomial P0 ∈ Kv[X ] with corresponding extension Lw will,
over Kv, also be irreducible with corresponding extension Lw (Krasner’s Lemma).
Moreover, weak approximation implies that we may require that Li be totally imag-
inary at every real Archimedean place v ∈ Σi (such places can exist only if p = 2).
Because the index of ηi is p2 and we have made a field extension Li/K of degree
only p, the element ηi ∈ X(E/Li)[p] must be nonzero.1

We now refine the above argument to produce r Fp-linearly independent classes.
For this, observe first that H1(Kv, E)[p] is a finite group: it is a homomorphic
image of H1(Kv, E[p]), and the Galois cohomology groups of a finite module over
a p-adic field are finite: [4, Prop. II.5.14]. (It is immediate that H1(Kv, E[p])
is finite if Kv is Archimedean.) Starting with an element η1 of S, the subgroup
H1 ⊆ S consisting of classes which are locally trivial at all places where η1 is locally
nontrivial has finite index and is therefore infinite; choose a nontrivial η2 in this
group. Continuing in this way, we can construct a cardinality r set {η1, . . . , ηr}
of Fp-linearly independent elements of S such that the sets Σi of places where ηi

is locally nontrivial are pairwise disjoint. Accordingly, we can again find a single
global extension L/K of degree p such that all r classes give elements of X(E/L)[p].
Let η = a1η1 + . . . + arηr be any Fp-linear combination of the ηi’s. As above, if
η|L = 0, then η is a class in S of index p, so η = 0: i.e., a1 = . . . = ar = 0. Thus
dimFp X(E/L)[p] ≥ r.

1This argument is due to William Stein.
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3. On the period-index obstruction for elliptic curves

In this section K can be an arbitrary field, and n is a positive integer indivisible
by the characteristic of K.

3.1. Two definitions of the period-index obstruction map.

We begin in a more general setting: if X/K is any (as always smooth, projective,
geometrically irreducible) variety, there is an exact sequence

(1) 0 → Pic(X) → Pic(X)(K)
δ
→ Br(K) → Br(K(X)).

In some sense “the right approach” to (1) is via the Leray spectral sequence in étale
cohomology (of the sheaf GmX and the morphism of sites induced by X → SpecK);
the associated five-term exact sequence is a slight refinement of (1), with the last
term Br(K(X)) replaced by the smaller group Br(X) = H2

ét(X,Gm) [1, pp. 203-
204]. However, the point of this section is to verify a compatibility between δ and
another cohomological obstruction map, and for this we would like to have a more
concrete description of δ. We begin with a geometric description of the restriction
of δ to the cone of positive divisor classes in Pic(X)(K) and then recall why this
geometric description is compatible with a rather down-to-earth cohomological de-
scription given by Cassels.

First we make precise the statement, “The positive divisors belonging to a divi-
sor class rational over K form a Severi-Brauer variety.” [5, p. 160]. Recall that
an N -dimensional Severi-Brauer variety V/K is a variety such that V/K ∼= PN/K.
Suppose that [D] ∈ Pic(X)(K) is a positive rational divisor class. Let N + 1 =
h0(D), the dimension of the K-space of functions f such that div(f) ≥ −D, so
V/K := P{0 6= f | div(f) ≥ −D} is isomorphic to PN . We can use the K-
rationality of the divisor class of D to give descent data on V : for σ ∈ gK , there
exists fσ such that div(fσ) = D − Dσ, so that f 7→ f · fσ gives an isomorphism
ϕσ : V → σ(V ). Evidently this system of isomorphisms satisfies Weil’s cocycle con-
dition, so can be used to give V the structure of a Severi-Brauer variety V [D]/K.
We have V [D](K) 6= ∅ if and only if V [D] ∼= PN if and only if [D] can be represented
by a K-rational divisor.

Since fσ is uniquely determined by its divisor D −Dσ up to multiplication by
an element of Gm(K), the two-cocycle

(∂(fσ))(σ, τ) := fσσ(fτ )f−1
στ

is an element of H2(K,Gm). Thus the map

(2) [D] 7→ (fσ) 7→ ∂(fσ)

defines a map from the positive cone Pic+(X)(K) of Pic(X)(K) to Br(K) which is
trivial on the image of Pic+(X). But observe that the assignment (2) makes no use
of the positivity of [D]; indeed it defines a homomorphism δ : Pic(X)(K) → Br(K).
In [2, p. 247] it is shown that this map δ fits into the exact sequence (1).

Remark: If V (K) 6= ∅, then δ ≡ 0. This follows from the refined version of (1)
alluded to above; see [1, p. 204, Prop. 4].

Now let E/K be an elliptic curve, n a positive integer indivisible by the chrar-
acteristic of K, and L = L(n[O]). The functor on K-schemes which associates to
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S/K the collection of all isomorphisms L/S
∼
→ τ∗s (L/S) between the line bundle

L/S and one of its translates is represented by an algebraic K-group GL, the theta

group. The theory of theta groups is due to D. Mumford [11, §1]. We shall briefly
recall some parts of this theory which are relevant for our purposes; this material
is discussed in more detail in [12, §2].

There is a natural embedding of Gm ↪→ GL as the subfunctor of automorphisms
of L. The quotient GL/Gm is canonically isomorphic to the kernel of the natural
map ϕL : A → A∨, so in this case to E[n]. Moreover, GL has a natural (faithful
and irreducible) representation on the K-vector space of global sections Γ(E,L): if

g ∈ GL(K) carries L
∼
→ τ∗xL and s ∈ Γ(E,L), then g · (s) := τ∗−x(g(s)) [11, p. 295].

Thus, choosing a basis (f1, . . . , fn) of Γ(E,L) we get a homomorphism GL → GLn,
which carries Gm (the center of GL) identically onto the subgroup Gm ⊂ GLn of
scalar matrices.

In summmary, we have the following commutative diagram, in which both the
top and bottom rows are central extensions of group schemes:

(3)

1 −−−−→ Gm −−−−→ GL −−−−→ E[n] −−−−→ 1




y





y





y





y

γ





y

1 −−−−→ Gm −−−−→ GLn −−−−→ PGLn −−−−→ 1

Especially important for us is the morphism γ : E[n] → PGLn. Let E →
Pn−1 be the morphism into projective space associated to the divisor n[O] (it is an
embedding if n ≥ 3 and is two-to-one onto its image if n = 2). We may view E[n]
as the group of translations of E which extend to automorphisms of Pn−1 such that
the following diagram commutes:

(4)

E
τP−−−−→ E

ϕ





y





y

ϕ

Pn−1 γ(τP )
−−−−→ Pn−1

We summarize this situation by saying (perhaps abusively) that E[n] is the auto-
morphism group of the morphism ϕ : E → Pn−1.

Now consider the Kummer sequence

0 → E(K)/nE(K) → H1(K,E[n]) → H1(K,E)[n] → 0.

The group H1(K,E)[n] parameterizes genus one curves C/K equipped with the

structure of a principal homogeneous space for E = J(C) = Pic0(C) and having
period dividing n. This geometric interpretation “lifts” to H1(K,E[n]) as follows.

Proposition 4. The group H1(K,E[n]) classifies isomorphism classes of pairs
(C, [D]), where C is a principal homogeneous space for E and [D] ∈ Picn(C)(K) is
a K-rational divisor class of degree n. Two such pairs are isomorphic if and only
if there exists an isomorphism of principal homogeneous spaces f : C1 → C2 such
that f∗([D2]) = [D1].

I have been unable to find this proposition in the literature in the precise form
in which we have stated it, but I am told that it has been well-known for a long
time. Indeed, Proposition 4 can readily be deduced either from work of Cassels or
of O’Neil.
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Proof: In either case, the idea is to interpret E[n] as an automorphism group
of a suitable structure S, so that by Galois descent H1(K,E[n]) parameterizes the
twisted forms of S. But there is some latitude in the choice of S. The classi-
cal choice [3, Lemma 13.1] is to view E[n] as the deck transformation group of
[n] : E → E, so that H1(K,E[n]) parameterizes finite étale maps f : C → E which
are geometrically Galois (and for which C is, as always, geometrically connected),
with group Z/nZ ⊕ Z/nZ. To any such map f : C → E we associate the pair
(C, [nQ]), where Q is any element of f−1(O). O’Neil’s choice [12, Prop 2.2] is, as
above, to view E[n] as the automorphism group of the morphism ϕL : E → Pn−1,
so that H1(K,E[n]) parameterizes diagrams C → V , where C is a principal ho-
mogeneous space for E and V is a Severi-Brauer variety. Note that the additional
data of the diagram C → V is, by Galois descent, equivalent to giving a rational
divisor class [D] on C, for which V = V [D]. In particular, two diagrams C → V
and C′ → V ′ are isomorphic if they fit into a commutative diagram of the form

C
τP−−−−→ C′





y





y

V −−−−→ V ′

the twisted analogue of (4). This completes the proof.

Now recall that PGLn is itself the automorphism group of Pn−1, so that by Ga-
lois descent H1(K,PGLn) parameterizes n−1-dimensional Severi-Brauer varieties.
One of the merits of O’Neil’s setup is that the geometric interpretation of the
map H1(K,E[n]) → H1(K,PGLn) is very simple: it is just the forgetful functor
(C 7→ V ) 7→ V , whereas the other forgetful functor (C 7→ V ) 7→ C has the coho-
mological interpretation H1(K,E[n]) → H1(K,E)[n].

This brings us to our “geometric” definition of the period-index obstruction map:

D : H1(K,E[n]) → Br(K)

by
(C, [D]) 7→ [D] 7→ (fσ) 7→ ∂(fσ),

i.e., we extract the divisor class [D] and associate the Severi-Brauer variety and
then its coboundary in the Brauer group as at the beginning of the section.

The following result justifies the name.

Theorem 5. A class η ∈ H1(K,E)[n] of exact period n has index n if and only if
some lift of η to ξ ∈ H1(K,E[n]) has D(ξ) = 0.

Proof: η has index n if and only if there exists a K-rational divisor of degree n
on the corresponding principal homogeneous space C, i.e., if and only if some K-
rational divisor class of degree n on C has vanishing obstruction. Thus the result
is clear.

Now we must admit that this is not quite the definition of the period-index ob-
struction given in [12]. Rather, O’Neil considers the cohomological connecting map

∆ : H1(K,E[n]) → H2(K,Gm)
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associated to the central extension of gK-modules

1 → Gm(K) → GL(K) → E[n](K) → 1.

Whereas D satisfies Theorem 5, it is ∆ that can be explicitly computed, as we shall
see shortly. Fortunately there no need to choose between them.

Claim: ∆ = D.

Proof: The commutativity of (3) means that ∆ factors as

∆ : H1(K,E[n]) → H1(K,PGLn) → H2(K,Gm),

where the latter map is “the ∆” associated to the central extension of gK-modules
given by the bottom row of (X). Since we know that H1(K,E[n]) → H1(K,PGLn)
is just (C 7→ V ) 7→ V , the only thing that remains to be shown is that ∂(V [D]) =
∆(V [D]). To see this: if m(σ) ∈ GLn(K) is the matrix defined by

σ(f1, . . . , fn) = m(σ)(f1, . . . , fn),

and m(σ) is its image in PGLn(K), then the one-cocycle associated to V [D] is
η : σ 7→ m(σ). But then ∆(η) can be computed by lifting η to GLn(K), and if we
choose the lift σ 7→ m(σ), then we have an equality of cocycles

∆(η)(σ, τ) = fσσ(fτ )f−1
στ = ∂(fσ).

This completes the proof of the claim.

We end this section by noting, as in [12], that ∆(ι(E(K)/nE(K))) = 0; in other
words, ∆ vanishes on the image of the Kummer map. It may be tempting to con-
clude that ∆ factors throughH1(K,E)[n], but this is absolutely not the case. Since
∆ is defined by nonabelian Galois cohomology, it need not be a homomorphism of
groups, and in fact [12, Prop. 4.1] shows that it is always a quadratic map. This
leads us directly into the issues of the next section, in which we will compute ∆ in
a special case.

3.2. Heisenberg groups and the explicit period-index obstruction. The
goal of this section is to compute ∆ in the case when E/K has full n-torsion defined
over K. That is, we assume that the finite étale K-group scheme E[n] is constant,
and choose a Galois module isomorphism E[n] ∼= (Z/nZ)2. The Galois-equivariance

of Weil’s en-pairing implies that Z/nZ =
∧2

E[n] = µn as Galois modules, so the
above choice of basis induces an isomorphism

H1(K,E[n]) ∼= H1(K,µn)2 = (K∗/K∗n)2.

So in this case the period-index obstruction can be viewed as a map

∆ : (K∗/K∗n)2 → Br(K).

Now we must point out that [12, Prop. 3.4] gives a computation of ∆ which is not
quite correct: it is claimed that ∆(a, b) = 〈a, b〉n, the norm-residue symbol. But
the following counterexample was supplied by the referee:

Suppose n = 2, so E is given as y2 = (x − e1)(x − e2)(x − e3). Then the map
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ι : E(K)/2E(K) → (K∗/K∗2)2 is given explicitly for any point (x, y) ∈ E(K) with
x 6= e1, e2 as

ι(x, y) = (x− e1, x− e2) (mod K∗2)

[14, Prop. X.1.4]. But ∆ vanishes on ι(E(K)/2E(K)), so in particular ∆(e3 −
e1, e3 − e2) = 0. But as e1, e2, e3 vary over all triples of distinct elements of K,
(e3 − e1, e3 − e2) runs through all elements of K×/K×2, and all Hilbert symbols
〈a, b〉2 vanish only if Br(K)[2] vanishes.

On the other hand, the following result shows that the obstruction map ∆ is close
to being the norm residue symbol 〈 , 〉n.

Theorem 6. Let E/K be an elliptic curve over a field K and n a positive integer
not divisible by the characteristic of K and such that E[n] is a trivial gK-module.
Then there exist C1, C2 ∈ K∗/K∗n such that for all a, b ∈ K∗/K∗n,

∆(a, b) = 〈C1a, C2b〉n − 〈C1, C2〉n.

Before we begin the proof we will need to recall some facts about Heisenberg groups.
There is an algebraic K-group scheme Hn, which is, like G, a central extension of
E[n] by Gm. To define Hn, one chooses a decomposition E[n] = H1 ⊕ H2 into
a direct sum of two cyclic order n subgroup schemes. (With a view towards the
higher-dimensional case, one should think of this as a Lagrangian decomposi-

tion, i.e., that each Hi is maximal isotropic for the Weil en-pairing; of course this
is automatic for elliptic curves.) Then Hn is defined by the following 2-cocycle
fH1,H2

∈ Z2(E[n],Gm):

(P1 + P2, Q1 +Q2) 7→ en(P1, Q2).

In the course of the proof of Theorem 6 we will see that the connecting map
∆Hn : H1(K,E[n]) → Br(K) associated to the Heisenberg group is precisely the
norm residue symbol 〈a, b〉n. This result is a very special case of thesis work of
R. Sharifi [13, Prop. 2.3]. Moreover, Mumford [11, Cor. of Th. 1] shows that
when K = K, the theta group G is isomorphic to the Heisenberg group Hn. (To
be entirely precise, Mumford works over an algebraically closed field, but his proof
[11, p. 293] shows that the identification of G with Hn is attained over an abelian
extension of K of exponent dividing n, hence certainly over the separable closure.)
Thus in general G is a Galois twisted form of Hn. Combining these two results with
the above counterexample, it must be the case that G can be a nontrivial twisted
form of Hn.

Nevertheless, we can completely understand the possible twists: they are parame-
terized by H1(K,Aut?(Hn)), where the ? indicates that we want not the full auto-
morphism group of Hn but only the automorphisms which act trivially on the sub-
group Gm and on the quotient E[n]. It will turn out that Aut?(Hn) ∼= (H1⊕H2)

∨,
so that the twisted forms of the Heisenberg group will be parameterized by pairs
of order n characters of gK .

We now begin the proof of Theorem 6. Let ψ ∈ Aut?(Hn), and let (P1, P2, ε)
denote an arbitrary element of the Heisenberg group. Since ψ is the identity mod-
ulo the center, we have ψ(Pi) = Pi for i = 1, 2; together with the fact that
ψ(0, 0, ε) = (0, 0, ε), this implies that ψ : (P1, P2, ε) 7→ (P1, P2, χ(ψ)(P1, P2)ε). That
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is, an automorphism of Hn as an extension determines a map χ : H1 ⊕H2 → Gm,
i.e., a character of H1 ⊕ H2. Conversely, any such character defines an automor-
phism, and we have canonically Aut?(Hn) = (H1 ⊕ H2)

∨ (Pontrjagin = Cartier
dual). It follows that the collection of twisted forms of the Heisenberg group is
H1(K, (H1 ⊕H2)

∨) ∼= H1(K,H1 ⊕H2), since the Weil pairing gives an autoduality
E[n]∨ ∼= E[n].

Changing notation slightly, let

χ ∈ H1(K,Aut?(Hn)) = H1(K, (H1 ⊕H2)
∨) ∼= (K∗/K∗n)2

be a one-cocycle. Using χ we build a twisted form Hχ of Hn, i.e., the group scheme

whose K-points are the same as the K-points of Hn, but with twisted gK-action,
as follows:

σ · (P1, P2, ε) = (P1, P2, χ(σ)(P1, P2)σ(ε)).

We may now compute the cohomological coboundary map ∆ directly from its def-
inition. For this, we view Hχ/K as Gm × E[n] “doubly twisted,” i.e., twisted as a
gK-set as just discussed, and twisted as a group via the cocycle f introduced above:

(α, P ) ? (β,Q) = (αβf(P,Q), P +Q).

We note that the inverse of (α, P ) is (α−1f(P,−P )−1,−P ). Let η ∈ Z1(K,E[n]);
we want to compute ∆(η)(σ, τ). The basic recipe for this allows us to choose
arbitrary lifts Nσ, Nτ , Nστ of ησ, η(τ), η(στ) to Hχ and put ∆(η)(σ, τ) =
Nσσ(Nτ )N−1

στ . We choose to lift by the set-theoretic identity section: η(σ) 7→
(1, η(σ)), and so on. Keeping in mind that σ(η(τ)) = η(τ) and η(στ) = η(σ)η(τ),
we get:

∆(η)(σ, τ) = (1, η(σ)) ? σ(1, η(τ)) ? (1, η(στ))−1 =

(1, η(σ)) ? (χ(σ)(η(τ)), η(τ)) ? (f(η(στ),−η(στ))−1 ,−η(στ) =

(χ(σ)(η(τ))f(η(σ), η(τ)), η(σ)η(τ )) ? (f(η(στ),−η(στ))−1 ,−η(στ)) =

(χ(σ)(η(τ))f(η(σ), η(τ)), 0).

That is, the coboundary map ∆ : H1(K,E[n]) → Br(K)[n] is a product of two
terms:

∆(η)(σ, τ) = ∆1 · ∆2 = χ(σ)(η(τ)) · f(η(σ), η(τ)).

Indeed ∆2 and ∆1 are respectively the quadratic form and the linear form com-
prising the quadratic map ∆.

Proposition 7. We have – with suitable identifications to be explained below – that

∆2(a, b) = ∆Hn(a, b) = 〈a, b〉n.

Proof: Note that the first equality in the statement of the Proposition is clear,
since ∆ = ∆2 if χ is trivial. Our choice of a basis P1, P2 for E[n](K) determines
a primitive nth root of unity ζn = en(P1, P2), and we use ζn to identify µn with
Z/nZ. This same choice of basis gave us a Kummer isomorphism H1(K,E[n]) ∼=
(K×/K×n)2, so we may identify (a, b) ∈ (K×/K×n)2 with a pair of characters
ϕa, ϕb : gK → Z/nZ. Then there is a cup-product map

∪ : H1(K,Z/nZ) ×H1(K,Z/nZ) → H2(K,Z/nZ) = H2(K,µn) = Br(K)[n],
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and it is well-known [5, Prop. XIV.5] that 〈a, b〉n = ϕa ∪ ϕb. With this notation
η(σ) = (ϕa(σ), ϕb(σ)), so

∆2(η)(σ, τ) = en(ϕa(σ), ϕb(τ)) = ϕa(σ) · ϕb(τ),

where the last product is just multiplication in Z/nZ. It remains to remark that
(ϕa ∪ ϕb)(σ, τ) = ϕa(σ) ·ϕb(τ) – see e.g. the first displayed equation of [5, p. 208].
This completes the proof of Proposition 7.

To evaluate ∆1, choose a basis (P1, P2) of E[n] and use the induced decomposi-
tion of E[n] = H1 ⊕ H2 and the corresponding decomposition of the dual space
E[n]∨ (i.e., we decompose any character φ into ψ1 ⊕ ψ2, where χi(Hj) = 0 for
i 6= j). This induces decompositions η = η1 ⊕ η2 and χ = χ1 ⊕ χ2, so that

χ(σ)(η(τ)) = χ1(σ)(η1(τ)) · χ2(σ)(η2(τ)).

Now under our identification H1(K,E[n]) = (K∗/K∗n)2, η1 corresponds to a
(mod K∗n) and η2 corresponds to b (mod K∗n), so ∆1 is just the sum of the cyclic
algebras (a, χ1) and (b, χ2). Using Kummer theory to identify the characters with
elements (say) C2, C

′
1 of K∗/K∗n, we get

∆1(a, b) = 〈a, C2〉 + 〈b, C′
1〉 = 〈a, C2〉 + 〈C1, b〉,

where C1 = C′−1
1 . Thus we have

∆(a, b) = 〈a, b〉 + 〈a, C2〉 + 〈C1, b〉 = 〈C1a, C2b〉 − 〈C1, C2〉,

completing the proof of the theorem.

4. The Proof of Theorem 3

In this section the following hypotheses are in force: n = p is prime, K is a number
field, and E/K is an elliptic curve with E[p](K) = E[p](K). We note that this im-
plies, by the Galois-equivariance of the Weil pairing, that K contains the pth roots
of unity. Since for any class η ∈ H1(K,E)[p] the possible lifts of η to H1(K,E[p])
are parameterized by the finite abelian group E(K)/pE(K) (weak Mordell-Weil
theorem), by Theorem 5 the proof of Theorem 3 is reduced to the following result.

Proposition 8. Let K be a number field containing the pth roots of unity and
H ⊆ (K∗/K∗p)2 a finite subgroup. Then there exists an infinite subgroup G ⊆
(K∗/K∗p)2 with the property that for every nonzero element g of G and every
element h ∈ H, ∆(hg) 6= 0.

By Theorem 6, ∆ = 〈 , 〉p up to a linear term, and essentially what must be shown
is the same statement with 〈 , 〉p in place of ∆; this says, morally, that Brauer
groups of number fields are “large” in a certain sense. We prove this directly (if
inelegantly) using exactly what the reader expects: local and global class field the-
ory, especially the nondegeneracy of the local norm residue symbol.

Along these lines we will need the following routine result, whose proof we include
for completeness.

Lemma 9. Let n be a positive integer, K be a number field containing the nth roots
of unity, and L1, . . . , Lk be k cyclic degree n extensions of K. Then the image in
K∗/K∗n of the subgroup of K∗ consisting of simultaneous norms from each Li is
infinite.
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Proof: By Hasse’s norm theorem, if L/K is a cyclic extension of number fields, then
a ∈ K∗ is a norm from L if and only if it is everywhere a local norm. Let S be the
set of places of K consisting of the real Archimedean places (if any) together with
all finite places which ramify in any Li/K (if any). Let G1 ⊆ K∗ be the subgroup
of elements which are nth powers locally at every v ∈ S; notice that G1 has finite
index. Recalling that the norm map on an unramified local extension is surjective
onto the unit group, we get that any a ∈ G1 is a simultaneous local norm except
possibly at the unramified places v at which it has nontrivial valuation. Let h be
the class number of K. Then the set of primes which split completely in the Hilbert
class field as well as in each Li has density at least 1

hnk . For such a v, let πv be a
generator of the corresponding prime ideal, and let G2 be the (infinite) subgroup
of K∗ generated by these elements πv. Since G1 has finite index, G := G1 ∩ G2

remains infinite and visibly has infinite image in K∗/K∗n; by Hasse, every element
of G is a simultaneous norm.

Now we begin the proof of Proposition 8. Write out the elements of H as fol-
lows:

H = {(h1i, h2i)}| 1 ≤ i ≤ k}.

Moreover, let B = BH be the finite set of places of K containing the Archimedean
places, the places at which any h1i or h2i has nonzero valuation, and the places
for which, for any e (mod p), any expression e〈C1, C2〉v − 〈h1i, h2i〉v is nonzero in
Br(Kv).

Clearly it is enough to construct arbitrarily large finite subgroups G such that
every nontrivial element (g1, g2) of G has the property that for all i,

∆(hig) = 〈C1h1ig1, C2h2ig2〉p 6= 〈C1, C2〉p.

We make two preliminary simplifying assumptions: first, let C be the cyclic sub-
group generated by 〈C1, C2〉p in Br(K)[p]. Rather than constructing elements g
such that all modifications of g by elements of H have ∆(hg) 6= 〈C1, C2〉p, it is
convenient for a later inductive argument to require the stronger property that for
all h ∈ H , ∆(hg) is not an element of C. Second, by replacing H by H + C, we
reduce to the following problem: find arbitrarily large finite subgroups G such that
all nontrivial elements (g1, g2) have the property that for all h = (h1i, h2i) in H ,

(5) 〈h1ig1, h2ig2〉p is not in C.

In order to accomplish this, we first claim that we can choose g2 ∈ K∗/K∗p such
that:

• For 1 ≤ i ≤ k, 〈h1i, g2〉 = 0; and
• For 1 ≤ i ≤ k, g2h2i is not in K∗p.

Indeed, the elements g2 satisfying the first condition are precisely the simultaneous

norms from the k cyclic field extensions K(h
1/p
1i )/K, so in the notation of Lemma

9 there is a positive density set S1 of principal prime ideals v = (πv) such that
πv ∈ K∗ is a simultaneous norm from these k extensions. The second condition is
also satisfied as long as v ∈ S1 \B, so choose any such v and take g2 = πv.
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If we now choose any g1 with the property that for all i and any e (mod p)

〈g1, g2h2i〉 6= e〈C1, C2〉p − 〈h1i, h2i〉,

then the element g = (g1, g2) will have the desired property (5). For each i, since
g2h2i is not a pth power, there exists an infinite set of places v = v(i) such that
g2h2i is not a pth power in Kv. Hence we may choose places v1, . . . , vk, distinct
and disjoint from B, such that for all i, g2h2i is not a pth power in Kvi . By weak
approximation, we can choose an element g1 of K∗/K∗p such that for all i, g com-
pletes to a class of K∗

vi
/K∗p

vi
making all the local norm residue symbols 〈g1, g2h2i〉vi

nontrivial (this is possible because of the nondegeneracy of the local norm residue
symbol). But by definition of B, e〈C1, C2〉vi − 〈h1i, h2i〉vi = 0 for all i, so we have
constructed an element g = (g1, g2) satisfying (5). Now observe that if 1 ≤ j < p,

gj
2 satisfies the same two bulleted properties as g2; moreover, since H is a subgroup,

h2i = hj
2i′ for some other index i′, and the nontriviality of 〈g1, g2h2i〉v implies the

nontriviality of 〈gj
1, g

j
2h

j
2i〉v, so that indeed the entire cyclic subgroup A generated

by (g1, g2) has property (5).

We finish by iterating the construction: running through the above argument with
H replaced by A⊕ C gives a two-dimensional Fp-subspace of K∗/K∗p ×K∗/K∗p,
and so on.

5. Concluding remarks

I. In the derivation of Theorem 1 from Theorem 3, instead of appealing to Licht-
enbaum’s theorem on the equality of the period and index for all classes in the
Weil-Châtelet group of an elliptic curve over a local field, we could instead have
used an earlier result [8, Corollary 2, p. 677] giving the same equality for abelian
varieties of arbitrary dimension over local fields in the case when p is prime to the
residue characteristic and A has good reduction. Indeed the set of places of K lying
over p together with those places of bad reduction for E/K form a finite set, and
as in the proof we need only restrict to the finite index subgroup of classes trivial
at all these places.

II. The proof of the main theorem shows that each nonzero element g of G ⊆
H1(K,E)[p] gives rise to at least one set of “local conditions” on a degree p ex-
tension L/K sufficient to ensure that g restricts to a nonzero element of X(E/L).
On the other hand, the proof of Theorem 3 shows that G is not only an infinite
subgroup but has (in some sense) “positive measure,” bounded away from zero
in terms of #E(K)/pE(K). Thus the argument should lead to an explicit lower
bound on the function

f(N) = f(E/K, p,N) :=
∑

L/K, [L:K]=p, ||∆L/K||≤N

dimFp X(E/L)[p],

where ∆L/K is the discriminant of L/K. What is to be expected about the asymp-
totics of f?

III. The hypothesis that E has full p-torsion defined over K is used only in the
appeal to the “explicit” period-index obstruction of Theorem 5 in the proof of The-
orem 3. My hope is that Theorem 3 should be valid for every elliptic curve over
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a number field – namely, there should always exist an infinite subgroup of princi-
pal homogeneous spaces of order p and index p2. The challenge here is to make
sufficiently explicit the period-index obstruction map ∆ : H1(K,E[p]) → Br(K) in
the case of an arbitrary Galois module structure on E[p]. Notice that the setup of
Theorem 4 can be generalized to the case of elliptic curves E such that E[n] has
a Lagrangian decomposition: i.e., a decomposition into one-dimensional subspaces
H1 ⊕H2 as Galois module. This is still quite a stringent condition, but it can be
satisfied over Q for the primes 2, 3 and 5, since for such primes p, elliptic curves
E/Q with Galois module structure E[n] ∼= µp ⊕Z/pZ are known to exist. In these
cases, an analogue of Theorem 4 would show the existence of genus 1 curves C/Q
of period p and index p2 for p ≤ 5. While this may not sound very impressive,
we must point out that heretofore the only examples in the literature of genus one
curves over any number field with index exceeding their period are those of period
2 and index 4 (over Q) constructed by Cassels [2, (V)] more than 40 years ago.
Indeed, Cassels’ Jacobian elliptic curves have full 2-torsion over Q, so his results
are a special case of our Theorem 3.

IV. Theorems 1 and 3 continue to hold when K is a global field of positive charac-
teristic (i.e., a one-variable function field over a finite field) as long as the prime p is
not the characteristic of K: we need only use the aforementioned positive charac-
teristic version of Lichtenbaum’s theorem due to Milne [10, Corollary, p. 283]. But
in fact the point of Milne’s paper is to prove that Tate local duality holds (even)
on the p-primary component of H1(K,E) and accordingly that Lichtenbaum’s the-
orem holds even for Weil-Châtelet classes whose period is divisble by p. Perhaps
Theorems 1 and 3 hold even for such classes, but they cannot be proved using the
present methods, which require E[n] to be an étale group scheme.

V. There are versions of Theorem 1 and Theorem 3 for principal homogeneous
spaces over abelian varieties of any dimension. The proofs require a higher dimen-
sional period-index obstruction map and are pursued in a separate paper [6].
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